
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/124231/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Ma, Lin, Kerr, Andrew C. , Wang, Qiang, Jiang, Zi-Qi, Tang, Gong-Jian, Yang, Jin-Hui, Xia, Xiao-Ping, Hu,
Wan-Long, Yang, Zong-Yong and Sun, Peng 2019. Nature and evolution of crust in Southern Lhasa, Tibet:
transformation from microcontinent to juvenile terrane. Journal of Geophysical Research. Solid Earth 124

(7) , pp. 6452-6474. 10.1029/2018JB017106 

Publishers page: http://dx.doi.org/10.1029/2018JB017106 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1029/2018JB017106 

 

© 2019 American Geophysical Union. All rights reserved. 

Ma Lin (Orcid ID: 0000-0003-1194-1642) 

Kerr Andrew C. (Orcid ID: 0000-0001-5569-4730) 

Wang Qiang (Orcid ID: 0000-0001-5095-4062) 

Tang Gong-Jiang (Orcid ID: 0000-0003-2763-7311) 

Xia Xiaoping (Orcid ID: 0000-0002-3203-039X) 

 

 

Nature and Evolution of Crust in Southern Lhasa, Tibet: Transformation from 

Microcontinent to Juvenile Terrane 

 

Lin Ma
1, 2

*, Andrew C. Kerr
2
, Qiang Wang

1,
 
3, 4

*, Zi-Qi Jiang
1
, Gong-Jian Tang

1, 3
, Jin-

Hui Yang
5
, Xiao-Ping Xia

1
, Wan-Long Hu

1, 4
, Zhong-Yong Yang

1, 4
, Peng Sun

1, 4
  

1
 State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, 

Chinese Academy of Sciences, Guangzhou 510640, China 

2
 School of Earth and Ocean Sciences, Cardiff University, Cardiff, Wales CF10 3AT, United 

Kingdom 

3
 CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China 

4
 University of Chinese Academy of Sciences, Beijing 100049, China 

5
 Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100029, China 

 

Corresponding author: Lin Ma (malin@gig.ac.cn); Qiang Wang (wqiang@gig.ac.cn) 

 

Key Points: 

 Late Paleozoic bimodal rocks comprising asthenosphere-derived mafic rock and 

metasediment-derived granite have been discovered in southern Tibet. 

 The Lhasa was once a microcontinent within Paleo-Tethyan Ocean and the bimodal 

magmatism was caused by northward subduction of oceanic slab. 

 The microcontinent represented by the southern Lhasa Block was transformed into 

juvenile terrane by Phanerozoic crustal growth and reworking.  
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Abstract 

      The nature and pre-Cenozoic evolution history of crust in southern Lhasa, which is 

crucial for our understanding of Indo-Asian continental collision and Tibetan uplift during the 

Cenozoic, remains controversial due to a “missing” pre-Mesozoic magmatic record. In this 

contribution, we report petrological and geochemical data for newly identified Paleozoic 

bimodal magmatism in the Zhengga area of southern Tibet. The magmatism comprises Late 

Devonian–Early Carboniferous (366–353 Ma) amphibolite and two-mica gneissic granite. 

The protoliths of the Zhengga amphibolite were gabbro and diorite with low SiO2 and high 

MgO, Cr and Ni contents with high εNd(t) values of +3.3–+8.0, variable and positive zircon 

εHf(t) of +0.9–+11.2 and low zircon δ
18

O of 5.7±0.2‰. These protoliths are proposed to have 

formed by decompression melting of asthenosphere during intra‒continental back‒arc 

extension. In contrast, the granite has relatively high SiO2 and low MgO contents with much 

lower εNd(t) of -8.6 to -7.3, variable and negative zircon εHf(t) of -10.4 to -1.3 and high zircon 

δ
18

O of 9.4±0.2‰ values and was most likely derived from an ancient metasedimentary 

source. This magma subsequently underwent recharge with minor amounts mafic magma 

followed by fractional crystallisation of K-feldspar in mid-upper crust (~10–20 km) magma 

chambers. Using our new data, in combination with Nd-Hf isotopes, we present the first 

comprehensive picture of crustal evolution in southern Lhasa. The southern Lhasa sub-block 

is likely to have been a microcontinent that underwent extensive Phanerozoic crustal 

reworking and growth, rather than a Mesozoic–Early Tertiary juvenile accretionary arc 

terrane. 

1 Introduction 

The continental crust is the primary archive of Earth history and provides a synoptic view 

deep into Earth history (e.g., Jagoutz et al., 2009; Kemp and Hawkesworth, 2014; Korenaga, 

2018; Spencer et al., 2017 and references therein). However, information on the origin and 
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evolution of continental crust, in addition to the rate of growth, is fragmented, as large 

volumes of continental crust have been reworked and recycled back into the mantle by a 

variety of processes.  

At present, ~70% of the continental crust is younger than 1 Ga, and only ~ 5% is of 

Archean age (2.5–4 Ga) (cf. Korenaga, 2018). This is principally due to crustal reworking in 

young orogens, where information on nature and evolutionary history of continental crust are 

lost or hidden as a result of orogenic overprinting and recycled to the mantle via erosion and 

subduction (e.g., Amelin et al., 1999; Kemp and Hawkesworth, 2006). Interpreting the 

information from early geological record is crucial for understanding evolution of continental 

crust through time and establishing the geodynamic controls on the formation of continent 

(Belousova et al., 2010; Collins et al., 2011; Dhuime et al., 2012; Kemp and Hawkesworth, 

2014).  

The Gangdese Batholith extends for over 1,500 km across the southern Lhasa Block of 

Tibet, and consists of the Mesozoic to Cenozoic granitoids with depleted mantle-like Nd-Hf 

isotopic signatures, indicating significant Mesozoic or early Cenozoic crustal growth (e.g., Ji 

et al., 2009; Ma et al., 2013; Niu et al., 2013; Wei et al., 2017; Zhu et al., 2011, 2013). 

Southern Lhasa thus is therefore considered to represent juvenile crust that was accreted to 

central Lhasa in the Permian–Early Tertiary (e.g., Ji et al., 2009). Recently numerous 

inherited zircons of Proterozoic and Paleozoic age have been identified in the Gangdese 

granitic batholith and these zircons indicate potential Precambrian basement beneath southern 

Lhasa (e.g., Dong et al., 2010; Guo et al., 2016; Lin et al., 2013; Xu et al., 2013). However, 

few pre-Permian magmatic rocks have been found in southern Lhasa and this limits our 

understanding of the compositional evolution of continent and dynamic history in southern 

Lhasa (e.g., Dong et al., 2014; Guo et al., 2016; Ji et al., 2012; Metcalfe, 2006, 2013; Zhu et 

al., 2013).   
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In this contribution, we report zircon U-Pb chronology and geochemical data from newly 

identified Late Paleozoic bimodal magmatism in southern Lhasa. These data, together with 

stratigraphic and petrographic evidence, provide a robust geological record and are used to 

(1) assess the petrogenesis and geodynamic setting of the Late Devonian magmatism in 

southern Lhasa, (2) reconstruct paleogeographic position of the southern Lhasa in the latest 

Devonian, and (3) reveal crustal evolution history in the southern Lhasa. 

 

2 Geological background and sample description 

From south to north, Himalayan-Tibetan Orogen consists of the Himalaya, Lhasa, Western 

Qiangtang, Eastern Qiangtang, and Songpan-Ganze blocks (Yin and Harrison, 2000; Zhu et 

al., 2013). These blocks are separated by a series of suture zones, namely the Indus-Yarlung 

Tsangpo, Bangong-Nujiang, Longmu Tso–Shuanghu, and Jinsha Suture Zones (Figure 1). 

The Lhasa Block represents the southernmost part of the pre-Cenozoic Asian continent and 

is bounded by the Indus-Yarlung Tsangpo suture to the south and the Bangong-Nujiang 

suture to the north (Figure 1) (Yin and Harrison, 2000). It is generally accepted that the 

Bangong-Nujiang suture formed during the Late Jurassic–mid Cretaceous and the Indus-

Yarlung Tsangpo suture marks the closure of the Tethyan ocean during the Paleocene–

Eocene (e.g., Aitchison et al., 2003; Chung et al., 2005; Wu et al., 2014; Yin and Harrison, 

2000; Zhu et al., 2013). Based on the distribution of different sedimentary cover rocks and 

ophiolites, the Lhasa Block has been divided into northern, central, and southern sub-blocks, 

separated by the Shiquan River-Nam Tso Mélange Zone and Luobadui-Milashan Fault, 

respectively (Figure 1) (Zhu et al. 2011, 2013).  

The northern sub-block mostly comprises Triassic–Cenozoic sedimentary and Cretaceous 

magmatic rocks (Leier et al., 2007; Zhu et al., 2013 and references therein) (Figure S1), 

indicating the existence of juvenile crust rather than reworked ancient crust beneath this sub-
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block (Zhu et al., 2011, 2013). In addition, Precambrian basement rocks (Amdo orthogneiss), 

that represent an augen-shaped microcontinent (~150 km long by 80 km wide at its maximum 

extent) are found in the Amdo area, between northern Lhasa and western Qiangtang (Guynn 

et al., 2006; Zhu et al., 2013).  

The central sub-block retains the most complete sedimentary record in the region and 

comprises a Carboniferous–Permian metasedimentary sequence and a Late Jurassic–Early 

Cretaceous volcano-sedimentary sequence, with minor Ordovician, Silurian, and Triassic 

limestone (Kapp et al., 2005; Leier et al., 2007; Zhu et al., 2010, 2013) along with rare 

Precambrian strata (Dong et al., 2011) (Figure S1), indicating the presence of a Precambrian 

basement in the central sub-block (Zhu et al., 2013). The Late Carboniferous to Permian (ca. 

301–262 Ma) Sumdo eclogite is exposed along the southern margin of the central Lhasa sub-

block (Figures 1 and 2), and represents a remnant of Paleo-Tethyan oceanic lithosphere (Li et 

al., 2009; Yang et al., 2009). 

The southern Lhasa sub-block (the Gangdese area) is characterised by extensive Mesozoic-

Cenozoic intrusive and volcanic rocks (e.g., Chu et al., 2006; Chung et al., 2005; Ji et al., 

2009; Lee et al., 2009; Wen et al., 2008; Zhu et al., 2013), and coeval granulite and 

amphibolite facies metamorphic rocks (e.g., Dong et al., 2011; Zhang et al., 2010). Thus, the 

southern sub-block has also been considered to represent juvenile crust without Precambrian 

basement, similar to the northern Lhasa sub-block (Ji et al., 2009; Zhu et al., 2011). However, 

recent studies on some of the granitoids in the southern sub-block have yielded Early 

Paleozoic and Paleo- and Meso-Proterozoic ages (Figures 1 and 2) (Dong et al., 2010; Lin et 

al., 2013).  

Late Devonian–Early Carboniferous intrusive rocks have been found in the Gyaca and 

Nang areas of the eastern Gangdese segment (Figure 2) and are interpreted as a bimodal 

igneous association formed in back-arc extensional setting (Dong et al., 2014; Ji et al., 2012; 
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Wu et al., 2014; Zhu et al., 2013). The Zhengga Devonian magmatic rocks, which are the 

focus of this paper, are composed of two-mica gneissic granites and amphibolite suites that 

are located to the north of the Luobusa ophiolite in the eastern Gangdese (Figure 2). The 

rocks are foliated and metamorphosed to greenschist and amphibolite-facies (Figure 3a, b). 

These Zhengga magmatic rocks mostly show a gneissic structure and were intruded by 

Cretaceous gabbros (Ma et al., 2013) and Paleocene granitoids (Ma et al., 2017). Some 

amphibolites occur as (2–20 cm diameter) enclaves within the two-mica granites (Figure 3c).  

The two-mica gneissic granite is composed of quartz (~30–40 vol.%), potassium feldspar 

(~30–35 vol.%), plagioclase (~5–10 vol.%), biotite (~10–15 vol.%) and muscovite (~5–8 

vol.%) with minor garnet and Fe-oxides (Figure 3h, i). The amphibolites mainly exhibit 

massive and medium- to fine-grained granular and lepidoblastic textures and in addition to 

amphibole (~45 vol.%) contain plagioclase (~40 vol.%) with minor Fe-oxides (Figure 3d–g). 

These rocks are similar to the coeval biotite gneisses and amphibolites found in Gyaca and 

Nang areas (Dong et al., 2014; Ji et al., 2012). Clinopyroxene crystals in the Zhengga 

amphibolites are rare and are typically embedded in amphiboles as relict crystals (Figure 3f, 

g). 

 

3 Analytical methods 

Cathodoluminescence (CL) imaging of zircon was performed at the State Key Laboratory 

of Isotope Geochemistry (SKLaBIG) GIG CAS. U-Pb isotope compositions of zircon grains 

from two amphibolite and three two-mica granite samples were analysed using a Cameca 

IMS-1280HR secondary ion mass spectrometer (SIMS) at the SKLaBIG GIG CAS and the 

Cameca IMS-1280 SIMS at the Institute of Geology and Geophysics (IGG) CAS in Beijing, 

respectively. Zircon U–Th–Pb isotopic ratios were corrected using the standard zircon 

Plešovice (Sláma et al., 2008) and Qinghu (Li et al., 2013) based on an observed linear 
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relationship between ln(
206

Pb/
238

U) and ln(
238

U
16

O2/
238

U) (Whitehouse et al., 1997). The 

weighted mean U–Pb ages and Concordia plots were processed using the Isoplot v.3.0 

program (Ludwig, 2003). In this study, 17 Qinghu zircon spots yield a mean age of 159.4 ± 

1.2 Ma (2σ, MSWD = 0.72), which is identical to the recommended value of 159.5 ± 0.2 Ma 

within error (Li et al., 2013). The standard zircon Plešovice yielded a weighted 
206

Pb/
238

U age 

of 336.9 ± 2.1 Ma (2σ, MSWD = 0.3, n = 23), which is in good agreement with the 

recommended U-Pb ages (
206

Pb/
238

U = 337.13 ± 0.37 Ma) within errors (Sláma et al., 2008).  

LA-ICP-MS zircon U-Pb dating of one amphibolite sample 16ML05-2 was carried out by 

MC-ICP-MS (Multi-Collector Inductively Coupled Plasma Mass Spectrometry) at the IGG-

CAS in Beijing. An Agilent 7500a quadruple (Q)‒ICPMS and a Neptune multi‒collector 

(MC)‒ICPMS with a 193 nm excimer ArF laser‒ablation system (GeoLas Plus) attached 

were used for simultaneous determination of zircon U‒Pb ages. During the analyses in this 

study, the standard zircon MUD Tank yielded a weighted 
206

Pb/
238

U age of 732.2 ± 3.5 Ma 

(2σ, MSWD = 0.024, n = 8), which is identical to the recommended value of 731.9 ± 3.4 Ma 

within error (Yuan et al., 2008). 

Rock samples were first examined by optical microscopy. Selected whole-rock samples 

were broken into small chips and cleaned ultrasonically in distilled water containing <3% 

HNO3 and washed with distilled water before being dried and handpicked to remove visible 

contamination. The rocks were powdered before analysis of major and trace elements, and 

Sr-Nd isotopes at SKLaBIG GIG CAS. Major-element oxides were determined by a Rigaku 

RIX 2000 X-ray fluorescence spectrometer on fused glass beads with analytical uncertainties 

<5% (Li et al., 2005). Trace elements were analysed by a Perkin‒Elmer Sciex ELAN 6000 

instrument. Analytical procedures are the same as these described by Li et al. (2002). Trace 
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element data of reference materials (BHVO-2, GSR-1, GSR-2, GSR-3, SARM-4, AGV-2 and 

W-2a) are given in Table S1.  

Sr and Nd isotopic compositions of selected samples were determined using a MC-ICP-MS 

at SKLaBIG, GIG‒CAS. Analytical procedures are similar to those described in Wei et al. 

(2002) and Li et al. (2004). The 
87

Sr/
86

Sr ratio of the NBS987 standard and 
143

Nd/
144

Nd ratio 

of the Shin Etsu JNdi‒1 standard measured were 0.710254 ± 11 (95%, n=21) and 0.512099 ± 

4 (95%, n=15), respectively. All measured 
143

Nd/
144

Nd and 
86

Sr/
88

Sr ratios are fractionation 

corrected to 
146

Nd/
144

Nd = 0.7219 and 
86

Sr/
88

Sr = 0.1194, respectively. The BCR-2, JB-3 and 

JG-2 as three unknown samples yielded the 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratio were 0.703465 ± 

11 (2σ, n=3), 0.703448 ± 8, 0.758583 ± 13, and 0.512978 ± 5 (2σ, n=3), 0.513052 ± 5, 

0.512214 ± 4, respectively. 

All zircon Hf isotope analyses in this study were performed on a Neptune Plus MC-ICP-

MS (Thermo Scientific), coupled with a RESOlution M-50 193 nm laser ablation system 

(Resonetics), which are hosted at SKLaBIG, GIG‒CAS. The detailed description of the two 

instruments and data reduction procedure can be found in Zhang et al. (2014, 2015), 

respectively. 47 analyses of the Plešovice zircon during the course of this study yielded a 

weighted mean of 
176

Hf/
177

Hf = 0.282486 ± 0.000005 (95%), which is consistent within 

errors with the reference value of 0.282483 ± 0.000013 in Sláma et al. (2008).  

Measurements of zircon O isotopes were conducted using the Cameca IMS-1280 ion 

microprobe at IGG-CAS. Analytical procedures are the same as those described by Li et al. 

(2010a). Forty-seven measurements of the Penglai zircon standard during the course of this 

study yielded a weighted mean of δ
18

O = 5.25 ± 0.19‰ (Table S2), which is identical within 

errors to the reported value of 5.31± 0.10 ‰ (Li et al., 2010b). 
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4 Results 

4.1 Zircon U-Pb dating 

Three amphibolite samples and three two-mica granite samples were selected for zircon 

dating. Zircons from mafic samples have crystal lengths of ~80–150 μm and length/width 

ratios from 1:1 to 2:1, while zircons from the granite samples have crystal lengths of ~150–

300 μm and length/width ratios from 2:1 to 3:1. Zircon U–Pb isotopic data are given in Table 

S3. High Th/U ratios (0.08–1.03) of zircons from the Zhengga amphibolites and granites 

indicate a magmatic origin (Hoskin and Black, 2000). U–Pb spot analyses on samples 

09TB78-3, 11SR02-4 and 16ML05-2, yielded 
206

Pb/
238

U data of 375 to 339 Ma (SIMS), 361 

to 343 Ma (SIMS) and 363 to 358 Ma (LA-ICPMS), with weighted-mean ages of 359.4 ± 4.2 

Ma (MSWD = 2.6), 353.0 ± 2.9 Ma (MSWD = 1.6) and 361.6 ± 3.3 Ma (MSWD = 0.06), 

respectively for the three amphibolite samples (Figure 4a–c; Table S3). SIMS U–Pb dating on 

samples 09TB78-2, 11SR02-1 and 11SR02-3, yielded 
206

Pb/
238

U data of 374 to 350 Ma, 388 

to 357 Ma and 387 to 351 Ma, with weighted-mean ages of 359.8 ± 4.1 Ma (MSWD = 2.4), 

364.6 ± 2.5 Ma (MSWD = 1.3) and 366.4 ± 2.8 Ma (MSWD = 1.5), respectively for the three 

two-mica granites samples (Figure 4d–f; Table S3). With exception of a younger date of 353 

Ma for the amphibolite enclave sample (11SR02-4), the other amphibolite and two-mica 

granite samples show relatively consistent zircon U–Pb ages ranging from 366.4 to 359.4 Ma, 

indicating that the Zhengga two mica granites and amphibolites were emplaced in the Late 

Devonian–Early Carboniferous.  

 

4.2 Major and trace elements 

The Late Paleozoic Zhengga intrusive rocks can be subdivided into a mafic group and a 

felsic group (Figure 5; Table 1). The mafic rocks have low SiO2 (47.0–56.2 wt.%), Al2O3 

(10.2–16.2 wt.%) and high MgO (6.8–12.9 wt.%), and plot in the subalkalic basalt field on 
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the Zr/TiO2 versus Nb/Y diagram (Figure 5). This group are similar in composition to high-

MgO basalt, which is defined as having SiO2 ≤ 54 wt.%, MgO ≥ 7 wt.%, and Al2O3 < 16.5 

wt.% (Kersting and Arculus, 1994; Pichavant et al., 2002). The Zhengga felsic rocks have 

high SiO2 (65.4–77.3 wt.%), Al2O3 (11.5–17.3 wt.%) and low MgO (0.5–1.4 wt.%) and CaO 

contents with high and variable A/CNK ratios (1.04–1.35) (Figure 5).  

With the exception of samples 09TB78-3 and 16ZG02-3 that have high total rare earth 

element (∑REE) contents (175 and 178 ppm, respectively), the Zhengga mafic rocks have 

relatively low ∑REE contents (28‒97 ppm) in comparison to the felsic rocks with ∑REE 

contents of 134‒265 ppm. Chondrite-normalised REE patterns show that the mafic rocks are 

characterised by slightly to moderately-enriched light REE ((La/Sm)CN = 1.9‒3.9) and 

relatively flat heavy REE ((Dy/Yb)CN = 1.2‒1.7) patterns without marked Eu anomalies 

(Eu/Eu* = EuCN/(SmCN×GdCN)
1/2

 = 0.83–1.26) (Figure 6a). The felsic rocks are moderately 

enriched in LREEs ((La/Sm)CN = 2.9‒4.6), with flat Heavy (H)REE patterns ((Dy/Yb)CN = 

1.2‒1.7), pronounced negative Eu anomalies (Eu/Eu* ratios from 0.25 to 0.87; Figure 6b). 

On normal mid-ocean ridge basalt (N-MORB) normalised plots, the Zhengga mafic rock 

samples are markedly enriched in many of the most incompatible elements including Th, U 

and Rb and are slightly depleted in Zr, Hf and Ti with marked negative Nb and Ta anomalies 

(Figure 6c). In addition, the mafic rocks have high Cr (400‒1526 ppm) and Ni (167‒352 

ppm) contents. The Zhengga felsic rocks are also enriched in Th, U and Rb and possess 

significant negative Nb, Sr and Ti anomalies (Figure 6d). 

 

4.3 Sr-Nd-Hf-O isotopes 

In this study, initial Sr-Nd isotopic ratios of the Zhengga granite and literature data were 

calculated using a weighted mean formation age of 361.5 Ma. The Zhengga mafic and felsic 

rocks exhibit very different bulk rock Nd isotopic signatures (Table 2). The mafic rocks have 
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variable positive εNd(t) values (+3.3 to +8.0) with Nd-isotope model ages (TDM) ranging from 

454 to 946 Ma, while the felsic rocks show negative and relatively uniform εNd(t) values (-7.8 

to -8.6) with Nd-isotope model ages (TDM) ranging from 2.10 to 1.83 Ga (Figure 7; Table 2). 

Except for one mafic sample (11SR02-4) that has high Rb content (306 ppm) with very low 

initial 
87

Sr/
86

Sr ratios of 0.6889, the Zhengga mafic and felsic rocks both have variable initial 

87
Sr/

86
Sr ratios (0.7054–0.7173 and 0.7030–0.7374, respectively) (Figure 7; Table 2). The low 

initial 
87

Sr/
86

Sr calculated for 11SR02-4 is due to the addition of Rb during sub-solidus 

alteration. This is confirmed by the recalculation of the initial 
87

Sr/
86

Sr for sample 11SR02-4 

using the average of the Rb content in the rest of the mafic samples (128 ppm) which yields a 

more realistic initial 
87

Sr/
86

Sr ratio of 0.7070.  

The zircon Hf-O isotopic data for the Zhengga mafic (09TB78-3) and granite sample 

(09TB78-2, 11SR02-1 and 11SR02-3) are given in Table S2. Zircon analyses from the 

amphibolite have consistent initial 
176

Hf/
177

Hf ratios, ranging from 0.282560 to 0.282865, and 

positive εHf(t) values of +0.4 to +11.2, with model ages TDM of 978 to 547 Ma (Figure 7b). 

Zircon analyses from three granite samples have variable initial 
176

Hf/
177

Hf ratios (0.282266 

to 0.282533), negative εHf(t) values (−10.4 to −1.3), and model ages TDM of 1423 to 1054 Ma 

(Figure 7b). The analysed igneous zircons of mafic rocks show relatively low, but variable, 

δ
18

O values (4.59‒7.76‰) with an average value of 5.72 ± 0.18‰ similar to those (5.3 ± 

0.3‰) of igneous zircons in equilibrium with mantle magmas (Valley et al., 2005), whereas 

the granites have high zircon δ
18

O values of 9.45 ± 0.2‰.  

 

5 Discussion 

5.1 Petrogenesis of Zhengga mafic rocks 

5.1.1 Effects of alteration and metamorphism 
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Petrographic observations show that the studied Zhengga mafic samples have experienced 

varying degrees of alteration, up to greenschist facies metamorphism, as indicated by the 

presence of epidote (Figure 3). It is therefore important to evaluate the elemental effects of 

alteration and low-grade metamorphism before using the geochemistry to interpret their 

tectonic settings.  

Correlations between other elements and a known immobile element (Zr in this study) can 

be used to assess the mobility of elements (e.g., Hastie et al., 2013). With the exception of the 

alkali metals (such as Rb, K), most other large ion lithophile elements (such as Na, Mg, Ca, 

Sr and Ba), High-Field Strength Elements (HFSEs) (such as Nb, Ta, Th and Hf), REEs and Y 

all show good correlations with Zr (Figure S2). This indicates that these elements were 

relatively immobile during metamorphism and alteration (cf. Hastie et al., 2013). These are 

consistent with studies that show that the REEs and HFSEs as well as Th and Ti are generally 

relatively immobile in igneous rocks during alteration and low-grade metamorphism (Hastie 

et al., 2007). 

 

5.1.2 Crustal contamination 

Crustal contamination is almost inevitable for mantle-derived melts during their ascent 

through continental crust or their evolution within crustal magma chambers (e.g., Castillo et 

al., 1999). The slightly variable Nd isotope characteristics and depleted Nb–Ta anomalies of 

the Zhengga mafic rocks could possibly be the result of crustal contamination during magma 

ascent. Given that crustal components generally contain distinctly low εNd(t), MgO, low 

(Nb/La)PM and Nb/Th values and high 
87

Sr/
86

Sr ratios (Rudnick and Fountain, 1995), any 

crustal contamination that occurred during magma ascent would have caused an increase in 

(
87

Sr/
86

Sr)i and a decrease in εNd(t) with increasing SiO2 in the magma suites (e.g., Rogers et 

al., 2000). However, such a compositional trend has not been observed for the Zhengga mafic 
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rocks (Figure 7), suggesting that minimal crustal contamination occurred during the 

formation of these rocks. Moreover, the vast majority of the Zhengga mafic rocks show a 

small range in initial 
143

Nd/
144

Nd ratios (0.5123–0.5126) and high and positive εNd(t) (+3.3–

+8.0) (Table 2), which also are inconsistent with significant crustal contamination. 

 

5.1.3 Mantle Source and Petrogenesis 

The Zhengga mafic rocks possess low SiO2, Al2O3 and high MgO, Cr and Ni contents with 

high positive εNd(t) and εHf(t) values, suggesting they are derived from a depleted mantle 

source. The Late Paleozoic mafic rocks from the Zhengga area exhibit marked negative Nb–

Ta–Ti anomalies on primitive mantle-normalised incompatible trace element diagrams 

(Figure 6c), indicating that they are unlikely to be derived from normal MORB- or OIB-

source mantle (e.g., Hofmann, 1997). 

Subduction-related magmas are characterised by significant enrichment in Large Ion 

Lithophile Elements (LILEs) (Rb, Ba, Sr) and light (L)REE relative to the HFSE (Nb, Ta, Zr, 

Hf) and HREE, with significant negative Nb–Ta–Ti anomalies on N-MORB-normalised 

multi-element diagrams (e.g., Pearce et al., 2005). These characteristics are also shown by the 

Late Paleozoic mafic rocks from the Zhengga area (Figure 6c) and so these rocks are likely to 

have formed in a subduction-related setting. 

The Zhengga mafic magmas therefore, were most probably derived from a mantle source 

metasomatised, or enriched, by fluids or melts derived from subducted oceanic slabs 

comprising basaltic crust and sediment. Previous studies have shown that slab-derived fluids 

have high contents of Ba, Sr, U and Pb (e.g., Elliott, 2003), whereas subducted oceanic 

sediment-derived melts contain high concentrations of both Th and LREE contents, but with 

distinctly elevated Th/La and Th/Ce ratios (e.g., Hastie et al., 2013; Plank, 2005). This is 
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because Th is a strongly incompatible element and is abundant in sediments and the middle-

upper crust (e.g., Plank, 2005; Rudnick and Gao, 2014).  

The Zhengga mafic rocks possess low Sr/Th (mean 165), which are inconsistent with the 

fluid-induced enrichment (Figure 8d). In contrast, relatively high Th/La ratios of the Zhengga 

mafic rocks (mean 0.17) lie between that of N-MORB (Th/La = 0.05) and marine sediments 

sediment (Th/La = 0.2), and suggest potential involvement of sediment-derived melts in the 

generation of the Zhengga mafic rocks. The Zhengga mafic rocks have Th contents ranging 

from 1.2 to 6.8 ppm (with an average of 2.8 ppm), which also plot between MORB (0.12 

ppm) and average global subducting sediment (GLOSS = 6.9 ppm) or upper crust (10.5 ppm). 

These can plausibly be attributed to involvement of sediments or crustal materials at a 

convergent margin (Plank, 2005; Rudnick and Gao, 2014).  

During the Late Paleozoic, the Lhasa Block has been proposed to be either a passive 

margin of the Gondwana supercontinent (Garzanti et al., 1999; Golonka and Ford, 2000) or a 

back-arc area related to southward subduction of the Proto- or Paleo-Tethyan Ocean 

(Cawood, 2007; Dong et al., 2014; Guo et al., 2016; Zhu et al., 2013). Rift basalts formed in 

passive continental extension setting usually have alkaline or peralkaline affinities (Garland 

et al., 1995; Pin and Paquette, 1997; Wilson, 1989) or high Ti/Y ratios (>400) (Pearce, 1982; 

Zhu et al., 2010), which is not consistent with the subduction-related geochemical features of 

the Zhengga mafic rocks. On the other hand, back‒arc basin basalts are commonly formed by 

the upwelling asthenosphere in a supra‒subduction zone setting and the vast majority have 

geochemical signatures of both MORB and arc volcanic rocks (e.g., Gribble et al., 1996, 

1998; Schellart et al., 2006). Such features are generally acknowledged to be unique to back-

arc basin basalts (e.g., Gribble et al., 1996, 1998). The Zhengga mafic rocks display distinct 

depletions in HFSE (e.g., (Nb/La)PM = 0.18‒0.49) (Figure 6c), which can be attributed to the 

immobility of HFSE in fluids derived from the subducting oceanic crust and/or sediments at a 
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convergent margin (e.g., Elliott, 2003; Hastie et al., 2009). High εNd(t) values (up to +8.0) 

(Table 2) are similar to those of the Paleo-Tethyan ophiolites (Li et al., 2009) (Figure 7). In 

addition, the Zhengga mafic rocks collectively exhibit a range of other compositional features 

(e.g., Ti/V = 20‒33; La/Nb = 2‒8) that support formation in a back‒arc basin setting (Figure 

8). On the Th/Yb vs. Ta/Yb diagrams (Figure S3), the Zhengga mafic rocks all plot within 

field of the continental arc basalt rather than the oceanic arc basalt, suggesting an intra-

continental back-arc setting.  

In conclusion, the latest Devonian Zhengga mafic rocks, located in southern Lhasa, were 

likely derived by decompression melting of asthenosphere metasomatised by subducted 

sediment and crustal materials in an intra‒continental back‒arc extension setting.  

 

5.2 Petrogenesis of Zhengga felsic rocks 

The Zhengga felsic rocks are characterised by markedly high and variable SiO2, Al2O3 and 

low MgO contents with high A/CNK and negative εNd(t) values (-8.6 to -7.8) (Figures 7 and 

S4). The major element compositional gap and distinct Nd-Hf-O isotope signatures between 

the Zhengga felsic and mafic rocks suggest that the felsic magmas are unlikely to have 

resulted from fractional crystallisation of associated basaltic magmas accompanied by crustal 

contamination (Figures 5 and 7). This is confirmed by AFC modelling which shows that a 

crustal input of 90 % to the Zhengga mafic magmas would be needed to replicate the 

composition of the felsic magmas (Figure 7). 

Although the high and variable A/CNK ratios of the Zhengga felsic rocks may result from 

their K2O contents being affected by alteration, their high SiO2 and Al2O3 contents and 

negative εNd(t) values in addition to the presence of aluminous minerals (muscovite and 

garnet) all imply that they are derived from a crustal source (Figures 4 and 7). Furthermore, 

their low Nb/U (1.7–7.2) ratios are similar to upper continental crust (4.4–8.9) (Taylor and 
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McLennan, 1995; Rudnick and Gao, 2014). The negative εNd(t) values and ancient Nd model 

ages (2.10 to 1.83 Ga) of the Zhengga felsic samples are also similar to those of the 

metasediment-derived Himalayan leucogranites (e.g., Guo and Wilson, 2012), which further 

supports an upper crustal source.  

Zircon δ
18

O values (7.3‰–10.8‰) of the Zhengga felsic rocks (Table S2), are equivalent 

to bulk-rock values of 9.9‰–13.4‰, and are consistent with supracrustal clastic sediment 

components (>10‰) (Valley et al., 2005). Despite this, these values are slightly lower than 

zircon δ
18

O values (8‰–12‰) of Great Himalayan pure sediment-derived granites 

(Hopkinson et al., 2017), suggesting that a low δ
18

O component also contributed to the 

generation of the Zhengga felsic rocks. This, combined with their somewhat elevated Cr (up 

to 110 ppm) contents and higher εNd(t) values (-8.6 to -6.7) compared to the 

metasedimentary-derived leucogranites from the central Lhasa (εNd(t): -13.7 to -10.6) (Liu et 

al., 2006) and Himalaya areas (-17.5 to -10.5) (Guo and Wilson, 2012) also supports a 

potential input of a small amount of mantle-derived magma to the Zhengga felsic magmas.  

Calculation of zircon saturation temperatures (TZr) using the updated equation proposed by 

Boehnke et al. (2013) and monazite saturation temperatures (TLREE) after Montel (1993) yield 

689 ˚C to 764 ˚C and 655 ˚C to 760 ˚C, respectively (Table 1). Within the uncertainties of 

less than 10%, TZr and TLREE are broadly similar and suggest temperatures of formation 

within the range of 700–760 °C for the Zhengga felsic rocks. Underplating of the coeval 

mantle-derived magma could provide the heat source for melting of the middle and upper 

crust. Furthermore, garnet usually is a residual mineral for crustal melting, however, in the 

case of the Zhengga felsic rocks, with high Y (23–65 ppm; Table 1) and relatively flat HREE 

patterns (Figure 6c), garnet seems unlikely to be a major residual mineral, which may imply a 

low pressure (<7 kbar) of melting (Patiño Douce and Beard, 1996). 
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The Zhengga felsic rocks display variable SiO2 (65.4–77.3 wt.%) and Al2O3 (11.5–17.3 

wt.%) contents with negative Eu anomalies (Eu/Eu* ratios from 0.25 to 0.87; Figure 6c), 

indicating plagioclase and/or K-feldspar fractionation. Fractionation of plagioclase would 

result in negative Sr–Eu anomalies, and that of K-feldspar would produce negative Eu–Ba 

anomalies (Wu et al., 2003). The good negative correlation between Al2O3 and Ba contents 

with increasing SiO2 contents (Figure S5) suggests that the Zhengga felsic rocks more likely 

experienced various degrees of K-feldspar fractionation. 

To conclude, we consider that the latest Devonian Zhengga felsic rocks were generated 

from melting of metasedimentary rocks at 700–760 °C. These melts subsequently underwent 

recharge with a small amount of mafic magma and fractional crystallisation of K-feldspar in 

mid-upper crust (~10–20 km) magma chambers. 

 

5.3 Late Paleozoic magmatism and tectonic evolution of Lhasa block 

Compared to other blocks that rifted from the Gondwana supercontinent, such as Yangtze, 

North China, Tarim, Indochina/East Malaya/West Sumatra, Sibumasu and West Burma (e.g., 

Cawood, 2007; Metcalfe, 2006, 2013; Torsvik et al., 2012), relatively little is known about 

the Late Paleozoic tectonic evolution of the Lhasa Block. The Late Devonian to Early 

Carboniferous magmatism reported in this study sheds new light on the evolution of the 

Lhasa Block and the tectonic reconstruction of Gondwana. 

Late Devonian to Early Carboniferous magmatism in the Lhasa Block is mainly found in 

the eastern segment (~200 km between Sangri to Nang) (Dong et al., 2010, 2014; Ji et al., 

2012 and this study) and in the Zhongba and Xiongcun areas of the western segment (Dai et 

al., 2011; Lang et al., 2017) of the southern Lhasa sub-block (Figure 2; Table S4). The 

Zhongba and Xiongcun gabbros were emplaced at 342 Ma and 363 Ma, respectively, and 

both were suggested as remnants of Paleo-Tethyan oceanic crust (Dai et al., 2011; Lang et al., 
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2017). In contrast, the magmatic rocks from Sangri to Nang are mainly granitoids and 

associated amphibolites, and they represent a bimodal igneous association formed in a back-

arc extensional setting (Dong et al., 2014; Wu et al. 2013; Zhu et al., 2013 and this study). 

The granitoids were primarily intruded between 371 and 345 Ma, while the mafic rocks were 

generally emplaced from 365 to 353 Ma (Dong et al., 2010, 2014; Ji et al., 2012 and this 

study) (Table S4). 

Previous studies mainly favour a back-arc spreading setting for the northern margin of 

Gondwana related to southward subduction of Proto- or Paleo-Tethyan Ocean that is 

represented by Bangong-Nujiang suture and Longmu Tso-Shuanghu Suture Zone during the 

Paleozoic (Cawood, 2007; Dong et al., 2014; Guo et al., 2016; Zhu et al., 2010, 2013). In this 

tectonic scenario, the Lhasa Block did not rift away from the northern margin of Gondwana 

until the Early Permian (e.g., Enkin et al., 1992; Zhu et al., 2010, 2013) or even later (Late 

Permian to Late Triassic) (e.g., Dong et al., 2014; Ferrari et al., 2008; Golonka and Ford, 

2000; Metcalfe, 2006, 2013). As discussed above, however, the Zhengga mafic rocks show 

affinities of intra-continental back-arc basalt, suggesting a subduction-related, rather than 

passive continent margin, setting. In addition, the expected Late Paleozoic arc-type 

magmatism is not found in northern and central Lhasa sub-blocks, where the Devonian to 

Early Carboniferous limestone was deposited (Figure S1), which is also inconsistent with a 

southward subduction scenario. 

Instead, we suggest that the Lhasa Block may have been a microcontinent isolated in the 

Paleo-Tethyan Ocean basin, during the Late Devonian to Early Carboniferous time (Figure 

9a). In this conceptual model, the latest Devonian bimodal magmatism in southern Lhasa was 

caused by northward subduction of the branch Paleo-Tethyan Ocean (Figure 9b). Our model 

is based on the following evidence: (1) Late Devonian (364 Ma) OIB-type alkaline 

amphibolites have been found in the mélange zone of the western Indus-Yarlung Tsangpo 
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suture to the south of Lhasa Block (Figure 1) (Dai et al., 2011). This is not an isolated case 

and the Early Carboniferous (341 Ma) gabbros found in Xigaze area also are considered as a 

remnant of Paleo-Tethyan Oceanic crust (Lang et al., 2017). Likewise, 
39

Ar-
40

Ar dating of 

clinopyroxene and plagioclase from the layered amphibolites identified in the Luobusha 

ophiolite of the east Indus-Yarlung Tsangpo suture yield an Early Carboniferous age of 353–

352 Ma (Mo et al., 2008) (Figure 3). All these indicate the existence of potential Paleo-

Tethyan oceanic crust separating the Lhasa block from the Gondwana continent during the 

Late Devonian to Early Carboniferous (Figure 9), which is similar to the Sibumasu (Jian et 

al., 2009; Wang et al., 2012). (2) As mentioned above, an arc-related affinity of the Zhengga 

mafic rocks and widespread coeval bimodal magmatism in the southern Lhasa is inconsistent 

with a passive rift or extension in Lhasa as part of northern margin of the Gondwana 

(Garzanti et al., 1999; Golonka and Ford, 2000). In addition, on the another scenario that the 

Paleo-Tethyan Ocean slab southward subducted beneath northern Gondwana (Guo et al., 

2016; Zhu et al., 2013), given the back-arc magmatism in the southern (Dong et al., 2014; Ji 

et al., 2012, and this study), a magmatic arc would be expected to be found in north-central 

Lhasa. However, widespread Devonian to Carboniferous carbonate but lack of arc-type 

magmatism in central and northern Lhasa, are inconsistent with a southward subduction 

model. Thus, a model invoking northward subduction of the Paleo-Tethyan slab is more 

consistent with the occurrence of late Paleozoic shallow marine carbonate platform 

sedimentary rocks in central Lhasa and coeval back-arc bimodal magmatism in the south 

Lhasa (Figure 9b). It is also worth noting that northward drift of all of the continental 

fragments that rifted from Gondwana is also supported by the evidence for general northward 

convective mantle circulation during Late Paleozoic-Mesozoic evolution of Tethys (Sengor, 

1987; Stampfli et al., 2013).   
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We therefore suggest that a potential Late Devonian–Carboniferous continental arc might 

have existed farther south of present-day southern Lhasa (Figure 9b), given significant 

subduction erosion and crustal reworking during the Mesozoic to Cenozoic (Hu et al., 2014). 

Future detailed work on identification of Late Paleozoic ophiolites in the Indus-Yarlung 

Tsangpo, Bangong-Nujiang, and Longmu Tso–Shuanghu Suture Zones as well as coeval arc 

magmatism in Lhasa will provide a test for the tectonomagmatic models proposed by this and 

previous studies (e.g., Dan et al., 2018; Dong et al., 2014; Guo et al., 2016; Ji et al., 2012; 

Zhu et al., 2013). 

 

5.4 Nature and evolution of continental crust in southern Lhasa 

It is generally accepted that significant Phanerozoic crustal growth occurred in southern 

Lhasa (e.g., Hou et al., 2016; Ji et al., 2009; Niu et al., 2013; Zhu et al., 2011). Broadly 

speaking two models have been proposed to account for the timing and mechanism of crustal 

growth in the region. The first proposes that the underplating of mantle-derived mafic 

magmas and the recycling of subducted oceanic crust during Neo-Tethyan subduction played 

an important role in crustal growth (e.g., Hou et al., 2016; Ji et al., 2009; Ma et al., 2013; Wei 

et al., 2017). The second model argues that continental collision zones were the primary sites 

of net continental crust growth (e.g., Mo et al., 2007; Niu et al., 2013; Zhu et al., 2013). 

However, both models mainly focus on localised apparent age and the pre-Mesozoic crustal 

evolution history of southern Lhasa remains poorly understood. We have therefore compiled 

almost 3000 zircon Hf isotope and 248 whole-rock Nd isotope analyses from magmatic rocks 

of southern Lhasa in order to assess crustal evolution of the block through time. 

Granitic rocks dominate the preserved magmatic record in southern Lhasa, and thus, 

discussion of new continental crust formation has focused on the granitic rocks in this study. 

The Hf model age of granitoids indicate that ~90% of crust in southern Lhasa was formed 
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during 2500 Ma to 550 Ma at a gradually increasing growth rate (Figure 10a). Thus, the 

significant period of crustal generation in southern Lhasa appears to have occurred 

substantially earlier than previously thought (i.e., the Late Triassic to Early Tertiary) (e.g., Ji 

et al., 2009; Ma et al., 2013; Niu et al, 2013; Wei et al., 2017; Zhu et al., 2013). 

The wide range of radiogenic Nd-Hf isotope compositions for the Phanerozoic granitic 

rocks require at least two distinct crustal components to be involved in the genesis of these 

magmas in southern Lhasa (Figure 11). One with high Nd-Hf isotopic ratios likely represents 

juvenile crust, whereas another with low εNd(t) and zircon εHf(t) values (down to -9 and -13, 

respectively) is likely to be reworked ancient crust (Figure 11a, b). In this study, the distinct 

Nd-Hf-O isotopic composition of Devonian-Carboniferous mafic and felsic rocks also 

support presence of two crustal end-members beneath the southern Lhasa during the Late 

Paleozoic (Figure 7).  

The contracting wedge-shaped array such that zircon εHf(t) values becomes increasingly 

juvenile and less diverse during Late Devonian to Eocene (Figure 11b), indicates the ancient 

crust in southern Lhasa was likely replaced by juvenile crust over time. Two component 

mixing calculations can estimate the contribution of two components over time (Figure 10b). 

On this diagram, the crustal end-member is represented by the integral crust (Figure 11b), and 

the juvenile component is characterised by the mafic rocks that are coeval with the granitic 

rocks (Table S5).  

Although this figure represents an approximation, it does give an overview of the crustal 

evolution from the Devonian to the Tertiary and suggests that southern Lhasa experienced 

variable crustal growth and reworking (Figure 10). Our data imply the latest Devonian (ca. 

360 Ma) granitoid magmatism contains ~60% juvenile component (Figure 10b). In 

combination with widespread coeval mafic rocks (Figure. 2) (Dong et al., 2014; Ji et al., 

2012), the Zhengga mafic rocks with high εNd(t) and εHf(t) values support significant crustal 
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growth in southern Lhasa during Devonian-Carboniferous (Figure 7). Thus, our results 

indicate that the Paleozoic is a likely period of juvenile crustal accretion in the southern 

Lhasa Block, and the crustal growth is likely greater than reworking at this time. The 

magmatic record during this time is still poorly constrained and more studies on Pre-

Mesozoic magmatism in Lhasa will be critical and able to verify or refine this model.  

As indicated by previous research (e.g., Ji et al., 2009; Ma et al., 2013; Wei et al., 2017), 

the Early Jurassic to early Late Cretaceous (ca. 200−90 Ma) appears to represent one of the 

most significant periods of crustal growth in southern Lhasa. Meaningfully, the significant 

increase in juvenile input (~30 percentage points) (Figure 10b), accompanied by the abrupt 

shift of integral crust curve (Figure 11b), indicate intense crustal growth in a short interval 

(200–180 Ma). After that, the addition of new material by arc magmatism appears to be 

balanced by the return of crust into the mantle until the Late Cretaceous. A decrease in 

mantle input since then can be observed (Figure 10b), suggesting raising crustal reworking 

during 90 to 60 Ma.  

The more restricted range in zircon εHf reflects diminishing crustal reworking and 

increasing mantle input over time, which is suggested to represent a fingerprint of external 

orogens (Collins et al., 2011). Southern Lhasa during Late Paleozoic to Mesozoic was likely 

to have been such an external orogen, where the old crust is removed due to sediment 

subduction and subduction erosion and replaced by newly formed crust. During evolution of 

external orogen, repetition of these processes along with crustal re-melting, led to the range 

of radioactive Nd-Hf isotope signatures gradually narrowing and becoming juvenile until the 

removed component is similar to new material (Collins et al., 2011). Our study thus suggest 

the southern Lhasa has experienced significant building and reworking of continental crust 

during Paleozoic to Mesozoic, and was transformed from an ancient microcontinent into a 
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new terrane. The rate of continental crust generation relative to crust destruction likely have 

been greater at certain times, such as the latest Devonian and Early Jurassic (Figure 10b).  

    The external and internal orogenic systems are proposed as two fundamental dynamic 

evolution of Earth (Collins et al., 2011). Crustal growth is generally greater than reworking in 

the external orogen, whereas crustal reworking is stronger in the internal orogen. However, 

these two systems may alternate in the same orogenic belt, even repeatedly. Such information 

may be particularly helpful in young orogens where the ancient lithological record is only 

very incompletely preserved, largely hidden below younger rocks, or tectonically 

dismembered. Thus, the study of crustal growth for the young orogens needs to fully consider 

and evaluate the influence of crustal reworking. 

 

6 Conclusions 

1) Bimodal magmatic rocks comprising amphibolites and two-mica gneissic granites in 

Zhengga area, southern Tibet, were emplaced in the latest Devonian to earliest 

Carboniferous (ca. 366–353 Ma). 

2) The Zhengga mafic rocks were generated by decompression melting of metasomatised 

asthenosphere associated with intra‒continental back‒arc extension.  

3) The Zhengga two-mica gneissic granites were derived from an ancient metasedimentary 

source and subsequently underwent minor mafic magma recharge and fractional 

crystallisation of K-feldspar. 

4) The southern Lhasa Block was once a microcontinent with Precambrian basement and 

transformed into juvenile terrane by significant Phanerozoic crustal growth and reworking.  
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Figure 1. Distribution and zircon ages of the Proterozoic-Carboniferous rocks and Sumdo 

eclogite in the central-southern Tibetan Plateau (modify from Zhu et al. (2013)). 

Abbreviations: JSSZ = Jinsha Suture Zone; LSSZ = Longmu Tso-Shuanghu Suture Zone; 

BNSZ = Bangong-Nujiang Suture Zone; SNMZ = Shiquan River-Nam Tso Mélange Zone; 

LMF = Luobadui-Milashan Fault; IYTS = Indus-Yarlung Tsangpo Suture Zone. 
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Figure 2. Outcrops of granitoids in the eastern Lhasa Block. The yellow dashed line shows 

boundary between the southern and central Lhasa sub-blocks. Literature data include 

granitoid/rhyolite (hexagon), Sumdo eclogite (star) and Precambrian rocks (triangle). Data 

sources include Lee et al. (2009), Dong et al. (2010, 2014), Ji et al. (2012), Lin et al. (2013), 

and Xu et al. (2013). 
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Figure 3. Field geological characteristics and petrography of the Zhengga amphibolite and 

two-mica granite: (a) field outcrop of two-mica granite; (b) mafic enclave; (c) interconnection 

of amphibolite and granite; (d–g) main mineral assemblage of the amphibolite; and (h, i) 

main mineral assemblage of the two-mica granite. Abbreviation: Pl, plagioclase; Grt, garnet; 

Bt, biotite; Cpx, clinopyroxene; Ms, muscovite; Qtz, quartz; Amp, amphibole; Kfs: potassium 

feldspar; IO: iron oxide. 
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Figure 4. SIMS and LA-ICPMS Zircon U–Pb concordia diagrams with CL images for (a) 

09TB78-3, (b) 11SR02-4 and (c) 16ML05-2 (amphibolite), and (d) 09TB78-2; 11SR02-1 and 

11SR02-3 (two-mica granite).  
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Figure 5. (a) Nb/Y vs. Zr/TiO2 (after Winchester and Floyd (1977)) (b) SiO2 vs. Na2O+K2O 

classification diagram (after Middlemost (1994)); (c) SiO2 vs. K2O plot (after Peccerillo and 

Taylor (1976)); (d) A/CNK vs. A/NK classification diagram. The literature data are from 

Dong et al. (2014) and Ji et al. (2012). 
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Figure 6. Chondrite-normalised REE patterns for the Zhengga mafic rocks (a) with other 

back-arc and arc basalts (e) and the Zhengga silicic rocks (b) with other granites in southern 

Tibet (f); N-MORB-normalised multi-element diagram for the Zhengga mafic rocks (c) with 

other back-arc and arc basalts (g); primitive mantle-normalised multi-element diagram for the 

Zhengga silicic rocks (d) with other granites in southern Tibet (h). Data of the Gangdese arc 

basalts are from Kang et al. (2014), Wang et al. (2016) and Zhu et al. (2008); Okinawa 

Trough back-arc basin basalts (BABBs) are from Shinjo and Kato (2000). Devonian mafic 

rocks are from Dong et al. (2014). Carboniferous basalts are from Zhu et al. (2010). Yeba 

BABBs and dacites are from Wei et al. (2017). Devonian granites are from Dong et al. (2014) 

and Ji et al. (2012). Himalayan leucogranite are form Guo and Wilson (2012). CL two-mica 

granites are from Liu et al. (2006). The values of chondrite, primitive mantle and N-MORB 

are from Sun and McDonough (1989). Abreviations: CL - Central Lhasa. SL - Southern 

Lhasa. 
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Figure 7. (a) εNd(t) vs. (

87
Sr/

86
Sr)i and (b) zircon εHf(t) vs δ

18
O diagrams for the Zhengga 

magmatic rocks. Data sources: Paleo-Tethyan ophiolites are from Li et al. (2009); Himalayan 

leucogranites (GP-05, GP-09 and DZ-15) are from Guo and Harrison (2012); Triassic to 

Jurassic basalts from southern Lhasa are from Kang et al. (2014), Wei et al. (2017), Wang et 

al. (2016) and Zhu et al. (2008); late Carboniferous to Permian basalts from central Lhasa are 

from Geng et al. (2009) and Zhu et al. (2010), Triassic to Cretaceous Gangdese granites are 

from Chu et al. (2006), Wang et al. (2016), Wei et al. (2017), Wen et al. (2008) and Zhu et al. 

(2008), GLOSS are from Plank and Langmuir (1998). The bivariate mixture calculations use 

mixing equation of Faure (1986) and indicate a metasomatised mantle by sediment 

melts/fluids and a hybrid source consist of metasedimentary and minor (5–10%) basaltic 

melt. Symbols are as Fig. 6. 
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Figure 8. (a) La/Nb versus Y (Floyd, 1993), (b) V/Ti versus Zr (Woodhead et al., 1993), (c) 

V versus Ti/1000, and (d) Sr/Th versus (
87

Sr/
86

Sr)i tectonic and composition diagrams for 

Zhengga mafic rocks.  
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Figure 9. Schematic illustrations of the nature and evolution of the Tibetan Plateau from the 

latest Devonian. 
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 Figure 10. (a) Histogram of zircon Hf model age for magmatic rocks in the southern Lhasa. 

The green line indicates the crustal growth model; (b) Juvenile input for southern Lhasa 

calculated from the zircon Hf isotope data shown by red broken line (details see text), 

compared with the average εHf(t) values for granitic rocks shown by green cycles (Table S5). 

All calculations are presented for 5 Ma time intervals. Southern Lhasa could experience 

significant episodic crustal growth and reworking during Late Paleozoic to Mesozoic. 
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Figure 11. (a, b) Whole rock Nd and zircon Hf isotopic values of granitic rocks (SiO2 > 56 

wt.%) from the southern Lhasa; (c) whole rock εNd(t) isotopic ratios of mafic rocks (SiO2 < 

53 wt.%) plotted as a function of crystallisation ages. The global depleted mantle value was 

used as the juvenile end-member, with 
176

Hf/
177

Hf at the present day of 0.28325 (Griffin et 

al., 2000). Integral crust curves in (b) represent the Hf composition of the local crust 

basement calculated using the method described in Belousova et al. (2010). These curves 

represent the average Hf isotope composition of the local continental crust at time t, 

estimated from all the detrital zircons that crystallised before time t (Table S5), using the 

average 
176

Lu/
177

Hf of the continental crust (0.0125) (Belousova et al., 2010). DM – depleted 

mantle, CHUR – chondritic uniform reservoir. 
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Table 1 Major (wt.%) and trace (ppm) elements data of Neopaleozoic Zhengga magmatic rocks 

Sample No. 09TB78-3 11SR02-2 11SR02-4 16ML05-1 16ML05-2 16ML05-3 16ZG02-2 16ZG02-3 16ZG02-4 16ZG03-2 09TB78-2 11SR02-1 

Rock Type Amphibolite mafic enclave mafic enclave mafic enclave mafic enclave mafic enclave Amphibolite Amphibolite Amphibolite Amphibolite Gneissose granite Two-mica granite 

Latitude 29°16'32'' 29°15'54'' 29°15'54'' 29°15′54″ 29°15′54″ 29°15′54″ 29°16′32.3″ 29°16′32.3″ 29°16′32.3″ 29°16′32.4″ 29°16'32'' 29°15'54'' 

Longitude 92°10'01'' 92°10'33'' 92°10'33'' 92°10′33″ 92°10′33″ 92°10′33″ 92°09′59.5″ 92°09′59.5″ 92°09′59.5″ 92°10′00.2″ 92°10'01'' 92°10'33'' 

SiO2 50.12 48.39 48.35 52.76 50.53 56.15 52.82 51.82 46.95 51.54 71.61 73.71 

TiO2 0.78 0.90 0.88 0.84 0.62 0.87 0.70 0.67 0.91 0.84 0.35 0.28 

Al2O3 13.08 14.01 12.22 13.54 10.19 13.62 16.15 14.37 13.03 15.54 14.29 13.82 

Fe2O3
T 7.86 10.81 10.05 9.17 9.93 7.21 7.76 8.09 12.05 7.64 2.07 1.84 

MnO 0.15 0.25 0.22 0.27 0.24 0.19 0.13 0.15 0.18 0.13 0.03 0.03 

MgO 12.18 10.14 12.93 8.39 12.62 6.82 9.06 10.23 11.05 9.00 0.76 0.84 

CaO 10.45 10.13 8.37 12.89 10.34 9.66 7.68 9.40 11.78 8.36 1.34 1.30 

Na2O 1.37 0.52 0.40 0.66 0.58 0.86 1.72 2.03 0.76 2.85 2.18 1.43 

K2O 1.88 2.68 3.62 0.49 2.24 3.01 3.08 2.07 1.82 1.48 6.20 6.44 

P2O5 0.38 0.18 0.15 0.18 0.13 0.20 0.16 0.28 0.25 0.34 0.13 0.12 

L.O.I 1.20 1.18 1.97 0.77 2.47 1.34 0.65 0.82 0.72 1.81 0.74 0.64 

Total 99.45 99.17 99.16 99.96 99.90 99.93 99.92 99.94 99.50 99.55 99.70 100.45 

A/CNK 
          

1.12 1.18 

Mg# 75.4 65.0 71.8 64.4 71.6 65.2 69.8 71.5 64.5 70.0 42.2 47.5 

Sc 22.4 28.4 29.8 29.5 26.6 27.7 22.6 25.1 37.5 19.3 4.78 5.49 

V 172 181 219 183 196 174 181 198 276 155 31.5 26.8 

Cr 698 752 912 728 894 624 477 671 1526 400 9.77 110 

Ni 281 263 352 167 289 138 185 187 169 237 4.37 11.0 

Ga 15.6 15.8 15.4 17.2 12.7 13.7 17.0 15.6 18.4 16.1 15.7 15.1 

Rb 84.2 186 306 25.3 177 240 196 98.8 101 66.9 172 209 

Sr 461 246 147 252 219 406 447 769 311 666 130 142 

Y 15.9 19.1 14.7 25.3 14.9 16.8 13.4 17.9 19.2 16.0 38.2 36.4 

Zr 82.3 64.2 72.6 73.2 57.1 75.2 90.5 87.4 79.8 76.5 104 91.6 

Nb 6.42 3.40 4.05 6.50 3.51 5.53 3.92 4.67 3.57 4.24 10.8 10.1 

Cs 6.13 10.2 10.9 6.88 4.78 4.97 15.7 8.88 8.11 4.31 5.96 3.39 

Ba 235 179 484 35 203 238 407 528 359 219 654 617 
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La 34.6 10.3 7.94 13.0 10.6 11.1 11.4 35.8 11.5 16.7 38.2 25.1 

Ce 73.9 23.1 18.3 32.6 24.1 24.3 24.9 75.5 25.6 36.6 76.8 52.4 

Pr 8.88 3.29 2.65 4.31 3.23 3.19 3.23 9.34 3.42 5.00 8.90 6.36 

Nd 36.7 14.8 11.7 17.1 13.2 13.6 13.9 36.9 15.5 21.8 32.0 22.8 

Sm 6.71 3.34 2.77 3.81 2.79 2.97 2.80 5.90 3.68 4.31 6.96 4.90 

Eu 1.88 0.91 0.94 1.23 1.12 1.05 0.92 1.43 1.04 1.29 0.86 0.79 

Gd 4.90 3.36 2.83 3.63 2.64 2.83 2.64 4.69 3.70 3.70 6.61 5.13 

Tb 0.64 0.56 0.45 0.66 0.43 0.48 0.39 0.59 0.57 0.52 1.21 0.92 

Dy 3.30 3.43 2.71 4.30 2.70 3.03 2.38 3.21 3.37 2.88 7.02 5.95 

Ho 0.60 0.74 0.56 0.91 0.57 0.64 0.49 0.64 0.69 0.58 1.43 1.33 

Er 1.54 1.99 1.50 2.43 1.46 1.68 1.31 1.64 1.81 1.50 3.78 3.80 

Tm 0.21 0.29 0.21 0.38 0.22 0.25 0.18 0.23 0.26 0.21 0.52 0.56 

Yb 1.32 1.92 1.47 2.48 1.40 1.59 1.21 1.48 1.68 1.35 3.14 3.48 

Lu 0.20 0.30 0.24 0.40 0.22 0.25 0.18 0.23 0.25 0.20 0.45 0.52 

Hf 2.38 1.63 1.78 2.05 1.62 2.08 2.41 2.42 2.43 1.94 3.30 2.74 

Ta 0.39 0.22 0.24 0.34 0.25 0.33 0.23 0.28 0.24 0.24 0.73 0.73 

Pb 8.82 2.11 1.84 3.21 2.26 3.51 11.23 14.43 8.98 7.54 30.5 43.7 

Th 5.13 1.44 1.21 2.55 1.41 2.11 1.81 6.79 3.74 1.78 17.1 12.3 

U 1.79 0.86 0.87 3.81 0.79 2.60 0.58 1.49 1.10 0.59 1.66 1.86 

TZr (ºC) 
          

707.1 705.8 

TLREE (ºC)           717.3 700.8 
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Continued Table 1 

Sample No. 11SR02-3 16ML04-1 16ML04-2 16ML04-3 16ML04-4 16ML05-4 16ZG01-1 16ZG01-2 16ZG01-3 16ZG02-1 16ZG03-1 16ML13-2 

Rock Type 
Two-mica 

granite 

Two-mica 

granite 

Two-mica 

granite 

Two-mica 

granite 

Two-mica 

granite 

Two-mica 

granite 

Gneissose 

granite 

Gneissose 

granite 

Gneissose 

granite 

Gneissose 

granite 

Gneissose 

granite 

Gneissose 

granite 

Latitude 29°15'54'' 29°15'54" 29°15′54″ 29°15′54″ 29°15′54″ 29°15′54″ 29°16′32″ 29°16′32″ 29°16′32″ 29°16′32″ 29°16′32″ 29°16′32″ 

Longitude 92°10'33'' 92°10′33″ 92°10′33″ 92°10′33″ 92°10′33″ 92°10′33″ 92°10′0.1″ 92°10′0.1″ 92°10′0.1″ 92°10′00″ 92°10′00″ 92°10′00″ 

SiO2 69.84 77.32 74.92 70.50 76.15 70.34 73.68 70.89 76.05 68.93 73.00 65.40 

TiO2 0.28 0.21 0.25 0.22 0.22 0.37 0.36 0.43 0.27 0.41 0.33 0.43 

Al2O3 15.80 11.50 12.16 12.66 11.98 14.97 13.18 14.48 12.09 15.57 13.83 17.29 

Fe2O3
T 2.07 2.39 2.70 2.51 2.27 2.18 2.66 2.51 2.02 3.10 2.22 3.36 

MnO 0.03 0.09 0.09 0.06 0.05 0.05 0.06 0.04 0.03 0.04 0.02 0.09 

MgO 0.88 0.47 0.55 0.57 0.60 0.74 1.03 0.98 0.73 1.35 0.84 0.89 

CaO 1.06 2.11 1.59 1.49 1.31 0.99 2.76 1.01 1.54 3.64 0.30 1.60 

Na2O 1.77 2.52 2.07 1.96 1.77 1.42 2.12 1.91 2.09 3.86 2.35 2.21 

K2O 7.74 2.81 4.86 5.22 4.83 8.01 2.93 6.05 4.24 1.89 5.41 7.51 

P2O5 0.12 0.11 0.12 0.12 0.12 0.15 0.12 0.10 0.14 0.11 0.12 0.15 

L.O.I 0.72 0.45 0.63 4.39 0.65 0.73 0.57 0.92 0.41 0.55 1.17 0.68 

Total 100.30 99.97 99.95 99.70 99.95 99.95 99.46 99.32 99.60 99.45 99.57 99.60 

A/CNK 1.20 1.04 1.05 1.09 1.14 1.17 1.13 1.26 1.12 1.04 1.35 1.18 

Mg# 45.6 28.0 28.6 31.0 34.5 40.2 43.5 43.6 41.8 46.3 42.7 34.4 

Sc 5.68 4.37 5.01 4.82 4.52 5.91 6.13 7.57 5.02 6.00 6.11 7.45 

V 27.6 14.2 15.3 16.7 13.7 25.7 34.1 38.2 23.6 47.5 32.2 34.3 

Cr 90.6 13.1 82.5 28.2 17.6 16.6 11.0 11.1 8.0 20.4 11.6 41.3 

Ni 8.03 5.25 5.27 3.94 3.27 3.73 5.46 5.54 3.96 9.50 5.12 8.53 

Ga 17.3 14.4 15.0 16.6 15.2 18.3 17.0 17.0 14.9 18.2 17.5 22.5 

Rb 254 118 187 210 192 246 141 207 163 78.1 176 275 

Sr 131 66.6 72.8 75.5 65.4 115.2 88.5 97.0 84.1 511.1 76.1 157 

Y 31.8 46.8 47.4 50.6 44.8 64.8 40.4 38.4 45.8 23.2 31.9 61.7 

Zr 176 84.5 117 114 117 166 167 142 124 159 124 157 

Nb 9.16 10.0 12.3 11.5 10.3 18.5 12.8 18.7 11.6 9.6 11.6 18.2 

Cs 3.86 2.51 3.15 3.30 3.18 3.43 5.58 5.44 4.09 6.65 2.05 6.22 
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Ba 841 188 305 350 313 696 462 723 471 511 722 1197 

La 29.4 27.3 29.0 27.7 31.2 50.2 42.2 47.9 34.2 36.9 39.5 49.0 

Ce 60.9 59.9 64.1 61.0 69.3 109.2 87.3 98.1 71.2 74.3 86.4 102 

Pr 7.16 7.11 7.61 7.21 8.13 12.8 10.3 11.6 8.46 8.28 9.84 11.8 

Nd 26.4 25.3 27.5 25.9 28.9 45.4 38.0 42.9 31.4 30.3 37.7 42.7 

Sm 5.40 5.82 6.26 5.93 6.47 9.22 7.13 8.14 6.53 5.23 7.15 8.10 

Eu 0.92 0.49 0.50 0.53 0.48 0.98 0.87 0.95 0.68 1.40 0.79 1.28 

Gd 5.18 5.74 6.03 5.86 6.17 8.59 6.66 7.29 6.42 4.61 6.46 7.47 

Tb 0.88 1.18 1.22 1.23 1.21 1.57 1.07 1.13 1.13 0.67 1.01 1.40 

Dy 5.55 7.98 8.01 8.36 7.81 10.45 6.64 6.54 7.16 3.87 5.76 9.71 

Ho 1.19 1.65 1.65 1.75 1.57 2.32 1.35 1.30 1.51 0.78 1.12 2.18 

Er 3.24 4.18 4.12 4.41 3.92 6.36 3.57 3.29 4.03 2.08 2.86 6.08 

Tm 0.48 0.59 0.59 0.63 0.55 0.96 0.50 0.46 0.59 0.31 0.38 0.95 

Yb 3.04 3.35 3.35 3.54 3.09 5.78 3.14 2.78 3.54 2.05 2.38 5.94 

Lu 0.46 0.46 0.46 0.50 0.44 0.87 0.45 0.40 0.51 0.31 0.33 0.89 

Hf 5.01 3.09 3.96 3.98 4.03 5.25 5.15 4.35 3.89 4.83 3.93 4.92 

Ta 0.56 0.60 0.76 0.74 0.63 1.32 0.87 1.22 0.85 0.87 0.77 1.56 

Pb 53.6 29.4 40.0 42.6 36.7 50.8 18.0 37.2 24.8 22.8 22.6 45.8 

Th 14.7 15.6 18.6 17.6 20.7 26.3 20.1 23.9 16.2 14.7 21.0 25.2 

U 1.98 2.47 2.70 2.71 2.72 3.27 3.92 2.02 2.11 2.34 2.37 3.36 

TZr (ºC) 764.5 689.2 716.5 715.6 730.6 756.7 761.0 753.6 732.8 728.6 753.1 740.3 

TLREE (ºC) 713.4 682.0 692.3 655.1 713.2 753.3 704.3 751.5 715.1 669.0 759.8 736.7 

Fe2O3
T
 = Total Fe2O3 content; Mg

#
= molecular Mg

2+
/(Mg

2+
+Fe

2+
)×100; A/CNK = molecular Al2O3/(CaO+Na2O+K2O); TZr are calculated after Boehnke et al. [2013]. TLREE are calculated after Montel [1993]. 
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Table 2 Sr and Nd isotope data for the Zhengga magmatic rocks 

Sample 
Rb 

(ppm) 

Sr 

(ppm) 
87Rb/86Sr 87Sr/86Sr ± 2σ (87Sr/86Sr)i 

Sm 

(ppm) 

Nd 

(ppm) 
147Sm/144Nd 143Nd/144Nd ± 2σ (143Nd/144Nd)i εNd(t) 

TDM 

(Ma) 

T2
DM 

(Ma) 

09TB78-3 84.2 461 0.5284 0.711206±7 0.708487 6.71 36.69 0.1104 0.512845±2 0.5126 8.02 454  

11SR02-2 186 246 2.1916 0.719850±5 0.708570 3.34 14.80 0.1365 0.512765±4 0.5124 5.25 766  

11SR02-4 306 147 6.0268 0.719953±5 0.688936 2.77 11.70 0.1431 0.512801±4 0.5125 5.66 758  

16ML05-1 25.3 252 0.2900 0.718786±12 0.717293 3.81 17.13 0.1342 0.512659±6 0.5123 3.30 946  

16ML05-2 177 219 2.3346 0.719687±9 0.707672 2.79 13.24 0.1273 0.512796±7 0.5125 6.30 628  

16ML05-3 240 406 1.7122 0.718405±13 0.709593 2.97 13.59 0.1318 0.512822±7 0.5125 6.60 614  

16ZG02-3 98.8 769 0.3716 0.708439±7 0.706526 5.90 36.88 0.0966 0.512573±5 0.5123 3.37 754  

16ZG03-2 66.9 666 0.2908 0.706855±9 0.705358 4.31 21.75 0.1197 0.512804±5 0.5125 6.79 565  

09TB78-2 172 130 3.8141 0.756998±6 0.737369 6.96 31.96 0.1315 0.512057±3 0.5117 -8.33 2028 1792 

11SR02-1 209 142 4.2421 0.727320±8 0.705488 4.90 22.79 0.1299 0.512039±3 0.5117 -8.61 2020 1814 

11SR02-3 254 131 5.5973 0.732303±8 0.703496 5.40 26.38 0.1238 0.512044±3 0.5118 -8.22 1874 1783 

16ML04-2 187 72.8 7.4196 0.753527±10 0.715342 6.26 27.51 0.1375 0.512100±5 0.5118 -7.78 2102 1746 

16ML05-4 246 115 6.1838 0.734791±10 0.702966 9.22 45.44 0.1226 0.512059±6 0.5118 -7.88 1827 1756 

16ZG01-1 141 88.5 4.6299 0.753477±10 0.729649 7.13 38.00 0.1134 0.512072±6 0.5118 -7.21 1640 1702 

16ZG02-1 78.1 511 0.4428 0.722204±9 0.719926 5.23 30.34 0.1041 0.512075±6 0.5118 -6.72 1497 1663 

16ZG03-1 176 76.1 6.7130 0.746234±10 0.711686 7.15 37.67 0.1147 0.512074±5 0.5118 -7.22 1657 1702 

The Groups are same as Table 1 (details see text). 

εNd(t) = [(
143

Nd/
144

Nd)s / (
143

Nd/
144

Nd)CHUR − 1] × 10,000. TDM = ln[(
143

Nd/
144

Nd)s − (
143

Nd/
144

Nd)DM] / [(
143

Sm/
144

Nd)s − (
147

Sm/
144

Nd)DM] / λ [DePaolo, 1988]. 

In the calculation (
143

Nd/
144

Nd)CHUR = 0.512638 (
147

Sm/
144

Nd)CHUR = 0.1967 (
143

Nd/
144

Nd)DM = 0.51315, (
147

Sm/
144

Nd)DM = 0.2136 and t = 361.5 Ma. 

 


