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ABSTRACT 

Stiffened wing and fuselage panels often have a postbuckling reserve of strength, 
enabling them to carry loads far in excess of their critical buckling loads. Therefore 
allowing for postbuckling in design can reduce their weight, hence reducing fuel 
consumption and environmental impact. 
The present paper extends the postbuckling analysis in the exact strip software 
VICONOPT to more accurately reflect the skewed mode shapes arising from shear load 
and anisotropy. Such mode shapes are represented by a series of sinusoidal responses 
with different half-wavelengths which are coupled together using Lagrangian 
multipliers to enforce the boundary conditions. In postbuckling analysis the in-plane 
deflections involve responses with additional half-wavelengths which are absent from 
the out-of-plane deflection series.  
Numerical results are presented and compared with finite element analysis for 
validation. The present analysis gives close results compared to the finite element and 
finite strip methods and saves computational time significantly. 
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NOMENCLATURE 

�ï �Ü�á �ð�Ü   membrane and bending-membrane stiffness at node i  
b            width of plate  
D    displacement vector 
f    eigenparameter, i.e. load factor 
f*    trial value of f 
�÷, O    identity matrix and null matrix 
�,    number of eigenvalues below f*  
�,�4    number of fixed end eigenvalues below f*  
�,�à     number of fixed end eigenvalues of member m below f*  



2 
 

�ù�:�B�;   global stiffness matrix 
�ù�¿�:�B�;   upper triangular form of �ù�:�B�; 
l    length of plate 
L    longitudinal interval of mode repetition 
n    number of strips 
�z�ë�á ���z�ì �á ���z�ë�ì stress resultant vectors 
�Q�Ü, �R�Ü   in-plane displacements at node i 
�S�Ü, �î �Ü   out-of-plane displacements and rotations at node i 
�Ý�ë,���Ý�ì    uniform longitudinal and transverse strains 
�Ý�ë�Ü, �Ý�ì�Ü, �Ý�ë�ì�Ü membrane strains at node i 
�â�ë�Ü�á ���â�ë�Ü�á �â�ë�ì�Ü curvatures at node i 
�ã�à , ���ã�á   longitudinal half-wavelength 
�[�� �� �� �� parameter defining mode repetition 

Subscripts 

i    node number 
k    half-wavelengths for in-plane displacements 
m, n     half-wavelengths for out-of-plane displacements 
Q    number of unique values of k 
 

1.0 INTRODUCTION 

Mass minimisation is a crucial objective in aircraft design to reduce the cost of 
manufacturing, environmental impact and fuel consumption(1). This objective can be 
realized by using composite material, which can provide better performance than 
traditional metals in terms of the strength to weight ratio and the stiffness to weight 
ratio. Additionally, from a structural perspective, it is well known that stiffened wing 
and fuselage panels often have a postbuckling reserve of strength, allowing them to 
carry compressive and shear loads exceeding the initial buckling load(2). Therefore the 
postbuckling behaviour is also considered when conducting an aircraft design. Figure 
1 shows the behaviour of plate structures in buckling and postbuckling ranges. With 
increasing in-plane load P, the curve follows path A which for a perfect plate shows no 
displacement w until the critical buckling load is reached. After the bifurcation point B, 
the curve follows path C for a linear idealization. For large deflection analysis, the curve 
follows the non-linear path D with increasing slope. The path E indicates buckling and 
postbuckling behaviour for an imperfect plate. 

Research on postbuckling has continued for over a century. The first postbuckling 
theory can be traced back to 1910 by von Karman who first introduced the large 
deflection theory(3). Later on, energy considerations for postbuckling analysis were 
made by Cox et al.(4). After that, Koiter(5) developed the classical nonlinear bifurcation 
theory which accelerated the development of nonlinear buckling analysis. Local 
postbuckling analysis for stiffened panels was first investigated by Graves-Smith and 
Sridharan(6). Dawe et al.(7) used the finite strip method(8) to analyse local postbuckling.  
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Figure 1. Load-displacement graph for postbuckling problem. 

Stein(9) created an analytical postbuckling solution for isotropic and orthtropic plate 
under compression and shear. 

Compared to the finite element method and finite strip method, the exact strip 
method saves computational time significantly due to a much smaller stiffness matrix. 
Unlike the finite strip method, the exact strip method(10) for prismatic plate assemblies 
requires no discretisation in the transverse direction. Instead, analytical solutions of the 
governing differential equations are obtained, resulting in transcendental eigenvalue 
problems for critical buckling and free vibration. 

In the simplest (VIPASA) form of the analysis(11), the mode shape of buckling or 
vibration is assumed to vary sinusoidally in the longitudinal (x) direction. The 
computation is repeated for a set of user specified half-wavelengths �� and converges to 
the required eigenvalues (i.e. critical buckling loads or natural frequencies) for each �� 
to any required accuracy using the Wittrick-Williams (W-W) algorithm(12,13). By 
choosing half-wavelengths �� which divide exactly into the panel length l, exact 
solutions are obtained for isotropic and orthotropic panels with simply supported ends 
and which carry no shear load.  
In the VICON analysis(14), the mode shape is represented by a series of sinusoidal terms 
with different half-wavelengths, in order to analyse panels which are anisotropic or 
carry shear loads. The eigenvalues are also found using the W-W algorithm, with an 
extension to allow constraints which couple the exact stiffness matrices for different 
half-wavelengths so as to satisfy the boundary conditions at the longitudinal ends of the 
structure. Thus a shear loaded panel can be accurately represented. VICON analysis 
improves the accuracy for these more general buckling problems and also retains the 
advantage of computational efficiency, having been shown to be more than 100 times 
faster than the finite element program STAGS(15). 

This paper outlines recent developments in exact strip postbuckling analysis. The 
present analysis improves the previous postbuckling analysis in VIPASA to cover 
plates which are anisotropic or loaded in shear. The governing in-plane equations are 
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derived and solved analytically, using a formulation which extends that of Che et al.(1) 
from VIPASA to VICON analysis by including more half-wavelengths. 
Implementation in the exact strip software VICONOPT(10) thus allows accurate 
postbuckling analysis for panels with shear loads and anisotropy. Numerical results are 
given and compared with finite element results to validate the proposed analysis. 

2.0 EXACT STRIP ANALYSIS AND WITTRICK-WILLIAMS 

ALGORITHM 

The exact strip method is a numerical analysis method which is similar to the finite strip 
method(8) but provides faster and more accurate analysis by reducing the partial 
differential governing equations to ordinary differential equations which are solved 
analytically. As in many structural analysis methods, a global stiffness matrix K is 
assembled using the element stiffness matrices. The elements of K are transcendental 
functions of the loads and/or the vibration frequency. Thus the critical buckling loads 
and natural frequencies can be determined by solving the transcendental eigenvalue 
problem 

KD = 0 �« (1) 

where D is the displacement amplitude vector. 
The exact strip method reduces the global stiffness matrix to much smaller order than 
that of the finite element method. Computational time is therefore saved significantly. 
In addition the accuracy of exact strip method is more than enough for preliminary 
aircraft design. A disadvantage compared with the finite element and finite strip 
methods is that buckling or free vibration requires the solution of a transcendental, 
rather than a linear eigenvalue problem. However transcendental eigenvalue problems 
can be solved accurately, quickly and reliably using the W-W algorithm(12,13). 

Instead of finding the eigenvalues directly, the W-W algorithm counts the number 
of eigenvalues which lie below any trial value f* of f, the load factor or frequency of 
vibration. The eigenvalues can be referred to as critical buckling load factors or natural 
frequencies of vibration. The general form of the algorithm can be written as 

�, L �,�4 E �•�<�ù�:�B�Û�;�= �« (2) 

where J is the number of eigenvalues lying between zero and the trial value �B�Û; �,�4 is 
the number of eigenvalues which would still be exceeded by �B�Û if constraints were 
imposed so as to make all the displacements D zero;���•[�ùk�B�Ûo_ is known as the sign 
count of K, i.e. the number of negative diagonal elements of the upper triangular matrix 
�ù�¿k�B�Ûo obtained from���ùk�B�Ûo by Gauss elimination(13). �,�4 can be calculated from 

�,�4 L Í �, �à

�à

 �« (3) 

where ���,�à , the number of eigenvalues of member m exceeded at the trial value �B�Û 
when its ends are fully restrained, can be obtained analytically or by numerical 
procedures(11). 
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3.0 EXACT STRIP SOFTWARE VICONOPT 

VICONOPT(10) covers buckling, postbuckling and free vibration of prismatic 
assemblies of anisotropic plates loaded by a combination of longitudinally invariant in-
plane stresses. The VIPASA analysis in VICONOPT assumes the displacements u, v 
and w vary sinusoidally in the longitudinal direction with half-wavelength �O��as shown 
in Fig. 2. This assumption gives the out-of-plane displacements as 

�S L �B�5�:�U�;�•�‹�•���:
�è�T
�ã

�; �« (4) 

where �B�5�:�U�; is a function of the transverse location y which is obtained from analytical 
solutions of the governing equations. 

For an orthotropic panel with the simply supported boundary conditions shown in 
Fig. 2, straight nodal lines are located at sinusoidal intervals which depend on the half-
wavelength �O. Therefore simply supported end conditions are automatically satisfied if 
�O divides exactly into the panel length l.  

The above assumptions of no shear load or anisotropy are conditions of VIPASA 
analysis. If they are violated the nodal lines become skewed and are no longer parallel 
to the longitudinal ends. Thus the end conditions are not satisfied and VIPASA gives 
conservative buckling and vibration results, perhaps underestimating the critical 
buckling load by up to 50%(16). 

VICON analysis overcomes this weakness of VIPASA by coupling the stiffness 
matrices of different half-wavelengths and using Lagrangian Multipliers to minimise 
the total energy of the panel subject to point constrains, e.g. to approximate the required 
end conditions, see Fig. 2. It can therefore handle assemblies of plates which carry shear 
load or are made from anisotropic material, or which have a variety of boundary 
conditions including attachments to beam-type supporting structures(14). Figure 3 shows 
the VIPASA and VICON differences in the initial buckling stage and a prediction of 
the VICON postbuckling path when there is shear or anisotropy. 

 

 

Figure 2. Simply supported end conditions in VIPASA analysis. 
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Figure 3. Load and strain paths of VICON and VIPASA for shear or anisotropy. 

 
Figure 4. Illustration of an infinitely long plate assembly with point supports (a) plan 

view (b) isometric view. 

An infinitely long panel is modelled, with the end supports repeating at longitudinal 
intervals of the panel length l, see Fig. 4. The mode shapes are assumed to repeat in the 
longitudinal direction at intervals of �. L �t�H �æ�¤ , where �æ is a parameter in the range 
�r Q �æ Q �s. The mode shapes can therefore be represented(14) by a series of responses 
with half-wavelengths �H�:�æ E �t�I�;�¤  where m is any integer. Sufficient accuracy is 
obtained by considering a finite series of half-wavelengths 

�I�k L
�H

�:�L E�t�• �;
�:�• L �r�á G�s�á G�t�á �å �á G�M�; �« (5) 

where the integer q determines the number of terms in the series. 
Like VIPASA analysis, VICON analysis uses the W-W algorithm to obtain the 

natural frequencies of vibration and the critical buckling loads. Derivations of the 
governing equations and stiffness matrices, and the use of Lagrangian multipliers can 
found in(14,17). 

4.0  POSTBUCKLING IN VIPASA  

Aircraft structures such as stiffened panels can often carry loads far in excess of their 
critical buckling loads. By fully utilising the postbuckling reserve of strength, the 
aircraft mass can be significantly reduced. Postbuckling in VICONOPT(18) firstly 
assumed that plates with regular geometry are simply supported and buckle sinusoidally 
with half-wavelength ��. The stress distribution was assumed to remain invariant in the 
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longitudinal direction. Later on, Anderson and Kennedy(2) implemented a Newton 
iteration scheme into VICONOPT to improve the convergence on the critical buckling 
load and associated mode which solve Equation (1). The mode vector �ò L �<�&�Ý�â �F L
�s�á �å �J�= includes displacements and rotations both at the longitudinal plate edges and 
strip edges of each plate. �ù L �<�-�Ý�â �E�á �F L �s�á �å �J�= is the corresponding exact stiffness 
matrix, which is a transcendental function of the stress resultants in each strip, and 
hence also of D. Suppose that 

�ò L �ò�ÛE �� �« (6) 

where �ò�Û is a trial mode vector and �� L �<�@�Ý�â �F L �s�á �å �J�= is the adjustment needed to 
�ò�Û in order to solve Equation (1), The Newton iteration is expressed in the matrix form 
as  

�:�ù�ÛE Í
�ò�ù�Û

�ò�&�Ý

�á

�Ý�@�5

�@�Ý�;�:�ò�ÛE ���; L 
Ù �« (7) 

where �ù�ÛL �ù�:�ò�Û�;. Neglecting higher order terms, Equation (7) becomes 

Í�:�- �Ü�Ý
�ÛE Í

�ò�-�Ü�Þ
�Û

�ò�&�Ý

�á

�Þ�@�5

�&�Þ
�Û�;�@�Ý

�á

�Ý�@�5

L F Í �- �Ü�Ý
�Û�&�Ý

�Û

�á

�Ý�@�5

���������������� �:�E L �s�á �å �J�; �« (8) 

After solving the equation, adjustments vector d can be obtained. Substituting d into 
Equation (6) gives the mode vector D which is used in the new iteration. 
Che et al.(1) obtained a more accurate stress distribution using an improved exact strip 
postbuckling analysis extended from Stein(9). In this method, plates are divided into 
longitudinal strips, for which the governing equations are derived and solved 
analytically. It utilizes the out-of-plane results obtained from VIPASA analysis which 
vary sinusoidally with one half-wavelength ��. The out-of-plane displacement and 
rotation at node i are given by 

�S�ÜL �S�Ü�Ö�…�‘�•�@
���ë

��
�A E �S�Ü�æ�•�‹�• �@

���ë

��
�A;   �ð�ÜL �ð�Ü�Ö�…�‘�•�@

���ë

��
�A E �ð�Ü�æ�•�‹�• �@

���ë

��
�A �« (9) 

The in plane displacements are assumed to vary as the sums of linear, constant and 
sinusoidal terms with two half-wavelengths �� and ��/2. 

�Q�ÜL �Ý�@�T F
�=
�t

�A 

����������������E�Q�Ü�4E �Q�Ü�Ö�…�‘�•�@
�è�T
�ã

�A E �Q�Ü�æ�•�‹�• �@
�è�T
�ã

�A E �Q�Ü�Ö�…�‘�•l
�t�è�T

�ã
p E �Q�Ü�æ�•�‹�• l

�t�è�T
�ã

p�� 
�« (10) 

  

�R�ÜL �R�Ü�4E �Q�Ü�Ö�…�‘�•�@
�è�T
�ã

�A E �R�Ü�æ�•�‹�• �@
�è�T
�ã

�A E �R�Ü�Ö�…�‘�•l
�t�è�T

�ã
p E �R�Ü�æ�•�‹�• l

�t�è�T
�ã

p �« (11) 

The improved method shows a great improvement compared to the previous one. 
However, because it is restricted to the VIPASA analysis, when solving problems of 
anisotropic plates or plates loaded in shear the skewed modes do not satisfy the end 
conditions and the results have unrealistically high errors or may fail to converge. 
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5.0  POSTBUCKLING IN VICON 

VICON can solve shear loaded and anisotropic plate problems more accurately by 
coupling responses with more than one half-�Z�D�Y�H�O�H�Q�J�W�K���� �%�D�V�H�G�� �R�Q�� �&�K�H�¶�V�� �L�P�S�U�R�Y�H�G��
exact strip postbuckling method(1), accurate stress distributions can be found for each 
stage of the postbuckling. Previous postbuckling analysis with the VIPASA analysis of 
VICONOPT gives good agreement for orthotropic plates without shear, i.e. with no 
skewing in the mode shape. Therefore applying the improved exact strip method could 
also allow for postbuckling when the VICON analysis is used.  

The previous method was based on out-of-plane deflection results obtained from 
VIPASA analysis, i.e. only one half-wavelength was included. In VICON analysis, the 
out-of-plane displacements are assumed to vary as the sum of sinusoidal responses with 
more than one half-wavelength. As a result, the in-plane displacements, strains and 
stress resultants to be found by the following analysis will involve responses with 
additional half-wavelengths, as shown in Fig. 5. 

5.1 Displacements 

The plates are divided into n-1 strips with arbitrary width, as identified by the n nodes 
at the strip edges. At each node i, the out-of-plane deflections �S�Ü and rotations �î �Ü 
about the x axis are assumed to vary as the sum of sinusoidal responses in the 
longitudinal direction with half-wavelengths �ã�à , and are written in the form 

�B
�S�Ü
�î �Ü

�C L

�Ï
�Î
�Î
�Î
�ÍÍ �S �Ü�à�Ö�?�K�O

�è�T
�ã�à

E �S�Ü�à�æ�O�E�J
�è�T
�ã�à�à

Í �î �Ü�à�Ö�?�K�O
�è�T
�ã�à

E �î�Ü�à�æ�O�E�J
�è�T
�ã�à�à �Ò

�Ñ
�Ñ
�Ñ
�Ð

 �« (12) 

where the amplitudes �S�Ü�à�Ö, �S�Ü�à�æ, �î �Ü�à�Ö and �î �Ü�à�æ are obtained from a VICON 
eigenvalue analysis at the previous iteration. 

According to classical plate theory, it is assumed that �î �ÜL �S�Ü
�ñ, where the prime 

indicates the derivative with respect to the transverse direction y. The subscript m 
denotes the sequence of out-of-plane half-wavelengths. 

As described above, the in-plane displacements are assumed to be: 

�B
�Q�Ü
�R�Ü

�C L

�Ï
�Î
�Î
�Î
�Í�Ý�ë�@�T F

�=
�t

�A E Í �Q�Ü�Þ�Ö�?�K�O
�è�T
�ã�Þ

E �Q�Ü�Þ�æ�O�E�J
�è�T
�ã�Þ�Þ

�Ý�ì l�U F
�>
�t

p E Í �R�Ü�Þ�Ö�?�K�O
�è�T
�ã�Þ

E �R�Ü�Þ�æ�O�E�J
�è�T
�ã�Þ�Þ �Ò

�Ñ
�Ñ
�Ñ
�Ð

 �« (13) 

 

 

Figure 5. Calculation procedures. 
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The linear terms �Ý�ë and �Ý�ì  denote the applied longitudinal and transverse strains. 
The subscript k denotes the sequence of in-plane half-wavelengths. a is the plate 
length and b is its width. 

5.2 Strains and Curvatures 

�%�D�V�H�G���R�Q���Y�R�Q���.�D�U�P�D�Q�¶s large deflection theory, strains and curvature are given by: 

�Ï
�Î
�Î
�Î
�Î
�Í

�Ý�ë�Ü
�Ý�ì�Ü
�Ý�ë�ì�Ü
�â�ë�Ü
�â�ì�Ü
�â�ë�ì�Ü�Ò

�Ñ
�Ñ
�Ñ
�Ñ
�Ð

L

�Ï
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Í

�ò�Q�Ü
�ò�T

E
�s
�t

�:
�ò�S�Ü
�ò�T

�;�6

�ò�R�Ü
�ò�U

E
�s
�t

�:
�ò�S�Ü
�ò�U

�;�6

�ò�Q�Ü
�ò�U

E
�ò�R�Ü
�ò�T

E
�ò�S�Ü
�ò�T

�ò�S�Ü
�ò�U

F
�ò�6�S�Ü

�ò�T�6

F
�ò�6�S�Ü

�ò�U�6

F�t
�ò�6�S�Ü

�ò�T�ò�U �Ò
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ð

L

�Ï
�Î
�Î
�Î
�Î
�Í

�Ý�ë�Ü�4
�Ý�ì�Ü�4
�Û�ë�ì�Ü�4
�â�ë�Ü�4
�â�ì�Ü�4
�â�ë�ì�Ü�4

�Ý�ë�Ü�5�Ö
�Ý�ì�Ü�5�Ö

�Û�ë�ì�Ü�5�Ö��
�â�ë�Ü�5�Ö
�â�ì�Ü�5�Ö
�â�ë�ì�Ü�5�Ö

��

�Ý�ë�Ü�5�æ
�Ý�ì�Ü�5�æ
�Û�ë�ì�Ü�5�æ
�â�ë�Ü�5�æ
�â�ì�Ü�5�æ
�â�ë�ì�Ü�5�æ

������

�®
�®
�®
�®
�®
�®

����������

�Ò
�Ñ
�Ñ
�Ñ
�Ñ
�Ð

�Ï
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Í

�s

�…�‘�•l
�è�T
�ã�5

p

�•�‹�• l
�è�T
�ã�5

p

�…�‘�•l
�è�T
�ã�6

p

�•�‹�• l
�è�T
�ã�6

p

�…�‘�•l
�è�T
�ã�7

p

�•�‹�• l
�è�T
�ã�7

p

� �Ò
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ð

 �« (14) 

Substituting from Eq.(13) into Eq.(14) gives 

�B
�¿�•
�Ä�•

�C L d
�¿�4�:�• �Ü�;
�Ä�4�:�• �Ü�;

h E �B
�¿�5

Ù�C �›�ÜE �B

�¿�6

Ù�C �›�Ü

�ñ �« (15) 

�• �ÜL

�Ï
�Î
�Î
�Î
�Í
�S�Ü�5�Ö
�S�Ü�5�æ
�S�Ü�6�Ö
�S�Ü�6�æ

� �Ò
�Ñ
�Ñ
�Ñ
�Ð

, �› �ÜL

�Ï
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Í

�R�Ü�4
�R�Ü�5�Ö
�R�Ü�5�æ
�R�Ü�6�Ö

�
�Q�Ü�4
�Q�Ü�5�Ö
�Q�Ü�5�æ
�Q�Ü�6�Ö

� �Ò
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ð

, �¿�ÜL

�Ï
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Í

�Ý�ë�Ü�4
�Ý�ë�Ü�5�Ö
�Ý�ë�Ü�5�æ
�Ý�ë�Ü�6�Ö

�
�Ý�ì�Ü�4
�Ý�ì�Ü�5�Ö
�Ý�ì�Ü�5�æ
�Ý�ì�Ü�6�Ö

�
�Û�ë�ì�Ü�4
�Û�ë�ì�Ü�5�Ö
�Û�ë�ì�Ü�5�æ
�Û�ë�ì�Ü�6�Ö

� �Ò
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ð

,���Ä�ÜL

�Ï
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Î
�Í

�â�ë�Ü�4
�â�ë�Ü�5�Ö
�â�ë�Ü�5�æ
�â�ë�Ü�6�Ö

�
�â�ì�Ü�4
�â�ì�Ü�5�Ö
�â�ì�Ü�5�æ
�â�ë�Ü�6�Ö

�
�â�ë�ì�Ü�4
�â�ë�ì�Ü�5�Ö
�â�ë�ì�Ü�5�æ
�â�ë�ì�Ü�6�Ö

� �Ò
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ñ
�Ð

 �« (16) 

The vector �¿�4�:�• �Ü�;can also be partitioned into �N
�¿�4�ë�:�• �Ü�;
�¿�4�ì�:�• �Ü�;

�¿�4�ë�ì�:�• �Ü�;
�O, where 
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Substituting �ã�à L �H �I�¤ , �ã�á L �H �J�¤  into Equations (17)-(19) and simplifying, 

�¿�4�ë�:�• �Ü�;

L
�è�6

�v�H�6
Í Í �I�J

�É

�È
�È
�È
�È
�Ç
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�Ë
�Ê
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 �« (22) 

Here c and s denotes the cos components and sin components respectively. The values 
of (m-n) and (m+n) decide the number of in-plane half-wavelengths �ã�à  to be used, 
which are generalized from summations and subtractions of the out-of-plane 
wavelength terms. For example, if �L L �s and �M L �t in Eq. (5), the out-of-plane half-
wavelengths are �Om=l/m, m=(1,3,5). The summations and subtractions are shown in 
Tables 1 and 2, respectively. 

Considering the unique values in Tables 1 and 2, the half-wavelengths for the in-
plane displacements will be �Ok=l/k, k=(0,1,2,3,4,5,6,8,10). When (m-n)=0, i.e. the half-
wavelength �Ok� �’ , its cosine term is a constant term while its sine term is identically 
zero and is omitted from the analysis.  

In Eq. (15), 

�¿�5 L �N
�v


Ù�6�Ê�?�5


Ù�6�Ê�?�5


Ù�6�Ê�?�5
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Ù�6�Ê�?�5

�u�6�Ê�?�5
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where �u�6�U�?�5 and 
Ù�6�U�?�5 are unit and null matrices of order of 2Q-1, respectively and 
Q is the number of unique values of k found from Tables 1 and 2. 

An analogous procedure can be used to find the curvatures �Ä�g. For simplicity, these 
are not given here, as the following section shows that they are not required when the 
coupling stiffness matrix �ð L 
Ù, e.g. for the common situations of composite plates 
with a symmetric layup. 
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Table 1 
Summations of half-wavelengths  l/m and l/n, m,n=(1,3,5) 

Summations n=1 n=3 n=5 

m=1 2 4 6 

m =3 4 6 8 

m =5 6 8 10 

Table 2 

Subtractions of half-wavelengths  l/m and l/n, m,n=(1,3,5) 

Subtractions n=1 n=3 n=5 

m=1 0 -2 -4 

m =3 2 0 -2 

m =5 4 2 0 

 

5.3  Stresses and equilibrium equations 

The stress resultants �0�ë�Ü,���0�ì�Ü and �0�ë�ì�Ü are needed for the equilibrium equations and 
final analysis. For a general anisotropic plate, the relationships between stress and strain 
can be obtained by 

�N
�0�ë�Ü
�0�ì�Ü

�0�ë�ì�Ü

�O L e
�#�Ü�5�5
�#�Ü�5�6
�#�Ü�5�:

����
�#�Ü�5�6
�#�Ü�6�6
�#�Ü�6�:

����
�#�Ü�5�:
�#�Ü�6�:
�#�Ü�:�:

i e
�Ý�ë�Ü
�Ý�ì�Ü
�Ý�ë�ì�Ü

i E e
�$�Ü�5�5
�$�Ü�5�6
�$�Ü�5�:

����
�$�Ü�5�6
�$�Ü�6�6
�$�Ü�6�:

����
�$�Ü�5�:
�$�Ü�6�:
�$�Ü�:�:

i e
�â�ë�Ü
�â�ì�Ü
�â�ë�ì�Ü

i �« (25) 

Substituting Eq. (25) into Eq.(15) gives 

d
�z�•

�z�•
�ñh L �m�*$$$d

�¿�4�:�• �Ü�;
�¿�4

�ñ�:�• �Ü�;
h E �n�*$$$d

�Ä�4�:�• �Ü�;
�Ä�4

�ñ�:�• �Ü�;
h E �m�*$$$�¿�5d

�› �Ü

�› �Ü
�ñh E �m�*$$$�¿�6d

�› �Ü
�ñ

�› �Ü
�ñ�ñh �« (26) 

where 

�z�ÜL c�0�5�����0�6�����0�7���� �® �0�6�Ê�?�5g
�Í
 �« (27) 

�m�*$$$L �N
�#�Ü�5�5�u�6�Ê�?�5

�#�Ü�5�6�u�6�Ê�?�5

�#�Ü�5�:�u�6�Ê�?�5

����
�#�Ü�5�6�u�6�Ê�?�5

�#�Ü�6�6�u�6�Ê�?�5

�#�Ü�6�:�u�6�Ê�?�5

����
�#�Ü�5�:�u�6�Ê�?�5

�#�Ü�6�:�u�6�Ê�?�5

�#�Ü�:�: �u�6�Ê�?�5

�O �« (28) 

�n�*$$$L �N
�$�Ü�5�5�u�6�Ê�?�5

�$�Ü�5�6�u�6�Ê�?�5

�$�Ü�5�:�u�6�Ê�?�5

����
�$�Ü�5�6�u�6�Ê�?�5

�$�Ü�6�6�u�6�Ê�?�5

�$�Ü�6�:�u�6�Ê�?�5

����
�$�Ü�5�:�u�6�Ê�?�5

�$�Ü�6�:�u�6�Ê�?�5

�$�Ü�:�: �u�6�Ê�?�5

�O �« (29) 

�¿�4
�ñ�:�• �Ü�; is the derivative of �¿�4�:�• �Ü�; with respect to y.  

After obtaining all these expressions, the equilibrium equations are assembled and 
solved to find the in-plane displacements u and v. 
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�ò�0�ì�Ü
�ò�U

E
�ò�0�ë�ì�Ü

�ò�T
L �r �« (30) 

�ò�0�ë�ì�Ü

�ò�U
E

�ò�0�ë�Ü

�ò�T
L �r �« (31) 

Substituting Eq. (25) into the Eqs. (30) and (31), for each node 2*(2Q-1) equilibrium 
equations are given in terms of the unknowns �Q�Ü and �R�Ü. After solving the equilibrium 
equations, substituting the values of �Q�Ü���ƒ�•�†���R�Ü back into Eqs. (14) and (25) gives the 
strains and stresses. 

All the plate edges are restrained against out-of-plane deflection. Three different 
in-plane boundary conditions are considered on the longitudinal edges: free edges, fixed 
edges and straight edges. In the free edge case there is no restraint on transverse 
displacement. The fixed edge case has transverse displacement constraints on all 
components of v. For the straight edge case, the two longitudinal edges remain straight 
but can move towards or away from each other. Restraints are imposed on all the 
sinusoidal components of v but the constant component is unrestrained. 

The results which follow will all be for the stress distributions in the initial 
postbuckling calculations when the strain is 2% above the critical buckling strain. In 
order to extend the present analysis to practical design levels, the Newton iteration 
procedure in VICONOPT will be used, i.e. utilizing the stress distributions obtained 
here to obtain out-of-plane mode shapes at further strain increments. Further VICON 
postbuckling results will be presented in future publications.  

Table 3 
Laminate stiffness of example 1 

A stiffness matrix (Nm-1) 

1.0602×108 2.7455×107 0 

2.7455×107 1.0602×108 0 

0 0 3.9285×107 

 

 
Figure 6. Loads and edge assignments for example 1. 

D stiffness matrix (Nm) 

61.349 7.4974 -4.0589 

7.4974 12.642 -4.0589 

-4.0589 -4.0589 11.441 
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6.0  ILLUSTRATIVE RESULTS 

In this section, illustrative results are given for two examples. 

6.1  Composite plate loaded in compression 

In order to compare the method with the previous (VIPASA) postbuckling analysis in 
VICONOPT, the first example is chosen from Che(19). It is a symmetric balanced 
composite square plate with length 0.3m and thickness 0.002m. The composite consists 
of 8 layers with ply angles [0, 45, -45, 90, 90, -45, 45, 0]. The material properties are 
�<�R�X�Q�J�¶�V�� �P�R�G�X�O�L���' �5�5L �s�t�s�•���•�• �?�6�á �'�6�6L �s�ä�u�r�•���I�I �?�6 , shear moduli�)�5�6L
�)�5�7L �)�6�7L �x�ä�v�s�•���•�• �?�6��and �3�R�L�V�V�R�Q�¶�V�� �U�D�W�L�R���å�5�6L �r�ä�u�z. The overall laminate 
stiffness are shown in Table 3. The plate is simply supported with respect to out-of-
plane displacement w on all four edges, fixed against in-plane displacement v on the 
unloaded edges and free to deflect in-plane on the loaded edges. Uniform compression 
is applied to the left and right sides of the plate as shown in Fig. 6. For the postbuckling 
analysis the plate is divided into n=10 strips of equal width, and the VICON analysis 
uses �L L �s and �M L �t in Eq. (5). 

 

(a) (b) 

 

(c)  (d) 

Figure 7. Variation of in-plane displacements (a) u displacement (present analysis). 
(b) u displacement (ABAQUS analysis). (c) v displacement (present analysis). (d) v 
displacement (ABAQUS analysis).  
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The analysis gives the first cycle of the postbuckling which for illustration utilises out-
of-plane displacements with just three half-wavelengths obtained from VICON analysis 
when the longitudinal strain exceeds the initial buckling strain by 2%. Figure 7(a,c) 
shows the in-plane displacement contour plots. The results are validated against finite 
element analysis using a mesh of 20x20 ABAQUS S4R elements(20), see Fig. 7(b,d).  

As shown in Fig. 7(a,b), the uniform compression leads to uniform u displacement 
contours. The left and right edges equally move to each other as shown in both the 
present result and the ABAQUS result. Figure 7(c,d) shows the v displacement 
contours. It can be seen that the present result is slightly skewed but less than the 
ABAQUS result. The reason can be found from the w displacement assumption from 
VICON which contains three half-wavelengths. Theoretically only an infinite series of 
half-wavelengths can represent the accurate results. Therefore three half-wavelengths 
result in losing some accuracy. The user can increase the number of half-wavelengths 
if required 

Figure 8 gives the longitudinal stress resultants Nx, Ny, Nxy at the top surface of the 
plate. All the contours are antisymmetric and skewed as expected, and the results from 
the present analysis are close to the finite element results. A sample result from the 
previous VICONOPT analysis (Fig. 8(c)) fails to capture the antisymmetry and 
skewing. 

Figure 9 gives a quantitative comparison of stress resultant Nx along the 
longitudinal centre line of the plate between ABAQUS and present analysis. The values 
are all symmetric as expected, with the compressive stress being greatest at the centre 
and decreasing towards the two ends. The greatest discrepancy of 3.2% occurred at the 
two ends of the plate. However the present analysis has less variation than ABAQUS 
which can be explained as due to displacement differences as demonstrated above.  
 

 
(a)                                 (b) 
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         (c) 

 

(d)                             (e) 

 

(f)                                (g) 

Figure 8. Variation of stresses on the top surface of the plate. (a) Nx (present analysis). 
(b) Nx (ABAQUS analysis). (c) Nx (previous VICONOPT analysis). (d) Ny 
(present analysis). (e) Ny (ABAQUS analysis). (f) Nxy (present analysis). (g) Nxy 

(ABAQUS analysis). 
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6.2  Isotropic plate loaded in compression and shear 

The second example is a square isotropic plate loaded under equal longitudinal 
compression Nx and shear Nxy. The plate has length 0.3m and thickness 0.001m with 
the material properties �<�R�X�Q�J�¶�V���P�R�G�X�O�X�V���' L �s�s�r���•�� �•�• �?�6�� �D�Q�G���3�R�L�V�V�R�Q�¶�V���U�D�W�L�R �å L
�r�ä�u. All four edges are simply supported against out-of-plane displacement, fixed 
against in-plane displacement v on the unloaded edges and free to deflect in-plane on 
the loaded edges as shown in Fig. 10. 
 

Figures 11 and 12 show the variation of stress resultants Nx, Ny and Nxy from the 
present analysis and ABAQUS analysis. Figure 13 gives quantitative comparisons of 
Nx along the longitudinal centre line. The biggest error is 13.6% at the two loaded ends. 
It can be seen that all the stresses are antisymmetric, and from the quantitative 
comparison the values from present analysis are almost the same as ABAQUS. 

 
Figure 10. Loads and edge assignments for example 2. 
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Figure 9. Stress resultant Nx on top surface of the plate.  

present analysis ABAQUS analysis
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(a)                             (b) 

 

                   (c)                            (d) 

Figure 11. Variation of in-plane displacements (a) u displacement (present analysis). 
(b) u displacement (ABAQUS analysis). (c) v displacement (present analysis). (d) v 
displacement (ABAQUS analysis). 

It is noted that the sinusoidal assumption of the previous VIPASA postbuckling analysis 
precluded the possibility of mode jumping. The use of a series of half-wavelengths in 
the present VICON analysis will allow for gradual or discrete changes in the 
postbuckling mode as the load is increased. 

7.0  CONCLUSIONS AND FUTURE WORK 

Postbuckling analysis has been presented for anisotropic and shear loaded plates. The 
analysis is based on exact strip analysis, in which the mode shapes are assumed to be 
the sum of sinusoidal responses with different half-wavelengths which are coupled 
together to satisfy the boundary conditions at the longitudinal ends. Initial postbukling 
results for two example problems show very good agreement with finite element 
analysis. The greatest error is only 3.2% in first example and 13.6% in the second 
example. It also can be seen there is a big improvement compared with a previous exact 
strip postbuckling analysis in which the mode shapes were assumed to be purely 
sinusoidal.  
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(a)                             (b) 

 
(c)                                  (d) 

 
                     (e)                           (f) 

Figure 12. Variation of stresses on the top surface of the plate. (a) Nx (present analysis). 
(b) Nx (ABAQUS analysis). (c) Ny (present analysis). (d) Ny (ABAQUS analysis). (e) 
Nxy (present analysis). (f) Nxy (ABAQUS analysis). 
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The two models all utilized the three different half-wavelengths for the w 
displacement obtained from VICON. Therefore some accuracy is sacrificed. However 
more half-wavelengths can also be used, but at the expense of increased computational 
time.  The analysis currently only covers the first cycle of postbuckling, for which it 
achieves a good outcome. A full postbuckling analysis will be permitted by extending 
the Newton iteration scheme in the exact strip software VICONOPT. The analysis will 
also be further extended to cover stiffened panels, in order to provide more capabilities 
for preliminary aircraft design. 
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TABLE CAPTIONS 

Table 1 
Summations of half-wavelengths l/m and l/n, m,n=(1,3,5) 

Table 2 

Subtractions of half-wavelengths l/m and l/n, m,n=(1,3,5) 

Table 3 
Laminate stiffness of example 1 

FIGURE CAPTIONS 

Figure 2. Load-displacement graph for postbuckling problem. 

Figure 2. Simply supported end conditions in VIPASA analysis. 

Figure 3. Load and strain paths of VICON and VIPASA for shear or anisotropy. 

Figure 4. Illustration of an infinitely long plate assembly with point supports (a) plan 
view (b) isometric view. 

Figure 5. Calculation procedures. 

Figure 6. Loads and edge assignments for example 1. 

Figure 7. Variation of in-plane displacements (a) u displacement (present analysis). 
(b) u displacement (ABAQUS analysis). (c) v displacement (present analysis). (d) v 
displacement (ABAQUS analysis).  

Figure 8. Variation of stresses on the top surface of the plate. (a) Nx (present analysis). 
(b) Nx (ABAQUS analysis). (c) Nx (previous VICONOPT analysis). (d) Ny  (present 
analysis). (e) Ny (ABAQUS analysis). (f) Nxy (present analysis). (g) Nxy (ABAQUS 
analysis). 

Figure 9. Stress resultant Nx on top surface of the plate. 

Figure 10. Loads and edge assignments for example 2. 

Figure 11. Variation of in-plane displacements (a) u displacement (present analysis). 
(b) u displacement (ABAQUS analysis). (c) v displacement (present analysis). (d) v 
displacement (ABAQUS analysis). 

Figure 12. Variation of stresses on the top surface of the plate. (a) Nx (present 
analysis). (b) Nx (ABAQUS analysis). (c) Ny (present analysis). (d) Ny (ABAQUS 
analysis). (e) Nxy (present analysis). (f) Nxy (ABAQUS analysis). 

Figure 13. Stress resultant Nx on top surface of the plate.   

 


