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Exact strip p ostbuckling analysis of
composite plates under
compression and shear

K. Zhao, D. Kennedy and C.A. Featherston
Cardiff University

School of Engineering

Cardiff, UK

ABSTRACT

Stiffened wing and fuselage panels often have a postbuckling reserve of strength,
enabling them to carry loads far in excess of their critical buckling loads. Therefore
allowing for postbuckling in design can reduce their weight, hence reducing fuel
consumption and environmental impact.

The present paper extends the postbuckling analysis in the exact strip software
VICONOPT to more accurately reflect the skewed mode shapes arising from shear load
and anisotropy. Such mode shapes are represented by a series of sinusoidal responses
with different half-wavelengths which are coupled together using Lagrangian
multipliers to enforce the boundary conditions. In postbuckling analysis the in-plane
deflections involve responses with additional half-wavelengths which are absent from
the out-of-plane deflection series.

Numerical results are presented and compared with finite element analysis for
validation. The present analysis gives close results compared to the finite element and
finite strip methods and saves computational time significantly.
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NOMENCLATURE

T membrane and bending-membrane stiffness at node
b width of plate

D displacement vector

f eigenparameter, i.e. load factor

f* trial value off

+0 identity matrix and null matrix

, number of eigenvalues beldtv

a number of fixed end eigenvalues beltiw

2 number of fixed end eigenvalues of memivdyelowf*
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u:B; global stiffness matrix

ue:B; upper triangular form ofu : B ;

I length of plate

L longitudinal interval of mode repetition

n number of strips

zs4 zA4 gz  stress resultant vectors

Q R in-plane displacements at node

Sy To out-of-plane displacements and rotations at node
Y Y uniform longitudinal and transverse strains

Yo Yy % membrane strains at notle

8 @A 8 & curvatures at node

a8, @& longitudinal half-wavelength

[ parameter defining mode repetition
Subscripts

[ node number

k half-wavelengths for in-plane displacements

m, n half-wavelengths for out-of-plane displacements
Q number of unique values &f

1.0 INTRODUCTION

Mass minimisation is a crucial objective in aircraft design to reduce the cost of
manufacturing, environmental impact and fuel consumftiorhis objective can be
realized by using composite material, which can provide better performance than
traditional metals in terms of the strength to weight ratio and the stiffness to weight
ratio. Additionally, froma structural perspective, it is well known that stiffened wing
and fuselage panels often have a postbuckling reserve of strength, allowing them to
carry compressive and shear loads exceeding the initial buckling.|Gmtrefore the
postbuckling behaviour is also considered when conducting an aircraft design. Figure
1 shows the behaviour of plate structures in buckling and postbuckling ranges. With
increasing in-plane load P, the curve follows path A which for a perfect plate shows no
displacement w until the critical buckling load is reached. After the bifurcation point B,
the curve follows path C falinear idealization. For large deflection analysis, the curve
follows the non-linear path D with increasing slope. The path E indicates buckling and
postbuckling behaviour for an imperfect plate.

Research on postbuckling has continued for over a century. The first postbuckling
theory can be traced back to 1910 by von Karman who first introduced the large
deflection theoryy). Later on, energy considerations for postbuckling analysis were
made by Cox et &f. After that, Koitet”) developed the classical nonlinear bifurcation
theory which accelerated the development of nonlinear buckling analysis. Local
postbuckling analysis for stiffened panels was first investigated by Graves-Smith and
Sridharaff). Dawe et af” used the finite strip meth&to analyse local postbuckling.
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In-plane load P
o

Qut-of-plane displacement w
Figure 1. Load-displacement graph for postbuckling problem.

Steirt” created an analytical postbuckling solution for isotropic and orthtropic plate
under compression and shear.

Compared to the finite element method and finite strip method, the exact strip
method saves computational time significantly duaauch smakr stiffness matrix.

Unlike the finite strip method, the exact strip meth®ddor prismatic plate assemblies
requires no discretisation in the transverse direction. Instead, analytical solutions of the
governing differential equations are obtained, resulting in transcendental eigenvalue
problems for critical buckling and free vibration.

In the simplest (VIPASA) form of the analyd§ the mode shape of buckling or
vibration is assumed to vary sinusoidally in the longitudindl direction. The
computation is repeated for a set of user specified half-wavelengtitsconverges to
the required eigenvalues (i.e. critical buckling loads or natural frequencies) for each
to any required accuracy using the Wittrick-Williarf&/-W) algorithn{*?13). By
choosing half-wavelengths which divide exactly into the panel length exact
sdutions are obtained for isotropic and orthotropic panels with simply supported ends
and which carry no shear load.

In the VICON analysi¢?, the mode shape is represented by a series of sinusoidal terms
with different half-wavelengths, in order to analyse panels which are anisotropic or
carry shear loads. The eigenvalues are also found using thealgerithm, with an
extension to allow constraints which couple the exact stiffness matrices for different
half-wavelengths so as to satisfy the boundary conditions at the longitudinal ends of the
structure. Thus a shear loaded panel can be accurately represented. VICON analysis
improves the accuracy for these more general buckling problems and also retains the
advantage of computational efficiency, having been shown to be more than 100 times
faster than the finite element program STABS

This paper outlines recent developments in exact strip postbuckling analysis. The
present analysis improves the previous postbuckling analysis in VIPASA to cover

plates which are anisotropic or loaded in shear. The governing in-plane equations are
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derived and solved analytically, using a formulation which extends that of Ch@& et all.
from VIPASA to VICON analysis by including more half-wavelengths
Implementation in the exact strip software VICON®PTthus allows accurate
postbuckling analysis for panels with shear loads and anisotropy. Numerical results are
given and compared with finite element results to validate the proposed analysis.

2.0 EXACT STRIP ANALYSIS AND WITTRICK-WILLIAMS

ALGORITHM

The exact strip method is a numerical analysis method which is similar to the finite strip
metho® but provides faster and more accurate analysis by reducing the partial
differential governing equations to ordinary differential equations which are solved
analytically. As in many structural analysis methods, a global stiffness mitrix
assembled using the element stiffness matrices. The elemdftareftranscendental
functions of the loads and/or the vibration frequency. Thus the critical buckling loads
and natural frequencies can be determined by solving the transcendental eigenvalue
problem

KD =0 « (1)

whereD is the displacement amplitude vector.
The exact strip method reduces the global stiffness matrix to much smaller order than
that of the finite element method. Computational time is therefore saved significantly.
In addition the accuracy of exact strip method is more than enough for preliminary
aircraft design. A disadvantage compared with the finite element and finite strip
methods is that buckling or free vibration requires the solution of a transcendental
rather than a linear eigenvalue problem. However transcendental eigenvalue problems
can be solved accurately, quickly and reliably using the W-W algdtifith

Instead of finding the eigenvalues directly, the W-W algorithm counts the number
of eigenvalues which lie below any trial valtfeof f, the load factor or frequency of
vibration. The eigenvalues can be referred to as critical buckling loadsfactuatural
frequencies of vibration. The general form of the algorithm can be written as

, L 4E «u:BY%= «(2)

whereJ is the number of eigenvalues lying between zero and the trial vBlitue, is
the number of eigenvalues which would still be exceedAeoBByf constraints were
imposed so as to make all the displaceméntzero; -[umuo _is known as the sign
count ofK, i.e. the number of negative diagonal elements of the upper triangular matrix
u¢kB0 obtained from u B’ by Gauss eliminatidH. ,, canbe calculated from

al 1, 4 «(3)

a

where ;, the number of eigenvalues of memimerexceeded at the trial valug®
when its ends are fully restrained, can be obtained analytically or by numerical
procedure$?.



3.0 EXACT STRIP SOFTWARE VICONOPT

VICONOPT!? covers buckling, postbuckling and free vibration of prismatic
assemblies of anisotropic plates loaded by a combination of longitlydmedriant in-
plane stresses. The VIPASA analysis in VICONOPT assumes the displacements
andw vary sinusoiddy in the longitudinal direction with half-wavelengttasshown

in Fig. 2. This assumption gives the aitplane displacements

e T
SLB:U;-%:; «(4)

where B: U ;is a function of the transverse locatyowhich is obtained from analytical
solutions of the governing equations.

For an orthotropic panel with the simply supported boundary conditions shown in
Fig. 2, straight nodal lines are located at sinusoidal intervals which depend on the half-
wavelength OTherefore simply supported end conditions are automatically satisfied if

Qlivides exactly into the panel lendth

The above assumptions of no shear load or anisotropy are conditions of VIPASA
analysis. If they are violated the nodal lines become skewed and are no longer parallel
to the longitudinal ends. Thus the end conditions are not satisfied and VIPASA gives
conservative buckling and vibration results, perhaps underestimating the critical
buckling load by up to 5096.

VICON analysis overcomes this weakness of VIPASA by coupling the stiffness
matrices of different half-wavelengths and using Lagrangian Multipliers to minimise
the total energy of the panel subject to point constrains, e.g. to approximate the required
end conditions, see Fig. 2. It can therefore handle assemblies of plates which carry shear
load or are made from anisotropic material, or which have a variety of boundary
conditions including attachments to beam-type supporting stru¢firiegure 3 shows
the VIPASA and VICON differences in the initial buckling stage and a prediction of
the VICON postbuckling path when there is shear or anisotropy.

Ny
s

Various edge boundary

conditions

/)//'/}';/V/”

Figure 2. Simply supported end conditions in VIPASA analysis.



P A VICON critical buckling load
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Prediction of VICON postbuckling path
&

R VIPASA postbuckling path

Load

VIPASA critical buckling load

> €

Strain

Figure 3. Load and strain paths of VICON and VIPASA for shear or anisotropy.
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Figure 4. lllustration of an infinitely long plate assembly with point supports (a) plan
view (b) isometric view.

An infinitely long panel is modelled, with the end supports repeating at longitudinal
intervals of the panel lengthsee Fig. 4. The mode shapes are assumed to repeat in the
longitudinal direction atntervals of . L t B, aahere aeis a parameter in the range
r Q & Q The mode shapes can therefore be represthiegla series of responses
with half-wavelengths Ht:ge E t| wherem is any integer. Sufficient accuracy is
obtained by considering a finite series of half-wavelengths

H . . s s
I LTt.;:-Lra Gsa GtaaaGM; «(5)
where the integeg determines the number of terms in the series.

Like VIPASA analysis, VICON analysis uses the W-W algorithm to obtain the
natural frequencies of vibration and the critical buckling $odkrivations of the
governing equations and stiffness matrices, and the use of Lagrangian multipliers can
found irf*417)

4.0 POSTBUCKLING IN VIPASA

Aircraft structures such as stiffened panels can often carry loads far in excess of their
critical buckling loads. By fully utilising the postbuckling reserve of strength, the
aircraft mass can be significantly reduced. Postbuckling in VICON®Ffirstly
assumed that plates with regular geometry are simply supported and buckle sinusoidally

with half-wavelength . The stress distribution was assumed to remain invariant in the
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longitudinal direction. Later on, Anderson and Kenri@dynplemented a Newton
iteration scheme into VICONOPT to improve the convergence on the critical buckling
load and associated mode which solve Equation (1). The mode vector<g F L

s & a Jimcludes displacements and rotations both at the longitudinal plate edges and
strip edges of each platel L <yva E4& F L s & &d sorresponding exact stiffness
matrix, which is a transcendental function of the stress resultants in each strip, and
hence also ob. Suppose that

oL oVE « (6)

where 0Yis a trial mode vector and L < @ F L s a aslhe adjustment needed to
0V in order to solve Equation (1), The Newton iteration is expressed in the matrix form
as

a N
ZUDEiC‘)—@;:CJUE LU «(7)
. 0&
Y@s
where UYL : & Neglecting higher order terms, Equation (7) becomes
a & . g 4
- 9T 2U%0@L Fi- P80 ELsadad; «(@8)
Y@5 P @ 50 & Y@5
After solving the equation, adjustments veadoran be obtained. Substitutiniginto
Equation (6) gives the mode vecidmhich is used in the new iteration.
Che et alY obtained a more accurate stress distribution using an improved exact strip
postbuckling analysis extended from Sf8irin this method, plates are divided into
longitudinal strips, for which the governing equations are derived and solved
analytically. It utilizes the out-of-plane results obtained from VIPASA analysis which
vary sinusoidally with one half-wavelength The out-of-plane displacement and
rotation at node are given by

Syl Sys.. ‘@A E SacH0A Byl dyo.. '@AE ac-@A  «(9)

The in plane displacements are assumed to vary as the sums of linear, constant and
sinusoidal terms with two half-wavelengthand /2.

a

@LV@T%A
eT ‘ TS
uaE @e @:AE@%“‘%AE@O |°_~pE@a?e<'4€p

eT eT téT téT
RiL R4E Qé--‘@é—A Edﬁ;e('—%A E - ‘I-—ép E Ba-eu—lgp «(11)

The improved method shows a great improvement compared to the previous one.
However, because it is restricted to the VIPASA analysis, when solving problems of
anisotropic plates or plates loaded in shear the skewed modes do not satisfy the end
conditions and the results have unrealistically high errors or may fail to converge.



5.0 POSTBUCKLING IN VICON

VICON can solve shear loaded and anisotropic plate problems more accurately by
coupling responses with more than one ABYHOHQJWK %DVHG RQ &KHTYV
exact strip postbuckling meth®tl accurate stress distributions can be found for each
stage of the postbuckling. Previous postbuckling analysis with the VIPASA analysis of
VICONOPT gives good agreement for orthotropic plates without shear, i.e. with no
skewing in the mode shape. Therefore applying the improved exact strip method could
also allow for postbuckling when the VICON analysis is used.

The previous method was based on out-of-plane deflection results obtained from
VIPASA analysis, i.e. only one half-wavelengths included. In VICON analysis, the
out-of-plane displacements are assumed to vary as the sum of sinusoidal responses with
more than one half-wavelength. As a result, ithelane displacements, strains and
stress resultants to be found by the following analysis will involve responses with
additional half-wavelengths, as shown in Fig. 5.

5.1 Displacements

The plates are divided intel strips with arbitrary width, as identified by thenodes

at the strip edges. At each nogde¢he out-of-plane deflectionsSyand rotations’

about the x axis are assumed to vary as the sum of sinusoidal responses in the
longitudinal direction with half-wavelengthsy, and are written in the form

y eT eT
1S pab KO E SaP EF0
SU~ (12 % %
BCL" T _ . e Tt
1T a8 KS Elga@EFN
3 % % 0O
where the amplitudesSy 3¢ Syae T gaoand 1 (;zare obtained from a VICON
eigenvalue analysis at the previous iteration.

According to classical plate theory, it is assumed that. S where the prime

indicates the derivative with respect to the transverse diregtidime subscripm
denotes the sequence of out-of-plane half-wavelengths.

«(12)

f— _)r_

As described above, the in-plane displacements are assumed to be:
; = ] eT eT

iY@T-FAE | QypdKO E QprREZIZ N
Q 1 t b A b R
CL N 3 TR
ER, . > . eT e
TWIUFRpEIRypdK9 E RpQEZN
i t b 9 b )

«(13)

VICON oubf- In-plane Strain and Finite
plane Displacement Stress Difference
displacements Assumptions Relationships Method

Figure 5. Calculation procedures.

In-plane Improved in-
Equilibrium plane Results
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The linear termsY, and ¥ denote the applied longitudinal and transverse strains.
The subscripk denotes the sequence of in-plane half-wavelengtissthe plate
length andb is its width.

5.2 Strains and Curvatures
%DVHG RQ Y RI@gehéflechoR theory, strains and curvature are given by:

i OQE_S-O_SU-G o) i SéTn
7 oT t oT g i |'g5ply
i OR_S 0%, : f_Tk:
- T A A | p P . LR
o o ou-t oy q ke Yoo Yex ® {:\g,pﬂu
Yo OQLOB_0S0SH [¥y Yo Yoo ® QL ETK
P6igg j0U O 6Tl 1distisolis=® 5K «(14)
T30k 7 FOGSU Ri-T%08 dg0o kee ® .d.(._le_T E:
Aot 1 FEF R TAe Aso dse ® RTTRPY
Qi (O 1 08 Sy N [siadisodkige ® q LY
I (\)6 'SI T eTR
| FtO SU N T.(.—L’_pﬁl
| 0ToU O i T4

Substituting from Eq.(13) into Eq.(14) gives

B C Lgih E§C oE §5C ) « (15)

- %u 8w

%\éeoﬂl ,:\éé@(")g

Rys i:f’%???m 7 % B

%RJSFQ)I i eBO@ TaéEO@

Svsg  TvsR Yo g gAw g

79U 5% 1%69 i Y og i aGoR

'ULESUGQ )UL,:\QT-)&:O\'JLT\,{[BEEK"%L 7 & (5 =K « (16)

1Sy 1Q) 56 RN T8 50K

I - O TQ]5~ T - K T - K

TQ.,S% iGan  1%iud

28 Qe s

1L 5 N [EIEN

Wigd  laied)

I - O I - O
e U

The vector ¢4:¢ gcan also be partitioned intdNéai -* » Qwhere
sy o



e A
CFSJa(§Ué'%é_éé°<‘g,‘<E,ﬁ
S & eT eTE
'::ESJaagUam---“-‘ég;- *é—al:
e - T E
a a EFSUa&agéééwE;. *é—aE
& eT @
eFSvaduag—o 5T
., S 0S;
ao by syt
.. e eT e
(‘.Iuad)Ué%a_éé“ *é; +5—a;|3
e @ 8T  eTE
'::EiuageUa%aé‘“g,'“g;;'?
e ¢  &T &TE
a a EETUaéua%aé-- ‘E;NE;E
- e® eT @
EE|Uae!eUé'%é_aé'(‘g;-- ‘-'a—é;i
0S 0S
-y U’LFT®O—UL
- e &
CSUaéeUé‘%é_éé *é; *5—a -
e & eT eTE
& EFSyabua %.(EEE
g e eT eTE
a a ?E%aéuam---‘%g;”‘gg;?
- e eT et
EFSJad)Uaﬁ”‘g;”E;i

Substituting & L B | & L B Jnto Equations (17§19) and simplifying,

e B
. . et
Spa®ual& Jamvae > F J_H? )
¢ eT.F
es T EStamuak Svaduap > E 20
R e e T
a a |‘:E:F5£Ja§uaé: Svadua <> E I %
eT
EEFSJ Suvak JaRuad <> |F3T;_|?|
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o o7
Tvadva& Toakvaw > 1 F J55?
C eTF
s TETuabvad Toadvae > 1 E 0%
aieo Lo il L eTe  «(21)
a a pETvakoad Toabua s> F 3%
o eT
eETvabvak Tuakvatr o> E 59
_ R . eT
Svabvad Vakvae > F 50?7
¢ - ) eT.F
e T ESvadkuad Svabvaw- > E 5?0
asizco Lo /T = A . eT= «(22)
a & pEFabuad Takvagt <> EI%
N R eT
EEFSiaduad akoar o>t 1 F 3473

Herec ands denotes the cos components and sin components respectively. The values
of (m-n) and (+n) decide the number of in-plane half-wavelengths to be used,

which are generalized from summations and subtractions of the out-of-plane
wavelength terms. For example, lIf L sand M L tin Eqg. (5), the out-of-plane half-
wavelengths are@=l/m, m=(1,3,5). The summations and subtractions are shown in
Tables 1 and 2, respectively.

Considering the unique values in Tables 1 and 2, the half-wavelengths ior the
plane displacements will béxl/k, k=(0,1,2,3,4,5,6,8,10\/When (m-n=0, i.e. the half-
wavelength @ ', its cosine term is a constant term while its sine term is identically
zero and is omitted from the analysis.

In Eq. (15,
. V WUeos L\%E?%E?S
s L Nbe2dberd ¢p L Nberdber9 «(23)
Ueos v be2dbers
e
I,%_H ; ré r r ® : M
N r éﬁ_ r r ® r Ki
T r ) r r. 54— ® r r i
vLir F e Hg r 1R «(24)
N r F &— o
ir r HTI - r r N
T . - - - - r . €ex
A A A T
L A *Hr O

where 5 and Us 5 are unit and null matrices of order2®-1, respectively and
Q is the number of unique valueslofound from Tables 1 and 2.

An analogous procedure can be used to find the curvatégé‘mr simplicity, these
are not given here, as the following section shows that they are not required when the
coupling stiffness matrixd L Ue.g. for the common situations of composite plates
with a symmetric layup.
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Table 1
Summations of half-wavelengths |/m and I/n, m,n=(1,3,5)

Summations n=1 n=3 n=5
m=1 2 4 6
m=3 4 6 8
m=5 6 8 10

Table 2

Subtractions of half-wavelengths  |/m and I/n, m,n=(1,3,5)

Subtractions n=1 n=3 n=5
m=1 0 ) 4
m=3 2 0 -2
m=5 4 2 0

5.3 Stresses and equilibrium equations

The stress resultant®s ;; Qyand Os; yare needed for the equilibrium equations and
final analysis. For a general anisotropic plate, the relationships between stress and strain
can be obtained by

Osu  #ss #iwe #is: %0 $iss Sise Sis: S0

-

NOI GO L#s6 #ise #is:i €XUi E 56 Swe Sis:i €dui «(25)
Os10 #e. Hi. #ou. %10 $. S $y. v

Substituting Eq. (25) into Eq.(15) gives

T R vy . f
Qi Led Uh By T S % d th B d «(26)
. -0 V) U >0
where
2oL c B 0 ®forg «(27)
Hisber5Hmelbe 2575 E2s
L NMsebers#eebers#e: e «(28)

His-Wer5%5: - bersHu: bers

$ssbersBpebersSn: beos
HPL Nseber5Swebe 2586 e «(29)
$5:Uers5P6: bersdy: be?s
¢ ey is the derivative of ¢4: * ¢ with respect to y.
After obtaining all these expressions, the equilibrium equations are assembled and
solved to find the in-plane displacenten andv.
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0Qu_00Qiu

— 30

SU- o1 - «(39)
0Qiu_0Qy

— 1

f)UE (\)TLr «(31)

SubstitutingEg. (25) into the Egs. (30) and (31), for each nod@Q#1) equilibrium
eqguations are given in terms of the unknow@sand R; After solving the equilibrium
equations, substituting the values @} f * T g backinto Egs. (14) and (25) gives the
strains and stress

All the plate edges are restrained against out-of-plane deflection. Three different
in-plane boundary conditions are considered on the longitudinal edges: free edges, fixed
edges and straight edges. In the free edge case there is no restraint on transverse
displacement. The fixed edge case has transverse displacement cengtraatit
components of. For the straight edge case, the two longitudinal edges remain straight
but can move towards or away from each other. Restraints are imposed on all the
sinusoidal components wfbut the constant component is unrestrained.

The results which follow will all be for the stress distributions in the initial
postbuckling calculations when the strain is 2% above the critical buckling strain. In
order to extend the present analysis to practical design levels, the Newton iteration
procedure in VICONOPT will be used, i.e. utilizing the stress distributions obtained
here to obtain out-of-plane mode shapes at further strain increments. Further VICON
postbuckling results will be presented in future publications.

Table 3
Laminate stiffness of example 1

A stiffness matrix (Nr) D stiffness matrix (Nm)
1.0602x18 2.7455x10 0 61.349 7.4974 -4.0589
2.7455%x10 1.0602x160 0 7.4974 12.642 -4.0589

0 0 3.9285%10 -4.0589 -4.0589 11.441

fixed edge agianst in-plane displacement v

— <«
s S
- e

all edges are simple supported agianst
s out-of-plane displacement w A
_ <
y e ———
| fixed edge agianst in-plane displacement v
X
0.3m

Figure 6. Loads and edge assignments for example 1.
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6.0 ILLUSTRATIVE RESULTS

In this section, illustrative results are given for two examples.

6.1 Composite plate loaded in compression

In order to compare the method with the previous (VIPASA) postbuckling analysis in
VICONOPT, the first example is chosen from €Relt is a symmetric balanced
composite square plate with length 0.3m and thickness 0.002m. The composite consists
of 8 layers with ply angles [0, 45, -45, 90, 90, -45, 45, 0]. The material properties are
<RXQJTV PRBAXs@de ee 7084 4sL sare Il 7%, shear moduli)sgL

)s7L )g7L xdse e ?Pand 3RLVVRQ T8y LUraW I overall laminate
stiffness are shown in Table 3. The plate is simply supported with respect to out-of-
plane displacement on all four edges, fixed againstplane displacement on the
unloaded edges and free to deflect in-plane on the loaded edges. Uniform compression
is applied to the left and right sides of the plate as shown in Fig. 6. For the postbuckling
analysis the plate is divided intz10 strips of equal width, and the VICON analysis

uses L L sand M L tin Eq. (5).
2 X
15 y

03

0.25

0 0.05 0.1 0.15 0.2 0.25 03 0.1 0.15 0.2 0.25 03 x10°
Length(x) Length(x)

(a) (b)

0 0.05 041 0.15 0.2 0.25 0.3 x1071° 0 0.05 0.1 0.15 0.2 0.25 0.3
Length(x) Length(x)

() (d)

Figure 7. Variation oin-plane displacements (a)displacement (present analysis).
(b) u displacement (ABAQUS analysis).) fcdisplacement (present analysis). \{d)

displacement (ABAQUS analysis).
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The analysis gives the first cycle of the postbuckling which for illustration utilises out-
of-plane displacements with just three half-wavelengths obtained from VICON analysis
when the longitudinal strain exceeds the initial buckling strain by 2%. Figure 7(a,c)
shows the in-plane displacement contour plots. The results are validated against finite
element analysis using a mesh of 20x20 ABAQUS S4R eleftférase Fig. 7(b,d).

As shown in Fig. 7(a,b), the uniform compression leads to unificiieplacement
contours. The left and right edges equally move to each other as shown in both the
present result and the ABAQUS result. Figure 7(c,d) showsvtlésplacement
contours. It can be seen that the present result is slightly skewed but less than the
ABAQUS result. The reason can be found fromwhdisplacement assumption from
VICON which contains three half-wavelengths. Theoretically only an infinite series of
half-wavelengths can represent the accurate results. Therefore three half-wavelengths
result in losing some accuracy. The user can increase the number of half-wavelengths
if required

Figure 8 gives the longitudinal stress resultdxsNy, Nxy at the top surface of the
plate. All the contours are antisymmetric and skewed as expected, and the results from
the present analysis are close to the finite element results. A sample result from the
previous VICONOPT analysis (Fig. 8(c)) fails to capture the antisymmetry and
skewing.

Figure 9 gives a quantitative comparison of stress resulanalong the
longitudinal centre line of the plate between ABAQUS and present analysis. The values
are all symmetric as expected, with the compressive stress being greatest at the centre
and decreasing towards the two ends. The greatest discrepancy of 3.2% occurred at the
two ends of the plate. However the present analysis has less variation than ABAQUS
which can be explained as due to displacement differences as demonstrated above.
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Figure 9. Stress resultaNj on top surface of the plate.

6.2 Isotropic plate loaded in compression and shear

The second example is a square isotropic plate loaded under equal longitudinal
compressioNy and sheaNy,. The plate has length 0.3m and thickness 0.001m with

the material properties RXQJfV PRIGX€OXVYe °® DQG 3RLVVBQYV UDWLR
r a.uAll four edges are simply supported against out-of-plane displacement, fixed

against in-plane displacement v on the unloaded edges and free to deflect in-plane on

the loaded edges as shown in Fig. 10.

Figures 11 and 12 show the variation of stress resulkntsy andNxy from the
present analysis and ABAQUS analysis. Figure 13 gives quantitative comparisons of
Nx along the longitudinal centre line. The biggest error is 13.6% at the two loaded ends.
It can be seen that all the stresses are antisymmetric, and from the quantitative
comparison the values from present analysis are almost the same as ABAQUS.

fixed edge agianst in-plane displacement v

— <~
— % <
— s e
all edges are simple supported agianst
—— out-of-plane displacement w R S——
SN <—
— s <~
¥ s «—
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X
03m

Figure 10. Loads and edge assignments for example 2.
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It is noted that the sinusoidal assumption of the previous VIPASA postbuckling analysis
precluded the possibility of mode jumping. The use of a series of half-wavelengths in
the present VICON analysis will allow for gradual or discrete changes in the
postbuckling mode as the load is increased.

7.0 CONCLUSIONS AND FUTURE WORK

Postbuckling analysis has been presented for anisotropic and shear loaded plates. The
analysis is based on exact strip analysis, in which the mode shapes are assumed to be
the sum of sinusoidal responses with different half-wavelengths which are coupled
together to satisfy the boundary conditions at the longitudinal ends. Initial postbukling
results for two example problems show very good agreement with finite element
analysis. The greatest error is only 3.2% in first example and 13.6% in the second
example. It also can be seen there is a big improvement compared with a previous exact
strip postbuckling analysis in which the mode shapes were assumed to be purely
sinusoidal.
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Figure 13. Stress resultaldt on top surface of the plate.

The two models all utilized the three different half-wavelengths for wthe

displacement obtained from VICON. Therefore some accuracy is sacrificed. However
more half-wavelengths can also be usedabthe expense of increased computational
time. The analysis currently only covers the first cyfl@ostbuckling, for which it
achieves a good outcome. A full postbuckling analysis will be permitted by extending
the Newton iteration scheme in the exact strip software VICONOPT. The analysis will
also be further extended to cover stiffened panels, in order to provide more capabilities
for preliminary aircraft design.
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TABLE CAPTIONS

Table 1
Summations of half-wavelengths I/mand I/n, m,n=(1,3,5)

Table 2
Subtractions of half-wavelengths I/m and I/n, m,n=(1,3,5)

Table 3
Laminate stiffness of example 1

FIGURE CAPTIONS

Figure 2. Load-displacement graph for postbuckling problem.
Figure 2. Simply supported end conditions in VIPASA analysis.
Figure 3. Load and strain paths of VICON and VIPASA for shear or anisotropy.

Figure 4. lllustration of an infinitely long plate assembly with point supports (a) plan
view (b) isometric view.

Figure 5. Calculation procedures.
Figure 6. Loads and edge assignments for example 1.

Figure 7. Variation of in-plane displacementsyajsplacement (present analysis).
(b) u displacement (ABAQUS analysis). (cHlisplacement (present analysis). \{d)
displacement (ABAQUS analysis).

Figure 8. Variation of stresses on the top surface of the platds (plesent analysis).
(b) Nx (ABAQUS analysis). (cNx (previous VICONOPT analysis). (&, (present
analysis). (eNy (ABAQUS analysis). (fNxy (present analysis). (dNxy (ABAQUS
analysis).

Figure 9. Stress resultaNj on top surface of the plate.
Figure 10. Loads and edge assignments for example 2.

Figure 11. Variation of in-plane displacementsydjsplacement (present analysis).
(b) u displacement (ABAQUS analysis). (clisplacement (present analysis). \d)
displacement (ABAQUS analysis).

Figure 12. Variation of stresses on the top surface of the platé: (@esent
analysis). (b)Nx (ABAQUS analysis). (cNy (present analysis). (&Ny (ABAQUS
analysis). (eNx (present analysis). (Nx (ABAQUS analysis).

Figure 13. Stress resultadg on top surface of the plate.
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