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It has long been suggested that climate shapes land surface topography, through interactions between 11 

rainfall, runoff, and erosion in drainage basins1-4. The longitudinal profile of a river (elevation versus 12 

distance downstream) is a key morphological attribute that reflects the history of drainage basin 13 

evolution, so its form should be diagnostic of the regional expression of climate and its interaction with 14 

the land surface5-9. However, both detecting climatic signatures in longitudinal profiles and 15 

deciphering the climatic mechanisms of their development have been challenging due to the lack of 16 

relevant data across the globe, and due to the variable effects of tectonics, lithology, land-surface 17 

properties, and humans10,11. Here we present a global dataset of river longitudinal profiles (n = 18 

333,502), and use it to explore differences in overall profile shape (concavity) across climate zones. 19 

We show that river profiles are systematically straighter with increasing aridity. Through simple 20 

numerical modeling, we demonstrate that these global patterns in longitudinal profile shape can be 21 

explained by hydrological controls that reflect rainfall-runoff regimes in different climate zones. The 22 

most important of these is the downstream rate-of-change in streamflow independent of drainage 23 

basin area. Our results illustrate that river topography inherits a signature of aridity, suggesting that 24 

climate is a first-order control on drainage basin evolution. 25 



Conventional theory presents river longitudinal profiles (long profiles) as having a generally concave-up 26 

shape, with knickpoints and other fluctuations expressing the interactions of several independent variables: 27 

climate, tectonics, lithology, and human impacts11-13. This characteristic shape of long profiles has been 28 

interpreted to arise due to downstream flow increase with drainage area, which erodes the riverbed, 29 

transports sediment from upstream to downstream, and produces fining profiles in bed material grain 30 

size13,14. However, there are long profiles with overall concavity much closer to zero (straighter) than the 31 

typical concave-up profile shape15-17, yet there is limited understanding of the global distribution of long 32 

profile concavities and their relation to climate. Stream power incision theory states that channel erosion is 33 

intrinsically tied to an assumed relationship between river discharge (Q) and drainage area (Q~Ac). Based 34 

on this theory, an expression has been derived that links supply-limited river long profile concavity to the 35 

exponent c18, illustrating that profiles will be concave up for c > 0, straight for c = 0, and convex for c < 0, 36 

and a similar dependency of profile concavity on the Q-A relationship has been derived for 37 

transport-limited fluvial systems19. Previous work has largely emphasized long profile concavity for cases 38 

where c > 0, despite evidence that c in many river basins, especially in drylands, may vary flood to flood 39 

between negative, zero, and positive values8,17,20. Of particular interest here is to ascertain whether the 40 

climatic expression within river channel hydrology may be a first-order control on long profile shape, and 41 

whether its climatic signature is preserved across the globe. 42 

A river experiences a cascade: from climate to hydrology to erosion, which evolves its long profile. 43 

Therefore, the climatic expression within streamflow should be a first-order control on long profile shape6-8. 44 

Numerical analysis of profile shape responses to a distribution of flow events above the threshold for 45 

bedrock incision has demonstrated part of this dependency5,8,21. However, there is limited global evidence 46 

of how the hydrologic expression of climate affects long profiles, across a wide range of climate zones. 47 

Climate determines the precipitation regime within a region. In turn, the precipitation regime controls the 48 

rate and frequency of water supply to the land surface, a proportion of which generates runoff over drainage 49 

basins, subject to losses by infiltration and evapotranspiration. Flow in rivers occurs when runoff reaches 50 



the channel, with notable baseflow contributions from groundwater and subsurface drainage in humid 51 

regions and potential for prolonged periods of no flow in arid channels. The flow of water within a river is 52 

a key driver of landscape evolution, through the corresponding downstream force exerted on the stream bed, 53 

the associated channel erosion, and the expression of local river incision at each elevation position along 54 

the long profile. Therefore, we propose that the climate-streamflow relationship exerts a strong control on 55 

long profiles. 56 

Cimate is expressed differently in the downstream rate-of-change in streamflow between arid and humid 57 

endmember rivers. In arid climates, streamflow tends to decrease downstream in all but extreme floods22 58 

for two main reasons: 1) Low annual rainfall, limited areal coverage of rainstorms, and short duration of 59 

rainfall events generates partial area runoff23. This results in a small proportion of basin tributaries 60 

contributing streamflow to the mainstem for limited periods of time. 2) Rivers are typically ephemeral (no 61 

permanent flow)24, so channels lose water through dry, porous beds (transmission losses22) because water 62 

tables are well below the channel25. Thus, the commonly assumed power law relationship between 63 

streamflow and drainage area (with positive exponent c) breaks down20 such that the long-term average 64 

value of c may be negative, positive, or zero. In contrast, humid channels have perennial flow (all year 65 

round), supported by baseflow from groundwater, and they accumulate flow from adjoining tributaries, 66 

producing downstream increases in discharge13 (positive c). We intuit that there is a spectrum of prevailing 67 

downstream changes in streamflow across the globe based on the regional expression of climate within 68 

discharge regimes (e.g., dryland hydrology, mountain front orography5), rather than simply on drainage 69 

basin area. Given the obvious link between streamflow and riverbed erosion, we hypothesize that climatic 70 

signatures are imprinted within river long profiles, superimposed upon other exogenous controls. In other 71 

words, we expect a great deal of scatter typical of environmental data, but we hypothesize that climate will 72 

reveal itself as a first-order control on long profile shape. 73 

To test this hypothesis, we produced a new and unprecedented database of Global Longitudinal Profiles 74 

(GLoPro) of rivers between 60°N and 56°S (Fig.1) extracted from NASA’s 30-m Shuttle Radar 75 



Topography Mission Digital Elevation Model (SRTM-DEM)26. The profiles were extracted using 76 

LSDTopoTools27, software with advanced capabilities in topographic analysis, employing a conservative 77 

threshold for upstream drainage area and an algorithm of downstream flow accumulation, both of which 78 

reduce the likelihood of Type 1 errors (Methods). For each profile we computed the Normalized Concavity 79 

Index (NCI), a metric computed based solely on profile geometry (Methods; Extended Data Fig.1) that 80 

allows for standardized comparisons of river profile shapes across the globe. The NCI is negative if the 81 

profile is concave-up, zero if the profile is straight, and positive if the profile is convex-up. 82 

We categorized each profile in GLoPro using the Köppen-Geiger (K-G) climate classification28 and the 83 

quantitative Aridity Index (AI = Precipitation/Potential Evapotranspiration)29, to investigate relationships 84 

between climate and river long profile shape and to test whether the expression of aridity is detectable in 85 

NCI. K-G is based on temperature and precipitation thresholds, emphasizing vegetation response to climate. 86 

AI is a scale that represents the balance between precipitation and evaporative demand, and it declines with 87 

aridity. Here we addressed the null hypothesis that there are no differences in NCI between climate 88 

categories. We did not censor GLoPro for any other natural or anthropogenic factors, and it includes both 89 

bedrock and alluvial rivers. We do not make any assumptions about whether the profiles are steady-state 90 

(equilibrium) or transient, but we assumed that climate categories in K-G and AI have not changed 91 

significantly over the timescales of long profile development (Methods). 92 

The global distribution of NCI values does not suggest any strong geographic biases, although there are 93 

clear concentrations of convex (Southern Siberia), concave (SE Asia), and nearly straight (Arabian 94 

peninsula) rivers (Fig.1). NCI distributions of different climate classes (Fig.2a) overlap and display great 95 

breadth, reflecting the large sample size and the many interacting independent variables (climate, tectonics, 96 

lithology, and human factors) that affect drainage basin development. Nevertheless, statistically significant 97 

differences between distributions are evident (Extended Data Fig.5). Comparing the four main K-G climate 98 

zones, all NCI distributions are negatively skewed, revealing that river long profiles are generally 99 

concave-up (Fig.2a). However, compared to the other three main climate zones (Tropical, Temperate, and 100 



Cold), the NCI values for Arid zone rivers are notably closer to zero (straighter) with a narrower 101 

distribution (Extended Data Table 1). The distinct signature of straighter profiles within the Arid K-G zone 102 

in GLoPro is an unprecedented finding. To further explore this result, we investigated the relationship 103 

between NCI for the AI climate classification, ranging from Humid to Hyper-arid categories. We found a 104 

systematic increase in NCI distribution medians from concave-up to straighter profiles as aridity increases 105 

(Fig.2c,d). Furthermore, we found (Fig.2e) a higher frequency of concave river profiles within humid 106 

regions (combined Dry sub-humid and Humid AI categories), and a higher frequency of straighter profiles 107 

in drylands (combined Hyper-arid, Arid, and Semi-arid AI categories). In other words, the straightness of 108 

the long profile appears to be directly related to the water balance of a region, and by extension its 109 

expression within streamflow regimes that erode riverbeds. 110 

Why are arid river long profiles straighter than humid ones, and how does climate influence the long 111 

profile through its expression in streamflow? Stream power theory indicates that the variation of discharge 112 

with drainage area influences long profile concavity for supply-limited channels. We sought to relax this 113 

assumption of Q-A dependency and thus provide a more general mechanistic explanation of our GLoPro 114 

results, and one which applies to transport-limited channels. We used the numerical model, LONGPRO30 115 

(Methods), and distilled the hydrological expression of climate within a parameter representing the 116 

downstream rate-of-change in streamflow, which replaces the Q-A relationship from stream power theory. 117 

Specifically, discharge changes with distance down the channel at a rate controlled by the power law 118 

exponent, α, in the equation: QL = Qn (L/Ln)α, where QL is the discharge at a distance downstream, L, and n 119 

is the most downstream point on the profile (Methods). We simulated the evolution of river long profiles 120 

with six values of α representing a range of downstream decreasing and increasing discharge rates (α = －2, 121 

－1, －0.5, 0.5, 1, 2). We kept all other LONGPRO model parameters constant within established ranges 122 

for natural rivers but we separately explored their influence on NCI (Methods). For each simulated profile, 123 

we calculated the NCI value (Fig.3a). 124 



We found that NCI in the simulated profiles is systematically influenced by α (Fig.3b). Specifically, the 125 

fastest downstream decreasing discharge (α = －2) produces convex-up profiles and profiles become 126 

progressively straighter and then concave-up with increasing α. In general, long profiles are straighter when 127 

α approaches zero (discharge does not vary downstream). These LONGPRO results provide definitive 128 

mechanistic support to our NCI results from GLoPro, and they also corroborate the effect of the exponent c 129 

on concavity from stream power theory, pointing to aridity and its influence on downstream discharge as a 130 

first-order control on longitudinal profile shape. 131 

We tested the representativeness of the modeled α values for real rivers by analyzing flow data from a 132 

range of gauged US rivers (Methods). The analysis reveals ranges of α consistent with expectations for 133 

each K-G climate zone, whereby Tropical, Temperate and Cold zones exhibit large, positive α values, and 134 

the Arid zone displays α values close to zero (Extended Data Fig.8a). Note that a range of α values (positive, 135 

negative, and zero) are probably common to arid rivers due to the variable expression of climate within 136 

stream hydrology on a flood-by-flood basis17,20. Furthermore, the mean value of α is affected by long 137 

periods of no flow (ephermerality), typical of dryland rivers (Extended Data Fig.8b). Ephemerality 138 

accentuates transmission losses that reduce downstream flow and also gives more weight to each historical 139 

flood event, wherein smaller floods that exhibit downstream decreasing discharge are more frequent, yet 140 

less geomorphically effective than large ones that increase downstream4,17. Thus, α may vary between 141 

negative and positive values for each flood, resulting in a distributional mean value close to zero. 142 

Combining these hydrologic data with our model results enables interpretation of the global trends in 143 

long profile concavities with aridity. The results demonstrate three things: 1) The concave-up river profile 144 

can develop based solely on perennial flow conditions and downstream flow increase, consistent with 145 

stream power incision theory18. 2) Straighter long profiles can evolve in rivers that flow infrequently, and 146 

where over the long term, the median discharge is similar everywhere along the channel. 3) Convex long 147 

profiles can develop under a range of ephemeral/perennial conditions, but where climate may not be the 148 

first-order control. All of these profile shapes exist within GLoPro (Figs.1;2) with a preponderance of 149 



concave-up profiles in all climate zones (modeled large positive α), numerous straight profiles concentrated 150 

in arid regions (modeled small |α|), and a smaller set of convex-up river profiles (modeled negative α) 151 

occurring in humid (strong orographic effects5) and arid regions (partial area contribution23 and 152 

transmission losses22). The effect of α in transport-limited rivers (and by extension, c in supply-limited 153 

rivers) overprints other plausible controls on profile concavity on the global scale (Extended Data Fig.6). 154 

Our new global dataset, GLoPro, combined with simple numerical modeling and hydrological data 155 

analysis has provided a new explanation of how the hydrological expression of climate can produce 156 

systematic differences in long profile shapes based on aridity. From this first global analysis of longitudinal 157 

profiles, we demonstrate that climatic signals are etched into river long profiles irrespective of the variety 158 

of environmental conditions and other forcings across the globe (Methods). Despite overlaps in the NCI 159 

distributions, the overriding signal is one of aridity affecting channel flow and the cascade from climate to 160 

hydrology to erosion, corroborating previous studies8,10,31-33. The findings highlight the importance of 161 

hydrological regimes, directly affected by climate, as a first-order control on the development of river 162 

topography, which can enhance our understanding of drainage basin evolution in response to climate and 163 

climate change. 164 
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Figure 1｜Global map of extracted river long profiles classified by Normalized Concavity Index (NCI) 258 

values. Each dot identifies the most downstream point of each extracted river profile, color-coded by NCI 259 

value. River long profiles were extracted from the 30-m SRTM-DEM, which covers land area between 60° 260 

N and 56° S. Inset table shows the number of extracted rivers in each NCI bin. (Source of background map: 261 

Natural Earth, https://www.naturalearthdata.com/) 262 

263 



 264 

Figure 2｜Effect of climate on NCI. Kernel density estimation (KDE) is a nonparametric representation 265 

of the probability density function. Comparisons of NCIs for: a, Four main Köppen-Geiger (K-G) climate 266 

zones highlighting the distinctiveness of Arid zone concavities; b, Sub-zones of K-G classification. c, The 267 

KDE comparison of NCIs between climate categories of the Aridity Index (AI). d, Enlarged part of the grey 268 

frame in panel c showing variations in NCI distributions based on AI. e, Frequencies of combined AI 269 

categories between NCI distributions highlighting dryland dominated and humid dominated bins of NCIs. 270 

https://en.wikipedia.org/wiki/Probability_density_function


‘Dryland’ includes Hyper-arid, Arid, and Semi-arid categories; ‘Humid’ includes Dry sub-humid and 271 

Humid.   272 



 273 

Figure 3｜Modeling river long profiles with various downstream rates of flow change. a, NCI values 274 

for long profiles simulated with LONGPRO with a range of downstream rates of flow change (α). Inset 275 

figures are the corresponding downstream distributions of discharge for various α values used in the 276 

LONGPRO modeling. b, Simulated river long profiles for the corresponding various α, normalized by total 277 

river relief.  278 



METHODS 279 

Köppen-Geiger and Aridity Index Classifications. Our four main Köppen-Geiger (K-G) climate zones28 280 

were compiled by aggregating the Af, Am, and Aw sub-zones into the Tropical zone; BWh, BWk, BSh, 281 

and BSk sub-zones into the Arid zone; Cs, Cw, and Cf sub-zones into the Temperate zone; and Ds, Dw, 282 

and Df sub-zones into the Cold zone. We excluded Polar zones from the K-G dataset because of their 283 

tendency to be covered by permafrost or glaciers, making them subject to predominantly glacial processes 284 

rather than fluvial ones, and due to the latitude constraints of the Shuttle Radar Topography Mission Digital 285 

Elevation Model (SRTM-DEM) dataset26. We acquired the spatial distribution of Aridity Index (AI) along 286 

each river profile from the Global Aridity and PET Database29, then calculated the median AI value for 287 

each river. 288 

One may wonder whether the prevailing climate in any basin may have shifted during or since profile 289 

development and how that might affect our results. In this study, we opted to use climate metrics that can 290 

currently be measured on a global basis, since they represent the best available information for analysis of a 291 

global river profile dataset. Having confirmation from two climatic indices (K-G and AI), which are 292 

computed in distinct ways (e.g., AI represents the balance between PET and P), gives us confidence that we 293 

have captured real climate influences on long profile development. There will undoubtedly be examples 294 

where marked biome/climate shifts occurred during or since profile development within a region. However, 295 

since we observed clear relationships between current climate classifications and NCI, we believe this 296 

makes a strong case for contemporary climatic control on the profile. We suspect that any major climatic 297 

changes over or since the period of profile development would merely be captured in the noise of the 298 

GLoPro dataset. 299 

River long profile extraction. Using the K-G climate zones28, the global SRTM-DEM26 was broken into 300 

contiguous climate zone tiles, prior to performing any topographic processing. This ensured that only rivers 301 

which were contained within a given climate zone would be extracted, and that any climatic signal 302 

contained within river long profile geometry would not be distorted by a river crossing climate zones. This 303 



means that the GLoPro dataset is limited to river basins that are typically <2,500 km2 in area and <400 km 304 

in length (Extended Data Fig.4). In some cases, the contiguous climate zone tiles were still too large to be 305 

efficiently processed, and so these tiles were subdivided into smaller tiles using a quadtree algorithm. This 306 

processing resulted in 1,366 individual DEM tiles, each with an approximate spatial resolution of 30 meters, 307 

which could be processed in parallel. To ensure the validity of measurements of river long profile geometry, 308 

and the ability to accurately compare measurements at a global scale, each DEM tile was projected into the 309 

appropriate UTM coordinate system. Our method applied to the entire SRTM dataset optimizes the quality 310 

and internal consistency of the topographic information extracted into GLoPro, but it comes at the expense 311 

of precise geographical information due to spatial variability in projection of the dataset. This means that it 312 

may be challenging to match up GLoPro stream locations accurately to GIS stream layers from other 313 

databases. 314 

The topographic analysis of each of these tiles was performed using LSDTopoTools27, an open source 315 

topographic analysis package designed to facilitate robust, reproducible analysis of DEM data. The first 316 

processing step was to hydrologically correct each DEM tile, to ensure that no artificial sinks were present. 317 

This was performed using an algorithm34 which minimizes the topographic change required to ensure all 318 

DEM cells flow to the DEM base level. Following this, each cell in the DEM which exceeded a threshold 319 

drainage area, and which had no upslope cells also exceeding the threshold were identified as channel 320 

initiation points. The FastScape algorithm35 was then applied to these initiation points to efficiently route 321 

flow downslope in the direction of steepest descent to generate a channel network for each tile. This 322 

steepest descent method partitions flow from the DEM cell of interest to one of its 8 neighbouring cells. 323 

From this generated network, the highest order river (the longest channel) in each drainage basin or 324 

sub-basin, that did not cross K-G sub-zone boundaries (Extended Data Fig.1a), was extracted and 325 

incorporated into GLoPro. 326 

Although more elaborate methods for channel extraction exist, it has been shown that these methods 327 

perform poorly on 30-m resolution data36, particularly in the upper reaches of catchments, where channel 328 



initiation points are known to be fine scale, transient features37. The selection of a threshold drainage area is 329 

challenging in any study, with considerable effort being expended on identifying techniques to constrain 330 

it38. These challenges are also magnified by the scale of this study, where the ideal threshold for a given 331 

area may be unsuitable for another. To resolve this issue, a deliberately conservative drainage area 332 

threshold of 25,000 pixels, equivalent to an area of 22.5 km2 at the equator, was applied. This value 333 

balances the need for computational efficiency with the requirement to extract the properties of large 334 

mainstem rivers in which we can have confidence36. 335 

We were concerned that our extraction method might yield false positives in areas where one would 336 

expect few channels (e.g., dune fields such as the Sahara Desert). To check for this, we analyzed the 337 

extracted channels from LSDTopoTools for part of The Grand Erg Oriental, Western Sahara. We found 338 

that the flow accumulation algorithm results from LSDTopoTools showed flow between dunes along local 339 

topographic gradients and a coalescence of flow into a dominant channel that follows the regional 340 

topographic gradient (Extended Data Fig.2). This is the channel that was extracted in our analysis for this 341 

area and which is included in GLoPro. It is plausible that under heavy rainfall, overland flow runoff would 342 

accumulate in this manner and it would coalesce into a dominant channel that reworks dune sediment and 343 

leaves behind a topographic signature that is preserved. From arid lands literature on fluvial-aeolian feature 344 

interactions, we confirmed that it is common that interdune flow and coalescing flows (“through-going” 345 

fluvial channel networks) cross entire aeolian dune fields and leave behind topographic signatures39.Even 346 

after removing all major global dune fields from GLoPro, we determined that our NCI results showing 347 

systematically straighter long profiles with increasing aridity, are unaffected. It is worth mentioning that the 348 

fluvial channels included in GLoPro are based on a topographic definition – they represent a set of 349 

contiguous topographic positions in the landscape that would accumulate flow from upstream (should water 350 

be present in the landscape) above a conservative threshold drainage area. A single point or a discontinuous 351 

series of points defined as a channel trace would not be extracted for inclusion in GLoPro. Instead, the 352 

extraction algorithm required a consistent decline in elevation along the flow trace and an accumulation of 353 



upstream drainage area to define a channel. Accordingly, only longer channels in a basin or sub-basin 354 

would be included in our database. We view this definition as a conservative one, that would tend to rule 355 

out the inclusion of non-channel features (false positives) in our database. 356 

For each DEM cell identified as a channel, topographic information was sampled to facilitate the 357 

creation of river long profiles, along with other relevant information about the river channel. This resulted 358 

in an average sampling frequency of 36 meters along the length of each river, recording the elevation, flow 359 

length, drainage area, latitude and longitude of each cell. In addition to these topographic data, AI values 360 

were sampled at the centroid of every cell along the length of each river and the median AI value was 361 

calculated for the whole river. There are a small number of cases (40 rivers, or 0.01% of the dataset) where 362 

very few AI measurements (<10) were made along a river, caused by the discrepancy between the spatial 363 

resolution of the AI data (~900 meters) and the SRTM dataset the rivers are extracted from (~30 meters). 364 

Given their source in SRTM data, the extracted profiles represent the water surface profile for perennial 365 

rivers and the bed topography profile for ephemeral rivers. The two profile types are comparable over the 366 

entire profile, as the water surface responds to the bed topography. Furthermore, NCI robustly captures the 367 

overall shape of the longitudinal profile, irrespective of high frequency variations associated with either bed 368 

or water surface profiles. 369 

Normalized Concavity Index (NCI). We define the endpoints of the longitudinal profile (L0, E0) and (Ln, 370 

En) where L is distance downstream, E is elevation, and where the subscripts 0 and n indicate the most 371 

upstream and downstream points, respectively. To calculate NCI, a straight line is fitted through the 372 

endpoints of the longitudinal profile descibed by the equation YL = E0 – θL, where YL is the elevation on 373 

the line at each distance L, θ is the gradient of the line, and E0 is the y-intercept. Then, at each measured 374 

point along the profile, the vertical offset between the river profile and the fitted straight line is calculated 375 

as EL – YL. We then calculate the median value of all offsets, normalized by the total topographic relief 376 

along the profile (E0 – En) to enable comparison across scales (Extended Data Fig.1b). Therefore, NCI is 377 

defined as: 378 



                               NCI = median[(EL－YL)/(E0－En)]                         (1) 379 

There have been previous concavity indices developed in the literature, such as Stream Concavity Index 380 

(SCI)7, Concavity Index (θ)40, and Chi (χ) transformation41. SCI, for example, calculates the area 381 

between channel elevation and the straight line connecting the endpoints of channel, similar to NCI. 382 

However, SCI is sensitive to local variations along the profile (e.g., knickpoints) and requires smoothing. 383 

On the other hand, θ and χ are computed based on local channel gradient and upstream contributing 384 

drainage area and they are typically applied to multiple segments along the same river trace, rather than to 385 

summarize the concavity of an entire profile. Since our goal was to explore conditions where the 386 

relationship between area and channel discharge are weak for complete river profiles, we opted for a 387 

different metric. Advantages of NCI are that: 1) it calculates all offsets of measured points at the native 388 

resolution of the measurements (DEM, field survey, model output); 2) it does not require any smoothing 389 

along the profile; 3) it does not require any assumptions about the relationship between slope and area or 390 

between area and river discharge; and 4) it can be used to quantify concavity of a simulated profile (devoid 391 

of basin area). The calculation of all vertical offsets along the profile enables the representation of local 392 

variations along the profile (e.g., knickpoints), but the calculation of NCI is not sensitive to them (Extended 393 

Data Fig.3 as an example). 394 

 The river extraction methods and concavity calculation result in an internally consistent NCI dataset. 395 

The impact of channel head location on NCI is minimal because only the longest river of each basin or 396 

sub-basin was analyzed (not smaller tributaries). We confirmed that NCI for extracted rivers in GLoPro are 397 

not correlated with key river metrics, such as river length, gradient, relief, or basin area (Extended Data 398 

Fig.4). Therefore, we were confident in using it to compare rivers of different sizes and across climate 399 

zones. 400 

Global Longitudinal Profile (GLoPro) database. 401 

Database Structure 402 

GLoPro is an SQLite database comprising two tables: rivers, which has the following columns: 403 



1. uid: A unique ID assigned by the database for each record. 404 

2. riverid: The unique name given to each river record in GLoPro. Comprises the K-G climate zone that the 405 

river is within and a unique alphanumeric string. Used to identify a given profile in the profile table. 406 

3. NCI: The Normalized Concavity Index. 407 

4. koppen: The K-G climate zone. 408 

5. geom: A GeoJSON string containing the river geometry. Can be imported directly into any modern GIS 409 

package (e.g., QGIS). For more information on the GeoJSON format see http://geojson.org. 410 

 411 

and profiles, which contains: 412 

1. uid: A unique ID assigned by the database for each record. 413 

2. riverid: The unique name given to each river record in GLoPro. Comprises the K-G climate zone that the 414 

river is within and a unique alphanumeric string. Used to identify the associated data for the river 415 

recorded in rivers. 416 

3. lat (decimal degrees): The latitude of the sampled point. Spatial coordinates correspond to EPSG code 417 

4326. 418 

4. long (decimal degrees): The longitude of the sampled point. Spatial coordinates correspond to EPSG 419 

code 4326. 420 

5. length (meters): The cumulative flow length from the outlet of the river. 421 

6. area (square meter): The drainage area at a given point along a river. 422 

7. AI: The AI value for a given point along the river. AI data is from 423 

http://www.cgiar-csi.org/data/global-aridity-and-pet-database. 424 

 425 

Example Queries 426 

 427 

To select all of the data from the rivers table: 428 

http://geojson.org/
http://www.cgiar-csi.org/data/global-aridity-and-pet-database


SELECT * FROM rivers; 429 

 430 

To select all of the data from a given climate zone: 431 

SELECT * FROM rivers WHERE koppen like 'Af'; 432 

 433 

To select rivers which have an NCI below a value: 434 

SELECT riverid FROM rivers where NCI < -0.1; 435 

 436 

To select the elevation and flow length of a given river, which can be used to plot a long profile: 437 

SELECT elevation, length FROM profiles WHERE riverid like ‘Aw_75_river_72’; 438 

 439 

Note that due to the size of the profiles table, queries can take a few minutes to complete. To learn more 440 

about using SQL databases in a research context, the authors recommend the training materials provided by 441 

Software Carpentry: http://swcarpentry.github.io/sql-novice-survey. 442 

Kernel density estimation (KDE). In several figures in the paper, we present plots generated based on 443 

kernel density estimation (KDE). KDE is a nonparametric representation of the probability density function 444 

for the sample data. To show the distribution of NCI values of each climate zone, we used the built-in 445 

function, ksdensity, in MATLAB. Since the bandwidth of the kernel smoothing window affects the 446 

distribution shape, which leads to a smoother shape at higher bandwidth, we kept bandwidth constant at an 447 

appropriately smoothed value of 0.02 for all climate zones (Fig.2). However, we also tested the estimations 448 

with various bandwidths for K-G classification, from 0.005 to 0.04. All results show that NCI distributions 449 

of the Arid zone skewed toward zero compared to three main humid zones, irrespectitve of the choice of 450 

bandwidth. 451 

Two-sample Kolmogorov-Smirnov test. Statistical differences of the NCI distributions were analyzed 452 

using the Kolmogorov-Smirnov test (K-S test) between distribution pairs across climate zones. K-S test is a 453 

http://swcarpentry.github.io/sql-novice-survey
https://en.wikipedia.org/wiki/Probability_density_function


nonparametric test for checking whether two continuous, one-dimensional data samples, X1 and X2, come 454 

from the same distribution. We used the built-in function, kstest2, in MATLAB to calculate the statistic and 455 

corresponding p-values between K-G and AI categories (Extended Data Fig.5). Since the number of 456 

sampled rivers is very large, p-values of all comparisons are lower than 2.1×10-20. However, in K-G climate 457 

zones, comparisons between humid zones and the Arid zone yield p-values lower than 4.27×10-190 458 

(Extended Data Fig.5a). Within the AI classes, smaller p-values result when comparing categories that are 459 

further apart in terms of aridity (e.g., Hyper-arid zone v. Humid zone) (Extended Data Fig.5b). These 460 

results support the conclusion that long profile shapes are very significantly different between arid and 461 

humid regions. 462 

LONGPRO modeling. LONGPRO is a one-dimensional numerical model for simulating the dynamic 463 

evolution of the river long profile, and can be used to explore responses to varying water discharge, 464 

sediment supply, bed grain size, tectonic uplift, and base level30. LONGPRO includes: 1) gradually varied 465 

flow; 2) sediment transport by Yang's unit stream power equation42; and 3) conservation of mass. We used 466 

LONGPRO to explore the relative controls on longitudinal profile development. Our goal was not to 467 

exhaustively explore the parameter space of LONGPRO, but rather to look at first-order effects of 468 

downstream discharge variation on the profile development for transport-limited conditions in a manner 469 

that is analogous to the supply-limited case generalized by stream power incision theory. 470 

Given the large variance in drainage basin properties across the globe, we fixed several parameters in 471 

LONGPRO in order to isolate the effects of the climate expression within streamflow, and the 472 

corresponding impact on long profile evolution. We assumed no tectonic uplift and no base level change 473 

(but see below for a sensitivity analyses to these and other factors). We set river length to 25 km, a value 474 

similar to the median value of all extracted rivers (26.7 km). We set initial profile slope to 0.003, 475 

representing an linearly decline from 75 m elevation at the upstream profile point (i.e., E0) to 0 m at the 476 

downstream point (En). Base level (elevation of river water level above the riverbed at the most 477 

downstream point) was set at a constant value of 5 m. The maximum water discharge (Qmax) was set as 478 

https://en.wikipedia.org/wiki/Nonparametric_statistics


25 m3/s. Sediment-related parameters in LONGPRO include sediment supply at the upstream boundary 479 

(MFEED), sediment concentration of lateral inflow to the mainstem (SEDCON), the median grain size of 480 

bed material (DIMID), and Manning's roughness coefficient (n). For these parameters, we set the following 481 

values as constants: MFEED to 10 kg/s, DIMID to 1 mm (uniform grain size along the profile), and n to 482 

0.04. SEDCON was set to 0.00005 (proportion of sediment concentration delivered by lateral tributary 483 

inputs), which follows the formula: 484 

                              qs,L = SEDCON(QL－QL-1)(Δt)                             (2) 485 

where qs,L is the mass of lateral sediment supply at the distance downstream, L, which enters over timestep, 486 

Δt. Note: for downstream-decreasing discharge, we exchanged the positions between QL and QL–1 in 487 

formula (2), in order not to get a negative qs. The distance between calculated nodes was set as 1 km, and 488 

the timestep, Δt, was set to 24 hours. The models were run for 500 years of effective discharge, by which 489 

time the rate of change to the profile became relatively small. In fact, the model tended to adjust to near 490 

steady-state conditions very rapidly, rendering the model results insensitive to the initial profile, as per the 491 

model’s design30. Since effective discharge tends to be expressed for much briefer periods (e.g., bankfull 492 

discharge often is assume to have a return period of ~1.5 years), the model simulation time actually 493 

represents a much longer period of topographic adjustment. 494 

We varied downstream rate-of-change in streamflow, α, to explore the effects of climatically driven 495 

streamflow on long profile evolution in LONGPRO. In order to do this, we modified the LONGPRO code 496 

to enable the power law exponent, α, to vary from positive to negative values: 497 

                                   QL = Qn(L/ Ln)α                                  (3) 498 

where QL is the discharge at the distance downstream, L, Qn is the discharge of the most downstream point, 499 

and Ln is the river length. For downstream increasing discharge, Qn equals Qmax (25 m3/s). However, for 500 

downstream decreasing discharge, Qmax occurs at the most upstream point (Q0) and Qn is calculated from 501 

equation (3) for the given α value. In this manner, we simulated variations in downstream discharge and 502 

their impact on long profile evolution. For each simulation, we generated a longitudinal profile for which 503 



we calculated the NCI. A range of simulated profiles from LONGPRO and associated NCI values for 504 

varying values of α are shown in Fig.3. 505 

Since other model parameters can also affect long profile concavities, we conducted sensitivity analyses 506 

to discharge (Qmax), median grain size (DIMID), tectonic uplift, and base level change. To model tectonic 507 

uplift in LONGPRO, we applied the maximum uplift rate at the most upstream point (0.1 mm/y and 1 508 

mm/y), and the rate decreased linearly downstream to zero at the most downstream point. To model base 509 

level change, LONGPRO uses a simple sine function to represent base level variation. We set the amplitude 510 

and period of the sine curve to represent continuous base level decline (10 mm/y and 50 mm/y). The results 511 

of these various sensitivity analyses show that α is the dominant control of long profile concavity 512 

overprinting other factors (Extended Data Fig.6). Moreover, the other exogenous factors that are often 513 

assumed to control long profile evolution have a lesser effect than the expression of downstream hydrology. 514 

Calculation of α values from real rivers. To develop a real-world understanding of α and its variation in 515 

different climate zones, we downloaded multidecadal mean daily streamflow data for rivers from the US 516 

Geological Survey’s National Water Information System (https://waterdata.usgs.gov/nwis). For each main 517 

K-G climate zone, we selected 5 rivers, spanning a range of river lengths, with at least three gauging 518 

stations along the same river (a total of 20 rivers), ensuring via Google Earth satellite imagery that there are 519 

no obvious anthropogenic factors that could influence the downstream variation in discharge. The K-G 520 

classification was used as a mask for river selection by climate zones within the USA. The selected rivers 521 

needed to fulfill the following criteria: 1) at least three gauging stations for calculating α values; 2) no 522 

apparent influence of urban areas affected by irrigation or dams; and 3) no crossing between main K-G 523 

climate zones. Of these 20 rivers, three rivers are within the US Department of Agriculture-Agricultural 524 

Research Service’s experimental watershed network (https://www.fs.usda.gov/treesearch/pubs/50873)43. 525 

We selected rivers distributed over different states with various lengths. 526 

The median AI of each river was calculated to compare to K-G climate zones (Extended Data Table 2). 527 

We calculated the median discharge for each gauge over the record, and then estimated a best-fit power law 528 

https://waterdata.usgs.gov/nwis
https://www.fs.usda.gov/treesearch/pubs/50873


trendline to these discharges versus distance downstream for each river (Extended Data Fig.7). Then we 529 

extracted α for each power law fit from equation (3) (Extended Data Table 2).  530 

The results show that rivers in Tropical, Temperate and Cold zones exhibit median α values between 531 

1.24 and 1.75 (downstream increasing discharge), while the Arid zone displays α values that span negative 532 

(downstream decreasing discharge) and positive (downstream increasing discharge) with a median close to 533 

zero (α = 0.14) (Extended Data Fig.8a). 534 

We also used these data (82 gauging stations in 20 rivers) to explore the relationship between discharge 535 

and basin area. The result clearly shows strong differences between humid zones and arid zones. The 536 

former shows a positive relationship between discharge and basin area (Q = 0.02A0.91, R2 = 0.73), while the 537 

latter shows a very weak dependency on area (Q = 0.04A0.10, R2 = 0.01). One recent study20 extracted flow 538 

records from a wide range of US rivers across climate zones and analyzed the exponent of drainage area to 539 

discharge. That analysis showed that the exponent on area decreases: 1) with lower mean annual 540 

precipitation; and 2) as flood recurrence interval increases, probably due to decreasing probability of storms 541 

capable of generating runoff over progressively larger basin areas. The exponent for arid channels is closest 542 

to zero for small floods and increases slightly for higher flood recurrence intervals. This is the opposite of 543 

the trends in area exponents for humid rivers. This independent analysis result supports our assumption 544 

about arid land hydrology, where the relationship between drainage area and discharge is weak. In other 545 

words, basin shape is less influential on discharge in arid zones. 546 

However, the analysis of α values was not exhaustive. It was based on a small sample of rivers where 547 

there was sufficient data to make calculations. In addition, α is based on the full distribution of downstream 548 

variations in discharge over decadal timescales. This distribution will not dramatically change α between 549 

flood events for perennial rivers in humid climates. In contrast, α in dryland ephemeral channels will 550 

fluctuate flood-to-flood between positive and negative values depending on the size, location, and duration 551 

of each storm and the runoff it generates. It will also be influenced by the ephemerality (e.g., the length of 552 

time between flows) (Extended Data Fig.8b). Nevertheless, these results show the relative differences 553 



between α values between groups of rivers in different climate categories, which support our selection of α 554 

values used in LONGPRO simulations. 555 

Code availability. The code for river long profile extraction (LSDTopoTools), including the code for 556 

calculating NCI, is available on GitHub (https://github.com/sgrieve/concavity). The code for the 557 

LONGPRO model is available on Community Surface Dynamics Modeling System (CSDMS, 558 

https://csdms.colorado.edu/wiki/Model:LONGPRO). The datasets generated and analyzed during the 559 

current study are available here. 560 
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 586 

Extended Data Figure 1｜Schematic of GLoPro river selection and NCI calculation. a, For each 587 

drainage basin, we selected the longest river which does not cross between K-G sub-zones. The schematic 588 

drainage system shows the rivers above the threshold drainage area in red (Methods), which were extracted 589 

into the GLoPro database. Extracted rivers could include the mainstem river of a whole basin (left) and/or 590 

its sub-basins (right). The longest river on the right panel (blue line) was not extracted, since it crosses K-G 591 

climate sub-zones. b, The blue line is a measured or modeled river long profile, and the orange line is the 592 

straight line fitted through the profile endpoints. The offset (EL – YL) is the difference of elevations between 593 

the river long profile (EL) and the straight line (YL) at each distance L. NCI is the median value of all offsets 594 

divided by topographic relief (E0 – En). NCI is negative when the profile is concave, zero when the profile 595 

is straight, and positive if the profile is convex. 596 



 597 

Extended Data Figure 2｜Flow accumulation in The Grand Erg Oriental, Western Sahara. a, The 598 

wider context of the area. b, The close up of the red frame in panel a. c, Flow accumulation traces derived 599 



from LSDTopoTools. d, The extracted mainstem channel in the area representing the coalescence of flow 600 

traces into a dominant channel based on topography.  601 



 602 

Extended Data Figure 3｜River long profiles and NCI values for Walnut Gulch extracted from 603 

DEMs of varying resolutions. a, River long profiles extracted from DEMs with different resolutions. b, 604 

Comparison of normalized offsets between river long profiles and the straight lines fitted profile endpoints. 605 

Positive offsets indicate that the elevation of river long profile is higher than the straight line, while 606 

negative values mean the elevation of long profile is lower. The red dashed line indicates zero NCI (straight 607 

profiles). The red solid line in each boxplot represents the median offset value, which we define as the NCI 608 

value. These profiles show that DEM resolution has a minimal influence on NCI.  609 

https://www.tucson.ars.ag.gov/dap/


 610 

Extended Data Figure 4｜Relationships between NCI and topographic metrics. Relationships between 611 

NCI and: a, River length; b, River gradient; c, River relief; and d, Drainage area. Density of points (number 612 

of rivers represented by each pixel) in the scatter plot is shown in the scale bars to the right of each panel. 613 

The results show no apparent relationship between NCI and any of topographic metrics, suggesting NCI is 614 

unbiased.  615 



Extended Data Table 1｜Summary data on the number of rivers and summary statistics of NCI by 616 

K-G and AI climate classifications.  617 

 618 



 619 

Extended Data Figure 5｜Statistical differences of NCI distributions between climate zones. These 620 

figures show graphical results of two-sample Kolmogorov-Smirnov tests, which including the p-values of 621 

NCI comparisons within: a, Main K-G climate zones; and b, AI climate categories. The red box in panel a 622 

shows the comparisons involving the Arid zone, which all have smaller p-values compared to other 623 

comparisons.  624 



 625 

Extended Data Figure 6｜Modeled NCI values for river long profiles generated with different 626 

forcings for various α values. NCI values for long profiles simulated by LONGPRO with various values 627 

of: a, Maximum discharge; b, Median bed material grain sizes (uniform); c, Tectonic uplift rates of the 628 

headwater; and d, Base level decline rates. All plots highlight the dominant role of α on the river concavity. 629 

e, Long profile evolution with tectonic uplift (1 mm/y), in which the profiles are shown for initial profile 630 

(dashed line, the same for all simulations), 2, 5, 10, 15, 20, 30, and 500 years. The final simulated profile 631 



for each is indicated as a dark black line. The NCI values of final profiles for each case of α are also shown. 632 

Profiles evolve rapidly to near-steady state conditions for all simulations.  633 



Extended Data Table 2｜Data on α and ephemerality (% time with no flow, ‘Ephe.’) for twenty 634 

rivers spanning the four main K-G climate zones within the USA. 635 

 636 



 637 

Extended Data Figure 7｜Calculation of α values from discharge data. Power law fits between median 638 

daily discharge and L/Ln (equation 3, Methods) for each gauge are shown for the selected rivers within four 639 

main K-G climate zones in the USA (Extended Data Table 2). The colors correspond to the K-G climate 640 

classification (Fig.2).  641 



 642 

Extended Data Figure 8｜Comparison of α and ephemerality for selected rivers between main K-G 643 

climate zones in the USA. a, α values for each selected river; b, Corresponding values of ephemerality. 644 

The order of rivers is consistent with the data in Extended Data Table 2. The colors correspond to the K-G 645 

climate classification (Fig.2). Dotted lines indicate the median value for each main climate zone, showing 646 

that Arid zone has lower α and higher ephemerality compared to the others. 647 


