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Abstract

In an epistemic graph, belief in arguments is represented by probability distributions. Furthermore,
the influence that belief in arguments can have on the belief in other arguments is represented by con-
straints on the probability distributions. Different agents may choose different constraints to describe
their reasoning, thus making epistemic graphs extremely flexible tools. A key application for epistemic
graphs is modelling participants in persuasion dialogues, with the aim of modelling the change in beliefs
as each move in the dialogue is made. This requires mechanisms for updating the model throughout the
dialogue. In this paper, we introduce the class of delegated update methods, which harness existing, sim-
pler update methods in order to produce more realistic outputs. In particular, we focus on hypothesized
updates, which capture agent’s reluctance or susceptibility to belief updates that can be caused by certain
factors, such as time of the day, fatigue, dialogue length, and more. We provide a comprehensive range
of options for modelling different kinds of agents and we explore a range of properties for categorising
the options.
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1 Introduction
Persuasion is an activity that involves one party trying to get another party to do (or not do) some action
or to believe (or not believe) certain information. It is an important, widespread, and multifaceted human
facility. Consider, for example, a doctor persuading a patient to drink less, a road safety expert persuading
drivers to not text while driving, or an online safety expert persuading users of social media sites against
revealing too much personal information.

In computational persuasion, the role of the persuader is played by a system that can engage in dialogues
with users to convince them to accept or reject a given persuasion goal. The focus is therefore on the
study of formal models of dialogues involving arguments and counterarguments, persuadee models, and
strategies for such systems.

Depending on the application, our expectations of computational persuasion formalisms can change.
For example, convincing the judge in a court case that the defendant is guilty follows different rules than
convincing a person to stop smoking. Particularly, in the former, a given persuasion system can take a more
normative approach in modelling the persuadee, as a judge is expected to follow the rule of the law and
attempt to remain objective. However, in the latter, the persuadee need not be rational or obey any rules
in particular. Thus, a more descriptive approach may be more suitable, as we want to find out how the
agent reasons and which arguments may work best, independently of what the dialectical argumentation
semantics would consider appropriate.

Human agents tend to exhibit what is often referred to as “biases” or “fallacies” [50, 52]. This can
include various phenomena, such as belief bias, confirmation bias, conservatism, backfire effect, and more.
Many of those can be roughly described as tendencies to interpret, prefer and select information that is
aligned with one’s privately held beliefs, and to revise one’s beliefs insufficiently when faced with new
information, particularly when it contradicts that person’s opinions. For example, the supporters of a given
politician may downplay any evidence of the politician’s misdeeds, or a skilled artist may strongly believe
they lack talent in spite of all the compliments and rewards received.

There is also only so much information that an agent can hold and process at a given point in time.
Human cognitive capacity and attention span are finite, which, particularly in the case of longer dialogues,
may lead to diminishing belief changes independently of how “logical” or “reasonable” a given agent is.
Furthermore, standard argumentation semantics often fail to account for the fact how distance between the
arguments can affect the impact they have on each other [14].

These behaviours pose challenges to computational persuasion, perhaps even more so as not taking
them into account can lead to persuasion attempts causing more harm than good. It has been observed that
persuasion attempts relying purely on provision of information and resolving agent’s misconceptions can
have undesirable effects on the persuasion goal [49, 51, 55]. Consequently, being able to account for these
non-normative behaviours is important for the efficiency and success of applications of argumentation. It
is therefore worthwhile to investigate the methods for modelling situations in which the agent may become
more resistant or more susceptible to belief changes and the causes for such behaviours, such as their
attitudes or personality [60, 9], chosen strategies [42], or length of a discussion [71]. To illustrate some of
such cases, we consider the following examples.

Example 1 (Adapted from [58]). Consider a doctor trying to persuade three concerned parents to give
their children the flu vaccine this season. Two of the parents are anti-vaxxers who are strongly convinced
of the vaccine’s harmfulness, while the third parent is mostly confused by the conflicting pieces of infor-
mation they keep receiving concerning vaccines. The dialogues are presented in Figure 1, and we assume
a seven–point Likert scale ⟨Strongly Disagree, Disagree, Somewhat Disagree, Neither Agree nor Disagree,
Somewhat Agree, Agree, Strongly Agree⟩. We can observe that the arguments posited by the persuader and
persuadees are relatively similar, however, the reactions as to how much the persuadees agree or disagree
with the arguments differ. At the very start of the dialogue, all parents disagree with the safety of the vac-
cine, but to a different degree. At the end of the dialogue, one of the parents is now somewhat convinced
of the safety, while the others still disagree. In addition, one of the parents agrees with the safety even less
than before the dialogue due to his disbelief in the statements made by the doctor. We can observe that on
the presented scale, it is not only the initial agreement levels of the parents that differ, but also the rela-
tive difference between their initial and end agreement levels is not the same. This example shows people
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with stronger opinions cling to them more forcefully and thus can insufficiently revise their opinions when
presented with new arguments. In particular, they may still disbelieve certain information even when the
original reasons for their disbelief are addressed.

A: The flu vaccine is safe to use by children.

I strongly disagree with this.

B: The vaccine contains mercury
based compounds such as thimerosal.

C: The child vaccine does not contain any
mercury compounds. Children receive the

nasal spray vaccine and thimerosal has
been removed from it over 15 years ago.

I believe you and now disagree
with thimerosal being present in
the vaccine. Nevertheless, I still

disagree with the vaccine’s safety.

(a) Dialogue 1

A: The flu vaccine is safe to use by children.

I disagree with this.

B: The vaccine contains mercury
based compounds such as thimerosal.

C: The child vaccine does not contain any
mercury compounds. Children receive the

nasal spray vaccine and thimerosal has
been removed from it over 15 years ago.

I strongly disagree with you. I am now even
less convinced that the vaccine is safe to use.

(b) Dialogue 2

A: The flu vaccine is safe to use by children.

I somewhat disagree with this.

B: The vaccine contains mercury
based compounds such as thimerosal.

C: The child vaccine does not contain any
mercury compounds. Children receive the

nasal spray vaccine and thimerosal has
been removed from it over 15 years ago.

I believe you and now disagree with
thimerosal being present in the vaccine. I
somewhat agree with the vaccine’s safety.

(c) Dialogue 3

Figure 1: Flu dialogues. The blue boxes represent statements made by the persuader and the green boxes
stand for statements made by the persuadee.

Example 2 (Adapted from [24]). Consider the dialogues presented in Figure 2, in which a volunteer tries
to stop people on the street and make them sign up and donate to charity X. We can observe that the
direct approach in Dialogue 1 fails to stop the passerby and grab their attention, while appealing to a
person’s morality in Dialogue 2 and getting them to agree with a few statements first has increased their
susceptibility and the dialogue ends in a desirable way.

Example 3. Consider a dialogue concerning student fees, an extract of which is visible in Figure 3. We
can observe that the further we are from the opening statement, the more the focus of the dialogue is
shifting. For example, while the argument concerning the value of menial jobs is indirectly connected to
fees increasing the quality of education, it would not be entirely intuitive to demand that believing one
should imply believing the other, which is what standard dialectical semantics would advise us to do.
Therefore, independently of whether the persuader or the persuadee actually has the “final” argument, its
impact on the arguments stated at the very beginning might be marginal. We can therefore observe that the
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Would you like to donate £10 to charity
X that aims to combat famine in Africa?

I’m sorry, I’m in a rush.

(a) Dialogue 1

Do you believe that every child
has the right not to be hungry?

Of course.

Unfortunately, many parents in Africa
struggle to provide food for their chil-

dren, and are in need of therapeu-
tic foods such as the peanut paste.

Do you think £10 is a fair price for
a supply of the peanut paste that

would sustain a child for 2-3 weeks?

That’s not that much.

Would you like to donate £10 to charity
X that aims to combat famine in Africa?

Well, all right.

(b) Dialogue 2

Figure 2: Charity dialogues. The blue boxes represent statements made by the persuader and the green
boxes stand for statements made by the persuadee.

effect one argument has on another may diminish with distance, be it due to the focus shift as presented in
this dialogue or other human factors.

Consequently, there is a need for considering argumentation formalisms that are highly flexible and al-
low us to model how agents reason without prejudice or enforcing any requirements as to what is “rational”
or not. In [38], epistemic graphs were introduced, which through the use of epistemic constraints allowed
for representing how beliefs in one argument can depend on and affect beliefs in other arguments. The
way other arguments influence a given argument is expressed by epistemic constraints, and the freedom
in defining these constraints allows for epistemic graphs to handle a variety of relations between the argu-
ments. They can be specified based on a given agent’s perspective and without enforcing any logic-based
restrictions that may arise depending on the actual content of these arguments. Furthermore, the graphs
also allow us not to specify the nature of connections between arguments at all, thus allowing for modelling
of incomplete situations. These features are important in predicting and explaining how certain real-world
agents reason, modelling agents which might be unable or unwilling to provide their counterarguments,
and dealing with enthymeme arguments that can be decoded differently by the agents.

The versatility of epistemic graphs makes them a valuable tool for user modelling in computational per-
suasion, particularly in applications that call for more user–tailored approaches. Furthermore, the methods
used for crowdsourcing data for probabilistic and/or bipolar argumentation that we considered in [36, 58]
can be generalized for epistemic graphs and thus there is the possibility of learning epistemic graphs from
participant data.

In order to provide the means for harnessing the graphs in dynamic scenarios, a method for updating
user’s beliefs with respect to a given epistemic graph has been presented in [37]. This method produced a
new probability distribution that minimized a given notion of distance with respect to the prior distribution,
and still satisfied the constraints and respected the information it was updated with. As a proof of concept
of the usefulness of this approach we have considered a straightforward scenario on how user’s reasoning
can be modelled with the use of epistemic graphs and how this knowledge can be harnessed in a persuasion
dialogue.

In this paper, we take a step further and show how epistemic graphs and update functions can be used
in modelling scenarios in which, due to various possible factors, dialogue participants are more resistant
or more susceptible to changing their opinion. We introduce the notion of a delegated update method
for epistemic graphs which can harness existing, simpler methods in order to produce more advanced
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Charging students the 9K fee for university education should be abolished.

Charging the students a fee means that the students get a better education.

Charging fees for courses means that students need to find part-time jobs
to support themselves, which has a detrimental effect on their education.

Internships are a type of part-time jobs, and they provide valu-
able experience and are not detrimental to students’ education.

Paid internships have no detrimental effects on students because, unlike
most part-time jobs, they take place in summer when there are no courses.

There are a lot of part-time summer jobs available and it
is not unreasonable to expect the students to take some up.

Most of these jobs are menial and provide no valuable expe-
rience that the student could, for example, put on their CV.

Even menial jobs are valuable as they expose stu-
dents to a wide cross-section of the society.

. . .

Figure 3: Student fees dialogue. The blue boxes represent statements made by the persuader and the green
boxes stand for statements made by the persuadee.

solutions that can provide us with more realistic belief distributions. In particular, we focus on the notion
of a hypothesized belief update, which through employing the effect functions for modulating the degree
to which the belief in an argument should change, and hypothesized distributions that represent updated
belief distribution that an agent would have in an idealized setting without external factors, aim to produce
more realistic belief distributions.

This paper is organized as follows. Sections 2 to 3 recall and introduce epistemic graphs, distance
measures, and updates that are the foundation for this work. Section 4 introduces the notion of a delegated
update and related properties. We then propose the concept of a hypothesized belief update, analyze its
components and their properties. We compare our approach to other relevant works in Section 5 and close
the paper with a discussion on how we can take our proposal forward in Section 6.

2 Linear Epistemic Graphs
An argument graph specifies the arguments and relations between them. It can be seen as a directed graph
in which nodes represent arguments and arcs represent relations. The nature of these relations can be
denoted by edge types, labels, or additional formulae. In this section we recall epistemic graphs, which
through the use of epistemic constraints tell us about the dependencies between beliefs in arguments. In
order to do so, we first recall the epistemic language of the constraints.

2.1 Epistemic Language
The epistemic language introduced in [38] consists of Boolean combinations of inequalities involving
statements about probabilities of formulae built out of arguments. In this work we recall a simple refinement
of this approach from [37]. Throughout the section, we will assume that we have a directed graph G =
(V,R), where V is a set of nodes (arguments) and R ⊆ V × V is a set of arcs (relations). Nodes(G) = V
denotes the nodes and Arcs(G) = R denotes the arcs in G.

Definition 2.1. The epistemic language based on G is defined as follows:
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• a term is a Boolean combination of arguments. We use ∨, ∧ and ¬ as connectives in the usual way,
and can derive secondary connectives, such as implication →, as usual. Terms(G) denotes all the
terms that can be formed from the arguments in G.

• a linear operational formula is of the form ∑ki=1 ci ⋅ p(αi) where all αi ∈ Terms(G) are terms,
ci ∈ Q are rational coefficients, and p(α) is read as “probability of α”. LOFormulae(G) denotes all
possible linear operational formulae of G.

• a linear epistemic atom is of the formα#xwhere # ∈ {=,≠,≥,≤,>,<}, x ∈ Q andα ∈ LOFormulae(G).

• a linear epistemic formula is a Boolean combination of linear epistemic atoms. LFormulae(G)
denotes the set of all possible linear epistemic formulae of G.

For α ∈ Terms(G), Args(α) denotes the set of all arguments appearing in α and for a set of terms Γ ⊆
Terms(G), Args(Γ) denotes the set of all arguments appearing in Γ. Given a formula ψ ∈ LFormulae(G),
let FTerms(ψ) denote the set of terms appearing in ψ and let FArgs(ψ) = Args(FTerms(ψ)) be the set of
arguments appearing in ψ. For a set of formulae Ψ ⊆ LFormulae(G), FArgs(Ψ) = FArgs(∧ψ∈Ψψ), where
∧ψ∈Ψψ represents the conjunction of all formulae in Ψ (or ⊺ in case Ψ is empty).

Example 4. For A,B,C,D ∈ Nodes(G), ψ ∶ p(A ∧ B) − p(C) − p(D) > 0 is an example of a linear epistemic
formula. The terms of that formula are FTerms(ψ) = {A ∧ B,C,D}, the arguments appearing in them are
FArgs(ψ) = {A,B,C,D}.

Having defined the syntax of our language, let us now focus on its semantics. For this, we require belief
distributions (also called probability functions).

Definition 2.2. A belief distribution on the set of arguments of a graph G is a function P ∶ 2Nodes(G) →
[0,1] s.t. ∑Γ⊆Nodes(G) P (Γ) = 1. With Dist(G) we denote the set of all belief distributions on Nodes(G).

We assume a belief distribution conforms to the usual Kolmogorov axioms for probability theory, and
that it can capture subjective probabilities.

Each Γ ⊆ Nodes(G) corresponds to an interpretation of arguments. We say that Γ satisfies an argument
A and write Γ ⊧ A iff A ∈ Γ. The satisfaction relation is extended to complex terms as usual. For instance,
Γ ⊧ ¬α iff Γ /⊧ α and Γ ⊧ α ∧ β iff Γ ⊧ α and Γ ⊧ β. From a given belief distribution, which states
probabilities of sets of arguments, we can derive probabilities of terms. They are defined as the sum of the
probabilities (beliefs) of its models.

Definition 2.3. The probability of a term α ∈ Terms(G) in a belief distribution P ∈ Dist(G) is denoted
P (α) and defined as:

P (α) = ∑
Γ⊆Nodes(G) s.t. Γ⊧α

P (Γ).

It is important to highlight that in this notation, P (A) is the probability of a term A, while P ({A}) is
the probability assigned to set {A}, and these two values can be distinct.

We say that an agent believes a term α to some degree if P (α) > 0.5, disbelieves α to some degree if
P (α) < 0.5, and neither believes nor disbelieves α when P (α) = 0.5.

From the general set of distributions we can distinguish those that satisfy epistemic formulae.

Definition 2.4. Let ϕ be a linear epistemic atom ∑ki=1 ci ⋅ p(αi)#b. The satisfying distributions of ϕ are
defined as Sat(ϕ) = {P ′ ∈ Dist(G) ∣ ∑ki=1 ci ⋅ P ′(αi)# b}.

The set of satisfying distributions for a linear epistemic formula is as follows where φ and ψ are linear
epistemic formulae:

• Sat(φ ∧ ψ) = Sat(φ) ∩ Sat(ψ);

• Sat(φ ∨ ψ) = Sat(φ) ∪ Sat(ψ); and

• Sat(¬φ) = Sat(⊺) ∖ Sat(φ).
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For a set of linear epistemic formulae Φ = {φ1, . . . , φn}, the set of satisfying distributions is Sat(Φ) =
Sat(φ1) ∩ . . . ∩ Sat(φn).

Example 5. Consider a graph with nodes {A,B,C,D} and the constraint ψ ∶ p(A ∧ B) − p(C) − p(D) >
0 ∧ p(D) > 0. A probability distribution P1 with P1(A ∧ B) = 0.7, P1(C) = 0.1 and P1(D) = 0.1 is in
Sat(ψ). However, a distribution P2 with P2(A ∧ B) = 0 cannot satisfy ψ and so P2 ∉ Sat(ψ).

2.2 Epistemic Graphs
In this section we recall epistemic graphs and some of their semantics. Epistemic graphs are based on
labelled graphs, which are defined as follows.

Definition 2.5. Let G = (V,R) be a directed graph. A labelled graph is a tuple X = (G,L) where
L ∶ R → 2Ω is a labelling function and Ω is a set of possible labels. X is fully labelled iff for every α ∈ R,
L(α) ≠ ∅.

The label associated with a given arc is meant to represent its general nature. We use a positive label to
denote a positive influence (i.e. support), a negative label to denote a negative influence (i.e. attack), and
a star label to denote an influence that is neither strictly positive nor negative (i.e. dependency). Thus, we
assume that Ω = {+,−,∗} and that the graph is fully labelled. Note, the labellings are not required for our
purposes in this paper. We just present them here for completeness.

Epistemic constraints are epistemic formulae that contain at least one argument. Epistemic graphs are
labelled graphs equipped with a set of such constraints.

Definition 2.6. A linear epistemic constraint is a linear epistemic formulaψ ∈ LFormulae(G) s.t. FArgs(ψ) ≠
∅. An epistemic graph is a tuple (G,L,C) where (G,L) is a labelled graph, and C ⊆ LFormulae(G) is a
set of linear epistemic constraints associated with the graph.

The semantics of epistemic graphs are given in terms of probability distributions. A range of semantics
has been proposed in [38]. In the context of this work it suffices to focus on the simplest one, demanding
that the constraints of the graph are satisfied.

Definition 2.7. Let X = (G,L,C) be an epistemic graph. An epistemic semantics associates X with a set
R ⊆ Dist(G). A distribution P ∈ Dist(G) meets the satisfaction semantics iff P ∈ Sat(C).

We say that a framework is constraint consistent iff Sat(C) ≠ ∅, i.e. the satisfaction semantics produces
at least one distribution for this graph.

A = The train will arrive at 2pm be-
cause it is timetabled for a 2pm arrival.

B = Normally this
train service ar-

rives a little bit late.

C = The train ap-
pears to be travelling
slower than normal.

D = The live travel
info app lists the

train being on time.

− − +

Figure 4: Labelled graph for Example 6. Edges labelled − denote attack and edges labelled + denote
support.

Example 6. Consider the labelled graph in Figure 4 and imagine a passenger named Terry. We model
Terry’s opinions on how the arguments interact in the following manner. Since A is attacked by B and C, we
want the belief in A bounded from above by the average belief in B and C. This can be formalized by the
formula p(A)+ 0.5 ⋅ p(B)+ 0.5 ⋅ p(C) ≤ 1. Since D supports A, we also want to impose a lower bound on the
belief in A. This lower bound can be decreased by the average belief in B and C. We capture this intuition
with the formula p(A)+0.5 ⋅p(B)+0.5 ⋅p(C)−p(D) ≥ 0. Finally, Terry is a regular on this line and believes
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that the train normally arrives late. We model this by the formula p(B) ≥ 0.65. Probability distributions P
s.t. P (A) = 0.45, P (B) = 0.65, P (C) = 0.2 and P (D) = 0.5, and P ′ s.t. P ′(A) = 0.425, P ′(B) = 0.65,
P ′(C) = 0.5 and P ′(D) = 0.5, are examples of satisfying distributions of this graph.

The above example also illustrates how it is the constraints rather than the graph that dictate the in-
fluence of any argument on the other arguments. However, this should not be understood as the graph
or its labeling being in any way redundant. [38] introduces a series of notions for contrasting the infor-
mation found in the constraints with the information found in the graph. This can be used to highlight
incompleteness or imperfections of the scenarios we intend to model and can, for instance, be harnessed
by argumentation-based applications, such as dialogue systems, for strategical purposes. Nevertheless, in
the context of this work, we will rely primarily on the constraints in our analysis.

2.3 Normal Forms and Language Fragments
The epistemic language is quite expressive and there is a lot of freedom in how constraints can be defined.
However, having a more restricted representation can offer computational benefits or simplify certain kinds
of analyses. In this section, we will discuss some of the normal forms for epistemic formulae and identify
fragments of the language that will be used later on.

Epistemic formulae can be represented by a variety of normal forms. For instance, by treating epis-
temic atoms as propositional variables, we can rewrite them as propositional conjunctive, disjunctive, and
negation normal forms.

Definition 2.8. Consider a general epistemic formula φ. We say that φ is in:

• conjunctive normal form (CNF) if it is a conjunction of one or more disjunctive clauses (i.e. disjunc-
tions of epistemic literals)

• disjunctive normal form (DNF) if it is a disjunction of one or more conjunctive clauses (i.e. conjunc-
tions of epistemic literals)

• negation normal form (NNF) if negation occurs only directly in front of atoms and the only used
operators are ¬, ∧ and ∨

We can observe that in the epistemic language, any negative literal can be turned positive by changing
the inequality in the atom. For example, ¬p(A) = 0 is equivalent to p(A) ≠ 0. The ability to “pull in” the
negation into the epistemic atom by changing the internal inequality and vice versa allows us to control
the number of positive literals or strict inequalities in a formula. We therefore can distinguish the negation
elimination normal form which contains no negations. Based on it and on DNF, we also introduce the
relaxed disjunctive normal form, which will prove useful in Section 3.

Definition 2.9. Consider an epistemic formula φ in negation normal form. It is brought to negation elimi-
nated normal form (NENF) by turning every negative literal into a positive one by changing the inequality
in the following way:

• ¬∑ki=1 ci ⋅ p(αi) = x becomes ∑ki=1 ci ⋅ p(αi) ≠ x

• ¬∑ki=1 ci ⋅ p(αi) ≠ x becomes ∑ki=1 ci ⋅ p(αi) = x

• ¬∑ki=1 ci ⋅ p(αi) ≥ x becomes ∑ki=1 ci ⋅ p(αi) < x

• ¬∑ki=1 ci ⋅ p(αi) ≤ x becomes ∑ki=1 ci ⋅ p(αi) > x

• ¬∑ki=1 ci ⋅ p(αi) > x becomes ∑ki=1 ci ⋅ p(αi) ≤ x

• ¬∑ki=1 ci ⋅ p(αi) < x becomes ∑ki=1 ci ⋅ p(αi) ≥ x
Definition 2.10. Consider a general epistemic formula φ in DNF where all negations have been eliminated.
The relaxed DNF (RDNF) of φ is obtained by first deleting all contradictory conjunctions in φ and then
replacing all appearances of < with ≤, > with ≥ and replacing all atoms containing ≠ with the tautology
p(⊺) = 1 afterwards.
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Each replacement results in a weaker constraints. For instance, replacing p(A) ≠ 0.7 with p(⊺) = 1
means that p(A) can take any value instead of taking any value except 0.7. We also observe that p(A) ≠ 0.7
is equivalent to p(A) > 0.7∨p(A) < 0.7. The relaxed DNF of that formula would be p(A) ≥ 0.7∨p(A) ≤ 0.7,
which is a tautology and hence equivalent to p(⊺) = 1. Consequently, directly replacing ≠ occurrences with
tautologies can be seen as a form of a shortcut.

We will denote the set of all arguments appearing in minimal normal forms of a given kind of a given
formula with MinFArgsx(ϕ) = ⋃{FArgs(ψ) ∣ ψ is a minimal-length formula in x s.t. Sat(ψ) = Sat(ϕ)},
where x ∈ {CNF,NNF,DNF,NENF,RDNF}. For a set of formulae Ψ ⊆ LFormulae(G), by MinFArgsx(Ψ)
we understand MinFArgsx(∧ψ∈Ψψ).

Example 7. Consider the following epistemic formula:

(p(A) > 0.5∧¬p(B) ≤ 0.5)∨(¬p(A) > 0.5∧p(B) ≤ 0.5)∨(p(B) ≤ 0.5∧¬p(C) = 0.5)∨(¬p(B) ≤ 0.5∧p(C) = 0.5)
It is in DNF and NNF, but not in CNF, NENF, or RDNF. An equivalent CNF formula would be:

(¬p(A) > 0.5 ∨ ¬p(B) ≤ 0.5 ∨ ¬p(C) = 0.5) ∧ (p(A) > 0.5 ∨ p(B) ≤ 0.5 ∨ p(C) = 0.5)
The negation eliminated version of the original formula would be:

(p(A) > 0.5∧p(B) > 0.5)∨(p(A) ≤ 0.5∧p(B) ≤ 0.5)∨(p(B) ≤ 0.5∧p(C) ≠ 0.5)∨(p(B) > 0.5∧p(C) = 0.5)
Bringing it to relaxed disjunctive normal form would yield:

(p(A) ≥ 0.5∧p(B) ≥ 0.5)∨(p(A) ≤ 0.5∧p(B) ≤ 0.5)∨(p(B) ≤ 0.5∧p(⊺) = 1)∨(p(B) ≥ 0.5∧p(C) = 0.5)
We observe that the original formula is DNF, but is not minimal. Examples of its minimal DNFs include

(p(A) > 0.5 ∧ ¬p(C) = 0.5) ∨ (¬p(A) > 0.5 ∧ p(B) ≤ 0.5) ∨ (¬p(B) ≤ 0.5 ∧ p(C) = 0.5)
and

(p(A) > 0.5 ∧ ¬p(B) ≤ 0.5) ∨ (¬p(A) > 0.5 ∧ p(C) = 0.5) ∨ (¬p(C) = 0.5 ∧ p(B) ≤ 0.5)
Thus, the set MinFArgsDNF of the original formula is {A,B,C}, and is the same as the FArgs of this

formula.

Certain problems related to epistemic graphs can be more closely related to linear optimization prob-
lems. However, they can be compounded by the presence of strict inequalities, which leads us to distin-
guishing the following fragment of our language.

Definition 2.11 (Non-strict Epistemic Atom). A non-strict epistemic atom is a linear epistemic atom
∑ni=1 ci ⋅ p(αi)# b where # ∈ {≤,=,≥}.

Definition 2.12 (Non-strict Epistemic Formulae). The set of non-strict epistemic formulae is the closure
of non-strict epistemic atoms under the logical connectives ∧ and ∨.

We observe that the negation is not included in the above fragment due to the relations between in-
equalities highlighted in the negation eliminated normal form.

3 Updating Probability Distributions with Epistemic Constraints
Whether we consider monological or dialogical argumentation, receiving new information calls for an
update in our beliefs. For instance, during a persuasion dialogue, the involved parties may update their
models of each others’ beliefs as the discussion progresses in order to make better choices of moves to
make. It is therefore important to develop epistemic update functions, that take our current epistemic
state (i.e. current belief distribution), epistemic constraints representing existing information and epistemic
formulae representing new information, and return a set of candidates for the next epistemic state. We
adopt the principles for update functions that have been set out in [37]:

Definition 3.1 (Update Function). An update function for a graph G is a function U ∶ Dist(G)×2LFormulae(G)×
2LFormulae(G) → 2Dist(G). With U(G) we denote the universe of update functions for G.

In order to guarantee meaningful update functions, we consider the properties previously set out in [37]1

1Due to a modified syntax of the update functions the Representation Invariance property now comes in three types.
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where P is the current belief distribution, C is a set of constraints, and Ψ is the set of update formulae:

• Uniqueness: ∣U(P,C,Ψ)∣ ≤ 1.

• Completeness: If Sat(C ∪Ψ) ≠ ∅, then ∣U(P,C,Ψ)∣ ≥ 1.

• Epistemic Consistency: U(P,C,Ψ) ⊆ Sat(C).

• Success: U(P,C,Ψ) ⊆ Sat(Ψ).

• Tautology: If P ∈ Sat(C) and Sat(Ψ) = Sat(⊺), then U(P,C,Ψ) = {P}.

• Contradiction: If Sat(C ∪Ψ) = ∅, then U(P,C,Ψ) = ∅.

• Update Representation Invariance: If Ψ1,Ψ2 are equivalent, i.e., Sat(Ψ1) = Sat(Ψ2), then
U(P,C,Ψ1) = U(P,C,Ψ2).

• Constraint Representation Invariance: If C1 and C2 are equivalent, i.e., Sat(C1) = Sat(C2), then
U(P,C1,Ψ) = U(P,C2,Ψ).

• Complete Representation Invariance: Update and Constrain Representation Invariance

• Idempotence: If U(P,C,Ψ) = {P∗}, then U(P∗,C,Ψ) = {P∗}.

Uniqueness guarantees that there is at most one candidate for the next epistemic state, and Complete-
ness states that there is at least one if the update is consistent. If both properties are satisfied, the next
epistemic state is uniquely defined whenever the update is consistent. Epistemic Consistency demands that
the constraints in our graph are maintained and Success demands that the next state satisfies the beliefs that
we updated with. Tautology states that updating with a tautological set of constraints should not change a
distribution otherwise meeting the constraints and Contradiction states that an inconsistent update should
yield the empty set. Representation Invariance guarantees that changing the syntactic representation of
updates and/or constraints does not change the outcome of the update. Finally, Idempotence demands that
a repeated update does not change beliefs.

In addition to the aforementioned properties, we can also consider the following optional postulates:

• Indiscrimination: U(P,C,Ψ) = U(P,C ∪Ψ,∅) = U(P,∅,C ∪Ψ)

• Conservatism: If P ∈ Sat(C ∪Ψ) then U(P,C,Ψ) = {P}

Indiscrimination states that new and existing information is treated in the same manner, which may
or may not be a desirable property depending on the setting and on whether the constraints and updating
formulae are jointly consistent. Conservatism states that performing an update with a piece of information
already consistent with our constraints should lead to no change.

3.1 Epistemic Distance Measures
The ability to compare the answers produced by various abstract argumentation approaches, be they exten-
sions, labelings or distributions, is valuable in many applications. This can be done, for example, through
subset relations or information orderings. In the context of this work, we will consider measuring distances
between probability distributions, which will be particularly relevant in guiding the distribution update pro-
cess. Our distance functions may not necessarily be metrics, but we assume that they satisfy the properties
explained below [37].

Continuity and convexity are defined as usual [69]. Formally, a function f ∶X → Y is called continuous
at a point c ∈ X if limx→c f(x) = f(c). Intuitively, this means that if x is close to c, f(x) must be close
to f(c) (the function graph does not make any jumps at c). f is called continuous if it is continuous on
the whole domain X . f is called convex if f(λ ⋅ x1 + (1 − λ) ⋅ x2) ≤ λ ⋅ f(x1) + (1 − λ) ⋅ f(x2) for all
λ ∈ [0,1]. Intuitively, convex functions have a non-decreasing curvature (the function graph of f has a
convex shape). In particular, there can be no non-global local minima. Therefore, convex functions are
particularly interesting for minimization purposes.
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Definition 3.2 (Epistemic Distance Function). An epistemic distance function is a function d ∶ Dist(G)×
Dist(G)→ R that satisfies

1. Positive Definiteness: d(P,P ′) ≥ 0 and d(P,P ′) = 0 iff P = P ′.

2. Continuity: d is continuous in the second argument.

3. Strict Convexity: d is strictly convex in the second argument.

Intuitively, the continuity guarantees that probability distributions that assign similar probabilities to
subsets of arguments have a low distance value. Strict convexity guarantees that there often is a unique so-
lution and no non-global local minima when we minimize the distance. The popular examples of epistemic
distance functions are the Least Squares distance and the Kullback-Leibler divergence.

• Least Squares Distance:
d2(P,P ′) = ∑E⊆Nodes(G)(P (E) − P ′(E))2.

• Kullback-Leibler divergence:
dKL(P,P ′) = ∑E⊆Nodes(G) P (E) ⋅ log

P (E)
P ′(E)

.

The KL-divergence is an example of an epistemic distance function that is not a metric (it does not
satisfy symmetry and the triangle-inequality). However, it still has some intuitive geometric properties and
is a popular measure to compare probability distributions [27]. In the following sections we will focus on
update functions that minimize some epistemic distance function to a prior belief state. In the definition
of optimization problems, “min f(x)” denotes the minimum function value that f takes over the feasible
region and “arg min f(x)” denotes the set of points where f takes this value. For instance, for a function
f(x) = x2 + 0.5, min f(x) = 0.5 and arg min f(x) = {0}.

3.2 Distance-minimizing Update Functions
We will now recall the distance-based update functions, i.e. functions that aim to minimize a certain notion
of distance between the old and the updated distribution(s) [37].

Definition 3.3 (Distance-minimizing Update Function). Given some epistemic distance function d, the
distance-minimizing update function with respect to d is defined as follows where P is the current belief
distribution, C is a set of constraints, and Ψ is the set of update formulae.

Ud(P,C,Ψ) = arg min
P ′∈Sat(C∪Ψ)

d(P,P ′)

for all finite sets of constraints C ⊆ LFormulae(G), finite sets of formulae Ψ ⊆ LFormulae(G) and proba-
bility distributions P ∈ Dist(G).

We observe that the distance minimizing update function is not well-defined for all kinds of formulae.
The analysis carried out in [37] considers appropriate fragments of the epistemic language and studies the
conditions under which at least one (and ideally, exactly one) updated distribution is produced, as well as
methods one may use in fragments that pose difficulties. The results can be summarized as follows.

Proposition 3.4. [Extended version of [37]] Every distance-minimizing update functions satisfies Epis-
temic Consistency, Success, Tautology, Contradiction, Update Representation Invariance, Constraint Rep-
resentation Invariance, Complete Representation Invariance, Idempotence, Indiscrimination, and Conser-
vatism.

Theorem 3.5. [Taken from [37]] In the fragment of non-strict epistemic axioms, every distance-minimizing
update function satisfies Uniqueness and Completeness. In the fragment of non-strict epistemic formu-
lae, every distance-minimizing update function satisfies Completeness. Uniqueness can be violated, but
∣Ud(P,Ψ)∣ ≤ k∗, where k∗ is the smallest number of conjunctions in all DNF representations of C ∪Ψ.
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P P (A) P (B) P (C) P (D)
P1 0.45 0.65 0.2 0.5

P2 = Ud2(P1,Ψ1) 0.67 0.65 0 1

P3 = Ud2(P2,Ψ2) 0.175 0.65 1 0.5

Table 1: Returning to Example 8, beliefs in arguments before and after updating the epistemic state with
new knowledge Ψ1 = {p(D) = 1, p(C) = 0} and Ψ2 = {p(C) = 1}.

Proposition 3.6. [Taken from [37]] Suppose that C ∪Ψ is from the fragment of non-strict epistemic formu-
lae. Let ⋁ki=1 Γi denote a DNF representation of C ∪Ψ. Let P∗i be the unique solution of Ud(P,Γi) and let
m∗ = min{d(P,P∗i ) ∣ 1 ≤ i ≤ k}. Then Ud(P,Ψ) = {P∗i ∣ d(P,P∗i ) =m∗} and ∣Ud(P,Ψ)∣ ≤ k.

Proposition 3.7. [Taken from [37]] Let C ∪Ψ contain arbitrary epistemic formulae. Let ⋁ki=1 Γi denote a
DNF of C ∪Ψ where negations have been eliminated. Let ⋁k

′

i=1 Γ′i denote the corresponding relaxed DNF.
For i = 1, . . . , k′, let P∗i be the unique solution of the optimization problem

min
P ′∈Sat(Γ′i)

d(P,P ′)

corresponding to the i-th conjunction Γ′i in the relaxed DNF. Let m∗ = min{d(P,P∗i ) ∣ 1 ≤ i ≤ k′} be the
minimum distance obtained among all P∗i . Then Ud(P,Ψ) equals

{P∗i ∣ 1 ≤ i ≤ k′, d(P,P∗i ) =m∗ and P∗i ∈ Sat(Γi)}.

Example 8. Let us continue Example 6. The first row in Table 1 shows the beliefs in arguments for our
initial epistemic state P1. Suppose that Terry can access the info app and learns that the train is indeed on
time. Furthermore, he also strongly believes that the train is travelling at its usual speed. We can model this
by an update with Ψ1 = {p(D) = 1, p(C) = 0}. The second row in Table 1 shows the beliefs in arguments
after updating P1 to P2 = Ud2(P1,Ψ1). Assume that a little bit later, the train has to slow down because
of bad weather conditions. The third row in Table 1 shows the beliefs in arguments after updating P2 with
Ψ2 = {p(C) = 1} to P3 = Ud2(P2,Ψ2). Note that the fact that the train slows down not only decreases
Terry’s belief in A, but also indirectly leads to a decrease in D, which can be seen as Terry no longer being
sure that the app showing the train on time indeed means the train will arrive on time.

Note, the above example also illustrates how an update changing the belief in one argument can cause
a change in belief in other arguments that are indirectly connected to (or even disconnected from) the other
arguments. There are three reasons for this situation.

First, we observe that the graph structure is not used to determine the influence of an argument on
the other arguments in the distance minimizing updates as defined above. Only the constraints are used to
determine the influence of an argument on the other arguments. Among others, Section 4 (and in particular,
Section 4.5.2) will provide examples of how the graph structure can be accounted for in an update. In the
next section we also propose a modification of the distance minimizing approach that limits the amount of
arguments that undergo belief change, though following a different principle.

Second, we argue that it is not only directly connected arguments that should affect each other. One of
the core concepts of bipolar argumentation is that the interactions between arguments, particularly mixtures
of attack and support, can give rise to new, indirect relations which do not always follow the directionality
of the edges in the graph (see [20, 57] for further analysis). Further analysis of relations between arguments
and how constraints can expose more interactions can be found in [38].

Last, but not least, one of the purposes of epistemic graphs is to model incomplete or imperfect sce-
narios. Consequently, it is possible that there is a disparity between the constraints and the graph. One
of the examples when such situations may arise is in dialogical argumentation, where as a starting point
we take an expert constructed argumentation graph. During the dialogue it can happen that the constraints
describing an agent’s reasoning pattern point to a different graph structure due to the fact that they process
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information differently due to, for instance, various types of bias. Updates performed using such constraints
can cause changes that we could see as clashing with the changes we would expect from the graph.

We thus observe that there can be good reasons for allowing (or not) changes in belief in a given
argument and that various methods have their merits. Our proposal in Section 4 will offer more ways of
controlling how beliefs of an agent are modified in contrast to the standard update methods.

3.3 Atomic Distance Minimization
Minimizing the distance between the sets of arguments to which probabilities are assigned is not the same
as minimizing the differences between the probabilities assigned to arguments themselves. Consequently,
[39, 37] has also considered atomic distance, i.e. ones that measure distance in terms of probability mass
assigned to arguments rather than sets. Although they do not satisfy epistemic distance requirements, they
can be used as a preprocessing step for other update functions in order to filter the candidate set.

Definition 3.8 (Weighted Atomic Distance). Let S ⊆ Nodes(G) be a set of arguments and let w ∶ S →
R+0 be a weight function assigning a non-negative weight to each argument in S. The weighted atomic
distance with respect to w is defined as dwAt(P,P

′) = ∑A∈S w(A) ⋅ ∣P (A) − P ′(A)∣.

Lemma 3.9. [Taken from [37]] If Γ is a conjunction of non-strict epistemic atoms, then the solutions of

arg min
P ′∈Sat(Γ)

dwAt(P,P
′)

correspond to the solution of the linear program

min ∑
A∈S

(δ+A + δ−A ) (1)

s.t. P ′ ∈ Sat(Γ)
w(A) ⋅ (P (A) − P ′(A)) = δ+A − δ−A for all A ∈ S
δ+A , δ

−

A ∈ Q+

0 for all A ∈ S

and form a compact and convex set.

Definition 3.10 (Atomic Distance-minimizing Update Function). Given some epistemic distance function
d and some weight function w ∶ S → R+0 over a subset of arguments S ⊆ Nodes(G), the atomic distance-
minimizing update function Uwd (P,C,Ψ) with respect to d is defined by the set of minimal solutions of
the optimization problem

min d(P,P ′)
s.t. P ′ ∈ Sat(C ∪Ψ)

∑
A∈S

(δ+A + δ−A ) =m∗

w(A) ⋅ (P (A) − P ′(A)) = δ+A − δ−A for all A ∈ S
δ+A , δ

−

A ∈ Q+

0 for all A ∈ S,

where m∗ is the minimum of all minima of (1) computed for all conjunctions of a relaxed DNF of C ∪Ψ.

With U1
d we will denote a distance minimizing function in which the weight function assigns value 1 to

every argument. This means that all atomic values are treated equally.

Theorem 3.11. [Extended version of [37]] Every atomic distance-minimizing update functions satis-
fies Epistemic Consistency, Success, Tautology, Contradiction, Update Representation Invariance, Con-
straint Representation Invariance, Complete Representation Invariance, Idempotence, Indiscrimination,
and Conservatism. In the fragment of non-strict epistemic formulae, Completeness is satisfied as well
and Uwd (P,Ψ) is guaranteed to be finite. In the fragment of non-strict epistemic atoms, Uniqueness is also
satisfied.
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P P (A) P (B) P (C) P (D)
P1 0.45 0.65 0.2 0.5
P2 = Ud2(P1,Ψ1) 0.5 0.65 0.36 1

P ′2 = U1
d2

(P1,Ψ1) 0.575 0.65 0.2 1

Table 2: Beliefs in arguments before and after updating the epistemic state with new knowledge Ψ1 =
{p(D) = 1} in Example 9.

Example 9. Let us continue Example 8 and let us consider a different update to the initial epistemic state.
Suppose another traveller tells Terry that the info app states that the train is indeed on time and that Terry
trusts his statement. We describe this with Ψ1 = {p(D) = 1}. By performing a least-squares update, we
obtain the distribution P2 and its beliefs in arguments are visible in Table 2. Although this distribution
satisfies our constraints and minimizes the overall change in probability mass, the increase in belief in C

might not be considered justified.
Let us now carry out this update using the atomic distance-minimizing update approach s.t. for every

argument X, w(X) = 1 (i.e. all atomic distances are treated equally). By performing an update with the
formula Ψ1 = {p(D) = 1}, we obtain the probability function P ′2 visible in the third row of Table 2. The
new probability assignments to arguments are now more intuitive than in the case of P2.

While definitely interesting, the work on distance minimizing update functions only gives a limited
way of constructing a new distribution. As we discussed in Section 1, constructing better models for
human reasoning requires richer update formalisms, and this is what we will consider in the next section.

4 Delegated Updates of Probability Distributions
In this section, we present our solution to the requirements raised in Section 1. For this, we introduce the
notion of delegated updates. These take the context of the update into account (as we explain in Section
4.1), and they delegate part of the process of finding an updated belief distribution to other functions (as
we explain in Section 4.2)

4.1 Contextual Information in Updates
Epistemic constraints can be used in order to model the reasoning patterns of the users, and such user
models can be later harnessed by automated persuasion systems, applications supporting decision making,
agent simulations and more. However, while particular patterns may hold for a given user in general, their
actual reactions may be subject to factors associated with the actual application. For instance, in a system
that engages in a discussion with a participant, we can consider the length of the dialogue (e.g. the user may
become exhausted), how much the system is trusted, emotional reactions to the arguments etc. Elements
unrelated to the system itself also have some impact. For example, we could expect that a person who
had a bad day so far will be less malleable than a well–rested participant in a good mood. Access to such
additional information could be harnessed by the system in order to, for example, decide whether to engage
in a dialogue and to better estimate the actual belief changes that a given dialogue move might lead to, thus
affecting the overall strategy.

Example 10. Consider three possible dialogues presented in Figure 5 between a user and three different
systems. In each case, the systems have access to weather forecasts.

Dialogue 1 Here, the system tries to engage in a dialogue with the user on Thursday afternoon. The
user is tired and somewhat impatient, thus ending the dialogue before an agreeable solution is found.

Dialogue 2 In this case we have a system that is aware of time and date and knows that during the
weekends (outside of evenings), the user does not mind engaging in longer dialogues as much as on
evenings or other days of the week. The system therefore tries to engage in a dialogue on Saturday
afternoon and a satisfactory solution is found.
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Dialogue 3 This system can measure the fatigue and emotional state of the user through video analysis.
The system realizes that the user is tired and that presenting more straining options is going to be met
with resistance or rejection. Thus, the system goes straight for the easier options, which is met with
more enthusiastic agreement than in Dialogue 2.

These are the kinds of dialogues that we might want to support in a computational persuasion system
for behaviour change. In the modelling of the argumentation, we want to represent the arguments as arising
in the dialogues, and we do not want to introduce arguments that cannot be exchanged. Therefore, we do
not want to introduce auxiliary arguments for the purposes of directly or indirectly defeating arguments
that are disbelieved by the agent, particularly that their effect can change throughout the dialogue and thus
necessitate updates to the graph as well as to the beliefs.

You have been trying to increase your
physical activity recently. Would you
perhaps like to go to the gym today?

I am not really in the mood for that.

That’s fine. Would going for a
walk be perhaps a better idea?

Yeah, I guess.

The forecasts show that the weather
is going to be sunny, you could
go for a walk along the river.

That’s a pretty long walk, I
don’t think I’m up for that.

⟨User terminated the dialogue⟩

(a) Dialogue 1

You have been trying to increase your
physical activity recently. Would you
perhaps like to go to the gym today?

I am not really in the mood for that.

That’s fine. Would going for a
walk be perhaps a better idea?

Sure.

The forecasts show that the weather
is going to be sunny, you could
go for a walk along the river.

That’s a pretty long walk, I
don’t think I’m up for that.

How about visiting the park next
to you? You could also pack

some lunch and make it a picnic.

That’s a nice idea, I might try that.

(b) Dialogue 2

You have been trying to increase your
physical activity recently. Would

you perhaps like to go for a walk?

I think that would be good.

How about visiting the park next
to you? You could also pack

some lunch and make it a picnic.

That’s a very good idea, thank you.

(c) Dialogue 3

Figure 5: Physical activity dialogues. The blue boxes represent statements made by the persuader and the
green boxes stand for statements made by the persuadee.

These additional requirements or pieces of information affect the way distributions are updated through-
out the discussion and a possible way to handle them is to consider an appropriate reasoning layer on top of
the methodology. In the next section we will therefore focus on the notion of a delegated update method,
which can be seen as an update method that, through harnessing possible additional information and other
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existing update methods, aims to produce a more refined output that would better reflect the actual be-
haviour of the person being modelled. In other words, by using delegated updates we are aiming for more
accurate prediction of the reasoning of a given individual.

However, In order to provide a definition of a delegated update, we need a way to describe the extra
input for the update that would take account of the internal features of the agent being modelled (e.g. their
emotional state, their attitude to new information, personality, and more) and the external features concern-
ing the agent being modelled (e.g. time of the day, date, or weather), as seen in Example 10. The range
of possible features is enormous and the exact choice of features to consider in practice depends on the
application. Nevertheless, it should be possible to represent them with some combinations of mathematical
objects (i.e. objects with a mathematical definition), such as functions, tuples, formulae, and more. For
instance, if we want to model an agent who resists updates, then we may use a function that decreases the
magnitude of the updates based on the information about the update. We will refer to these mathematical
objects as update parameters.

Notation 4.1. With Λ we denote a set of mathematical objects which we refer to as update parameters.

Update parameters can depend on the application, environment, sensory modules of the agent, and
more. For instance, we can consider statements about the weather weather(sunny), about the length
of the dialogue combined with the fatigue level of the user [length(1), fatigue(0.7)], or the epistemic
formulae corresponding to the exchanges made during a dialogue, such as ϕ ∶ p(A) = 1 → p(B) = 0. In
the rest of this paper, we will consider some specific mathematical objects and explain how they can reflect
various internal and external features of agents being modelled.

4.2 Towards Delegated Update
We now present our proposal for belief updates that meets the requirements we have set out so far in the
paper. In particular, in order to improve the produced results, it takes into account the context of the update
into account by using update parameters. We call it the delegated update method, as it can delegate to
multiple existing standard update functions in order to perform its tasks. We start by considering a simple
notation to represent sequences of elements of a given kind and length.

Definition 4.2. For a natural number j ≥ 1 and a set of elements T , Sequence(T, j) denotes the collection
of all j-tuples over T.

So, for example, given a set T = {t1, t2, t3}, Sequence(T,2) = {⟨t1, t1⟩, ⟨t1, t2⟩, ⟨t1, t3⟩, ⟨t2, t1⟩,
⟨t2, t2⟩, ⟨t2, t3⟩, ⟨t3, t1⟩, ⟨t3, t2⟩, ⟨t3, t3⟩}.

We can now propose the following definition of a delegated update function, which given a probability
distribution, existing constraints, an updating formula, and possible additional information, can adjust how
updates should be performed and delegates their actual execution to the underlying sequence of simpler
update methods.

Definition 4.3. Let G be a graph, U(G) the universe of update methods for G. Let Λ be the set of up-
date parameters. A delegated update function of degree n ≥ 1 for G is a function DU ∶ Dist(G) ×
Sequence(U(G), n) × 2LFormulae(G) × 2LFormulae(G) ×Λ→ 2Dist(G).

For particular instances of DU, in order to improve readability instead of writing ⟨U⟩ for a single
element sequence, we just write U.

Note, we do not consider in this paper how we would select a set of update parameters to model a spe-
cific agent. However, we envisage that based on the information known about the agent (e.g. moves made
in a dialogue, answers to questions, behaviour of similar agents in the past, and more) or the environment
(e.g. day of the week, time, or weather), an appropriate set of update parameters can be selected. In future
work, we intend to explore how such selection methods can be efficiently constructed from the available
data.

In order to illustrate why we need more sophisticated update methods than proposed in our previous
works, we examine the following scenario.
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A = The agent is trying to
increase physical activity.

B = Going to the gym
counts as increas-

ing physical activity.

C = Going for a walk
along the river counts as

increasing physical activity.

D = Going for a walk in the
park and have a picnic counts
as increasing physical activity.

+ + +

Figure 6: Labelled graph for Example 11. Edges labelled + denote support.

Example 11. Let us consider a possible formalization of the dialogues presented in Example 10. Assume
that the underlying labelled graph is as presented in Figure 6. We consider the following constraints C
in order to form an epistemic graph, which simply state that A is believed at least as well as any of its
supporters and that believing A implies believing at least one of the supporters.

• ψ1 ∶ p(A) − p(B) ≥ 0

• ψ2 ∶ p(A) − p(C) ≥ 0

• ψ3 ∶ p(A) − p(D) ≥ 0

• ψ4 ∶ p(A) > 0.5→ (p(B) ≥ 0.51 ∨ p(C) ≥ 0.51 ∨ p(D) ≥ 0.51)

Let us assume that we want to perform updates based on the system’s moves. The beliefs in arguments
in the resulting distribution can be then compared with user’s responses in order to verify the accuracy of the
approach. The epistemic constraints corresponding to the moves could, for example, be transformed into
the following updating formulae: Φ1 = {p(B) = 1}, Φ2 = {p(C) ≥ 0.51 ∨ p(D) ≥ 0.51}, Φ3 = {p(C) = 1}
and Φ4 = {p(D) = 1}. They can be seen as the system expecting the user to trust and agree with the made
proposals based on prior agreement to increase physical activity.

We can now consider starting with a uniform distribution and performing standard updates using the
above formulae. We observe that Dialogue 1 would corresponds to updates with Φ1,Φ2 and Φ3. Dialogue
2 extends this with an update with Φ4. Dialogue 3 corresponds to updates with Φ2 and Φ4. Consecutive
applications of these updates lead to types of distributions listed in Table 3. We observe that in some cases,
there can be more than one outcome, and we investigate possible distribution patterns in parallel.

We observe that both types of final distributions for Dialogue 1 (P3 and P ′3) are highly inaccurate. By
this we understand that if we contrasted the updated distributions with the actual user distribution, there
would be a high discrepancy in the beliefs in arguments. Based on the reactions of the user as expressed
in the dialogue, we can expect both B and C to be disbelieved, which is the opposite of what the final
distributions would tell us. A similar pattern occurs in Dialogue 2 (P4 and P ′4), despite the fact that the
dialogue ends successfully. Independently, based on the user’s answers, we can also observe that the
degrees of (dis)belief are more polarized than expected. Only in the case of Dialogue 3, the obtained final
distributions somehow reflect the user’s opinions on the arguments that were used in the exchange.

In order to improve this, we could consider examples of delegated updates that, based on additional
information, decrease or increase the beliefs in arguments in the updating formulae. For example, we can
imagine a delegated update method Y that, given the length of the dialogue, state of the user, time, and
weather, would transform the set Φ1 into a different one and delegate the execution to the standard update
function Ud2 :

Y (P0,U
1
d2
,C,Φ1, λ1) = U1

d2
(P0,C,{p(B) = 0.2})

where λ1 = [length(1), fatigue(0.7), date(16 ∶ 00 − 04AUG2018),weather(sunny)]
Instead of P2, this would produce the distribution P ′ s.t. P ′(A) = P ′(C) = P ′(D) = 0.5 and P ′(B) =

0.2, which can be seen as better reflecting the reluctance of the user expressed in Dialogues 1 and 2, and
makes it more justified to avoid performing this dialogue move.
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P P (A) P (B) P (C) P (D)
P0 0.5 0.5 0.5 0.5
P1 ∈ U1

d2
(P0,C,Φ1) 1 1 0.5 0.5

P2 ∈ U1
d2

(P1,C,Φ2) 1 1 0.51 0.5
P ′2 ∈ U1

d2
(P1,C,Φ2) 1 1 0.5 0.51

P3 ∈ U1
d2

(P2,C,Φ3) 1 1 1 0.5
P ′3 ∈ U1

d2
(P ′2,C,Φ3) 1 1 1 0.51

P4 ∈ U1
d2

(P3,C,Φ4) 1 1 1 1
P ′4 ∈ U1

d2
(P ′3,C,Φ4) 1 1 1 1

P∗2 ∈ U1
d2

(P0,C,Φ2) 0.51 0.5 0.51 0.5
P∗∗2 ∈ U1

d2
(P0,C,Φ2) 0.51 0.5 0.5 0.51

P∗4 ∈ U1
d2

(P∗2 ,C,Φ4) 1 0.5 0.51 1
P∗∗4 ∈ U1

d2
(P∗∗2 ,C,Φ4) 1 0.5 0.5 1

Table 3: Consecutive applications of updates from Example 11. In some cases, the updates may produce
more than one distribution. The table presents the resulting beliefs in arguments in these distributions and
not their full descriptions.

Please note that at this point we do not fully define how λ1 would give us this update - this is the subject
of the rest of this section. We also do not consider how update parameters such as fatigue can be monitored
and revised throughout the dialogue - we discuss this further in Section 6.

We observe that the accuracy issue of the distributions in the above example could be addressed by
performing updates after both system and user moves. While it would adjust the inaccurate distributions
after a move is made, it would not stop them from being flawed in the first place. This means that the
analysis of effects of possible dialogues moves by the system would still be inaccurate and could lead the
system to the select sub-optimal dialogue moves during the discussion.

4.3 Properties of Delegated Updates
Section 3 has introduced a number of postulates for epistemic update methods and the existing definitions
that can be easily adapted to delegated updates. However, while the idea behind the postulates does not
change in this new setting, the view on their desirability does. Although introduced for good reasons and
valuable from the analytical point of view, not all of these properties are realistic in the case of delegated
updates. Delegated updates aim to provide more life-like solutions, even if it means not meeting certain
theoretical requirements. In this section we will discuss which of the original postulates may or may not
be applicable to delegated updates and why.

Let us start with the properties that delegated updates should meet. Out of the previously proposed
postulates, Uniqueness and Completeness are perhaps the most desirable, as they guarantee unique answers
whenever possible.

• Uniqueness: ∣DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ)∣ ≤ 1.

• Completeness: If Sat(C ∪Ψ) ≠ ∅, then ∣DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ)∣ ≥ 1.

Unfortunately, depending on the situation, the remaining properties may not always be realistic. To
start with, while the Contradiction property is reasonable for update methods, it should not be enforced
in delegated updates. A delegated method is meant to improve upon the results of the standard methods,
which may include providing an answer when no good one exists. Attempting to resolve the inconsisten-
cies can lead to favouring existing formulae over the new ones and vice versa, thus easily violating the
Indiscrimination property as well.
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• Contradiction: If Sat(C ∪Ψ) = ∅ then DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) = ∅.

• Indiscrimination: DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) = DU(P, ⟨U1, . . . ,Un⟩,C ∪Ψ,∅, λ) = DU(P, ⟨U1,
. . . ,Un⟩,∅,C ∪Ψ, λ)

Other properties that may be easily violated are the Epistemic Consistency and Success. The cognitive
capacity of human agents is not infinite and their resistance or susceptibility to changes can mean that
some beliefs in arguments may be revised to a lesser or greater extent than expected. For example, in a
long discussion involving a chain of hundred arguments (and counterarguments, countercounterarguments
. . . ), it is unrealistic to expect that the change in the latest argument propagates back completely to the first
argument stated. Thus, while constraints can accurately describe how a given person sees relations between
arguments in general, the effects of a dynamic setting can lead to some of them being omitted or ignored.

• Epistemic Consistency: DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) ⊆ Sat(C).

• Success: DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) ⊆ Sat(Ψ).

The same human-centered perspective as with the previous properties can make the Tautology and
Idempotence less important. Consider a dialogue in which a persuadee tries to convince the persuader to
have a flu shot and after a while starts answering the queries of the persuadee with tautologies resembling
excluded middle. So, for example, a query “Is it true that the vaccine is safe to use?” is answered with
“It is..or it isn’t.”. After a series of such uninformative answers it is possible that the persuadee will
actually develop doubts and will be less likely to have the flu shot, which can violate both Tautology and
Idempotence properties. In a similar fashion, repetitive presentation of information that an agent already
agrees with may lead to some form of reinforcement of their beliefs, which contradicts the Conservatism
property.

• Tautology: If P ∈ Sat(C) and Sat(Ψ) = Sat(⊺) then DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) = {P}.

• Idempotence: If DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) = {P∗} then DU(P∗, ⟨U1, . . . ,Un⟩,C,Ψ, λ) = {P∗}.

• Conservatism: If P ∈ Sat(C ∪Ψ) then DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) = {P}

Finally, while in a purely logical setting, the Representation Invariance properties are important, in real
life situations it may not necessarily be the case that two logically equivalent, but syntactically different
formulae will be seen in the same way by an agent. For example, consider a dialogue in which the option
is to present the persuadee with two statements, one corresponding to a formula ϕ, and one to ψ, s.t. both
are in CNF, Sat(ϕ) = Sat(ψ), and ϕ is built out of a single clause and ψ out of 50. It is highly unlikely
that a human agent will process these formulae in the same manner. Thus, while we consider Constraint
Representation Invariance to be still desirable, Update (and thus Complete) Representation Invariance
might not be entirely realistic.

• Update Representation Invariance: If Ψ1,Ψ2 are equivalent, i.e., Sat(Ψ1) = Sat(Ψ2), then
DU(P, ⟨U1, . . . ,Un⟩,C,Ψ1, λ) = DU(P, ⟨U1, . . . ,Un⟩,C,Ψ2, λ).

• Constraint Representation Invariance: If C1 and C2 are equivalent, i.e., Sat(Ψ1) = Sat(Ψ2) and
Sat(C1) = Sat(C2), then DU(P, ⟨U1, . . . ,Un⟩,C1,Ψ, λ) = DU(P, ⟨U1, . . . ,Un⟩,C2,Ψ, λ).

• Complete Representation Invariance: Update and Constrain Representation Invariance

In addition to these postulates, we can also consider the property inheriting, which demands that prop-
erties satisfied by the update methods used in the delegated method carry over to the delegated method
itself. This can be easily formulated in the following manner, where V is any of the previously considered
properties:

• Inherited V: If for every Ui ∈ ⟨U1, . . . ,Un⟩, Ui satisfies the standard version of property V , then
DU satisfies the delegated version of V

So, for example, if we wanted DU to satisfy Inherited Completeness, then we would demand that if
every Ui satisfies Completeness, then DU satisfies Completeness as well.
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4.4 Hypothesized Belief Update
There are various ways one could define the delegated updates. In the context of this work, of particular
interest is modelling the behaviour of an agent believing an argument to a greater or lesser degree than
expected due to some factors that have lead to an increased susceptibility or resistance to opinion change.
We thus focus on delegated updates that alter the changes in beliefs in arguments, by which we understand
the differences in the belief in an argument before and after an update is performed. We note that doing so
we focus on reasoning in terms of probabilities of atomic arguments, which to humans can be more natural
than shifting masses assigned to sets of arguments. In this work, we will introduce updates that speak in
terms of adjusted and hypothesized belief, and start by explaining some of the core notions.

In order to perform an update, delegated or otherwise, we need at least an update function, a (current)
probability distribution, a set of constraints we want to obey, and an updating formula with respect to
which we want to perform the update.

Carrying out a (standard) update with the above information would, hopefully, yield a probability dis-
tribution. Such a distribution would not be taking into account any special circumstances that may have
affected the agent’s reasoning and as such would not necessarily be realistic. It is an example of a hypoth-
esized distribution, by which we understand an updated belief distribution that an agent would have if, for
example, no external factors were present, if the agent’s cognitive capacity was not limited, if they were
not resisting changes, and more. It can be seen as a form of somewhat idealized, “what if” reasoning. In
the context of this work we will focus on only one approach, however, other possible ways of obtaining
such distributions will be discussed in Section 6.

Since, the belief we would have in an argument in a hypothesized distribution might not necessarily
be realistic, it needs to be modified in order to account for the nature of the agent being modelled and the
wider context of the updates. The information of how the adjustment should be performed is stored in
an effect function, which tell us whether the difference in belief in an argument between the current and
hypothesized distribution needs to be decreased or increased. Such a function can be a constant factor,
or depend on the distance between arguments, or more, and we will discuss various options for such
functions in Section 4.5. By applying the effect function to the difference in beliefs between the current and
hypothesized distributions we finally obtain the adjusted belief, which is an updated belief that considers
the desired additional factors.

Example 12. Consider a simple graph with arguments A and B and a constraint p(B) > 0.5 → p(A) ≤ 0.5.
Assume that an agent has a probability distribution P1 s.t. P1(A) = 0.9 and P1(B) = 0.1 and that we want
to perform an update with the formula p(B) = 0.7. Normally, this would yield a probability distribution P2

s.t. P2(A) = 0.5 and P2(B) = 0.7. However, assume that the agent is in fact resisting changes and their
beliefs are updated only half as much as expected.

We therefore take P2 as the hypothesized distribution. We also create an effect function that assigns
the value of 0.5 to every argument in order to model the assumption that the difference in beliefs between
hypothesized and current distribution is cut in half. Thus, we are looking for a function P3 s.t. :

• P3(A) − P1(A) = 0.5 ⋅ (P2(A) − P1(A))

• P3(B) − P1(B) = 0.5 ⋅ (P2(B) − P1(B))

This means that we want P3(A) = 0.7 and P3(B) = 0.4. Given that this only tells us the beliefs in arguments,
not in the sets of arguments themselves, an appropriate standard update function can be used to find the
complete description of P3.

Let us now define things more formally. The hypothesized belief update function is a delegated update
function of the first degree (i.e. it delegates the execution of the updates only to a single update method). Its
first input elements are the update function to delegate to, the distribution to update, the set of constraints
that we need to obey, and the updating formulae. However, in order to work, it also needs the hypothesized
distribution, the effect function, and input for that function. With respect to the definition of the delegated
update function, they will form the elements of the update parameters set Λ.

We start by considering effect functions, which tells us how to adjust the changes in beliefs based on
the current situation. Following the intuitions from Example 11, this can encompass dialogue length, date,
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weather, and possibly more. In other words, the effect function will be a part of the hypothesized belief
that will process most of the additional information that we have discussed at the start of Section 4. We
thus assume a set Θ of suitable update parameters.

Definition 4.4. Let Θ be a set of update parameters. An effect function is a function δ ∶ Θ→ (Nodes(G)→
Q) that produces an assignment of rational numbers to arguments.

We observe that the assignments of effects to arguments are not limited to positive values or values
from [0,1]. An agent that is susceptible to change will change his beliefs more than expected and thus be
described with factors greater than 1. An agent with firmly established beliefs may exhibit backfire effect,
i.e. when challenged by contradictory evidence, their beliefs can get stronger. Hence, an expected increase
(decrease) in beliefs may turn out to be the opposite, and a factor smaller than 0 can be used to describe
this. In practice, argumentation has the potential of damaging our position or escalating disagreement
[25, 53, 54], which needs to be accounted for. A more detailed analysis of effect functions will be provided
in Section 4.5.

Let us now define the hypothesized belief update. For every argument in the graph, this method pro-
duces an atomic equality constraint, where the new belief that an argument is meant to be assigned is
obtained by modifying the change in beliefs between the current and hypothesized belief function. Finding
an appropriate updated distribution for these constraints is then delegated to the assumed update function.

Definition 4.5. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method, Ψ ⊆
LFormulae(G) a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized probabil-
ity distribution. Let δ be an effect function and θ ∈ Θ its input. The hypothesized belief update function
is defined as

HBU(P,U,C,Ψ, [H,δ, θ]) = U(P,∅,C′)
where C′ = {ψA ∣ A ∈ Nodes(G)} and

ψA ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p(A) = 1 P (A) + δ(θ)(A) ⋅ (H(A) − P (A)) > 1

p(A) = 0 P (A) + δ(θ)(A) ⋅ (H(A) − P (A)) < 0

p(A) = x where x = P (A) + δ(θ)(A) ⋅ (H(A) − P (A)) otherwise

We observe that with respect to the general delegated update definition, [H,δ, θ] are the elements of Λ.
We distinguish them with square brackets rather than round ones for readability purposes.

We can also observe that technically speaking, Ψ is not directly used by HBU. However, it will be used
in the production of the hypothesized distribution, and while indirectly, still has a significant impact on the
produced distribution. In particular, throughout this paper we will assume that H ∈ U(P,C,Ψ) (i.e. the
hypothesized distribution is a distribution we would obtain by applying the update in a standard manner)
and that an appropriate function can always be selected. The creation of more advanced approaches as
well as methods for selecting good hypothesized distributions, especially when dealing with updates that
produce no distributions at all, is a research problem in its own right. We discuss it in Section 6, however,
it is primarily left for future work.

Let us now consider an example of the hypothesized belief update.

A B C D
− − −

Figure 7: An argument graph

Example 13. Consider the graph from Figure 7. We assume the following set of linear constraints:

C = {ϕ1 ∶ p(D) + p(C) = 1, ϕ2 ∶ p(C) + p(B) = 1, ϕ3 ∶ p(B) + p(A) = 1}
We now start with a uniform distribution P0 which assigns the same probability to all sets of arguments.

As a result, every argument is believed with the degree of 0.5. Consider updating the distribution using
one of the standard update methods Ud2 and the update formulae Ψ1 = {p(A) = 0.9}. This yields the
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distribution P1, in which arguments are believed as stated in Table 4. Updating P1 with another singleton
set of formulae Ψ2 = {p(B) = 0.3} gives us the distribution P2.

Let us now assume that a certain resistance is taking place and let us take a function δ0.8
c s.t. given a

set of formulae Ψ, δc(Ψ) = g where g(A) = 0.8 for A ∉ FArgs(Ψ) and g(A) = 1 otherwise. In other words,
the person being modelled may agree with the information being presented, but (perhaps subconsciously)
somehow resists with fully propagating the changes caused by this information. By considering the updat-
ing formulae set Ψ1 and taking P1 as the hypothesized distribution, the adjusted belief constraints are as
follows:

C′1 = {p(A) = 0.9, p(B) = 0.18, p(C) = 0.82, p(D) = 0.18}
We can now use HBU in order to find a distribution P ′1 meeting the above properties and being a result of
an update from P0.

Let us now consider updating P ′1 with Ψ2 in the standard manner. This produces distribution H2, and
the degrees to which the arguments believed in it are listed in Table 4. We observe that while they are
identical to P2, the underlying distribution may not be2. Updating P ′1 with Ψ2 using HBU, where H2 is
taken as the hypothesized distribution, would make us search for a distribution P ′2 satisfying the following
constraints:

C′2 = {p(A) = 0.74, p(B) = 0.3, p(C) = 0.724, p(D) = 0.276}
Finally, let us consider how a different effect function would affect the results. In particular, let us

consider the function disxj (Φ) = g s.t. for F ∈ Nodes(G), g(F) = 0 if id(A,Φ) = ∞ and g(F) = xv where
v = max({id(A,Φ) − j,0}) otherwise. By id(A,Φ) we will understand the length of the shortest possible
path between A and any of the arguments in appearing in the formulae in Φ (we will discuss this more in
Section 4.5.2). For the purpose of this example, we set x = 0.8 and j = 1. It captures the idea of decreasing
the belief change in arguments with respect to the distance from the arguments participating in an update.
Let us start again with P0. Updating it with Ψ1 with P1 as the hypothesized distribution means we need to
satisfy the following formulae, and once more an appropriate distribution P ′′1 can be found with HBU:

C′3 = {p(A) = 0.9, p(B) = 0.1, p(C) = 0.82, p(D) = 0.244}

By updating P ′′1 with Ψ2 in a standard manner we obtain the distribution H ′

2, which has resulting
beliefs in arguments similar to P2, but a different underlying structure. Let us now consider updating P ′′1
with Ψ2 where H2 is taken as the hypothesized distribution. This means that the resulting distribution P ′′2
would need to satisfy the following:

C′4 = {p(A) = 0.7, p(B) = 0.3, p(C) = 0.7, p(D) = 0.289}

The resulting distributions are visible in Table 4, which allows us to compare the behaviours of different
effect functions.

Example 14. Let us extend Examples 10 and 11. Again, we assume that the underlying labelled graph is
as presented in Figure 6 and that the set of constraints C is as follows:

• ψ1 ∶ p(A) − p(B) ≥ 0

• ψ2 ∶ p(A) − p(C) ≥ 0

• ψ3 ∶ p(A) − p(D) ≥ 0

• ψ4 ∶ p(A) > 0.5→ (p(B) ≥ 0.51 ∨ p(C) ≥ 0.51 ∨ p(D) ≥ 0.51)

We recall we were performing updates with the sets Φ1 = {p(B) = 1}, Φ2 = {p(C) ≥ 0.51 ∨ p(D) ≥
0.51}, Φ3 = {p(C) = 1} and Φ4 = {p(D) = 1}. We focus on Dialogue 3 and associated updates with Φ2 and
Φ4. Let us now consider an effect function domain Θ = {(Ψ, length(L), fatigue(F ), date(D),weather(W )) ∣
Ψ ⊆ LFormulae(G), L ≥ 0, F ∈ [0,1],D is a date, W ∈ {sunny, cloudy, rainy, windy, snowy}}. L denotes
the length of the dialogue, and F denotes the degree to which the agent appears fatigued (the higher the
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P P (A) P (B) P (C) P (D)
P0 0.5 0.5 0.5 0.5
{P1} = U1

d2
(P0,C,Ψ1) 0.9 0.1 0.9 0.1

{P2} = U1
d2

(P1,C,Ψ2) 0.7 0.3 0.7 0.3

{P ′1} = HBU(P0,U
1
d2
,C,Ψ1, [P1, δ

0.8
c ,Ψ1)]) 0.9 0.18 0.82 0.18

{H2} = U1
d2

(P ′1,C,Ψ2) 0.7 0.3 0.7 0.3
{P ′2} = HBU(P ′1,U1

d2
,C,Ψ2, [H2, δ

0.8
c ,Ψ2]) 0.74 0.3 0.724 0.276

{P ′′1 } = HBU(P0,U
1
d2
,C,Ψ1, [P1, dis

0.8
1 ,Ψ1]) 0.9 0.1 0.82 0.244

{H ′

2} = U1
d2

(P ′′1 ,C,Ψ2) 0.7 0.3 0.7 0.3
{P ′′2 } = HBU(P ′′1 ,U1

d2
,C,Ψ2, [H ′

2, dis
0.8
1 ,Ψ2]) 0.7 0.3 0.7 0.289

Table 4: Distributions with and without diminishing effect functions applied from Example 13. We use the
set of formulae Ψ1 = {p(A) = 0.9} and Ψ2 = {p(B) = 0.3}, and effect functions δ0.8

c and dis0.8
1 as defined

in the example.

δ

Ψ length fatigue date weather A B C D

Φ1 1 0.7 16:00-04AUG2018 sunny -0.6 -0.6 -0.6 -0.6
Φ1 2 0.7 16:00-04AUG2018 sunny -0.8 -0.8 -0.8 -0.8
Φ1 3 0.7 16:00-04AUG2018 sunny -1 -1 -1 -1
Φ1 4 0.7 16:00-04AUG2018 sunny -1 -1 -1 -1

Φ2 1 0.7 16:00-04AUG2018 sunny 1.5 1.5 1.5 1.5
Φ2 2 0.7 16:00-04AUG2018 sunny 1.2 1.2 1.2 1.2
Φ2 3 0.7 16:00-04AUG2018 sunny 1 1 1 1
Φ2 4 0.7 16:00-04AUG2018 sunny 0 0 0 0

Φ3 1 0.7 16:00-04AUG2018 sunny 0.5 0.5 0.5 0.5
Φ3 2 0.7 16:00-04AUG2018 sunny 0 0 0 0
Φ3 3 0.7 16:00-04AUG2018 sunny -0.2 -0.2 -0.2 -0.2
Φ3 4 0.7 16:00-04AUG2018 sunny -0.4 -0.4 -0.4 -0.4

Φ4 1 0.7 16:00-04AUG2018 sunny 1 1 1 1
Φ4 2 0.7 16:00-04AUG2018 sunny 0.9 0.9 0.9 0.9
Φ4 3 0.7 16:00-04AUG2018 sunny 0.8 0.8 0.8 0.8
Φ4 4 0.7 16:00-04AUG2018 sunny 0.7 0.7 0.7 0.7

Table 5: Excerpt of the assignments of the effect function δ from Example 10.

degree, the more exhausted the agent is). Let δ be an effect function that, for the chosen input, produces
values as in Table 5.

The effect function describes the information that the system in Dialogue 3 has access to and we can
assume that the effects assigned to arguments could have been learned from previous interaction of the
system with the user and other similar participants. The system, based on the state of the user, can therefore
see that stating Φ1 will actually backfire and not only lead to a lack of positive change, it will make the
situation worse. The system can therefore choose to go with updates with formulae towards which the agent

2Recall that two different distributions may still have the same resulting beliefs in arguments. For instance, a distribution assigning
probability 0.5 to sets {A} and {B} will have the same beliefs in A and B as the one assigning 0.5 to {A,B} and 0.5 to ∅.
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has a more positive attitude, which in this case is Φ2 followed by Φ4. This would give us the distributions
listed in Table 6.

P P (A) P (B) P (C) P (D)
P0 0.5 0.5 0.5 0.5
H∗

2 ∈ U1
d2

(P0,C,Φ2) 0.51 0.5 0.51 0.5
P∗2 ∈ HBU(P0,U

1
d2
,C,Φ2, [H∗

2 , δ, θ1]) 0.515 0.5 0.515 0.5
H∗

4 ∈ U1
d2

(P∗2 ,C,Φ4) 1 0.5 0.515 1
P∗4 ∈ HBU(P∗2 ,U1

d2
,C,Φ4, [H∗

4 , δ, θ2]) 0.952 0.5 0.515 0.950

Table 6: Consecutive applications of updates from Example 14. The table presents the resulting beliefs in
arguments in selected distributions and not their full descriptions. We use the effect function δ given in Ta-
ble 5 and the inputs θ1 = (Φ2, length(1), fatigue(0.7), date(16 ∶ 00−04AUG2018),weather(sunny))
and θ2 = (Φ4, length(2), fatigue(0.7), date(16 ∶ 00 − 04AUG2018),weather(sunny)).

4.5 Effect Functions
There is quite a lot of freedom as to how δ effect functions used by HBU’s can be defined. Their specifi-
cation is crucial in obtaining new distributions through the hypothesized belief update and various options
can lead to various results. In the context of this work, we will be particularly focused on the following
three, non-exhaustive categories of functions: coefficient-based, distance-based, and progress-based types.

4.5.1 Coefficient-Based Effect Functions

The coefficient-based functions are the simplest possible effect functions and are meant to assign the same
effect values to arguments, with some possible exceptions. For instance, they can be used for expressing
that the general reluctance or susceptibility of an agent depends on external factors such as general mood,
weather, and more, that are unrelated to the actual content of the arguments. The regular method produces
a function that assigns the same effect to every argument. The other methods allow us to leave some
arguments out. The selective approach prevents adjusting effects from applying to the arguments appearing
in the input formulae, and the redundancy-free selective approach refines it by removing the protection from
arguments that are logically redundant in the formulae. By redundant we understand them as not appearing
in any of the minimal CNF representations of the formulae. For the functions we introduce, we set the
effect function domain Θ to be a collection of sets of epistemic formulae, however, we note that this does
not have to be the case for any other notions that can be developed in the future.

Definition 4.6. Let Θ = 2LFormulae(G) be a collection of sets of epistemic formulae and Φ ∈ Θ be a finite
set of epistemic formulae. Let x ∈ Q be a rational number. We introduce the following coefficient-based
effect functions:

• regular: δxp (Φ) = g where g(A) = x for A ∈ Nodes(G)

• selective: δxc (Φ) = g where g(A) = x for A ∉ FArgs(Φ) and g(A) = 1 otherwise

• redundancy-free selective : δxs (Φ) = g where g(A) = x for A ∉ MinFArgsCNF(Φ) and g(A) = 1
otherwise

We note that the input for δp does not play any role and is in fact redundant; nevertheless, for the sake
of uniformity, we keep the definition in its current form.

Example 15. Consider a sunny Saturday in the countryside where a group of friends (including Peter,
Jane, Susan, and John) have just arrived for a picnic in a hay field. Peter does not know John well but
Jane and Susan do. Suppose Peter overhears a confidential conversation between Jane and Susan regarding
John, as depicted in Figure 8. Jane says A, then Susan replies with B, and finally Jane concludes with
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C. Initially, Peter does not think too much about what has been said, but being optimistic by nature, he
may subconsciously form a probability distribution that assigns the following beliefs to the arguments:
P0(A) = 0.9, P0(B) = 0.1, and P0(C) = 0.9 (see Table 7). Furthermore, he is a rather logical reasoner, and
we can suppose that the constraints ϕ1 ∶ p(A) + p(B) = 1 and ϕ2 ∶ p(B) + p(C) = 1 represent how he sees
the relations between A, B and C.

A = John is going to have a great time as he loves picnics.

B = But John suffers from hay fever, and so a pic-
nic in the hay field will be unpleasant for him.

C = Don’t worry. John has taken an antihistamine medicine
for hay fever and therefore he won’t suffer from the pollen.

Figure 8: A dialogue between Jane (arguments A and C) and Susan (argument B) concerning their friend
John.

Now suppose that Peter looks across to John and sees that John is sneezing a lot, and his eyes are red
and swollen. This contradicts Peter’s current views and forces him to rethink his position. We can model
this with an update with the set Ψ = {p(B) = 0.9}.

If we were only concerned with Peter’s reasoning as expressed by the constraints, we would perform an
update in a standard way with Ud2 and obtain the distribution {H} = Ud2(P0,C,Ψ) where C = {ϕ1, ϕ2}
as presented in Table 7. We observe that H(A) = 0.1, H(B) = 0.9, and H(C) = 0.1. This is because
H(B) = 0.9 would reflect the update, and H(A) = 0.1 and H(C) = 0.1 would result from the constraints.

However, suppose Peter has a lot of faith in what his friends say and hence some reluctance to jump
to conclusions from his observations. This could be reflected by using a coefficient-based effect function
such as the regular function with x = 0.25. This would decrease the influence of the observation on the
belief in B, and as a consequence on A and C. Performing an update with the above effect function, H as the
hypothesized distribution and Ud2 as the underlying update method would yield the distribution P ′p visible
in Table 7. We observe that only a quarter of the expected change in beliefs occurs.

Let us now consider using selective effect functions rather then the regular one. We can observe that
the formula p(B) = 0.9 is as minimal as it can get, thus causing the both of the versions of this function
to behave in the same way (see P ′c and P ′s visible in Table 7). Since the selective effect functions only
limit the belief changes to arguments not explicitly stated in the update, we observe that in both cases B is
believed with the degree of 0.9, in contrast to 0.3 in the update with regular effect function.

In order to highlight the difference between the two selective functions, let us consider a slightly mod-
ified set of update formulae Ψ′ = {p(B) = 0.9 ∧ p(A) ≥ 0}. We observe that p(A) ≥ 0 is in fact a tautology
in epistemic language, and is completely redundant in this formula. Hence, Sat(Ψ) = Sat(Ψ′). Neverthe-
less, due to syntactical differences, performing an update with a selective effect function with Ψ yields a
different result than with Ψ′ (see P ′c versus P ′′c in in Table 7). Using the redundancy-free version of the
selective effect function does not exhibit this behaviour, which depending on the argumentation scenario
we are dealing with, may or may not be desirable.

4.5.2 Distance-Based Effect Functions

The distance-based effect functions vary the adjusting effect for an argument depending on a given notion
of distance between the argument and the updating formulae. Of particular interest are approaches in which
the effect of an argument depends on its graph-based distance from the arguments in the updating formulae.
For example, a function in which the effect decreases with respect to the distance can be used to reflect
the cognitive capacity of a given agent. Thus, in the context of this work, we will consider measuring the
distance between an argument and epistemic formulae with respect to a given epistemic graph. We will
understood it as the length of the shortest undirected path between the given argument and the arguments
contained either in the updating formulae or in a refinement of these formulae with respect to minimality.
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P P (A) P (B) P (C)
P0 0.9 0.1 0.9
{H} = U1

d2
(P0,C,Ψ) 0.1 0.9 0.1

{P ′p} = HBU(P0,U
1
d2
,C,Ψ, [H,δxp ,Ψ)]) 0.7 0.3 0.7

{P ′c} = HBU(P0,U
1
d2
,C,Ψ, [H,δxc ,Ψ)]) 0.7 0.9 0.7

{P ′s} = HBU(P0,U
1
d2
,C,Ψ, [H,δxs ,Ψ)]) 0.7 0.9 0.7

{P ′′p } = HBU(P0,U
1
d2
,C,Ψ′, [H,δxp ,Ψ)]) 0.7 0.3 0.7

{P ′′c } = HBU(P0,U
1
d2
,C,Ψ′, [H,δxc ,Ψ)]) 0.1 0.9 0.7

{P ′′s } = HBU(P0,U
1
d2
,C,Ψ′, [H,δxs ,Ψ)]) 0.7 0.9 0.7

Table 7: Effects of using different coefficient-based effect functions in Example 15. The table presents
the resulting beliefs in arguments in selected distributions and not their full descriptions. We assume that
C = {ϕ1, ϕ2}, Ψ = {p(B) = 0.9}, Ψ′ = {p(B) = 0.9 ∧ p(A) ≥ 0}, and x = 0.25.

Definition 4.7. LetX = (G,L,C) be an epistemic graph, A ∈ Nodes(G) an argument, and Φ ⊆ LFormulae(G)
a set of epistemic formulae. For arguments B and C, let sp(B,C) denote the length of the shortest path be-
tween B and C in G. W define the following:

• impact distance: id(A,Φ) = minE∈FArgs(Φ) sp(E,A)

• normalized impact distance: nid(A,Φ) = minE∈MinFArgsCNF(Φ) sp(E,A)

Example 16. Consider an epistemic graph based on a graph G s.t. Nodes(G) = {A,B,C,D} and Arcs(G) =
{(A,B), (B,C), (C,D)}. Consider a set of formulae Φ = {ϕ ∶ (p(A) = 1∧p(C) = 1)∨p(A) = 1}. We observe
that the minimal CNF of ϕ is ϕ′ ∶ p(A) = 1. Hence, FArgs(Φ) = {A,C} and MinFArgsCNF(Φ) = {A}. The
minimal distances between arguments in the graph and in the formulae according to given restrictions are
tabulated below.

A B C D

id(A,Φ) 0 1 0 1
nid(A,Φ) 0 1 2 3

There are various ways distance-based effect functions can be defined, however, in the context of this
work we consider the following two options, based on the above impact distances.

Definition 4.8. Let Θ = 2LFormulae(G) be a collection of sets of epistemic formulae and Φ ∈ Θ be a finite
set of epistemic formulae. Let ⟨Φ1, . . . ,Φn⟩ ∈ Θ be such a sequence, let j ≥ 0 be a natural number, and let
x ∈ [0,1] be a rational number. We introduce the following distance–based effect functions:

• decreasing: disxj (Φ) = g s.t. for A ∈ Nodes(G),

g(A) =
⎧⎪⎪⎨⎪⎪⎩

0 id(A,Φ) =∞
xv where v = max({id(A,Φ) − j,0}) otherwise

• redundancy-free decreasing: s-disxj (Φ) = g s.t. for A ∈ Nodes(G),

g(A) =
⎧⎪⎪⎨⎪⎪⎩

0 nid(A,Φ) =∞
xv where v = max({nid(A,Φ) − j,0}) otherwise
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A = Healthcare staff taking the annual flu vaccine will be ben-
eficial for patient care and should be made compulsory.

B = Healthcare staff are too busy dealing with patients
and do not have the time to take the annual vaccination.

C = Healthcare staff can infect patients and so their work with patients can be counter-productive.

D = The majority of healthcare staff have no face-to-face contact with patients.

E = The majority of healthcare staff are in the same building, breathing the
same air, sharing the facilities, touching the same surfaces, as the patients.

F = There are hand disinfectant dispensers around the health-
care buildings that can be used to inhibit the spread of infection.

G = Most people do not use the hand disinfectant dispensers.

Figure 9: Example of an argument graph concerning influenza vaccination for healthcare staff

In the above definition, x plays the role of a base factor for the changes, and j adjusts the point from
which the effects should be applicable. In other words, for j = 0, only the arguments present in the
formulae (or, where appropriate, in their refinements with respect to minimality) will be unaffacted by
adjusting effects. For j = 1, it is both these arguments and their direct neighbours, and so on. We also
assume that if the arguments in the formulae are disconnected from a given argument in the graph, then
they have no effect on it.

Example 17. Consider the argument graph in Figure 9. Suppose that a politician in a debate is trying to
persuade her colleague to accept argument A. Also suppose she assumes that her colleague has low belief
in A, high belief in B, and undecided about the other arguments (perhaps he is unlikely to have given them
much thought, or she simply does not know what he may think). This could be represented by with a
distribution PS as listed in Table 8. She knows he can be somewhat radical in his reasoning and decides to
represent his general reasoning pattern with constraints of the form p(X) + p(Y) = 1 where X and Y are the
attacked and the attacking arguments respectively. We can gather these constraints in a set C.

Now suppose the politician wants to choose an argument to present to the said colleague. So she could
choose to present one of C, E, or G, with the expectation that she gets him to fully believe the presented
argument, and by a chain reaction, believe argument A. We can therefore consider the update formulae
Ψ1 = {p(C) = 1}, {p(E) = 1} and {p(G) = 1}, and if we were to use a standard update method such as Ud2 ,
we would obtain the distributions PC, PE and PG in which the arguments are believed as listed in Table 8.

We can observe that the resulting beliefs in arguments are the same and can be seen as describing the
status associated with arguments under one of the classical Dung’s semantics [30, 17]. This may not be
entirely intuitive. An update with p(C) = 1 will influence A via one intermediate argument (namely B) and
we may expect that the influence will be quite strong. However, the update with p(G) = 1 will influence
A via 5 intermediate arguments (namely B, C, D, and E) and we may expect that the influence on A will be
substantially weaker than in the previous case, perhaps even more so because we believe that the colleague
has not given these arguments much thought anyway.

We can capture this using a distance-based effect function, such as the decreasing one dis0.8
0 . For

instance, for dis0.8
0 (Ψ1) we obtain the following assignment:

g(A) = 0.64, g(B) = 0.8, g(C) = 1, g(D) = 0.8, g(E) = 0.64, g(F) = 0.512, g(G) = 0.4096
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P P (A) P (B) P (C) P (D) P (E) P (F) P (G)
PS 0.1 0.9 0.5 0.5 0.5 0.5 0.5
{PC} = U1

d2
(PS ,C,Ψ1) 1 0 1 0 1 0 1

{PE} = U1
d2

(PS ,C,Ψ2) 1 0 1 0 1 0 1
{PG} = U1

d2
(PS ,C,Ψ3) 1 0 1 0 1 0 1

{P∗C } = HBU(PS ,U1
d2
,C,Ψ1, [PC, dis0.8

0 ,Ψ1]) 0.676 0.18 1 0.1 0.82 0.244 0.705
{P∗E } = HBU(PS ,U1

d2
,C,Ψ2, [PE, dis0.8

0 ,Ψ2]) 0.469 0.439 0.82 0.1 1 0.1 0.82
{P∗G } = HBU(PS ,U1

d2
,C,Ψ3, [PG, dis0.8

0 ,Ψ3]) 0.336 0.605 0.705 0.244 0.82 0.1 1

Table 8: Differences between performing standard and hypothesized belief updates with distance-based
effect functions.

Whereas for dis0.5
0 (Ψ3) we obtain the following effect function.

g(A) = 0.262144, g(B) = 0.32768, g(C) = 0.4096, g(D) = 0.512, g(E) = 0.64, g(F) = 0.8, g(G) = 1

By taking PC, PE and PG as the hypothesized distributions, we would obtain the starred distributions
from Table 8. From this, the assumption of degradation in influence over a sequence of arguments strongly
suggests that the politician should use argument C rather than e.g. argument G.

4.5.3 Progress-Based Effect Functions

Progress-based effect functions are meant to vary the effects based on some notion of “progress”, such
as the number of the performed updates, which can be seen as corresponding to discussion length in a
dialogical setting. As an example we consider the cvcl-success-rate, taken from the CMV success rate with
respect to the number of exchanged messages between discussion participants [71]. The results show that
the susceptibility of an agent to opinion change behaves non–monotonically with respect to the length of
the dialogue. In particular, it initially increases as the dialogue progresses, only to virtually drop to 0 after
five exchanges. Although the success rate of a dialogue and the susceptibility of an agent are related, but
not the same thing, we believe this non-monotonism is worth highlighting and studying further.

Definition 4.9. Let M > 0 be a natural number denoting the maximum number of sets of formulae to be
considered. Let Θ = ⋃Mi=1 Sequence(2LFormulae(G), i) be a collection of sequences of sets of epistemic
formulae of length at most M . We introduce the following progress–based function:

• cvcl-success-rate: sc(⟨Φ1, . . . ,Φn⟩) = g s.t. for every argument A ∈ Nodes(G),

g(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.033 n = 1

0.051 n = 2

0.058 n = 3

0.053 n = 4

0.0003 n = 5

0 otherwise

In other words, depending on how many updates we have performed so far, the amount by which
we can change the agent’s beliefs differs. In particular, after a certain number of steps, no changes can
occur anymore and the adjusting effects drop down to 0. Please note that the numbers we present are
approximations extracted from the results presented in [71]. In the future, we can also consider functions
with more monotonic behaviour, as exemplified in the following scenario.

Example 18. Consider a school student with a fondness for junk food getting repeatedly told to stop eating
it, for instance:

A = Stop eating junk food, it is bad for your health.
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This repeated message may come from different sources such as his parents, his sports coach, his doctor,
etc. Each time the health message is presented, we may represent it with a formula set Ψ = {p(A) = 1} and
update the model of the student. In other words, when the student gets this message, he would consider
its argument true (i.e. the belief is A is 1). However, being directly told to do or not to do something can
be met with certain resistance, perhaps even more so in the case of teenagers. While we can expect that
initially the student will revise his opinions to some extent, it is possible that there comes a point that the
more this message is repeated, the angrier the student becomes. As a result, he may completely oppose any
belief changes stemming from Ψ, or even start behaving in a contrary manner.

We can represent this behaviour by a progress-based function δ s.t. resistance to changes increases with
the length of the sequence of messages.

• Suppose initially the student has the belief distribution P0 such that P0(A) = 0.3.

• Now suppose that after the first message, we perform an update with Ψ and that δ(⟨Ψ⟩)(A) = 0.5.
We can let the hypothesized distribution be such that H1(A) = 1. Hence, the hypothesized belief
update would yield a distribution P1 where P1(A) = 0.65.

• After the second message, we again perform an update with Ψ and take H1 as our hypothesized
distribution. However, this time, δ(⟨Ψ,Ψ⟩)(A) = 0.1. Hence, P2(A) = 0.685.

• After the third message, the student gets defensive and displeased. We thus take δ(⟨Ψ,Ψ,Ψ⟩)(A) =
−0.3 and performing an update with Ψ and H1 leads to a distribution P3 s.t. P3(A) ≈ 0.59.

Please note that the above resisting behaviour is not the only one possible. There are also dual examples
where the susceptibility can increase rather than decrease based on the progression of the dialogue. For
instance, it is common that the more news sites report on a certain event or the more people share with us
the same piece of gossip, the more likely we are to believe it. Another example is advertising. We can
expect that people exposed to advertisements promoting a given smartphone, who see more people using
this smartphone, and who have friends recommending it, will be more likely to purchase one. The effect
can also occur in psychotherapy, when an initially resisting patient eventually starts reflecting on their
behaviour and becomes more compliant and open. We will investigate susceptibility increasing progress-
based effect functions in the future.

4.5.4 Properties of Effect Functions

Effect functions can be classified based on the assignment functions they produce. For example, we can
distinguish the following effect functions.

Definition 4.10. Let δ ∶ Θ→ (Nodes(G)→ Q) be an effect function. Then δ is:

• a diminishing effect function if for every θ ∈ Θ and A ∈ Nodes(G), 0 ≤ δ(θ)(A) ≤ 1

• a boosting effect function if for every θ ∈ Θ and A ∈ Nodes(G), δ(θ)(A) ≥ 1

• a contrary effect function if for every θ ∈ Θ and A ∈ Nodes(G), δ(θ)(A) ≤ 0

• an altering effect function if it is neither diminishing nor boosting nor contrary

• a neutral effect function if for every θ ∈ Θ and A ∈ Nodes(G), δ(θ)(A) = 1

• an impervious effect function if for every θ ∈ Θ and A ∈ Nodes(G), δ(θ)(A) = 0

• a uniform effect function if for every θ ∈ Θ, there exists a value x ∈ Q s.t. for every A ∈ Nodes(G),
δ(θ)(A) = x

• a constant effect function if there exists a value x ∈ Q s.t. for every θ ∈ Θ and every A ∈ Nodes(G),
δ(θ)(A) = x
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With Dim(Θ,G) (resp. Boost(Θ,G), Cont(Θ,G), Alt(Θ,G), Neu(Θ,G), Imp(Θ,G), Uni(Θ,G) and
Con(Θ,G)) we denote the collections of effect functions on Θ and G that are diminishing (resp. boosting,
contrary etc.). With E(Θ,G) we denote the collection of all effect functions on Θ and G.

The diminishing and boosting effect functions respectively decrease and increase the change in beliefs
that would have occurred without such effects. The contrary effect function can be used to represent the
reasoning of a person who, when told to do something, does the opposite. An altering function is simply
one that, at different points, can exhibit any of these features. A neutral effect function is one that in no way
affects the changes in belief and the adjusted distribution will be the same as the hypothesized one. The
impervious function represents a person who refuses to change their mind independently of the provided
information. In other words, the adjusted distribution will always be the same as the one we wanted to
update. Finally, uniform and constant effect functions represent the reasoning in which all arguments are
assigned the same effects, independently of their nature - the uniform approach simply adjusts the effect
depending on the input, while the constant function does it across all inputs.

We can observe that the following relations hold between our properties (see also Figure 10):

Impervious
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Figure 10: Relationships between the types of effect functions presented as a Venn diagram. Note that the
set of impervious function is the intersection of the contrary and diminishing function sets and that the set
of neutral functions is the intersection of the diminishing and boosting function sets.

Proposition 4.11. Let Nodes(G) ≠ ∅ and ∣Θ∣ > 1. The following hold:

• Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G) ∪Alt(Θ,G) = E(Θ,G)

• Dim(Θ,G) ∩Boost(Θ,G) = Neu(Θ,G)

• Dim(Θ,G) ∩ Cont(Θ,G) = Imp(Θ,G)

• Con(Θ,G) ⊂ Uni(Θ,G)

• Con(Θ,G) ⊂ Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G)

• Uni(Θ,G) ⊆ Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G) ∪Alt(Θ,G)

• if ∣Nodes(G)∣ ≥ 2, then Uni(Θ,G) ⊂ Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G) ∪Alt(Θ,G)

Let us now consider if and how the functions we have introduced satisfy the above properties. We
assume we are working with non-empty and finite graphs. We start by considering the coefficient-based
effect functions and observe that by restricting the values of parameter x, we can create functions with the
desired properties.

Theorem 4.12. The conditions in Table 9 hold.
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δxp δxc δxs

Diminishing 0 ≤ x ≤ 1 0 ≤ x ≤ 1 0 ≤ x ≤ 1

Boosting x ≥ 1 x ≥ 1 x ≥ 1

Contrary x ≤ 0 Never Never
Altering Never x < 0 x < 0

Neutral x = 1 x = 1 x = 1

Impervious x = 0 Never Never
Uniform Always x = 1 x = 1

Constant Always x = 1 x = 1

Table 9: Conditions on x under which the listed coefficient-based functions satisfy the given properties.
The table should be read as “For values of x stated in the cell, the effect function in the column satisfies the
property in the row”. “Never” and “Always” entries mean that there is no value for x (resp. for every value
of x) that would make the effect function meet the desired property.

Let us now consider the distance-based functions. Due to the fact that in order to measure the distance
between formulae and arguments we are relying on the structure of the graph in consideration, the actual
properties of the functions depend not only on parameters x and j, but also on how connected a given graph
is, as seen in Table 10. Finally, we can consider the cvcl-success-rate function, which is easily classified as
a uniform and diminishing function (and in one special case, as a constant one as well).

Theorem 4.13. Let {sp(A,B) ∣ A,B ∈ Nodes(G) and A,B are connected} be the set of lengths of shortest
paths between all connected nodes in G. Let W denote the maximal value of that set. Let M > 0 be a
natural number denoting the maximal number of sets of formulae to be considered for cvcl-success-rate
function. The conditions in Table 10 hold.

disxj and s-disxj cvcl-success-rate

Diminishing Always Always
Boosting G is connected and (x = 1 or j ≥W ) Never
Contrary Never Never
Altering Never Never
Neutral G is connected and (x = 1 or j ≥W ) Never

Impervious Never Never
Uniform G is connected and (x = 1 or j ≥W ) Always
Constant G is connected and (x = 1 or j ≥W ) M = 1

Table 10: Conditions on G, x and j under which the listed distance-based functions satisfy given properties
and conditions on M under which the cvcl-success-rate progress function satisfies given properties. The
table should be read as “Under the conditions stated in the cell, the effect function in the column satisfies
the property in the row”. “Never” and “Always” entries mean that there are no restrictions on G, j and x
(or M ) (resp. for all possible scenarios) that would make the effect function meet the desired property.

There are further properties that one can investigate, particularly assuming there exist means of com-
paring the elements of Θ. This can include topics such as monotonicity, and we will investigate this in the
future. We close this section with an example comparing the proposed effect functions.

Example 19. Consider the argument graph from Figure 11 and assume the following set of constraints C:

• ϕ1 ∶ p(A) + p(C) = 1

• ϕ2 ∶ p(B) + p(E) = 1
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Figure 11: An argument graph

• ϕ3 ∶ p(F) − p(D) + 0.5 ⋅ p(C) + 0.5 ⋅ p(E) ≥ 0

• ϕ4 ∶ p(F) + 0.5 ⋅ p(C) + 0.5 ⋅ p(E) ≤ 1

We now update a uniform distribution P0 with a singleton formulae set Ψ = {p(A) = 0.3∧ p(B) = 0.1} and
see how different effect functions may change the result. We consider the following distributions, presented
in Figure 12:

• P0 - starting uniform distribution

• {P1} = Ud2(P0,C,Ψ)

• {P2} = HBU(P0,U
1
d2
,C,Ψ, [P1, δ

0.6
c ,Ψ])

• {P3} = HBU(P0,U
1
d2
,C,Ψ, [P1, δ

0.6
p ,Ψ])

• {P4} = HBU(P0,U
1
d2
,C,Ψ, [P1, δ

1.5
c ,Ψ])

• {P5} = HBU(P0,U
1
d2
,C,Ψ, [P1, δ

1.5
p ,Ψ])

• {P6} = HBU(P0,U
1
d2
,C,Ψ, [P1, dis

0.8
0 ,Ψ])

• {P7} = HBU(P0,U
1
d2
,C,Ψ, [P1, sc, ⟨Ψ⟩])

4.6 Hypothesized Belief Update Properties

Let us now consider the properties of HBU. We first observe that the set of constraints C′ produced by
HBU is a set of equality atoms, one atom per argument. Such a set of atoms is always satisfiable [41]:

Proposition 4.14. Let B = {B1, . . . ,Bk} ⊆ Nodes(G) be a non-empty set of arguments and let Ψ =
{p(B1) = x1, . . . , p(Bk) = xk}, where xi ∈ [0,1], be a set of non-strict epistemic atoms. Then Sat(Ψ) ≠ ∅.

According to the definition of HBU (Definition 4.5), only such a set of constraints will be passed to the
underlying update function. This is due to the fact that the hypothesized distribution is taken as input, rather
than produced internally. This leads us to the observation that as long as the update function U satisfies
Uniqueness or Completeness, so does HBU:

Proposition 4.15. Hypothesized belief update satisfies Inherited Uniqueness and Inherited Completeness.

However, just because U may not meet Uniqueness or Completeness (or at least, not for all possible
inputs), it does not mean that HBU does not. This means as long as the underlying update method to which
HBU is delegating meets these properties in the fragment of non-strict epistemic atoms (i.e. not necessarily
for the whole language), HBU will always produce exactly one answer.

Proposition 4.16. If hypothesized belief update delegates to an update function that satisfies Uniqueness
and Completeness in the fragment of non-strict epistemic atoms, then it always produces exactly one dis-
tribution.
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Figure 12: Beliefs in arguments in different possible updated distributions from Example 19.

We note that lack of Uniqueness and Completeness guarantees on the non–strict epistemic atom lan-
guage fragment will lead to lack of such guarantees for HBU, independently of the language fragment of
the constraints and update formulae.

The above property also implies the Uniqueness and Completeness of HBU when delegating to the
update functions that satisfy Uniqueness and Completeness in the fragment of non-strict epistemic atoms.
However, we observe that it represents a stronger influence due to the fact that Contradiction is violated.
Additionally, given the results in Theorems 3.5 and 3.11, we can also state the following.

Corollary 4.17. If hypothesized belief update delegates to an (atomic or standard) distance-minimizing
update function, then it always produces exactly one distribution.

Nevertheless, without any restrictions on the nature of U, neither Uniqueness nor Completeness can
be guaranteed for HBU. There might also be update functions that will lead to HBU satisfying the Con-
tradiction property (e.g. consider a trivial update function that for every input returns ∅), though based
on Proposition 4.16, such functions would not give us any guarantees even on the simplest fragment of
epistemic language. This can be summarized as follows.

Proposition 4.18. The hypothesized belief update is not guaranteed to satisfy Inherited Contradiction. If
the update function to which HBU delegates satisfies Completeness, then it cannot satisfy Contradiction.

Since HBU depends primarily on the hypothesized distribution and the effect function, then as long
as these components and the input distribution and update function remain the same, then the order or
the way in which the existing constraints and updating formulae are passed makes no difference. Thus,
Indiscrimination and various Representation Invariance properties are trivially satisfied by HBU:

Proposition 4.19. The hypothesized belief update function satisfies Indiscrimination, Update Representa-
tion Invariance, Constraint Representation Invariance, Complete Representation Invariance and their in-
herited versions.

However, we would like to observe that satisfaction of these properties in the hypothesized belief update
methods is not necessarily informative. The actual information that we use to guide the update is stored
within the [H,δ, θ] tuple, and as seen in Section 4.5, the effect function input θ can be the set of update
formulae themselves. Consequently, any input change concerning Ψ should be paired with a change in
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θ in order to obtain meaningful executions. The above properties do not account for this and in order
to have a full picture, one should ensure that the chosen effect functions would produce the same effects
independently of the Ψ syntax and the choice of a hypothesized distribution would not rely on it either.

The properties we have considered so far concerned the number of answers that HBU could produce
and the dependence of the answers on, for example, syntactical, features of the input. Hence, the results
depended primarily on the update function U or were trivially satisfied. However, there are also properties
such as Success, which force certain dependencies between input and output of the update functions, and
their satisfaction in many cases goes against the intuition of hypothesized belief updates. We therefore
observe that they are easily, and purposefully, violated.

Proposition 4.20. HBU is not guaranteed to satisfy any of Epistemic Consistency and Success or their
inherited versions.

We notice that this violation can also happen even with the least intrusive update functions, and this is
due to the way the adjusted belief constraints C′ from Definition 4.5 are formed (see Example 20). While it
is possible that these properties can be salvaged in simpler classes of epistemic graphs, further investigation
is left for future work.

Example 20. Let us consider a graph on arguments {A,B}, a uniform probability distribution P0, empty
set of constraints C = ∅ and set of update formulae Ψ = {p(A ∧ B) = 0.5}. Performing an atomic-
distance minimizing update yields the distribution P1 listed in Table 11 (we take a simple weight functionw
assigning 1 to every argument). Even though P1 ≠ P0, we observe that P1(A) = P0(A) and P1(B) = P0(B).
By taking P1 as a hypothesized distribution for HBU and a neutral regular function δ1

p , we obtain the
distribution P2 which is identical to P0. This is due to the fact that the produced adjusted beliefs constraints
would be p(A) = 0.5 and p(B) = 0.5, which P0 already satisfies. Consequently, even though P1 and P2

may be equivalent in terms of beliefs they assign to arguments, their structure is different and P2 is not a
satisfying distribution of Ψ.

P P (∅) P ({A}) P ({B}) P ({A,B})

P0 0.25 0.25 0.25 0.25

{P1} = U1
d2

(P,C,Ψ) 0.5 0 0 0.5

{P2} = HBU(P0,U
1
d2
,C,Ψ, [P1, δ

1
p ,Ψ]) 0.25 0.25 0.25 0.25

Table 11: Violation of Epistemic Consistency and Success in delegated updates in Example 20.

Fortunately, the Tautology, Conservatism and Idempotence properties can be satisfied as long as some
restrictions are put on the hypothesized distribution, or the effect function and the update function we
delegate to.

Proposition 4.21. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method,
Ψ ⊆ LFormulae(G) a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized
probability distribution. Let δ be an effect function and θ ∈ Θ its input. If δ is neutral or impervious and U
satisfies Conservatism, then HBU satisfies Idempotence.

Proposition 4.22. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method,
Ψ ⊆ LFormulae(G) a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized
probability distribution. Let δ be an effect function and θ ∈ Θ its input. If H ∈ U(P,C,Ψ) and U satisfies
Conservatism, then HBU satisfies Conservatism.

Proposition 4.23. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method,
Ψ ⊆ LFormulae(G) a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized
probability distribution. Let δ be an effect function and θ ∈ Θ its input. If H ∈ U(P,C,Ψ) and U satisfies
Tautology and Conservatism, then HBU satisfies Tautology.
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Our results are summarized in Table 12, where we list the properties that HBU can satisfy depending
on the update functions it delegates to.

Property U Ud Uwd

Uniqueness × ✓ ✓
Completeness × ✓ ✓

Epistemic Consistency × × ×
Success × × ×

Tautology H I I

Contradiction × × ×
Update Representation Invariance ✓ ✓ ✓

Constraint Representation Invariance ✓ ✓ ✓
Complete Representation Invariance ✓ ✓ ✓

Idempotence × I I I I

Indiscrimination ✓ ✓ ✓
Conservatism H I I

Inherited Uniqueness ✓ ✓ ✓
Inherited Completeness ✓ ✓ ✓

Inherited Epistemic Consistency × × ×
Inherited Success × × ×

Inherited Tautology H I I

Inherited Contradiction × × ×
Inherited Update Representation Invariance ✓ ✓ ✓

Inherited Constraint Representation Invariance ✓ ✓ ✓
Inherited Complete Representation Invariance ✓ ✓ ✓

Inherited Idempotence HH I I I I

Inherited Indiscrimination ✓ ✓ ✓
Inherited Conservatism I I I

Table 12: Satisfaction of delegated update function properties by HBU based on the nature of the update
function it delegates to (arbitrary, distance minimizing, and atomic distance minimizing).
I - under some assumptions as to the hypothesized distribution
H - under some assumptions as to the hypothesized distribution and the update function
II - under some assumptions as to the effect function
HH - under some assumptions as to the effect function and the update function

5 Related Work
Epistemic graphs are a generalization of epistemic probabilistic argumentation to a setting with more ad-
vanced relations between arguments. In [38] it was shown how the epistemic postulates [72, 34, 40, 58]
and abstract dialectical frameworks [15, 47], which themselves generalize a wide range of existing argu-
mentation formalisms [56], can be expressed within epistemic graphs. The ability to represent constraints
not limited to arguments that are directly connected in the graph also allows epistemic graphs to handle
constrained argumentation frameworks [26].
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5.1 Weighted, Gradual, and Ranking-based Semantics
Given the fine–grained nature of the epistemic approach, it is natural to compare our proposal to the graded
and ranking–based semantics proposed for a number of argumentation frameworks [2, 3, 4, 5, 6, 7, 13,
18, 19, 45, 65, 28, 10, 61, 63, 64]. Although in most of these approaches what the semantics produce can
be seen as “assigning numbers from [0,1]” to arguments (either as a side or end product), probabilities
in the epistemic approach are interpreted as belief, while in the remaining works they are typically left
abstract. Thus, many of the postulates set out in the aforementioned methods are not really applicable in
the epistemic approach, even though they can be perfectly suitable in other scenarios. We can for instance
consider the principles from [5]. Many postulates state how an increase or decrease in beliefs in attackers
(or supporters) should be matched with an appropriate decrease or increase in the belief of the target
argument. Such properties can, but do not have to be satisfied a given epistemic graph. This can be caused
either by the constraints themselves simply not adhering to a given axiom on purpose, or by the constraints
not being specific enough. Already a simple formula such as p(A) > 0.5 → p(B) ≤ 0.5, which embodies
one of the core concepts of the classical epistemic approach [72, 34, 40], violates what is referred to as
Weakening and Strengthening. Furthermore, with the exception of [16], the patterns set out by the graded
and ranking–based semantics have to be global, while in our case we can choose to define the way parents
of an argument affect it differently for every argument. For instance, in the above frameworks, it would
be difficult for an attack relation (A,B) described with a constraint p(A) + p(B) = 1 to co-exist in the same
graph with another attack relation (C,D) described through p(C) > 0.5 ↔ p(D) ≤ 0.5. We note that this
analysis should not be taken as a criticism of the weighted or epistemic approaches, but only as a highlight
of striking conceptual differences between them. Further details can be found in [38].

Our approach also shares certain conceptual similarity with the variable-depth propagation semantics
from [14, 12] defined for Dung’s graphs (i.e. graphs with only binary attack relation). Similarly like in the
case of the distance-based effect functions, they allow long lines of argumentation to become ineffective,
and do not demand unattacked arguments to be the highest ranked ones. However, unlike in our case, this
approach is based on propagation (i.e. repeated re-calculations of values) and is strongly tied to the nature of
the underlying graph. The length of the path is used to determine whether the effect of an argument should
be positive or negative, and we can expect that any generalization to a graph with more relations would
involve a series of case distinctions. Our approach bypasses that, and is based on a general concept that
could be straightforwardly reproduced in other frameworks as long as a suitable standard update method
was supplied. Finally, it is also designed for a dynamic setting, with explicit considerations of effects of
how stating given arguments can impact the underlying belief distribution. The work in [14, 12], while
definitely having a practical potential, still requires consideration of how the propagation semantics should
account for the progress of, for instance, a dialogue.

5.2 Probabilistic Argumentation
The epistemic approach is not the only form of probabilistic argumentation. One can also name the constel-
lation approach [46, 34], in which we consider a probability distribution over subgraphs of a given graph.
The probability of each subgraph is interpreted as its chances of being the “real graph”, which is quite dis-
tinct from the belief interpretation of the epistemic approach. Hence, despite the fact that both formalisms
focus on probabilities, there are significant differences between how they model and use them. Further
analysis can be found in [34, 59]. We are also not aware of any works on probabilistic argumentation that
would deal with performing updates in the constellation approach, we note that the methods presented in
[68] could potentially be harnessed to achieve this.

We also note that there are other works concerning updating epistemic states in argumentation. Apply-
ing the standard epistemic approach to modelling persuadee’s beliefs in arguments has produced methods
for updating beliefs during a dialogue [35, 39]. However, these methods are not equipped to handle epis-
temic graphs, and, in particular, do not consider the positive relations between arguments. They are also
not equipped to handle the concept of refining beliefs through additional information. The work in [37]
can be seen as a successor to the previous approaches to a more general setting inspired by the empirical
studies we have carried out in [58, 36]. This paper takes [37] further and incorporates it in a more advanced
system that aims to provide more realistic update behaviour.
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5.3 Belief Revision
The problem of updating an epistemic state with respect to new knowledge has been studied extensively in
the belief revision literature that evolved from the AGM theory developed in [1]. An up-to-date discussion
of the main ideas can be found in [32]. Our postulates can be roughly related to the AGM postulates. For
example, Uniqueness and Completeness roughly correspond to the Closure postulate, which demands that
an update yields a well-defined belief state again. Representation Invariance corresponds to the Extension-
ality postulate. Our remaining properties can be roughly related to properties in AGM theory as well, but
it gets more complicated because probabilistic knowledge bases behave in a different way than classical
knowledge bases. Both are monotonic in the sense that adding knowledge can only decrease the number of
models. However, the semantical consequences are very different. For classical knowledge bases, mono-
tonicity means that the set of entailed formulas can only increase. For probabilistic knowledge bases, it
generally only means that the derived probabilities can change. In particular, while inconsistency in clas-
sical logic means that everything is a logical consequence, in probabilistic logics, no probabilities can be
derived anymore because there are no probability distributions that satisfy the knowledge base. Therefore,
some AGM postulates are difficult to connect to our setting. The closest relative to our setting may be the
probabilistic belief change framework from [43]. A more elaborate discussion of relationships between
classical and probabilistic belief changes can be found in [43] and [44].

Due to the differences between the classical and probabilistic knowledge bases, classical and proba-
bilistic belief change approaches mainly share high-level ideas. One central common idea is to create a
new epistemic state that satisfies the new knowledge, but remains as close as possible to the original state.
While this can be difficult to accomplish in classical logics due to the discrete nature of classical models,
it is often straightforward for probabilistic logics. This is because probability distributions can often be
identified with probability vectors in real spaces, so that common measures can be applied. Furthermore,
probability theory provides a variety of measures that can be applied for this purpose. Most commonly,
variants of the KL divergence are applied to measure the distance, but other measures have been considered
as well. Some examples can be found in [23, 11, 62, 67, 66].

Our hypothesized belief updates are based on the idea that beliefs may change to a lesser or greater
extent. Related ideas have been considered in non-prioritized belief revision. An overview of the main ideas
can be found in [33]. Again, non-prioritized belief change operations are usually designed for classical
knowledge bases and so the actual mechanics are very different from what we do here. For example,
the new beliefs may either be completely accepted or ignored entirely so that the original beliefs remain
unchanged. In between these extremes, non-prioritized belief change operations can balance between
which parts of the original beliefs remain unchanged and which parts of the new beliefs will be accepted.
We accomplish similar things here. However, instead of removing or replacing formulas or models of a
classical knowledge base, we adapt probabilities (degrees of beliefs) here. Non-prioritized belief change
operations for structured probabilistic argumentation have been investigated in [70]. Knowledge bases are
given as special probabilistic logic programs and the belief change task is, roughly speaking, to incorporate
a new fact or rule. This is accomplished by adapting the knowledge base similar to classical approaches.
In particular, some classical axioms for (non-prioritized) belief changes are satisfied by this approach [70].
However, there is again no simple translation to our framework because we adapt an epistemic state that is
represented by a probability distribution rather than by a knowledge base.

6 Conclusions & Future Work
In this paper, we have investigated the formal modelling of an agent in terms of the beliefs they may have in
arguments and means of updating such models when new information is presented to an agent. We take the
recently introduced epistemic graphs as the base framework for our investigations due to their flexibility
in modelling fine-grained acceptability, different relationships between arguments, context-sensitivity, and
imperfect agents. We have extended our previous work on the belief updates [39, 38, 37] by introducing
the notion of delegated updates, which allow us to take into account the external and internal features
of the agent being modelled in order to modulate the belief changes. Following this we have proposed
hypothesized belief updates as a specific proposal for delegated updates which allow us to better model the
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belief change in agents that, for various reasons, can be more susceptible or resistant to modifying their
opinions in light of new information. We have then investigated the properties of these updates and their
components, thus producing a rich but viable formalism for modelling participants in argumentation. These
models can then be used in applications such as automated persuasion systems, conversational agents,
decision support systems, simulations of communities of reasoning agents, and more.

There is still a wide range of questions and topics to be investigated in the context of delegated updates.
For instance, in this work, we had assumed that whenever possible, the input hypothesized distribution
would be a result of performing a standard update first, which is later adjusted and refined. Nevertheless,
as the approach below shows, this is not the only possible approach.

A B C D
− + −

Figure 13: An argument graph

Example 21. Let us consider the graph presented in Figure 13 and the following set of constraints C:

• ϕ1 ∶ p(B) + p(A) = 1

• ϕ2 ∶ (p(B) > 0.8→ p(C) ≥ 0.6) ∧ (p(B) < 0.5→ p(C) ≤ 0.3)

• ϕ3 ∶ p(B) − p(C) ≥ 0.1

• ϕ4 ∶ p(C) > 0.5→ p(D) ≤ 0.4

• ϕ5 ∶ p(C) < 0.5→ p(D) ≥ 0.8

Let us start with a uniform distribution P0 and consider updates with formulae Ψ1 = {p(A) = 0.6},
Ψ2 = {p(B) = 0.7} and Ψ3 = {p(C) = 0.5}, one update at a time. The updated distributions after each set
is applied without any adjusting effects are visible in Table 13 (distributions P1, P2 and P3).

By considering the decreasing distance-based function dis0.9
0 and taking as hypothesized distributions

those we would obtain from the previous step through a standard update, we would obtain distributions P ′1
to P ′3. This exemplifies the approach we have been using so far in this paper.

By taking P1, P2 and P3 as the hypothesized distributions for respective steps, we would obtain the
updated distributions P ′′1 , P ′′2 and P ′′3 . This exemplifies an approach in which the hypothesized distribution
is one we would obtain as if no adjusting effects were present at all from the very first update. We can
observe that while in the beginning, both delegated updates have produced similar approaches, they slowly
start diverging as the dialogue progresses. It is possible that in more complex scenarios, these differences
can start adding up and lead to more significant changes. Thus, in the future, we would like to investigate
various options for producing and selecting an appropriate hypothesized distributions for the updates.

Another interesting line of inquiry concerns the effects functions. The examples we have considered
are relatively straightforward and our analysis is by no means exhaustive. There are various other methods
that are highly interesting to investigate. For instance, we can expect that how well (or how poorly) a given
argument aligns with the beliefs of an agent will have a bearing on the degree to which certain arguments
are updated. We can consider using measures of similarity and inconsistency between arguments and other
related formalisms [8, 31, 29] for creating new effect functions. Furthermore, it is possible that more
complex behaviours call for more advanced functions, and there can be a need to investigate approaches
exhibiting both distance and progress-based characteristics, approaches that take into account not only
the distance between arguments but also whether they are (indirectly) supporting or attacking, and more.
Finally, the types of effect functions and inputs we can consider, such as user’s mood and the way it changes
during a dialogue, can depend on the sensory modules that the artificial agent is equipped with and the way
it communicates with the agents it is trying to model. Hence, this topic is another, more advanced line of
inquiry.

The task of obtaining epistemic graphs is also another topic we would like to investigate. In this
paper, we have not explicitly considered how epistemic graphs or modifiers for updates can be sourced.
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P P (A) P (B) P (C) P (D)
P0 0.5 0.5 0.5 0.5
P1 ∈ Ud2(P0,C,Ψ1) 0.6 0.4 0.3 0.8
P2 ∈ Ud2(P1,C,Ψ2) 0.3 0.7 0.3 0.8
P3 ∈ Ud2(P2,C,Ψ3) 0.3 0.7 0.5 0.8

P ′1 ∈ HBU(P0,U
1
d2
,C,Ψ1, [P1, dis

0.9
0 ,Ψ1]) 0.6 0.41 0.338 0.719

P ′2 ∈ HBU(P ′1,U1
d2
,C,Ψ2, [Ud2(P ′1,C,Ψ2), dis0.9

0 ,Ψ2]) 0.33 0.7 0.338 0.785
P ′3 ∈ HBU(P ′2,U1

d2
,C,Ψ3, [Ud2(P ′2,C,Ψ3), dis0.9

0 ,Ψ3]) 0.318 0.687 0.5 0.785

P ′′1 ∈ HBU(P0,U
1
d2
,C,Ψ1, [P1, dis

0.9
0 ,Ψ1]) 0.6 0.41 0.338 0.719

P ′′2 ∈ HBU(P ′′1 ,U1
d2
,C,Ψ2, [P2, dis

0.9
0 ,Ψ2]) 0.33 0.7 0.304 0.785

P ′′3 ∈ HBU(P ′′2 ,U1
d2
,C,Ψ3, [P3, dis

0.9
0 ,Ψ3]) 0.306 0.7 0.5 0.798

Table 13: Distributions considering various hypothesized distributions from Example 21. We use the sets
of formulae Ψ1 = {p(A) = 0.6}, Ψ2 = {p(B) = 0.7} and Ψ3 = {p(C) = 0.5}, and the decreasing distance-
based function dis0.9

0 .

However, recent developments [21, 36, 58, 48, 22] in empirical studies show that there is a potential of
using crowdsourced or other kinds of data (such as obtained from online discussions [71]) for learning
how people perceive the relations between arguments and how they react to certain kinds of arguments
depending on other factors in the discussion, such as its length, number of participants, and more. We will
investigate this topic in more detail in the future.

Last, but not least, hypothesized update is only one of the possible forms of delegated update. Another
important approach worth considering relates to performing updates when the constraints and new infor-
mation are inconsistent together. This calls for additional steps to be employed in order to retrieve some
notion of coherence. This could potentially be done by removing (parts of) constraints or updating formu-
lae, by developing methods that would relax them to the point an answer can be obtained, or by considering
inconsistency measures for picking the “least wrong” distributions. Furthermore, there is also the option of
considering higher level update functions which can delegate to other delegated update methods, not only
the standard ones, or employing other chaining techniques. This could, for instance, allow us to produce
input distributions for hypothesized belief update even when dealing with inconsistent scenarios, as well
as offer an alternative for handling more advance effect functions through combining updates equipped
with simpler ones. These are all interesting questions on compounding updates for modelling complex
behaviours that are worth exploring.
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8 Proof Appendix
Proposition 3.4. [Extended version of [37]] Every distance-minimizing update functions satisfies Epis-
temic Consistency, Success, Tautology, Contradiction, Update Representation Invariance, Constraint Rep-
resentation Invariance, Complete Representation Invariance, Idempotence, Indiscrimination, and Conser-
vatism.

Proof. Satisfaction of the Epistemic Consistency, Success, Tautology, Contradiction, Update Representa-
tion Invariance and Idempotence properties has been shown in [37].

We observe that Sat(C1∪Ψ1) = Sat(C2∪Ψ1) = Sat(C1∪Ψ2) = Sat(C2∪Ψ2) when Sat(C1) = Sat(C2)
and Sat(Ψ1) = Sat(Ψ2). Consequently, the corresponding optimization problems are equivalent and U
meets the Constraint Representation Invariance and Complete Representation Invariance. In a similar
fashion we can show that Indiscrimination holds.

We can show that due to the positive definiteness of d, ifP ∈ Sat(C∪Ψ) then {P} = arg minP ′∈Sat(C∪Ψ) d(P,P ′).
Hence, Conservatism holds.

Theorem 3.11. [Extended version of [37]] Every atomic distance-minimizing update functions satis-
fies Epistemic Consistency, Success, Tautology, Contradiction, Update Representation Invariance, Con-
straint Representation Invariance, Complete Representation Invariance, Idempotence, Indiscrimination,
and Conservatism. In the fragment of non-strict epistemic formulae, Completeness is satisfied as well
and Uwd (P,Ψ) is guaranteed to be finite. In the fragment of non-strict epistemic atoms, Uniqueness is also
satisfied.

Proof. General satisfaction of the Epistemic Consistency, Success, Tautology, Contradiction, Update Rep-
resentation Invariance and Idempotence properties and of Completeness and Uniqueness in specific lan-
guage fragments has been noted in [37]. Satisfaction of other Representation Invariance properties, Indis-
crimination and Conservatism, can be shown similarly as in Proposition 3.4.

Proposition 4.11. Let Nodes(G) ≠ ∅ and ∣Θ∣ > 1. The following hold:

• Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G) ∪Alt(Θ,G) = E(Θ,G)

• Dim(Θ,G) ∩Boost(Θ,G) = Neu(Θ,G)

• Dim(Θ,G) ∩ Cont(Θ,G) = Imp(Θ,G)

• Con(Θ,G) ⊂ Uni(Θ,G)

• Con(Θ,G) ⊂ Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G)

• Uni(Θ,G) ⊆ Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G) ∪Alt(Θ,G)

• if ∣Nodes(G)∣ ≥ 2, then Uni(Θ,G) ⊂ Dim(Θ,G) ∪Boost(Θ,G) ∪ Cont(Θ,G) ∪Alt(Θ,G)

Proof. These properties follow easily from the definitions of these functions.

Theorem 4.12. The conditions in Table 9 hold.

Proof. The properties of δxp follow easily from its definition.
The selective function δxc can never be contrary nor impervious for a non-empty graph due to the fact

that δxc ({⊺}) produces a function assigning effect of 1 to every argument. The same holds for δxs . This also
explains why for x < 0, these functions are altering.

The remaining properties easily follow from the definitions of these functions.

Theorem 4.13. Let {sp(A,B) ∣ A,B ∈ Nodes(G) and A,B are connected} be the set of lengths of shortest
paths between all connected nodes in G. Let W denote the maximal value of that set. Let M > 0 be a
natural number denoting the maximal number of sets of formulae to be considered for cvcl-success-rate
function. The conditions in Table 10 hold.
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Proof. Consider the definitions of the distance functions from Definition 4.8. We observe that based on the
properties of j and the considered distances, v ≥ 0 is a natural number.

We observe that since 0 ≥ x ≥ 1, 0 ≥ g(A) ≥ 1. Consequently, our distance-based functions are
diminishing independently of other factors.

For j ≥ W , v = 0 whenever applicable. This means that for j ≥ W , the effects assigned to arguments
are 0 (if a given argument is not connected to the arguments in the formulae) or 1 (otherwise). Thus, for a
connected graph, the j ≥W condition leads to boosting, uniform, neutral, and constant functions.

We observe that it is not possible to create an impervious effect function. For it to hold, the shortest
possible path between any two nodes in the graph should be infinite. However, the shortest path between
a node and itself is 0. Hence, in a non-empty graph, we can always choose an argument A and a formula
such as {p(A) = 0.5} that would force any of our distance-based function to assign 1 to A. For the same
reason, we cannot create a contrary function.

It is easy to see that a graph that is not connected cannot have a boosting or neutral effect function (i.e.
we will always find some set of formulae and some argument s.t. the resulting effect would be 0). We
therefore focus on connected graphs only. We observe that by setting x = 1, we ensure that only value 1 is
assigned to arguments. Thus, such functions would be not only boosting and neutral, but also uniform and
constant, independently of j.

Let us now focus on altering functions. An effect function δ is altering if and only if we can find sets
of formulae Φ1, Φ2 and arguments A1, A2 s.t. any of the following cases hold:

• δ(Φ1)(A1) > 0 and δ(Φ2)(A2) < 0

• δ(Φ1)(A1) > 1 and δ(Φ2)(A2) < 1

Given the fact that 0 ≥ g(A) ≥ 1, this can never happen.
The properties of the cvcl-success-rate effect function follow straightforwardly from the definition. We

only note that M = 1 (i.e. given that M > 0, all the sequences we are considering are of length 1), only the
n = 1 case of the definition is relevant, thus producing a constant function.

Proposition 4.14. Let B = {B1, . . . ,Bk} ⊆ Nodes(G) be a non-empty set of arguments and let Ψ =
{p(B1) = x1, . . . , p(Bk) = xk}, where xi ∈ [0,1], be a set of non-strict epistemic atoms. Then Sat(Ψ) ≠ ∅.

Proof. Please note that this proof is an adjustment of the one from [41], which contained certain issues.
LetB = {B1, . . . ,Bk} ⊆ Nodes(G) be a non-empty set of arguments and let Ψ = {p(B1) = x1, . . . , p(Bk) =

xk}, where xi ∈ [0,1], be a set of non-strict epistemic atoms. Without the loss of generality, we assume
that x1 ≤ . . . ≤ xk.

Define P ∶ 2Nodes(G) → [0,1] via (let i = 1, . . . , k):

P ({Bi, . . . ,Bk}) = xi −
j=i−1

∑
j=1

P ({Bj , . . . ,Bk})

P (∅) = 1 −
k

∑
j=1

P ({Bj , . . . ,Bk})

P (Y ) = 0 for all remaining sets Y

We observe that this is equivalently expressed with:

P ({A1, . . . ,An}) = x1

P ({Ai, . . . ,An}) = xi − xi−1 for i = 2, . . . , n

P (∅) = 1 − xk
P (Y ) = 0 for all remaining sets Y
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It is therefore easy to see that for every set of argumentsZ, P (Z) ≥ 0. Furthermore,∑Z⊆Nodes(G) P (Z) =
x1 + x2 − x1 + x3 − x2 + . . . + xk − xk−1 + 1 − xk = 1. Hence, P is indeed a probability distribution.

We can now show that for every Bi, xi = P (Bi). Recall that P (Bi) = ∑Z⊆Nodes(G),Bi∈Z P (Z). Given
the construction of P , P (Bi) = ∑ij=1 P ({Bj , . . . ,Bk}), which means that P (Bi) = x1 +x2 −x1 + . . .+xi −
xi−1 = xi.

Proposition 4.15. Hypothesized belief update satisfies Inherited Uniqueness and Inherited Completeness.

Proof. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method, Ψ ⊆ LFormulae(G)
a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized probability distribution.
Let δ be an effect function and θ ∈ Θ its input. Let HBU be the hypothesized belief update function and let
C′ denote the constraints created by HBU as seen in Definition 4.5.

Let U satisfy Uniqueness. This means that ∣U(P,∅,C′)∣ ≤ 1 and therefore that ∣HBU(P,U,C,Ψ, [H,δ, θ])∣ ≤
1. Hence, HBU satisfies Uniqueness, and as a result also Inherited Uniqueness.

Let U satisfy Completeness. This means that if Sat(C′) ≠ ∅, then ∣U(P,∅,C′)∣ ≥ 1. As shown in
Proposition 4.14, Sat(C′) ≠ ∅, hence ∣HBU(P,U,C,Ψ, [H,δ, θ])∣ ≥ 1, independently of whether Sat(C ∪
Ψ) ≠ ∅. Hence, HBU satisfies Completeness and Inherited Completeness

Proposition 4.16. If hypothesized belief update delegates to an update function that satisfies Uniqueness
and Completeness in the fragment of non-strict epistemic atoms, then it always produces exactly one dis-
tribution.

Proof. Follows easily from Proposition 4.15 and the construction of constraints C′ from Definition 4.5.

Corollary 4.17. If hypothesized belief update delegates to an (atomic or standard) distance-minimizing
update function, then it always produces exactly one distribution.

Proof. Based on Theorems 3.5 and 3.11, atomic and standard distance-minimizing updates satisfy Unique-
ness and Completeness in the fragment of non-strict epistemic atoms. Thus, based on Proposition 4.16,
hypothesized belief updates delegating to such update functions will always produce exactly one distribu-
tion.

Proposition 4.18. The hypothesized belief update is not guaranteed to satisfy Inherited Contradiction. If
the update function to which HBU delegates satisfies Completeness, then it cannot satisfy Contradiction.

Proof. Let U satisfy Completeness. Based on proofs of Propositions 4.14 and 4.15, we can show that HBU
always produces at least one distribution, independently of whether the constraints and updating formulae
are jointly satisfiable or not. Thus, HBU cannot satisfy Contradiction.

We observe that every distance-minimizing function satisfies Contradiction and that based on Propo-
sition 4.16, hypothesized belief update functions equipped with such standard functions always produce
exactly one answer, thus violating Inherited Contradiction.

Proposition 4.19. The hypothesized belief update function satisfies Indiscrimination, Update Representa-
tion Invariance, Constraint Representation Invariance, Complete Representation Invariance and their in-
herited versions.

Proof. Based on Definition 4.5 we observe that the set of constraints C′ is the same for HBU(P,U,C,Ψ, [H,δ, θ]),
HBU(P,U,∅,C ∪ Ψ, [H,δ, θ]) and HBU(P,U,C ∪ Ψ,∅, [H,δ, θ]). Hence, in all of these cases, the pro-
duced distributions are U(P,∅,C′), and the Indiscrimination property holds. The same can be shown
for the Representation Invariance properties, and since they are trivially satisfied, their inherited versions
follow as well.

Proposition 4.20. HBU is not guaranteed to satisfy any of Epistemic Consistency and Success or their
inherited versions.
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Proof. We can consider a simple graph with arguments A and B and a constraint set C = {p(A) = 1−p(B)}.
Updating a uniform probability distribution P0 with the set of formulae Ψ = {p(A) = 0.6} and an update
function Ud2 would produce the distribution P1 = Ud2(P0,C,Ψ) where P1(A) = 0.6 and P1(B) = 0.4.
Updating P0 using the hypothesized belief update with the above input and a selective effect function δ0.8

c
would give us the function {P ′1} = HBU(P0,Ud2 ,C,Ψ, [P1, δ

0.8
p ,Ψ]) s.t. P ′1(A) = 0.6 and P ′1(B) = 0.42.

Clearly, P ′1 ∉ Sat(C). Thus, HBU violates Epistemic Consistency. By using a regular update function
δ0.8
p instead of δ0.8

c we would obtain a function P ′′1 s.t. P ′′1 (A) = 0.58 and P ′′1 (B) = 0.42, which violates
Success.

Given that Ud2 meets Epistemic Consistency and Success in the above examples and HBU does not, the
inherited versions of these properties do not hold for HBU.

Proposition 4.21. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method,
Ψ ⊆ LFormulae(G) a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized
probability distribution. Let δ be an effect function and θ ∈ Θ its input. If δ is neutral or impervious and U
satisfies Conservatism, then HBU satisfies Idempotence.

Proof. We recall that Idempotence is defined in the following way: if DU(P, ⟨U1, . . . ,Un⟩,C,Ψ, λ) =
{P∗} then DU(P∗, ⟨U1, . . . ,Un⟩,C,Ψ, λ) = {P∗}.

Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method, Ψ ⊆ LFormulae(G) a set
of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized probability distribution. Let
δ be an effect function and θ ∈ Θ its input. Let HBU be the hypothesized belief update function. Let C′
denote the constraints created by HBU as seen in Definition 4.5 for HBU(P,U,∅,C ∪Ψ, [H,δ, θ]) and C′′
denote the constraints created for HBU(P∗,U,∅,C ∪Ψ, [H,δ, θ]).

Assume that δ is a neutral effect function and that U satisfies Conservatism. This means that for every
argument A ∈ Nodes(G), P∗(A) = H(A). Additionally, every constraint ϕ ∈ C′′ is of the form p(A) = x
where x = P∗(A). Thus, {P∗} = U(P∗,∅,C′′) due to Conservatism, and HBU satisfies Idempotence.

Assume that δ is an impervious effect function and that U satisfies Conservatism. This means that for
every argument A ∈ Nodes(G), P∗(A) = P (A). Additionally, every constraint ϕ ∈ C′′ is of the form p(A) =
x where x = P∗(A). Thus, {P∗} = U(P∗,∅,C′′) due to Conservatism, and HBU satisfies Idempotence.

Proposition 4.22. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method,
Ψ ⊆ LFormulae(G) a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized
probability distribution. Let δ be an effect function and θ ∈ Θ its input. If H ∈ U(P,C,Ψ) and U satisfies
Conservatism, then HBU satisfies Conservatism.

Proof. Let C′ denote the constraints created by HBU as seen in Definition 4.5 for HBU(P,U,∅,C ∪
Ψ, [H,δ, θ]).

If U satisfies Conservatism, then H = P . Hence, every constraint ϕ ∈ C′ is of the form p(A) =
x where x = P (A). As a result, P ∈ Sat(C′) and {P} = U(P,∅,C′) due to Conservatism. Hence,
HBU(P,U,∅,C ∪Ψ, [H,δ, θ]) = {P} and HBU satisfies Conservatism as well.

Proposition 4.23. Let G be a graph, C ⊆ LFormulae(G) a set of constraints, U an update method,
Ψ ⊆ LFormulae(G) a set of linear epistemic formulae, P,H ∈ Dist(G) the current and a hypothesized
probability distribution. Let δ be an effect function and θ ∈ Θ its input. If H ∈ U(P,C,Ψ) and U satisfies
Tautology and Conservatism, then HBU satisfies Tautology.

Proof. Let P ∈ Sat(C) and let Sat(Ψ) = Sat(⊺). Since H ∈ U(P,C,Ψ) and U satisfies Tautology, it
holds that P = H . Consequently, all the constraints in C′ in Definition 4.5 are of the form p(A) = x
where x = P (A) given an argument A ∈ Nodes(G). Hence, P ∈ Sat(C′), and due to Conservatism,
U(P,∅,C′) = {P} = HBU(P,U,C,Ψ, [H,δ, θ]).
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