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The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here 50 

we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) 51 

across developmental time points from early organogenesis to adulthood for human, macaque, mouse, 52 

rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified developmental stage 53 

correspondences across species, and differences in the timing of key events during the development of the 54 

gonads. We found that the breadth of gene expression and the extent of purifying selection gradually 55 

decrease during development, whereas the amount of positive selection and expression of new genes 56 

increase. We identified differences in the temporal trajectories of expression of individual genes across 57 

species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis 58 

showing the largest. Our work provides a resource of developmental transcriptomes of seven organs 59 

across seven species, and comparative analyses that characterize the development and evolution of 60 

mammalian organs. 61 

 62 

Understanding the molecular evolution of mammalian phenotypic traits is a fundamental biological goal. To 63 

achieve it, evolutionary studies need to be conducted within a developmental framework, both because adult 64 

phenotypes are defined during development1-3 and because evolutionary and developmental processes are 65 

intertwined. von Baer noted in the 19th century that morphological differences between species increase as 66 

development advances4 and evidence for it has accumulated4,5. Understanding the molecular foundations of 67 

these patterns will facilitate the identification of general principles underlying phenotypic evolution. 68 

 69 

Here we provide a resource of bulk transcriptomes across developmental stages, covering multiple organs 70 

from early organogenesis to adulthood in seven species, enabling direct comparisons of expression patterns 71 

in organ development within and across mammals (http://evodevoapp.kaessmannlab.org). This resource 72 

enabled us to analyse the evolution of gene expression within mammalian organs across developmental 73 

stages. 74 

 75 

Organ developmental transcriptomes  76 

We generated gene expression time series (RNA-seq) for six mammals (human, rhesus macaque, mouse, rat, 77 

rabbit, opossum) and a bird (red junglefowl, henceforth “chicken”). We sampled seven organs representing 78 

the three germ layers: brain (forebrain/cerebrum) and cerebellum (hindbrain/cerebellum) (ectoderm); heart, 79 

kidney, ovary and testis (mesoderm); and liver (endoderm) (Fig. 1a). The time series span from early 80 

organogenesis to adulthood, plus senescence in primates. We sampled prenatal development at regular 81 

intervals (e.g., daily in rodents, weekly in humans), and postnatally we sampled neonates, “infants”, 82 

juveniles, and adults (Fig. 1). There are exceptions: we lack early prenatal data for rhesus and chicken, and 83 

ovary data for rhesus and postnatal human development (Supplementary Table 1). Because marsupial organ 84 

development occurs predominantly postnatally6, all sampled stages except for one were collected 85 

postnatally. The dataset consists of 1,893 libraries (Supplementary Table 2). 86 

 87 

The global relationships among all samples can be explored through a principle component analysis (PCA)  88 

(Fig. 1b). The first principal component (PC1), explaining most variance in gene expression, separates the 89 

samples by the germ layer from which organs originate. PC2 separates the samples by developmental stage 90 

(from early to late development). PC3 and PC4 separate the samples by species (Extended Data Fig. 1a). In 91 

PCAs of individual organs, PC1 and PC2 order the samples by developmental stage and separate them by 92 

species (Extended Data Fig. 1b). In the global PCA (Fig. 1b), the earliest samples from different organs cluster 93 

together, suggesting strong commonalities. We hypothesized that developmental programs are still largely 94 

shared across organs at these early stages and found that organ transcriptomes are indeed most similar at 95 

these stages (Extended Data Fig. 1c). Throughout development, the expression of transcription factors (TFs) 96 
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differs more between organs than that of the whole transcriptome (Extended Data Fig. 1c), consistent with 97 

TFs directing organogenesis. 98 

 99 

Next, we identified genes with significant temporal expression changes in each organ, termed 100 

developmentally dynamic genes (DDGs; Extended Data Fig. 2a; Supplementary Tables 3-9; Methods). DDGs 101 

reflect changes during development in gene regulation, cell type abundance, and/or the proportion of cells 102 

undergoing division1. Consistently, between 79-91% of protein-coding genes in each species are DDGs 103 

(Extended Data Fig. 2b), including genes with housekeeping functions. DDGs are enriched with phenotypes 104 

associated with the development, anatomy and physiology of each organ, plus general growth and patterning 105 

(FDR < 0.01, hypergeometric test; Supplementary Tables 10-11). DDGs are under stronger functional 106 

constraints7-10 than non-DDGs, and the constraints increase with the number of organs in which genes show 107 

temporal dynamic expression (Extended Data Fig. 2c). The increased constraints extend to dosage changes, 108 

with DDGs being less tolerant to duplication and deletion variants11 (Extended Data Fig. 2d).  109 

 110 

In each species, 6-15% of the genes (Extended Data Fig. 2b) are DDGs in only one organ, and are consistently 111 

enriched with organ-specific phenotypes (FDR < 0.01, hypergeometric test; Supplementary Table 12). The 112 

fraction of expressed organ-specific DDGs increases during development (Extended Data Fig. 2e), correlating 113 

with organ differentiation and maturation. The opposite is observed for TFs, whose contribution is highest 114 

earlier in development (Extended Data Fig. 2f).  115 

 116 

Developmental correspondences and heterochrony 117 

Embryonic development is divided into 23 Carnegie stages, which are matched across species12-15 (Extended 118 

Data Fig. 3a). However, cross-species correspondences during fetal and postnatal development are unknown. 119 

Therefore, we used the developmental transcriptomes to establish stage correspondences across species 120 

throughout the entire development (Methods; Fig. 2a; Extended Data Fig. 3b). We recapitulated the Carnegie 121 

stage correspondences (rabbit is shifted 1-2 days; Methods; Extended Data Fig. 3a) and found that gene 122 

expression in a newborn opossum is closest to a mouse at e11.5, matching previous estimates16. 123 

 124 

Organ development includes periods of greater transcriptional change17. We identified and characterized 125 

these periods across species using our stage correspondences. These periods occur at similar stages across 126 

species and are enriched with orthologous genes (P ≤ 0.001, hypergeometric test; Fig. 2b; Extended Data 127 

Figs. 4, 5). In somatic organs, there are two main periods of transcriptional change. The first occurs during 128 

embryonic development and is defined by an increase in expression of genes with early organ-specific 129 

functions and a decrease in expression of genes involved in cell division and general morphogenesis (Fig. 2b; 130 

Extended Data Figs. 4, 5; Supplementary Table 13). The second occurs either postnatally or around birth, 131 

depending on the maturity of the newborns of the different species. Mammals exhibit great variability in 132 

their level of independence at birth, being classified as altricial (born less mature) or precocial (more 133 

mature)6. These classifications are recapitulated by the developmental transcriptomes, with the altricial 134 

newborn opossum at one end of the maturation spectrum and the precocial rhesus macaque at the other 135 

(Fig. 2a). This second period of greater transcriptional change is defined by an increase in expression of genes 136 

with late organ-specific functions and, again, by a decrease in expression of genes involved in cell division 137 

and morphogenesis (Fig. 2b; Extended Data Figs. 4, 5; Supplementary Table 13). Thus, whereas in altricial 138 

species this period of intense organ maturation occurs postnatally, in precocial species it overlaps with birth. 139 

 140 

Developmental programs can change through shifts in the timing of events, i.e. "heterochrony"1. If the 141 

development of an organ were to be shifted in one species, the developmental correspondences for that 142 
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organ would be different from the global correspondences. Overall, organ-specific correspondences are 143 

consistent with the global correspondences, except for early heart development in opossum and early ovary 144 

development in human and rabbit (Extended Data Fig. 6; Methods).  145 

 146 

However, heterochronies do not have to involve whole organs, they can occur in developmental modules 147 

within organs. Indeed, heterochronies occur during the production of gametes18, a process dependent on 148 

meiosis. Stra8 is the gatekeeper for germ cell entry into meiosis and its role is conserved across 149 

vertebrates3,19. Therefore, we analyzed the expression of Stra8 and other meiotic genes to identify the start 150 

of meiosis in each species, and identify differences in its timing across species (Fig. 2a; Extended Data Figs. 151 

7a-d). During oogenesis, meiotic genes are expressed as early as during embryonic development (mouse), at 152 

the boundary between embryonic and fetal development (rat and human), or during late fetal development 153 

(rabbit) (Fig. 2a; Extended Data Figs. 6, 7a-b). Although less frequent, we also identified heterochronies in 154 

the onset of meiosis during spermatogenesis (Fig. 2a; Extended Data Fig. 7c-d). In spermatogenesis the onset 155 

of meiosis marks the beginning of dramatic changes in cellular composition20, which sharply change testis 156 

transcriptomes (Extended Data Fig. 7e). Starting at birth in rodents and later in rabbit there are also profound 157 

changes in ovary transcriptomes (Extended Data Fig. 7e), coinciding with the breakdown of germ cell nests 158 

and follicle assembly21. Heterochronies are therefore abundant during mammalian gonadal development, 159 

representing another mechanism underlying the extreme variability of gonadal morphogenesis3. 160 

 161 

Relationships between evolution and development 162 

After the phylotypic period, the most conserved embryonic stage, morphological differences between 163 

species increase as development progresses — von Baer’s divergence4,5 (Extended Data Fig. 8a). Previous 164 

studies assessed the relationship between development and molecular divergence for whole embryos and 165 

found that molecular divergence increases as development progresses22-25. We recapitulated this 166 

observation for individual organs, consistently finding transcriptome correlations between species to decline 167 

with developmental time (Extended Data Fig. 8b). 168 

 169 

Two non-mutually-exclusive hypotheses can account for the increasing molecular and morphological 170 

divergence during development26. First, early development could be under greater functional constraints and 171 

be more refractory to change. Second, divergence could be driven by adaptive changes, which are more likely 172 

to occur later in development, when the influence of the environment is stronger26. To assess potential 173 

differences in functional constraints across development, we compared the tolerance to functional 174 

mutations of genes employed in early versus late development. Across all organs, genes employed early in 175 

development are less tolerant to loss-of-function mutations (P < 10-10, Wilcoxon rank sum test, two-sided; 176 

Fig. 3a; Extended Data Fig. 8c). Consistently, using a set of neutrally ascertained mouse knockouts27, we 177 

observed for all organs that the percentage of expressed genes associated with lethality decreases during 178 

development (Fig. 3b; Extended Data Fig. 8d). Both observations suggest that early development is subject 179 

to stronger functional constraints. Next, we evaluated the relationship between adaptation and development 180 

by examining the temporal expression of genes identified as carrying signatures of positive selection28. 181 

Organs differ in the proportion of positively selected genes: it is highest in liver and testis and lowest in brain 182 

tissues (Fig. 3c). However, across all organs, the fraction of expressed positively selected genes increases 183 

during development (Fig. 3c). Thus, an increase in positive selection likely also contributes to the progressive 184 

molecular and morphological divergence of organs during development. 185 

 186 

Organ transcriptomes can also diverge between species due to species-specific genes29. Therefore, we 187 

investigated how the contribution of recent gene duplications changes throughout development. For each 188 

stage, we calculated an index combining the phylogenetic age of genes with their expression, where higher 189 
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values correspond to younger transcriptomes (Methods). We identified differences between organs similar 190 

to those observed for positively selected genes: liver has the youngest developmental transcriptomes, brain 191 

tissues the oldest (Fig. 3d). However, across organs, transcriptomes become younger during development, 192 

indicating that gene duplications play increasingly more prominent roles (Fig. 3d).  193 

 194 

Together, these analyses suggest that the increase in morphological and molecular divergence observed 195 

between species during development is driven by a decrease in functional constraints as development 196 

advances (Figs. 3a-b), and by a concurrent increase in positive selection (Fig. 3c) and addition of new genes 197 

(Fig. 3d). 198 

 199 

Pleiotropy and the evolution of development 200 

The breadth of expression across tissues and timepoints (which we refer to here as pleiotropy) has an 201 

influence on gene evolution30,31. Therefore, we calculated the tissue- and time-specificity of each gene across 202 

development (Extended Data Fig. 9a; Methods; Supplementary Tables 3-9). Time- and tissue-specificity are 203 

highly correlated: tissue-specific genes are more likely to be expressed in narrower time windows and vice 204 

versa (Pearson correlation coefficients, r: 0.63-0.89, P < 10-15). Genes also tend to have similar temporal 205 

breadths across organs (r: 0.48-0.92, P < 10-15). As described32,33, pleiotropy correlates with levels of 206 

functional constraint: the more broadly expressed, the more intolerant genes are to functional variation (r = 207 

0.29, P < 10-15; Extended Data Fig. 9b). Consistently, genes associated with lethality27 are more broadly 208 

expressed than genes associated with subviability, which in turn are more broadly expressed than genes 209 

associated with viability (all P ≤ 2 x 10-8, Wilcoxon rank sum test, two-sided; Fig. 3e; Extended Data Fig. 9c). 210 

This contrast with measures of tolerance to functional mutations, which distinguish genes associated with 211 

lethality or subviablity from viability (P = 2 x 10-12), but do not differentiate between lethality and subviability 212 

(Fig. 3e; Extended Data Fig. 9d). Expression pleiotropy is therefore uniquely correlated with phenotypic 213 

impact.  214 

 215 

Pleiotropy has been forwarded as an explanation for the conservation of the phylotypic period24,34 and is a 216 

determinant of the types of mutations that are permissible under selection30,31. Therefore, we tested for 217 

differences in pleiotropy between genes employed early versus late in development and found that genes 218 

employed earlier have broader spatial and temporal expression than genes employed later (all P < 10-6, 219 

Wilcoxon rank sum test, two-sided; Fig. 3f; Extended Data Fig. 9e). Because a decrease in pleiotropy can 220 

explain both a decrease in functional constraints and an increase in adaptation30,31, we suggest that it may 221 

be a major contributor to the increase in morphological and molecular divergence observed between species 222 

during development.  223 

 224 

Evolution of developmental trajectories 225 

Differences between species in organ development are often correlated with changes in gene expression. 226 

Consequently, we sought to identify genes that evolved new developmental trajectories. Hence, we 227 

compared, within a phylogenetic framework, the temporal profiles of orthologous DDGs and identified those 228 

with trajectory changes between species (Fig. 4a, b; Supplementary Tables 14-18; Methods). 229 

 230 

Brain exhibits the smallest percentage of trajectory changes (11% DDGs), liver and testis the highest (23% 231 

and 27%, respectively; Extended Data Fig. 10a). These organ differences are consistent with those observed 232 

for positively selected genes and for gene duplications. Thus, across all evaluated mechanisms of 233 

evolutionary change, the brain is the slowest evolving organ, whereas liver and testis are the fastest.  234 

 235 
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In mouse, rat and rabbit the distribution of trajectory changes among organs is similar (Extended Data Fig. 236 

10b). Compared to these species, humans display an excess of trajectory changes in brain (20% changes in 237 

human vs. 12-13% in others; P = 1 x 10-5, binomial test) and cerebellum (26% in human vs. 21-22% in others; 238 

P = 0.02), and a paucity in testis (21% in human vs. 34-37% in others; P = 1 x 10-10) (Extended Data Fig. 10b). 239 

Although it is tempting to invoke adaptation, the excess of changes in the human brain tissues could partly 240 

stem from differences in sampling (Methods). Overall, rodents evolved a higher number of trajectory changes 241 

when compared to human and rabbit (P < 10-10; Fig. 4b).  242 

 243 

Orthologs tested for trajectory changes are more pleiotropic than the full set of genes in each species, which 244 

also includes gene duplications/losses (all P < 10-12, Wilcoxon rank sum test, two-sided; Extended Data Fig. 245 

10c). However, among those tested, genes with new trajectories are as pleiotropic as genes with conserved 246 

trajectories (Extended Data Fig. 10d). Importantly, while genes with trajectory changes are broadly 247 

expressed, the changes themselves are organ-specific (Extended Data Fig. 10e). Trajectory changes are 248 

restricted to one organ in 93-96% of the cases. This is consistent with the underlying mutations affecting 249 

regulatory elements, which control a subset of the total spatiotemporal profile of each gene, and with 250 

evolutionary theory, as mutations affecting multiple organs are less likely to fix in populations30,31. However, 251 

not all trajectory changes are directly due to regulatory mutations; they can also be caused by changes in 252 

cellular composition.  253 

 254 

Discussion 255 

We profiled the development of seven major organs, from early organogenesis to adulthood, across multiple 256 

mammals, to create an extensive resource (evodevoapp.kaessmannlab.org). We used developmental 257 

transcriptomes to match stages across species and identified extensive heterochronies during gonadal 258 

development. We found the evolution of mammalian organs to be inextricably linked to their development. 259 

Organs are most similar between species early in development and then become increasingly more distinct, 260 

which is likely explained by changes in pleiotropy during development. Early in development, active genes 261 

tend to function in multiple organs and stages, rendering them more refractory to change. As organs 262 

differentiate and mature, active genes have more restricted spatiotemporal profiles, which may reduce 263 

functional constraints and facilitate evolutionary change. The increase in species divergence as development 264 

progresses has also been described for mammalian limb development35 and whole embryos4-5 and we 265 

suggest it occurs in developmental systems where pleiotropy decreases as a function of time.  266 

 267 

A next challenge will be to identify the molecular drivers of the new developmental trajectories, which may 268 

underlie the evolution of organ phenotypes. It will be important to assess the extent to which these trajectory 269 

changes are caused by changes in gene regulation and/or cellular composition. This can be accomplished by 270 

complementing the data and results of this study with single-cell transcriptomic and epigenomics datasets 271 

and bioinformatic deconvolution procedures. Such endeavors will further advance our understanding of the 272 

genetic and developmental foundations of the evolution of mammalian phenotypes. 273 

 274 
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 383 

Figure 1 | Organ developmental transcriptomes. a, Species, organs, and stages sampled. Red slashes 384 

highlight two sampling gaps: human development is not covered between 20 and 38 weeks post-conception 385 

(wpc) and rhesus development between embryonic (e) day 130 and e160. b, PCA based on 7,696 1:1 386 

orthologs across all species. Each dot represents the median across replicates (~2-4).  387 

 388 

Figure 2 | Developmental correspondences. a, Stage correspondences across species. Grey bars represent 389 

additionally sampled stages. Red shading highlights sampling gaps. In rhesus, male meiosis starts at 3-4 390 

years36. Because we did not detect expression of meiotic genes in the 3-year-olds, we placed meiosis’ onset 391 

between 3 and 9 years. c, Number of genes differentially expressed between adjacent, species-matched, 392 

stages for brain and liver (log2 fold-change ≥ 0.5; other organs in Extended Data Fig. 5). Solid lines mark genes 393 

that increase in expression and dashed lines genes that decrease. Vertical dotted line marks birth.  394 

 395 

Figure 3 | Relationships between evolution and development. a, Intolerance to functional mutations (pLI) 396 

for human genes whose expression decreases (blue) or increases (orange) during development (4,589/4,478 397 

genes decrease/increase in brain, 2,673/3,442 in heart, and 2,290/3,794 in testis; all P < 10-10, Wilcoxon rank 398 

sum test, two-sided). b, Percentage of lethal genes expressed at each stage (out of 2,676 knockouts). 399 

Weighted average Spearman correlation coefficient is -0.89 (P = 1 x 10-12); all organ-specific Spearman 400 

correlations are significant (P ≤ 0.04). c, Percentage of positively-selected genes expressed at each stage (out 401 

of 13,362 genes tested for positive selection). Ovary excluded due to lack of postnatal data. Weighted 402 

average Spearman correlation coefficient is +0.57 (P = 5 x 10-11); all organ-specific correlations are significant 403 

(P ≤ 0.05). d, Phylogenetic age of organs’ transcriptomes throughout development for rat (n = 18,695 genes), 404 

human (n = 18,820) and chicken (n = 15,155). Higher values indicate larger contributions of lineage-specific 405 

genes (i.e. younger transcriptomes). Weighted average Spearman correlation coefficients are +0.87 (P = 1 x 406 

10-12) for rat, +0.77 (P = 1 x 10-12) for human and +0.96 (P = 1 x 10-12) for chicken. All Spearman correlations 407 

are significant except for rat brain and cerebellum (ρ: +0.53 to +0.99, P: 0.03 to 10-15). Testis plotted 408 

separately because of the young age of sexually mature transcriptomes. e, Tissue-specificity, time-specificity 409 

(median across organs) and intolerance to functional mutations (pLI) of human orthologs of mouse genes 410 

identified as lethal, subviable and viable (n = 2,686; Wilcoxon rank sum test, two sided;  ‘N.S.’ means non-411 

significant). Box plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the interquartile 412 

range. f, Tissue-specificity for mouse genes whose expression decreases (blue) or increases (orange) during 413 

development (3,981/5,164 genes decrease/increase in brain, 4,631/5,051 in kidney, and 4,270/4,026 in liver; 414 

all P < 10-15, Wilcoxon rank sum test, two-sided). In b-d, the x-axes show samples ordered by stage (Fig. 1a). 415 

In b-c, lines were estimated through linear regression; in d through loess. In b-d the 95% confidence interval 416 

is shown in grey. 417 

 418 

Figure 4 | Evolution of developmental trajectories. a, Example of two genes that evolved new trajectories 419 

in the human cerebellum. GRIA3 is a glutamate receptor associated with mental retardation. MDGA1 420 

encodes a cell surface glycoprotein important for the developing nervous system.  b, Pie charts depict the 421 

number of genes in each organ that evolved new trajectories in each phylogenetic branch (3,980 genes tested 422 

in brain, 3,064 in cerebellum, 1,871 in heart, 2,284 in liver and 3,191 in testis). Bar charts depict the total 423 

number of trajectory changes in each species. For mouse, that meant adding the changes that occurred at 424 

the base of the glires (I), those shared by mouse and rat (II) and those that are mouse specific (III). **P < 10-425 

10, binomial test.  426 

 427 

Online Methods 428 

 429 
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Ethics statement 430 

The human prenatal samples were provided by the MRC-Wellcome Trust Human Developmental Biology 431 

Resource (HDBR) and are from elective abortions with normal karyotypes. The tissue donations were made 432 

entirely voluntarily by women undergoing termination of pregnancy. Donors were asked to give explicit 433 

written consent for the fetal material to be collected, and only after they had been counselled about the 434 

termination of their pregnancy. The human postnatal samples were provided by the NICHD Brain and Tissue 435 

Bank for Developmental Disorders at the University of Maryland (USA) and by the Chinese Brain Bank Center 436 

(CBBC) in Wuhan (China). They originated from individuals with diverse causes of death that, given the 437 

information available, were not associated with the organ sampled. Written consent for the use of human 438 

tissues for research was obtained from all donors or their next of kin by the respective tissue banks. The 439 

rhesus macaque samples were provided by the Suzhou Experimental Animal Center (China). All rhesus 440 

macaques used in this study suffered sudden deaths for reasons other than their participation in this study 441 

and without any relation to the organ sampled. The use of all samples for the work described in this study 442 

was approved by an ERC Ethics Screening panel (associated with H.K.'s ERC Consolidator Grant 615253, 443 

OntoTransEvol) and local ethics committees in Lausanne (authorization 504/12) and Heidelberg 444 

(authorization S-220/2017).  445 

 446 

Human developmental samples 447 

We started sampling human prenatal development at 4 weeks post-conception (wpc) and then sampled the 448 

developing organs each week until 20 wpc (except for 14, 15 and 17 wpc). There are no samples available 449 

between 20 and 38 wpc. Postnatally we sampled neonates, “infants” (6-9 months), “toddlers” (2-4 years), 450 

“school” (7-9 years), “teenagers” (13-19 years), and then adults from each decade until 63 years of age 451 

(Supplementary Tables 1-2). Human ovary development was only sampled prenatally (until 18wpc) and 452 

kidney development was sampled up until (and including) 8 years of age (“school”). Prenatally, we considered 453 

as biological replicates individuals from the same developmental week. Hence, for example, individuals from 454 

Carnegie stages 13 and 14 were considered to be replicates (i.e. 4 wpc) even though they were not at the 455 

same developmental stage according to phenotypic milestones. Supplementary Table 2 provides the precise 456 

age of the donors. The number of biological replicates ranges from 1 to 4 (median of 2), for a total of 297 457 

RNA-seq libraries.  458 

 459 

Other species developmental samples 460 

In mouse (Mus musculus, outbred strain CD-1 - RjOrl:SWISS), we started sampling prenatal development at 461 

e10.5 and then collected samples daily until birth (i.e. until e18.5). Postnatally we sampled individuals at 5 462 

stages: P0, P3, P14, P28 and P63. There are 4 replicates (2 males and 2 females) per stage, except for ovary 463 

and testis where we aimed for 2 replicates, for a total of 316 RNA-seq libraries.  464 

 465 

In rat (Rattus norvegicus, outbred strain Holtzman SD), the time-series start at e11 and cover prenatal 466 

development daily until birth (i.e. until e20). Postnatally we sampled individuals at 6 stages: P0, P3, P7, P14, 467 

P42 and P112. We generated replicates as described for mouse, for a total of 350 RNA-seq libraries.  468 

 469 

In rabbit (Oryctolagus cuniculus, outbred New Zealand breed), we started sampling prenatal development at 470 

e12 and then sampled 11 time points up until (and including) e27 (gestation length is ~29-32 days). 471 

Postnatally we sampled individuals at 4 stages: P0, P14, P84 and between P186-P548. The number of 472 

replicates is the same as described for the rodents, for a total of 315 RNA-seq libraries. 473 

 474 

For rhesus macaque (Macaca mulatta), the sample collection started at a fetal stage (e93) and we sampled 475 

5 stages before birth (until e130; gestation lasts ~167 days). Postnatally we sampled 8 stages selected to 476 
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match the human time-series (Supplementary Tables 1-2). The number of replicates ranges from 1 to 4 477 

(median of 2), for a total of 168 RNA-seq libraries. Ovary development was not sampled. 478 

 479 

Because opossums (Monodelphis domestica) are born in a very immature state6, the stages of organ 480 

development sampled in the other species during prenatal development occur postnatally in the marsupial. 481 

Accordingly, we sampled one prenatal stage (e13.5; gestation length is ~14-15 days) and then sampled 14 482 

postnatal stages, more densely right after birth and then at increasingly longer intervals (Supplementary 483 

Table 1). There is a median of 3 biological replicates per stage for somatic organs and 2 for the gonads, for a 484 

total of 232 RNA-seq libraries. 485 

 486 

In chicken (Gallus gallus, the red junglefowl, progenitor of domestic chicken), we started sampling organ 487 

development at a fetal stage (e10) and sampled 3 additional stages until e17 (egg incubation lasts ~21 days). 488 

We then sampled postnatal development at 5 stages: P0, P7, P35, P70 and P155. There is a median of 4 489 

biological replicates per stage for somatic organs (2 males and 2 females) and 2 for the gonads, for a total of 490 

215 RNA-seq libraries. 491 

  492 

This resource consists of 1,893 libraries, covering the development of 7 organs, 9-23 developmental stages 493 

(depending on the species) and a median of 2-4 replicates per stage (full details in Supplementary Tables 1-494 

2). 495 

 496 

Organ dissections 497 

Mammalian embryos are morphologically similar4, and this similarity extends to the internal organs. Early in 498 

development, the only clear morphological difference between the organs of the different species, when 499 

present, is size. We started collecting samples when the organs could be dissected and isolated from nearby 500 

tissues. For the brain this was possible across the entire time series. Human and rhesus prenatal brain was 501 

divided into two regions: forebrain together with the midbrain (referred to as the ‘brain’) and hindbrain 502 

(referred to as the ‘cerebellum’). Human and rhesus postnatal ‘brain’ and ‘cerebellum’ samples comprise the 503 

dorsolateral prefrontal region of the cerebral cortex and lateral cerebellar cortex, respectively. For the other 504 

species the dissected ‘brain’ samples correspond to the cerebral hemispheres (without the olfactory bulbs). 505 

The early ‘cerebellum’ samples correspond to the prepontine hindbrain-enriched brain region (until the 506 

period matching a mouse e15.5) and from e16.5 onwards only to the cerebellum. For mouse, rat and rabbit, 507 

the earliest developmental samples consist of whole brains, which were analysed as part of the brain time 508 

series (Supplementary Table 1). We dissected heart samples across the entire time series. At the earliest 509 

stage sampled, the heart is beating and the four chambers are already present37. For most species, the liver 510 

could also be individually dissected at the start of the time series. The developing gonads are visible as a 511 

paired structure on the ventromedial surface of the mesonephros before the start of the time series. 512 

However, depending on the species, we were only able to completely isolate the developing gonads at later 513 

stages. The same was true for the developing kidneys. In chicken only the left ovary develops and this was 514 

the one dissected. The dissections include the main organ structures/cell types in all species but, with the 515 

exception of the early samples, they did not include the whole organ. 516 

 517 

RNA extraction and sequencing 518 

RNA was extracted using the RNeasy protocol from QIAGEN. RNeasy Micro columns were used to extract 519 

RNA from small (< 5 mg) or fibrous samples and RNeasy Mini columns were used to extract RNA from larger 520 

samples. The tissues were homogenized in RLT buffer supplemented with 40 mM dithiothreitol (DTT) or 521 

QIAzol. In order to make sure that we were not introducing technical biases by using two different 522 

homogenization procedures, we generated libraries for four samples (two adult rat brains and two adult rat 523 
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testis) using RLT buffer with dithiothreitol or QIAzol (with two technical replicates). All libraries from the 524 

same organ showed a Pearson correlation coefficient ≥ 0.99 irrespective of the homogenization procedure 525 

(the median correlation between replicates in the rat dataset was 0.99). RNA quality was assessed using the 526 

Fragment Analyzer (Advanced Analytical). The RNA-seq libraries were created using the TruSeq Stranded 527 

mRNA LT Sample Prep Kit (Illumina) and sequenced on the HiSeq 2500 platform (multiplexed in sets of 6 or 528 

8). All libraries are strand-specific, 100 nucleotides single-end, and were sequenced to a median depth of 33 529 

million reads at the Lausanne Genomic Technologies Facility (Supplementary Table 2). The sequencing depth 530 

was uniform across the libraries (5% and 95% quantiles of 20 and 54 million reads, respectively). A subset of 531 

the adult libraries was used in previous publications38,39. 532 

 533 

QC of the libraries and estimation of expression levels 534 

We mapped the reads from each library against the species reference genome (Supplementary Table 19) 535 

using GSNAP (22-10-2014)40. The alignments were guided by the known gene annotations and the discovery 536 

of novel splice sites was enabled (Supplementary Tables 19-20). We used HTSeq (0.6.1)41 to generate read 537 

counts for the set of protein-coding genes (Supplementary Tables 19-20). Only uniquely mapping reads were 538 

allowed. We normalized the count data using the method TMM as implemented in the package EdgeR 539 

(3.14.0)42. EdgeR was also used to generate the expression tables used in the study. Expression levels were 540 

calculated as cpm (counts per million) or in RPKM (reads per kilobase of exon model per million mapped 541 

reads). The alignment files were manipulated using samtools (0.1.18)43 and general alignment statistics 542 

created using Picard (1.86)44 (Supplementary Table 20).  543 

 544 

We used Fragment Analyzer’s RQN values to evaluate the quality of the samples and generally generated 545 

sequencing data for those with high values (≥ 7). However, because we also sequenced libraries with lower 546 

RQN values, we performed an additional check on RNA integrity after sequencing. We used Picard’s 547 

“CollectRnaSeqMetrics” tool to calculate the distribution of read coverage along transcripts. RNA 548 

degradation leads to a bias in read coverage by favoring the 3’ end of genes and this can be identified by 549 

calculating the median 3’ bias of transcript coverage. We excluded from our dataset all libraries that showed 550 

a significant 3’ bias in read coverage. 551 

 552 

We evaluated the quality of the sequenced libraries using unsupervised hierarchical clustering (hclust) and 553 

PCA (FactoMineR 1.3445) as implemented in R46. In a PCA the developmental samples from an organ of a 554 

given species should be ordered by developmental time in a characteristic U or V-shape47. Samples with low 555 

RNA quality, insufficient sequencing depth, or showing potential contamination with other tissues appeared 556 

as outliers in the organ PCAs and were excluded (the outlier status was confirmed using hierarchical 557 

clustering). The global and organ-specific PCAs used as input the read counts after applying the variance 558 

stabilizing transformation (vst) implemented in DESeq2 (1.12.4)48. The sex of the samples was confirmed 559 

using the female-specific genes Xist (eutherians), Rsx (opossum) and CDC34 (chicken) (and for eutherians 560 

with available Y chromosomes also with the Y-linked gene Ddx3y) using Bedtools (2.18)49. Finally, we removed 561 

from the dataset libraries where the correlation among replicates  (Spearman’s ρ) was lower than 0.90. We 562 

are making available the libraries that passed the general QC but had correlations with their replicates < 0.90, 563 

but they were not used in this study and are marked as such in Supplementary Table 2.  564 

 565 

Developmentally Dynamic Genes (DDGs) 566 

In each organ, we identified the genes with dynamic temporal profiles (DDGs) using maSigPro, an R package 567 

designed for transcriptomic time-courses50,51. We used as input the count tables from EdgeR (in cpm), and 568 

only excluded genes that did not reach a minimum of 10 reads in at least 3 libraries. We ran maSigPro on the 569 

log-transformed time (measured in days post-conception) with a degree = 3 (polynomial). We considered 570 
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genes as DDGs in an organ when the goodness-of-fit (R2) was at least 0.3 and the maximum RPKM in that 571 

organ was at least 1. The lists of DDGs in each organ and species are provided in Supplementary Tables 3-9.  572 

 573 

We identified differences between species and organs in the number of DDGs (Extended Data Fig. 2a). 574 

However, technical aspects of the datasets can explain these differences, particularly those between species. 575 

First, due to the nature of the statistical test used, the power to call differential temporal expression 576 

depended on the magnitude of the expression change and on the agreement between the biological 577 

replicates. Smaller expression changes could only be detected if there was strong agreement between the 578 

biological replicates. There are differences between species in the median correlation across replicates 579 

(Spearman’s ρ: 0.94 – 0.99) and these are strongly correlated with the number of DDGs detected (ρ = 0.66, P 580 

< 10-6). Two factors contribute to the species differences in the correlations among replicates. One is the 581 

amount of genetic diversity (e.g. lower in mouse than human); the other is how close biological replicates 582 

are in terms of development. In rodents the biological replicates are from identical developmental stages 583 

(sometimes even the same litter) but in primates the biological replicates span developmental periods. 584 

Second, there are differences between species and organs in the length of the time series (Supplementary 585 

Table 1). Notably, in chicken and rhesus we are missing the earliest developmental stages, when key 586 

developmental processes occur. Finally, some differences could also derive from differences in genome 587 

annotation. 588 

 589 

We characterized DDGs using 3 different metrics of functional constraint: 1) the residual variation intolerance 590 

score (RVIS); 2) the probability of being loss-of-function intolerant (pLI); and 3) the selection against 591 

heterozygous loss of gene function (shet). All metrics were applied to data from the Exome Aggregation 592 

Consortium (ExAC)9. We obtained the pLI and RVIS scores from ref. 7 and shet from ref. 10. We also used the 593 

CNV intolerance score as applied to the ExAC data from ref. 11. The lists of TFs were from the animalTFDB 594 

(version 2.0)52. 595 

 596 

Stage correspondences across species 597 

We identified stage correspondences across species using the set of 1:1 DDGs in all species. Because of the 598 

shorter time-series we did not require genes to be DDGs in rhesus. We used the combined information from 599 

the somatic organ DDGs to calculate the Spearman correlations between all stages in mouse and all stages 600 

in each of the other species (using for each stage the median across replicates). We then ran the dynamic 601 

time warping algorithm implemented in the R package ‘dtw’ (1.18-1)53 to identify the optimal alignment 602 

between each of the two time series. We ran dtw using as step pattern ‘symetricP05’ (except for rhesus and 603 

chicken where the late fetal start required us to use ‘asymmetric’ with ‘begin.open=T’). When a stage in a 604 

given species matched two or more stages in mouse we kept the one with the highest correlation (Extended 605 

Data Figs. 3a-b). Our cross-species stage correspondences recapitulated the stage correspondences based on 606 

the Carnegie staging for all species except rabbit (shifted 1-2 days; Extended Data Fig. 3a). An independent, 607 

neural development-based stage assignment across mammals54, suggested an even more pronounced shift 608 

(3-4 days) forward for rabbit. 609 

 610 

We then evaluated whether the stage correspondences based on the combined information from the 611 

somatic organs were consistent with the information available for each individual organ. For each organ and 612 

stage in mouse, we selected in the other species the stage with the maximum correlation plus all stages 613 

within 1% of the maximum correlation. We then fitted a local polynomial regression (‘loess’) to identify the 614 

organ-specific correspondences (Extended Data Fig. 6). Overall, the global stage correspondences are within 615 

the 98% confidence interval of organ-specific correspondences, suggesting that a single stage 616 

correspondence can be used for all organs. But there are exceptions. The heart-specific correspondence 617 
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between mouse and opossum differs from the global correspondence early in development, suggesting that 618 

in relation to the other organs, heart development in opossum could be shifted forward, i.e. be in a more 619 

advanced developmental stage. Early opossum development is characterized by heterochronies in the 620 

craniofacial, axial and limb skeleton that allow the neonates to crawl without their mother’s help to the teat 621 

immediately after birth16,55. It is possible that heart development is also shifted forward to accommodate the 622 

greater demands of what is postnatal life in opossum, and still prenatal life in the other species. The other 623 

potential exception applies to early ovary development in human and rabbit, where we observe development 624 

to be shifted forward in the two species. Using the ovary-specific correspondences, the heterochronies 625 

associated with the onset of meiosis during oogenesis in these species are even more pronounced than when 626 

using the global stage correspondences (Extended Data Fig. 6).  627 

 628 

We were underpowered to detect shifts in individual organs that encompass a small number of adjacent time 629 

points. Throughout organ development, the correlation between adjacent stages is, as expected, high, and 630 

we would only be able to detect small shifts if they led to a high discordance between species (i.e. significantly 631 

lower correlations for a short interval when compared to the rest of the time-series). The only instance of 632 

this in our dataset was during testis development, in association with the onset of meiosis (inset in Extended 633 

Data Fig. 6). The onset of meiosis marks the beginning of dramatic changes in cell composition in the testis20, 634 

which make the transcriptomes that flank this event distinct from each other (Extended Data Fig. 7e), thereby 635 

allowing the detection of significant differences between species between adjacent stages.  636 

 637 

Periods of greater transcriptional change 638 

For each species, we identified the genes that are differentially expressed between adjacent time points 639 

(based on the cross-species stage correspondences) using DESeq2 (1.12.4)48. We required the adjusted P-640 

value to be ≤ 0.05 and the log2 fold-change to be ≥ 0.5.  Differences between species in the number of 641 

replicates and in the correlation among the replicates (above) impacted our power to call differential 642 

expression. Both factors led to lower power to detect differential expression in primates than in mouse, rat 643 

and rabbit. Therefore, we are likely underestimating the amount of transcriptional change in humans. 644 

 645 

Relationships between evolution and development 646 

In Figs. 3a and 3f (and in Extended Data Figs. 8c and 9e) we compare the tolerance to functional mutations 647 

and the time- and tissue-specificity of genes employed early vs. late in development in human and mouse. 648 

For each species we identified these genes in the following way. First, we identified the most common 649 

profiles in each organ using the soft-clustering approach (c-means) implemented in the R package mFuzz 650 

(2.32.0)56,57. The clustering was restricted to DDGs and we used as input the read counts after applying the 651 

variance stabilizing transformation (vst) to the raw counts implemented in DESeq2 (1.12.4)48. The number of 652 

clusters was set to 6-8 depending on the organ. For each organ, we settled on a cluster number when 653 

increasing it would not add a new cluster but instead split a previous cluster in two. We considered that a 654 

cluster was split into two when the median profile of the genes in the two new clusters was similar and when 655 

functional enrichment analyses were also similar between the clusters. Between 86-92% of genes in mouse 656 

and 89-93% of genes in human were clearly assigned to one of the clusters (cluster membership ≥ 0.7). 657 

Among these genes, those assigned to clusters characterized by a decrease in expression during development 658 

were classified as genes employed early in development and those assigned to clusters with the opposite 659 

profile were classified as genes employed late in development. Genes assigned to clusters with other profiles 660 

were classified as other. The classification of each gene in each organ as “Early”, “Late”, “Other” or “NA” (if 661 

a gene is not DDG in the organ or if it has a membership < 0.7) is provided in Supplementary Tables 3 (mouse) 662 

and 6 (human). 663 
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 664 

In Fig. 3b (and Extended Data Fig. 8d), we used a set of neutrally ascertained mouse knockouts that consists 665 

of 2676 protein-coding genes: 646 are classified as lethal, 257 as subviable (less than 12.5% of expected pups) 666 

and 1773 as viable. These were the data on viability available for download on June 7, 2017 from the 667 

International Mouse Phenotyping Consortium (IMPC)27. For each developmental stage, the denominator is 668 

the number of genes expressed that were tested for lethality and the numerator the genes among those that 669 

resulted in a lethal phenotype. In Extended Data Fig. 8d we also include in the numerator the genes that 670 

resulted in a subviable phenotype (top) and exclude from the analysis a set of housekeeping genes identified 671 

by Eisenberg and Levanon58 (bottom). We excluded housekeeping genes because they are typically most 672 

highly expressed early in development and are enriched among lethals22. 673 

 674 

In Fig. 3c we used a set of genes with evidence for coding-sequence adaptation in mammals identified by 675 

Kosiol and colleagues28. For each developmental stage, the denominator is the number of expressed genes 676 

that were tested for signatures of positive selection and the numerator is the number of genes among those 677 

with evidence for positive selection.   678 

 679 

In Fig. 3d we plotted the age of the transcriptome for each developmental stage. The “age of the 680 

transcriptome” was inspired by the Transcriptome Age Index (TAI) developed by Domazet-Loso and Tautz59 681 

but differs fundamentally from it in that we are dating the emergence of individual genes and not of gene 682 

families (i.e. the emergence of the founder member of a gene family). The TAI measure is a weighing 683 

procedure (weighted arithmetic mean) that gives greater weight to young duplicates. The age of the 684 

duplicates was determined based on syntenic alignments across vertebrates and parsimony as previously 685 

described60. The pipeline was run for human, mouse, rat and chicken (based on Ensembl 69 annotations). 686 

Most new genes emerged via SSDs in mammals60. Genes predating the vertebrate split were given a score of 687 

1, genes shared by amniotes were given a score of 2 and so on, until genes that are species-specific were 688 

given the maximum score. The range of the score differed between species depending on the number of 689 

outgroup lineages available (more lineages allowed for more details in the phylogeny) and therefore this 690 

index cannot be compared across species, only within species (i.e. across organs). The score assigned to each 691 

gene was multiplied by the gene’s expression (but only if RPKM > 1). The results reported used the log2 692 

transformed RPKM values but similar trends were obtained using the raw RPKM values. Higher values 693 

indicate larger contributions of recently duplicated genes (i.e. younger transcriptomes).  694 

 695 

Pleiotropy indexes 696 

The time- and tissue-specificity indexes are based on the Tau metric of tissue-specificity61. To calculate our 697 

tissue-specificity index, we applied the Tau formulation to the maximum expression observed during 698 

development in each organ. The time-specificity index uses the Tau formulation for time-points instead of 699 

organs. Both indexes range from 0 (broad expression) to 1 (restricted expression). These indexes are provided 700 

in Supplementary Tables 3-9.  701 

 702 

Comparing developmental trajectories 703 

We compared developmental trajectories between human, mouse, rat, rabbit and opossum. Rhesus and 704 

chicken were not included because their time series start at a late fetal stage. We used GPClust, a method to 705 

cluster time-series using Gaussian processes62-64, to identify the most common developmental trajectories in 706 

each organ. We used the expression (vst-counts) of all available orthologous DDGs as the input (median 707 

across replicates for matching stages only). We set the noise variance (k2.variance.fix) to 0.7. GPClust 708 

assigned each gene the probability of belonging to each of the trajectories (clusters). We then inferred within 709 

a phylogenetic framework the probability that there were changes in developmental trajectories, i.e. that 710 
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genes changed their cluster assignment in specific branches. We did this in a two-step approach. First, we 711 

inferred ancestral cluster probabilities along the tree by calculating the weighted averages from the child-712 

nodes. The weights are given by the inverse branch lengths, which were retrieved from TimeTree65, so that 713 

closer child-nodes have more weight. To detect changes in the overall pattern at each branching in the tree 714 

we calculated the probability that its two nodes are in the same cluster. If the probability was below 1% we 715 

called the node as having changed. Second, after identifying all such nodes we mapped the change to one of 716 

the two branches by comparing the two children of the node with the outgroup node. The results are 717 

provided in Supplementary Tables 14-18.  718 

 719 

It was not always possible to identify the specific branch where changes occurred. This was either because 720 

changes were also detected at neighboring nodes (making unclear where the change occurred) or because 721 

two nodes differed at the threshold used (1%) but they were both not different from their joint closest 722 

relative (e.g. when a call was made for mouse vs. rat but neither for mouse vs. rabbit nor rat vs. rabbit). These 723 

calls are classified as NA in Supplementary Tables 14-18. Finally, changes between opossum and the 724 

eutherian species could not be polarized because of the lack of an outgroup (classified as Eutherian/opo in 725 

Supplementary Tables 14-18). These changes were included in Extended Data Fig. 10. Fig. 4 and Extended 726 

Data Fig. 10 summarize the results for genes that have one trajectory change across the phylogeny.  727 

 728 

Differences in developmental trajectories between species can be created by changes in the expression levels 729 

of genes in homologous cell populations, by expansions/contractions of homologous cell populations, or by 730 

differences in the cell populations that express a given gene (all non-mutually exclusive possibilities). We 731 

chose a conservative cutoff (1%) to identify trajectory changes because our aim was to identify those with 732 

the largest biological effects. As a consequence we are likely enriching for differences between species 733 

created by abrupt changes in the size of homologous cell populations, differences in the cell populations that 734 

express a given gene, and/or by differences in expression levels of genes in homologous cell populations that 735 

are time-specific (as opposed to being progressive during development). 736 

 737 

The impact of organ complexity on estimates of species divergence 738 

Organ complexity can impact estimates of gene expression. Expression changes in low abundant cell types 739 

that can be detected in simpler organs can potentially go undetected in more complex organs1. Because the 740 

brain has a higher cellular complexity than the other organs studied66, it may appear to be more conserved 741 

between species than it truly is. Indeed, we found brain tissues to be consistently the slowest evolving, 742 

irrespective of the variable being measured. Developmental datasets can help address the problem of 743 

comparing organs with different levels of complexity. Organs are more homogeneous early in development 744 

and then progressively increase in complexity (e.g. the number of distinct cell types increases during 745 

development)1. This means that when we analyze entire time series, we are comparing organs at different 746 

levels of complexity, including early in development when organ complexity is lowest. Throughout the entire 747 

times series we consistently observed more similarities between species’ transcriptomes for the brain than 748 

for the other organs (Extended Data Fig. 8b), including at the earliest stages. We also observed that overall 749 

organs are most similar across species early in development (when the power to identify differences would 750 

be greatest), and then progressively diverge through time (Extended Data Fig. 8b). Finally, the differences 751 

between organs were also consistent throughout the entire development when evaluating the percentage 752 

of expressed positively-selected genes (Fig. 3c) and the contribution of recent gene duplications (Fig. 3d). 753 

Taken together, these observations suggest that the observed differences between organs in their 754 

evolutionary rates are independent of organ complexity. We could, however, be underestimating the total 755 

divergence of organs, particularly in adults. 756 

 757 
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General statistics and plots 758 

Unless otherwise stated all statistical analyses and plots were done in R46. Plots were created using the R 759 

packages ggplot2 (2.2.1)67, gridExtra (2.2.1)68, reshape2 (1.4.2)69, plyr (1.8.4)70, and factoextra (1.0.4)71. All 760 

functional enrichment analyses were done using the R implementation of WebGestalt (version 0.0.5)72. All 761 

packages and versions used are described in Supplementary Table 20. 762 
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Data availability 836 

Raw and processed RNA-seq data have been deposited in ArrayExpress with the accession codes: E-MTAB-837 

6769 (chicken), E-MTAB-6782 (rabbit) E-MTAB-6798 (mouse), E-MTAB-6811 (rat), E-MTAB-6813 (rhesus), E-838 

MTAB-6814 (human) and E-MTAB-6833 (opossum) (https://www.ebi.ac.uk/arrayexpress/). The temporal 839 

profiles of individual genes across organs and species can be visualized and downloaded using the web-based 840 

application: http://evodevoapp.kaessmannlab.org. 841 

 842 

 843 

Extended Data Figure legends 844 

 845 

Extended Data Figure 1 | Organ developmental transcriptomes. a, PC3 and PC4 of the PCA based on 7,696 846 

1:1 orthologs depicted in Fig. 1b (each dot represents the median across replicates), and scree plot describing 847 

the amount of variance explained by the first 10 PCs.  b, PCAs of individual organs (n = 7,696 1:1 orthologs). 848 

c, Correlation of expression levels throughout development between (top) human brain and the other organs 849 

(20,345 genes), (bottom) mouse liver and the other organs (21,798 genes). Similar patterns were observed 850 

using other organs as the focal organ, and species. For human, the prenatal data are in weeks (w) and 851 

postnatally ‘new’ means newborn, ‘sch’ school age (7-9 years), ‘ya’ young adult (25-32 years) and ‘sen’ senior 852 

(58-63 years).  853 

  854 

Extended Data Figure 2 | DDGs. a, Number of DDGs identified in each organ and species using (left) the set 855 

of 7,696 1:1 orthologs and (right) the set of all protein-coding genes in each species. The horizontal bar 856 
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depicts the median. Br: Brain, Cr: Cerebellum, He: Heart, Ki: Kidney, Li: Liver, Ov: Ovary, Te: Testis, Te*: Testis 857 

pre-sexual maturity. b, Number of DDGs per species, including number of organs where they show dynamic 858 

expression. *In rhesus ovary development is not covered, hence there are only 6 organs in total. c, 859 

Relationship between the number of organs in which genes show dynamic expression and the tolerance to 860 

functional variants as measured by: the probability of being loss-of-function intolerant (pLI score), the 861 

residual variation intolerance score (RVIS) and selection against heterozygous loss-of-function (shet score) (n 862 

= 13,160 genes; Wilcoxon rank sum test, two-sided). d, Relationship between the number of organs in which 863 

genes show dynamic expression and intolerance to duplication and deletion variants (CNV intolerance score; 864 

n = 15,728 genes; Wilcoxon rank sum test, two-sided). e, Percentage of organ-specific expressed DDGs at 865 

each developmental stage. Bars indicate the range between the replicates. For the brain tissues, DDGs are 866 

organ-specific in brain and/or cerebellum. Time-points on the x-axis described in Fig. 1a. f, Percentage of TFs 867 

expressed at each developmental stage. Bars indicate the range between the replicates. Time-points on the 868 

x-axis described in Fig. 1a. In c-d, box plots depict median ± 25th and 75th percentiles, whiskers at 1.5 times 869 

the interquartile range. 870 

  871 

Extended Data Figure 3 | Developmental correspondences across species. a, Developmental stage 872 

correspondences established in this study and correspondences based on the Carnegie staging (when 873 

available). b, Using mouse as a reference, a dynamic time warping algorithm was used to select the best 874 

alignment (pink line) between the time series based on stage transcriptome correlations combining all 875 

somatic organs (n = 8,940 genes/organ combinations). In the human correspondence, “new” means 876 

newborn, “tod” toddler (2-4 years), “teen” teenager (13-19 years), “yma” young middle age (39-41 years), 877 

“sen” senior (58-63 years).  878 

  879 

Extended Data Figure 4 | Periods of greater transcriptional change in mouse. Number of genes differentially 880 

expressed between adjacent stages in each organ (log2 fold change ≥ 0.5). Solid lines refer to genes that 881 

increase in expression and dashed lines to genes that decrease. The biological processes and phenotypes 882 

enriched at the peaks of differential expression are detailed in Supplementary Table 13. 883 

  884 

Extended Data Figure 5 | Periods of greater transcriptional change across species. Number of genes 885 

differentially expressed between adjacent, species-matched, stages for each organ (log2 fold change ≥ 0.5). 886 

Solid lines refer to genes that increase in expression and dashed lines to genes that decrease. The vertical 887 

dotted line marks birth. 888 

  889 

Extended Data Figure 6 | Organ-specific stage correspondences. Comparison of the global stage 890 

correspondences (based on the combined expression of somatic organs; n = 8,940 genes/organ 891 

combinations; black line) with organ-specific correspondences (based on 2,727 genes for brain, 2,146 for 892 

cerebellum, 1,276 for heart, 1,486 for kidney, 1,305 for liver, 1,298 for ovary, and 2,153 for testis; colored 893 

lines). With the exception of early heart development in opossum and early ovary development in rabbit and 894 

human, the global correspondences are within the 98% confidence interval for predictions computed by the 895 

loess function (local polynomial regression) for each of the organ-specific correspondences (shaded grey 896 

area). The same applies to all organs in mouse-chicken and mouse-rhesus comparisons (data not shown). 897 

The inset on the bottom right, shows the Spearman correlation between mouse and rabbit (top) and mouse 898 

and human (bottom) for testis transcriptomes using the global stage correspondences (black line) or 899 

adjusting for the different start of meiosis across species (orange line; i.e. matching a P14 mouse with a young 900 

teenager in human and a P84 rabbit). 901 
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  902 

Extended Data Figure 7 | Heterochronies in gonadal development. a, Temporal dynamics of meiotic genes 903 

during ovary development. SYCP1 is not expressed in human ovary. The genes SPO11 and STAG3 are not 904 

present in the chicken gene annotations used in this work. b, Expression of Stra8 during ovary development. 905 

The vertical bars show the range between the replicates and the horizontal dashed line marks 1 RPKM. c, 906 

Temporal dynamics of meiotic genes during testis development. The profiles of Stra8 and Dmc1 are 907 

represented not by their range of expression but by their highest peak of expression. In rhesus, meiosis is 908 

known to start around 3-4 years36; our data suggest it had not yet started in the 3-year-old individuals 909 

examined. STRA8 is lowly expressed in the human testis. d, Expression of Stra8 during testis development. 910 

The vertical bars show the range between the replicates and the horizontal dashed line marks 1 RPKM. e, 911 

PCA of ovary and testis development for each species (n = 21,798 protein-coding genes in mouse, 19,390 in 912 

rat, 19,271 in rabbit, 20,345 in human, 21,886 in rhesus and 15,481 in chicken).  913 

  914 

Extended Data Figure 8 | Relationships between evolution and development. a, Observed relationship 915 

between evolution and development. Divergence (horizontal distance) can be morphological or molecular. 916 

b, Transcriptome similarity between three species-pairs throughout development (matched stages) using 917 

11,439 1:1 orthologs. Similar trends were obtained using all species-pairs. The weighted average Spearman 918 

correlation coefficients are -0.81 (P = 1 x 10-12) for the mouse-rat comparison, -0.69 (P = 2 x 10-11) for mouse-919 

human and -0.42 (P = 0.0004) for mouse-opossum. At the bottom are the Spearman correlations between 920 

transcriptome correlation coefficients and matched developmental time for each organ and species-pair (**P 921 

< 0.02, *P < 0.05). Lines were estimated through linear regression and the 95% confidence interval is shown 922 

in grey. c, Tolerance to loss-of-function variants (pLI score) for genes with different developmental 923 

trajectories in human (top) and mouse (bottom). Lower values mean less tolerance. The pLI scores used for 924 

mouse genes are from their human orthologs. The P-values refer to early vs. late comparisons, Wilcoxon rank 925 

sum test, two-sided. Box plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the 926 

interquartile range. d, Percentage of lethal and subviable genes expressed throughout development among 927 

a set of 2,686 neutrally ascertained mouse knockouts (top) and the same after excluding housekeeping genes 928 

(bottom). Spearman correlations at the bottom of each plot. Lines were estimated through linear regression 929 

and the 95% confidence interval is shown in grey. 930 

 931 

Extended Data Figure 9 | Pleiotropy as a determinant of the evolution of development. a, Relationship 932 

between tissue- and time-specificity. Gene developmental profiles illustrate the extremes of the indexes, 933 

which range from 0 (broad time/spatial expression) to 1 (specific time/spatial expression). In the gene plots, 934 

the x-axis shows the samples ordered by stage and organ and the y-axis shows expression levels. b, Functional 935 

constraints (measured by pLI) decrease with increasing time- and tissue-specificity (n = 9,965 genes). **All P 936 

< 0.01, Wilcoxon rank sum test, two-sided. c, Tissue- and time-specificity of mouse genes identified as lethal, 937 

subviable, or viable (n = 2,686; Wilcoxon rank sum test, two-sided). d, Levels of functional constraint as 938 

measured by RVIS, shet, and pLI scores for the human orthologs of genes identified as lethal, subviable and 939 

viable in mouse (n = 2,408; Wilcoxon rank sum test, two-sided). e, Tissue- and time-specificity of genes with 940 

different developmental trajectories in human (top) and the same after excluding housekeeping genes 941 

(bottom). The P-values refer to early vs. late comparisons, Wilcoxon rank sum test, two-sided. In b-e, the box 942 

plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the interquartile range. 943 

 944 

Extended Data Figure 10 | Evolution of developmental trajectories. a, Number of genes in each organ that 945 

evolved new trajectories across the phylogeny. Includes genes that differ between opossum and eutherians, 946 



 21 

for which the change cannot be polarized because of the lack of an outgroup. b, Distribution of trajectory 947 

changes among organs for the different species. The number of genes that changed in each organ is depicted 948 

in Fig. 4b. Humans show a relative excess of changes in brain tissues and a relative paucity in testis. **P = 2 949 

x 10-5 for brain, P = 0.02 for cerebellum and P = 1 x 10-10 for testis (from binomial tests where the probability 950 

of success is derived from what is observed in mouse, rat and rabbit). c, Genes tested for trajectory changes 951 

(7,020 genes) in mouse (top) and human (bottom) have significantly lower tissue- and time-specificity than 952 

genes not tested for trajectory changes (13,325 genes in mouse and 14,778 in human, Wilcox rank sum test, 953 

two-sided). d, Genes with trajectory changes in mouse (top) and human (bottom) have similar or lower 954 

tissue- and time-specificity than genes with conserved trajectories (Wilcox rank sum test, two-sided, ‘N.S.’ 955 

means non-significant). e, Number of organs in which genes evolved new trajectories in the different species. 956 

In c-d, the box plots depict the median ± 25th and 75th percentiles, whiskers at 1.5 times the interquartile 957 

range. 958 


