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Figure 1: DataDebugger: (a) the navigation stack records the explored hierarchical levels; (b) the tSNE-based visualization shows
the item distribution and the confusion between different classes; (c)(d) the selected item view and the trusted item view display
the images of selected items and trusted items, respectively; (e) The action trail records the correction history.

ABSTRACT

In this paper, we develop a visual analysis method for interactively
improving the quality of labeled data, which is essential to the
success of supervised and semi-supervised learning. The quality im-
provement is achieved through the use of user-selected trusted items.
We employ a bi-level optimization model to accurately match the
labels of the trusted items and to minimize the training loss. Based
on this model, a scalable data correction algorithm is developed
to handle tens of thousands of labeled data efficiently. The selec-
tion of the trusted items is facilitated by an incremental tSNE with
improved computational efficiency and layout stability to ensure a
smooth transition between different levels. To prioritize the display
of mislabeled data, we have taken specific consideration of outliers,
items whose labels are different from those of its neighboring items,
in the sampling process. We evaluated our method on real-world
datasets through quantitative evaluation and case studies, and the
results were generally favorable.
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1 INTRODUCTION

The quality of training data is crucial to the success of supervised
and semi-supervised learning [35, 31, 48, 55]. Errors in data have
long been known to limit the performance of machine learning
models [14, 33, 38]. More and more experts have realized that
high-quality data, rather than more data, leads to better models and
performance [56, 57, 59]. However, in the current era of big data,
with the rapid growth of data quantity, it is even harder to guarantee
data quality. A typical problem is mislabeled data [16], and it is a
more prominent issue with the prevalence of data-centric approaches
that require a huge amount of annotated/labeled data. Crowdsourcing
has been widely adopted to get a dataset labeled in a short amount
of time. Although reasonably effective, the reliability of the labels is
unavoidably compromised due to the varied subjectivity of multiple
annotators and the limited control of their expertise and quality. Web
crawling is another quick way to get a large amount of labeled data,
where labels are automatically extracted from descriptive keywords.
However, this labeling method is error prone as well. An example is
the Clothing 1M dataset [53], in which as high as 38.5% of the data
was reported to be mislabeled. The large proportion of label errors
has adverse effects on training [16].

To deal with noisy labels (i.e., labels with presence of errors) in
training, different techniques [16] have been proposed in the ma-
chine learning community. Among them, cleansing the training data
is an obvious and tempting solution with its general applicability.
However, the identification of mislabeled items is nontrivial. Differ-
ent heuristics have been used, which makes it important to have prior
knowledge of the data and the application. As a result, to include a
human in the analysis loop becomes a seemingly effective solution,
which will allow users to explore and better understand the data and



make informed corrections. However, for large scale datasets, there
are two challenges. One is how to enable effective exploration of
large-scale data and quick identification of suspicious regions and
items for label errors. The other lies in the efficient correction of
label errors when a large number of errors are presented. Case-by-
case examination and correction are labor intensive for a human. A
more effective and efficient strategy is thus required.

To tackle the challenges, we develop DataDebugger, a visual anal-
ysis tool for effective and efficient debugging of label errors. The
target users include both machine learning experts who can use the
tool for data cleaning before performing learning tasks and data anno-
tators who can use the tool to improve their annotation results. Scala-
bility to large scale datasets is a particular concern and is achieved in
DataDebugger via cooperation between a hierarchical visualization
of data and a scalable data correction algorithm. Fig. 1 shows the in-
teractive interface of DataDebugger, in which an item view with the
hierarchical visualization (Fig. 1 (b)) is at the core. The hierarchical
visualization allows users to examine the data and identify problems
at different levels. We have developed an incremental t-SNE with
improved layout stability to ensure a smooth transition between
different levels. We also have taken specific consideration of label
errors in the sampling process to prioritize the display of potential
errors. A density map is used to reflect suspected error ratios. The
selected item view (Fig. 1(c)) and the trusted item view (Fig. 1(d)) al-
low users to make corrections and generate a set of trusted items, i.e.,
items whose labels have been verified by domain experts. To reduce
the labor cost in the correction process, we borrow the idea of Data
Debugging using Trusted Items (DUTI) [55], which allows propa-
gation of label corrections from a small number of trusted items to
the whole dataset. We develop a scalable data correction algorithm
which is based on [55], but extends its applicability to data of large
scales by making use of softmax classification, dimensionality re-
duction, and gradient projection for optimization. The interactive
visualization facilitates the selection, correction, and verification of
trusted items required in the data correction algorithm, while the data
correction algorithm speeds up the interactive correction by propaga-
tion. The cooperation between the two modules enables an effective
exploration of large datasets and efficient correction of label errors.

The quantitative experiments and case studies have shown the
effectiveness of our method. Using DataDebugger, users can identify
label problems, understand possible causes, and make informed
corrections. In summary, the main contributions of our work are:

• We develop a hierarchical visualization, supported by an in-
cremental tSNE and an outlier biased sampling, for exploration
of large scale datasets with improved stability and facilitating
the identification of label errors.

• We develop a scalable data correction algorithm that is ap-
plicable to data of multiple classes and of large scales and
provide a visual solution for choosing trusted items.

• We integrate the above techniques into a visual analysis tool
that provides experts a practical way to iteratively debug and
correct label errors in training data.

2 RELATED WORK

The presented work relates to machine learning works dealing with
label noise and visualization works for data quality management.
It also has some similarities to interactive labeling. In this sec-
tion, we review the related works and highlight the difference of
DataDebugger.
Training Data Debugging. How to deal with label errors in train-
ing data has been a popular topic in machine learning. Different
approaches have been categorized and reviewed in Frénay et al.[16].
Pertinent to our work are methods based on correcting label errors
either with or without human supervision. Fully supervised verifica-
tion of labels is expensive, time-consuming, and unscalable to large
datasets. Methods based on unsupervised outlier removal (e.g., [36,

52]) or label correction (e.g., [48]) have the advantage of scalability,
but are often less effective. This gap leads to some recent studies that
use a small fraction of clean data to semi-supervise the cleaning pro-
cess with minimal human supervision. An example is [49], in which
a set of clean data is used to supervise the training of a label cleaning
network. The network is then integrated with a multitask neural
network for jointly classifying images and reducing label errors. An-
other example is CleanNet [28] which uses a joint neural embedding
network to transfer a small fraction of human-selected representative
label seeds to other classes through transfer learning. These meth-
ods integrate label cleaning with classification frameworks using
deep neural networks (DNNs). More general is the DUTI algorithm
proposed in [55], which is independent of learning tasks. DUTI
automatically detects and fixes potential label bugs in the training set
by propagating the labels from a small set of trusted items. The data
correction method in DataDebugger is based on DUTI. But DataDe-
bugger addresses the limitations of the original DUTI algorithm as
mentioned in [55] by two means. One is the technical improvement
of its scalability to large scale datasets. The other is to provide a vi-
sual analytics tool to assist the selection of informative trusted items.
Visual Data Quality Management. Many visual analysis methods
have been developed to assess data quality problems [34]. Some of
the methods are concerned with data quality issues on feature entries
such as missing values and inconsistencies. Wrangler [25] and its
commercial descendant TRIFACTA [60] are typical tools focusing
on data transformations, and providing an interactive visual interface
to enable various ways to the navigation of the transformation space.
Profiler [26] coupled automated anomaly detection with linked sum-
mary visualization to help analysts discover and analyze anomalous
data. Wilkinson [51] proposed a statistical method for detecting
outliers in big data. Predictive Interaction [20] relieves users from
specifying data transformation details. It allows users to iteratively
highlight features and select the next step from a variety of sugges-
tions provided by predictive methods. MetriDoc [8] enables users
to customize different automatic quality checks and visually assess
the effects of their parameterization. When the additional dimension
of time is considered, several tools have also been specifically de-
veloped for detecting anomalies in time-series data [19, 23, 17, 18]
and reasoning about their causes [2]. In Cao et al.’s work [10],
a tensor-based anomaly detection algorithm is integrated with
rich-context visualizations to help identify and interpret suspicious
patterns in streaming spatiotemporal data. Xie et al. [54] proposed
stack trees to represent the temporal and contextual information of
anomalous patterns in high-performance computing processes.

Most of the methods mentioned above focus on quality issues on
feature entries such as missing values, duplicates, inconsistencies,
and input errors, which are important for data warehousing appli-
cations. DataDebugger differs from the above tools by focusing
on quality issues on labels of training data for supervised learning
tasks. Accordingly, a hierarchical visualization and a scalable data
correction algorithm are developed to facilitate users in debugging
and correcting label errors in training data.

Recently, there are some initial efforts to examine and improve
the quality of training data. Alsallakh et al. [1] developed a vi-
sual analysis system to analyze hierarchical similarity structures
between classes, which was also demonstrated helpful in identify-
ing several quality issues in training data including labeling issues.
A work that is more specific to detecting label errors in training
data is LabelInspect [35], a visual analysis tool to assist experts in
verifying uncertain labels and unreliable workers in crowdsourced
annotation. It enables an iterative validation procedure by mak-
ing use of a learning-from-crowds model [30] to recommend the
most informative instances and workers for verification. DataDebug-
ger follows the same idea of leveraging visualization and a small
number of expert labels to facilitate the label verification process.
However, as label errors can come from not only crowdsourcing, but



various sources, e.g., web crawling, sensor failures, DataDebugger
aims to debug label errors without the restriction of crowdsourced
annotations. As a result, information specific to crowdsourcing,
e.g., worker behaviours, will be unavailable, making it necessary to
develop a more general interactive label debugging solution.
Interactive Labeling. An early work was presented by Moehrmann
et al. in [37], where a labeling interface based on self-organising
maps was developed to allow users interactively selecting and la-
beling image data items. It was demonstrated suitable for speeding
up the labeling process and simplifying the task for users. In the
machine learning field, active learning [9] is another way to include
users into the labeling process by providing the labels of items
selected by the models. However, users are not involved in the selec-
tion of data items. Hoferlin et al. [22] first proposed the concept of
‘inter-active learning’ which extends active learning by integrating
users’ knowledge into proposing items for labeling. In recent years,
this visual interactive labeling (VIAL) strategy has attracted more
interest. In [4], an experimental study was conducted to compare the
model-centered labeling via active learning and the user-centered
visual-interactive labeling. Quantitative analysis of user strategies in
selecting instances in VIAL was reported in [5]. And a unified pro-
cess to combine visual analytics and active learning was proposed
in [6] for VIAL. These VIAL works provide tools for annotating
unlabeled data. DataDebugger, on the other hand, is for debugging
mislabeled data from annotated datasets. Thus, our method consid-
ers to prioritize the display of mislabeled data at the visualization
side and to accurately match the user-selected trusted items at the
analysis side.
Summary. Compared with these works, the novelty of DataDebug-
ger lies in both the technical improvement of the underlying DUTI
algorithm and the hierarchical visualization design that supports
debugging label errors from large scale datasets in an informative
and efficient way. The correction is independent of the learning
tasks and sources of label errors, making it a more general purpose
tool that can be used by average data annotators and applicable to
datasets with annotations from various sources.

3 DATADEBUGGER

3.1 Requirement Analysis
Our research focus is distilled and driven by our discussions with
machine-learning experts and practitioners regarding their needs in
addressing label error issues. Specifically, in the past six months,
we had biweekly meetings with three experts (E1, E2, and E3) who
serve either in academic institutes or in the R&D organization of
an industrial company. We began by interviewing the experts about
their ongoing machine learning projects in areas such as image clas-
sification, segmentation, and object detection, and asked for any
major issues that were prevalent in their infrastructures. It turned
out that mislabeling was considered the most general and harmful
factor in building learning models. Although there is a lack of robust
and universal methods for correcting the mislabeled data for diverse
situations, attempts have frequently been made to use supervised
approaches for cleansing the data. Specifically, the experts con-
sidered the exploration of unusual data distribution as the first and
the most important step in their data cleaning pipelines since the
patterns could significantly affect the choice of appropriate label
correction methods or strategies. Unsurprisingly, the experts consid-
ered it routine to utilize visualization for obtaining and exploring an
overview of data distribution. tSNE was particularly well recognized
for its strong non-linear feature, easy accessibility (e.g., through
python add-on packages), and optimized visualization. However,
when cleaning training data with existing visualization techniques,
they still face the following challenges:

R1. Handling large-scale data. The machine learning problems
that our experts face typically involve very complex feature space
and statistical characteristics, which require a large volume of train-
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Figure 2: DataDebugger Overview: The visualization module pro-
vides trusted items for the data correction module. In return, the
data correction module feeds the corrected data to the visualization
module for further examination.

ing data for model learning. For example, our collaborators reported
two large-scale datasets, a clothing dataset and a motherboard man-
ufacturing dataset for classification, both of which involved over
30,000 training items with label error rates of more than 30%. The
scale of data poses two significant challenges. First, the algorithms
for visualizing high-dimensional space are often computationally
expensive and do not scale very well to big datasets. Consequently,
they are too slow for interactive interfaces, limiting the efficiency
to support the cleaning process. Moreover, displaying cluttered
views can hinder users from identifying and exploring the aforemen-
tioned suspicious regions from the data distribution. Therefore, the
experts demand an efficient visualization that can reduce both the
computational and display complexity.

R2. Examining unusual distribution for identifying labeling
errors. According to our collaborators, a cleaning pipeline often
starts by identifying local regions with unusual patterns of data or la-
bel distribution, upon which mislabeled training items can be largely
identified and inspected. Thus, the experts wanted to quickly locate
such suspicious regions. Moreover, in each region, the mislabeled
training items should always be displayed with priority no matter
which data filter or sampling strategy is applied.

R3. Recommending and verifying trusted items. While man-
ual inspection and correction is a routine for debugging mislabeled
items, the experts need automated approaches to improve efficiency.
Methods such as propagation of trusted items [55] are the most
discussed and recognized. However, without efficient algorithms
and interactive tools, selecting and validating a set of trusted items
from the cluttered visualization can still become laborious. Two
requirements were identified by our collaborators based on their
experience. First, automatic recommendation algorithms are desired
to quickly locate trusted items. Second, flexible ways to examine
and compare trusted items are required for further verification.

R4. Exploring the details. Exploring the details of training
items was considered an essential step to verify the labeling correct-
ness. Specifically, the experts would like to be able to explore the
details in the context of a distribution visualization so that they can
quickly compare groups of items in local regions.

3.2 System Overview
Motivated by the identified requirements, we designed a visual
analysis tool, DataDebugger, to help users correct label errors. It
contains the following features:

• An item view (Fig. 1(b)) that utilizes a tSNE-based hierarchical
visualization to display the distribution of training items, dis-
closes patterns of clusters and outliers, and supports interactive



exploration of the details (R1, R2, R4).
• A set of auxiliary views, including a selected item view

(Fig. 1(c)), which displays the detailed information of sus-
picious items, a trusted item view (Fig. 1(d)), which presents
the images and labels of trusted items, and an action trail view
(Fig. 1(e)), which provides the correction history (R3).

• A trusted-item-based data correction method to propagate the
corrected labels of trusted items to the remaining items (R3).

System Pipeline. The system pipeline is shown in Fig. 2. DataDe-
bugger takes the training data with noisy labels as input. In the
visualization module, the user explores the training data and selects
trusted items. The selected trusted items are input into the data
correction module, which uses a trusted-item-based method to cor-
rect the labels of the training data. After the correction, the data
correction module returns the corrected data into the visualization
module for a new iteration.

In the visualization module, the user explores items in the item
view, verifies selected items in the selected item view, and edits
trusted items in the trusted item view. The action trail records the
correction history and allows the user to revisit historical iterations.

4 TRUSTED-ITEM-BASED DATA CORRECTION

In this section, we introduce the developed trusted-item-based data
correction method, aiming to identify and correct label errors.

4.1 Method Overview
In DataDebugger, we assume that experts provide a small set of
trusted items through interactive visualization. The trusted items are
then propagated to the whole data set to identify and correct possible
label errors. We formulate the above correction process as a label
propagation problem based on trusted items.

Debugging Using Trusted Items (DUTI) [55] is an algorithm that
automatically detects and fixes potential label errors in a training set
by propagating the labels from a small set of trusted items. It aims to
make the smallest changes to the labels of the training set such that
the learned classification model correctly predicts the labels of the
trusted items and modifies labels of the remaining items. We take a
k-class classification problem as an example to introduce DUTI.

Let (X ,Y ) = (xi,yi)1:n denote the training set of n samples, where
xi is the feature vector of the i-th sample and yi ∈ [k] is the class
label. Since the data in this set may be mislabeled, we call it a noisy
training set. Let (X̃ ,Ỹ ) = (x̃i, ỹi,ci)1:m denote a small set of trusted
items with m� n, where ci > 0 is the confidence score provided by
domain experts about the correctness of the label ỹi. Let `(xi,y j,θ)
denote the loss of a classification model with parameter θ on the
sample with feature vector xi and label y j . DUTI is formulated as a
bi-level optimization problem:

min
δ

1
m

m

∑
i=1

ci`(x̃i, ỹi,θ)

+
1
n

n

∑
i=1

k

∑
j=1

δi j`(xi,y j,θ)+
γ

n

n

∑
i=1

(1−δi,i) (1)

s.t. θ = argmin
β

1
n

n

∑
i=1

k

∑
j=1

δi j`(xi,y j,β )+λΩ(β ) (2)

0≤ δi j ≤ 1, ∑
j∈[k]

δi j = 1, ∀i, (3)

where δi is a k-dimensional vector with its j-th element δi j denoting
the probability of the sample xi belong to class y j, and Ω(β ) is a
regulizer to control complexity of the classification model β . This
formulation tries to correct the labels of noisy data and assigns a
smooth label vector to each noisy sample, so that the classification
model trained on the noisy data with smooth label (Eq. (2)) can

minimize the prediction loss on the trusted items (the first term in
Eq. (1)) and on the noisy items with newly assigned labels (the
second term in Eq. (1)). Note that the third term in Eq. (1) ensures
that the newly assigned labels are not too much different from the
original labels.

The key to solving the bi-level optimization formulated in Eq. (1)
is to eliminate β from the constraint equation and represent θ with δ .
With this elimination, only parameter δ remains in Eq. (1) and we
can use the gradient descent method to minimize the objective func-
tion. More specifically, the constraint in Eq. (1) can be functionally
equivalent to a Karush-Kuhn-Tucker (KKT) optimality condition
when a loss function `() is specified (e.g., the hinge loss in SVM
and the exponential loss in Boosting). With this transformation, the
gradient process can be seen as a calculation of an inverse Jaco-
bian matrix [12] whose size is p× p (p = nk). The computational
complexity of this matrix inversion is O((nk)3).

Compared with other outlier detection methods such as proximity-
based, density-based, parametric, and non-parametric [21, 35],
DUTI embraces the advantage of being able to deal with not only
outliers but also systematic biases. Moreover, it can naturally inte-
grate human knowledge into the correction process. These make
DUTI a good candidate label correction algorithm for interactive
label correction in DataDebugger. However, DUTI suffers the prob-
lem of scalability when handling data at large scales. Specifically, it
has to 1) calculate the inverse of large dense matrices in a nk space
and 2) optimize tens of thousands of constraints and parameters in a
nk space. We need to address these scalability challenges so as to
apply it to our problem for interactive analysis.

4.2 Scalability Improvement
The original DUTI algorithm employs kernel logistic regression for
multi-class classification. For a k-class classifiction with n samples,
the dimension of θ is nk, and the inverse matrix calculation has high
computational cost. As a result, the method can be computationally
prohibitive when n is large (e.g., 10,000). For example, when dealing
with the MNIST dataset consisting of 10,000 training samples be-
longing to 10 classes, it takes more than 100 hours 1 to calculate the
matrix inversion using MATLAB, which is an efficient mathematical
tool in handling matrix operations [27]. To improve the scalability,
we employ a linear kernel in logistic regression. Specifically, we
define the loss function in Eq.(1) as a cross-entropy based on the
softmax function:

`(xi,yi,θ) =−
c

∑
j=1
1(yi = j) logP(yi = j | xi,θ). (4)

The function aims to minimize the difference between the esti-
mated label and the true label. Then, the softmax loss of the function
can be calculated as:

P(yi = j | xi,θ) =
exi

T θ j

∑
k
j=1 exiT θ j

, (5)

where θ j is a d-dimensional vector and d is the dimension of feature
vector xi. Then the total dimension of the classification model θ is
dk, and the computational complexity of DUTI becomes O((dk)3),
which is a great reduction from O((nk)3) for large datasets (i.e.,
n >> d).

Even we have reduced the computational complexity of DUTI,
it is still unaffordable when the dimension d of feature vectors is
large. We adopt two optimization strategies to further speed up the
algorithm: 1) dimension reduction to reduce the dimension of the
feature vector and 2) greedy gradient projection to solve the above
constrained optimization problem efficiently.
Dimension reduction. In our implementation, we employ the
widely used Principal Component Analysis (PCA) [24] to reduce

1The time cost is estimated on a 3.7G Hz CPU.
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Figure 3: Basic idea of gradient projection: compute the gradient
direction (gi) by the steepest gradient algorithm first, and then project
it to the subspace tangent to the constraints (di).

the feature dimension, in order to save the computational time of the
DUTI algorithm. Based on our experiment (Table 1 in Supplemental
Materials), the proposed method tolerates the information loss in
the dimension reduction process which has little effect on the label
correction accuracy.
Greedy gradient projection. In solving the constrained optimiza-
tion problem in Eq. (1), the widely used active set method and the
sequential quadratic programming method [39] face the problem
that the training set changes slowly. In particular, at each iteration,
at most one constraint is added to or dropped from the active set,
which leads to a slow convergence, especially for a large data set.
We tackle this issue based on the gradient projection method [44]
which enables bigger changes at each iteration. The basic assump-
tion of our method is that the optimal δ is in the subspace tangent
to the constraints. As shown in Fig. 3, the method first computes
the gradient direction (gi) by the steepest gradient algorithm, and
then projects the search direction to the subspace tangent to the con-
straints. Through such a gradient projection, we obtain a gradient
direction that satisfies the constraints.

Although the gradient projection method improves the perfor-
mance to some extent, it does not support real-time interactions.
Typically, dozens of minutes are needed to run the DUTI algorithm
for 10,000 training items. To tackle this issue, we develop a greedy
descent projection algorithm. The main assumption is that correct-
ing the items with similar noise and distribution will lead to similar
gains (−gidi) measured by the loss. Therefore, we group the items
into k clusters by a threshold-based clustering algorithm [7], where
k is set by the user. In our experience, we set k as 30. First, we
order the items into a sequence according to their gains.Next, we
assign two items to the same cluster if the difference between their
gains is below a specified threshold. The threshold is determined as
the k-th maximum distance between two neighboring items in the
sequence. With this clustering algorithm, we segment the training
samples into k clusters, the boundary points of which are denoted
by B̂ = {b̂1, b̂2, ..., b̂k}. An exhaustive combinatorial search of all
possible clusters is NP-hard. To tackle this issue, we employ a
greedy search strategy. In particular, for each b̂ j , the greedy method
calculates the total loss li brought by the samples whose gains are
greater than b̂ j. Then it selects the samples with the lowest loss.

5 HIERARCHICAL VISUALIZATION IN DATADEBUGGER

5.1 Hierarchical Representation

Inspired by existing works on visualizing massive and high-
dimensional data [15, 47, 42, 43], we decide to convey the distribu-
tion of items using hierarchical projection. We combine tSNE, which
is considered the state-of-the-art dimensionality reduction approach,
and hierarchical analysis, which follows the popular Overview-first,
Details-on-Demand paradigm [45] to handle large scale data. Fig. 4
shows the construction of our hierarchical representation. We utilize
sampling methods to build the levels in a bottom-up manner, starting
from the original dataset (Sec. 5.1.1). To avoid distorting the anoma-
lous distribution in higher levels, we propose two outlier biased sam-
pling methods, which preserve more outliers in the sampling results
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Figure 4: The proposed hierarchical representation. Left: sampling
for building a higher layer; Middle: an item tree with three lev-
els. Right: Navigating items through the hierarchical structure and
incremental tSNE.

(Sec. 5.1.2). An incremental tSNE (Sec. 5.1.3) is also developed to
support top-down navigation through the hierarchical structure.

5.1.1 Hierarchy Construction
As Fig. 4 shows, the hierarchical representation consists of a set of
levels that are built in a bottom-up manner. L0 indicates the bottom
level, which represents the input dataset. Level Ll (l 6= 0) represents
a sampled subset of its previous level, Ll−1. The sampling rate a
between two adjacent layers is set as a = 25%. When building the
levels for a set of n items, the user can set the number of items
m in the top level, and then the number of levels is automatically
calculated as lnn/m

lna
.

An item tree to organize the items is generated during the levels
building process. Although an item can be included in multiple
levels, for clarity, we say an item i is in level Ll only when Ll is the
highest level that contains i. For each item i in Ll , we assign it as the
child of its nearest item j in Ll+1. As a result, each item in the top
level is the root of an item tree. Fig. 4(middle) shows an item tree
with three levels. When users drill down on a subset of items in Ll ,
we regenerate an embedding containing the selected items and their
children.

5.1.2 Sampling methods
Our sampling method aims to preserve labeling outliers as much as
possible while maintaining major structures, so that the distribution
of labeling outliers can be conveyed in the top level. Theoretically,
the outliers to be preserved are defined in the feature space. Prac-
tically, we approximate the definition in the projected 2D space as
that is where we explore the items. We propose to adapt classic
sampling methods, including blue noise sampling and density-based
sampling, to emphasize sampling of labeling outliers.

Labeling outliers. For exploring labeling errors, we define la-
beling outliers as items that are surrounded by items with different
labels. We measure the outlier probability πi of an item i by the
percentage of its neighbors with different labels. The neighbors
are defined in terms of Euclidean distance in the feature space.
Specifically, we have πi = Di/Ni, where Di denotes the number of
neighbors of i with different labels, and Ni is the total number of
its neighbors. The closer πi is to 1, the more likely i is a labeling
outlier.

Outlier biased blue noise sampling (OBBNS). Blue noise sam-
pling (BNS) is designed to generate randomized uniform distribu-
tions and is widely used in visualization [11, 32]. Multiple-class
blue noise sampling [11] can preserve better blue noise feature in
each class and the whole data. However, labeling errors distort the
blue noise feature in each class. We thus choose the dart-throwing
method [13] for its good performance and simple implementation.
The dart-throwing method of original blue noise sampling contains
three steps: (1) estimating the sampling radius r, (2) randomly se-
lecting a candidate item, and (3) rejecting the candidate if it is in
the 2r-disk of any previous samples, otherwise, accepting it as a



sample. Steps (2) and (3) are iteratively performed until a certain
number of items are rejected. We modify this process to emphasize
sampling of labeling outliers while keeping the blue noise feature.
Specifically, in step (2), we accept a sample i with a probability of
πi instead of random sampling. As a result, labeling outliers have a
higher possibility of being selected than other items. Therefore, we
call our adapted method an outlier biased blue noise sampling.

Outlier biased density-based sampling (OBDBS). Density-
based sampling [41] (DBS) preserves small clusters and isolated
items by sampling densely in light regions and lightly in dense
regions. In a typical density-based sampling method, the sampling
probability of item i is defined as 1/ρi, where ρi is the local
density of item i. In our application, we are more interested in
labeling outliers than isolated items. Similar to OBBNS, we modify
the sampling probability as pi = α/ρi + β × πi. The sampling
probabilities are normalized so that their sum equals m/n, where n
is the number of all items and m is the number of expected samples.
In our case, we set both α and β as 1.

We performed an experiment on the MINST dataset to evaluate
the proposed outlier biased sampling methods. The details of the
dataset and quantitative results are described in Sec. 6.1.1. Fig. 5
shows the tSNE projections of the dataset and five sampled sub-
sets. The projection results demonstrate that the proposed OBDBS
achieves a better balance between class consistency and outlier
preserving than other four sampling methods. In terms of class
consistency, random sampling (RS) (Fig. 5 (b)), DBS (Fig. 5 (e)),
and the proposed OBDBS (Fig. 5 (f)) keep the major structures
in comparison to the original dataset (Fig. 5 (a)). In BNS (Fig. 5
(c)) and OBBNS (Fig. 5 (d)), the structure of class 1 is obviously
distorted. In regard to presenting outliers, OBDBS performs better
than random sampling and DBS. For instance, the mixed region
among classes 5, 7, and 8, which is presented in the original dataset
(Fig. 5 (a)), is better preserved by OBDBS in comparison to random
sampling and DBS.

5.1.3 Incremental tSNE
With the constructed hierarchical structure, we develop an incremen-
tal tSNE for top-down navigation. When the user selects a set of
items in layer Ll and drills down, the new visualization includes all
the selected items and their children in layer Ll−1. Because the dis-
played items are incrementally changed based on the user selection,
we call the projection method as incremental tSNE. In comparison
with existing hierarchical tSNE method [42], which supports similar
hierarchical navigation, we have a particular focus to keep a stable
layout when 1) the user selects a set of items and drills down to
display the incremented item set, and 2) labels of items are corrected
and the layout needs to be accordingly updated.

In our incremental tSNE, we denote the number of selected items
in layer Ll as nl , and the number of items to be displayed as nl−1. To
generate the new layout, we minimize the following cost function,

fcost = α ·KL(P ‖ Q)+(1−α)KL(Pc ‖ Qc), (6)

where KL(· ‖ ·) is the Kullback-Leibler-divergence between two dis-
tributions. The first KL-divergence is the same as the original tSNE.
The second KL-divergence is for stability. To maintain stability,
we select nc items from the user selected nl items using blue noise
sampling and add a copy of them as virtual anchor items. In our
experiment, we set nc as 0.25×nl . The positions of anchor items are
stable during the optimization. Pc,Qc ∈ Rnl×nc are the joint proba-
bility distributions that measures similarities between the items and
anchor points in high-dimensional space and 2-dimensional space,
respectively.

pc
i j =

{
exp(−(dh

i j)
2/2ρ2

i ) i ∈ N j

0 otherwise
(7)

qc
i j = (1+(dp

i j)
2)−1, (8)

(a) Original dataset (b) RS

(c) BNS (d) OBBNS

(e) DBS (f) OBDBS

Figure 5: The tSNE projections of the MNIST dataset. (a) The origi-
nal dataset with 10k items; (b)–(f) the sampled subsets containing
3k items using different sampling methods, respectively.

where dh
i j is the distance between item i and anchor item j in the

high-dimensional space, dp
i j denotes the distance in the projected

2-dimensional space, and N j refers to the nearest neighbors of item
j in the high-dimensional space. To speed up the distribution com-
putation, we consider k-nearest-neighbors only when computing pc

i j .
Upon a label correction, the layout should be updated. First,

if the corrected items are scattered, their embeddings should be
re-positioned closer to items in the same class. This update can
guide users to pay more attention to remaining labeling issues in
the training data. Second, the updates should be local to keep the
overall layout stable. Upon these two requirements, we propose a
semi-supervised adaption to support the local update of corrected
items. First, we update the k-nearest-neighbors of the corrected
items, which describe the local probability distribution. Specifically,
given an item i with a corrected label b, we extract its k-nearest-
neighbors with label b. Then, the joint probability distributions Pc

and Qc are updated using Eq. 7 and Eq. 8. Finally, the layout is
updated using our incremental tSNE. In each correction, only a small
number of items are corrected. Therefore, the layout of most items
are stable after the local update. Fig. 6 shows the layouts in four
successive correction iterations. While local updates happen, the
general layouts keep stable.

5.2 Interactive Exploration and Correction

Exploring distribution at multiple levels (R1, R2, R4). The item
view supports a hierarchical exploration of item distribution (R1).
Users are first presented with the overview, i.e., the top level of the
hierarchical structure. The classes of items are encodes by colors.
The selected items are emphasized by thick edges. Ideally, items
are visually clustered by labels. However, the labeling noises in



the training data often result in mixed color distribution in some
regions. These suspicious regions indicate potential mislabeled
items and deserve further examination, e.g., zooming into the regions
to explore more items (R2,R4). Navigation steps are recorded in
a hierarchy stack (Fig. 1 (a)), from which the user can select any
visited views to quickly revisit the navigation. Additionally, a density
map is supported in the item view, coupled with the tSNE projection
in each level, upon which the users can quickly locate and zoom into
regions with dense outliers. They are complementary indicators of
mislabeled items. During the exploration, filtering is available in the
item view to help the user focus on items of particular classes.

In the item view, there could be overlaps between data items
due to the large scale. Our hierarchical visualization is designed to
address this issue (R1). During hierarchical navigation, the user can
select a small number of items in a drill down operation to reduce
overlaps in the new layout. In addition, we provide a density map to
display the distribution of items.
Identifying and selecting trusted items (R3). The item view and
other three views cooperate to support the identification, selection,
and correction of trusted items. During the exploration, the user
can select a set of items and add them into the selected item view.
If s/he wants to reduce the number of selected items, s/he can use
the “Recommend trusted items” operation to select a representative
subset. Images of the selected items are shown in the selected items
view Fig. 1 (c), where the user can look at the images, relate to the
distribution in the item view, refine the selection accordingly, and
correct the labels if labeling errors are noticed. After the refinement,
the selected items can be added into trusted items. The trusted item
view (Fig. 1 (d)) displays the images and labels of all the trusted
items. Further editing can be performed in the trusted item view.

Usually, the identification and selection of trusted items in differ-
ent regions require different strategies. In a region without labeling
outliers, the user usually selects trusted items using system “recom-
mendation”, and verifies the labels by only a glance at the images
in the selected item view. In a region with labeling outliers, more
careful examinations and operations are required from the user, in-
cluding investigating the distribution at different levels, selecting
class-balanced trusted items, and correcting the labels step-by-step
for each class.
Propagating trusted items to improve the quality of the training
set (R3). The propagation of trusted items is performed iteratively.
In each iteration, newly selected trusted items are added into the
trusted item set of the last iteration. They are fed into the correction
module, which propagates the trusted items to the entire dataset. Af-
ter the propagation, users can verify the quality improvements from
the updated item distribution in the item view and the action trail.
The action trail (Fig. 1 (e)) represents the historical record of cor-
rection iterations as a tree. Each iteration is represented by a node
containing two bar charts: the chart on the top displays the number
of newly added trusted items while the other counts the corrected
items by the data correction module. In case of undesired correction
resulting, rolling back to previous iterations allows the user to re-
select trusted items to refine the propagation results. If there is a lack
of obvious visible quality improvements in sequences of iterations,
the user can stop the iteration to finish the correction process.

6 EVALUATION

In this section, we first conduct quantitative experiments to compare
different item sampling in the hierarchical visualization, and to
evaluate the effectiveness of the trusted-item-based data correction
method. We then demonstrate the effectiveness and usefulness of the
developed tool through a representative case study. Two datasets are
used for the evaluation. The MNIST dataset [58] contains 10,000
training items with correct labels of the 10 digits (0 . . .9). For our
experiments, label errors are introduced into the dataset following
the contamination mechanism in [55]. The Clothing dataset is

a subset of the Clothing 1M dataset [53] in which images were
crawled from several online shopping websites. The images are of
14 classes (T-shirt, Shirt, Knitwear, etc.) with some confusing ones
(e.g. Knitwear and Sweater). The class labels are extracted from
the description texts provided by sellers, which result in unreliable
labels. The subset we use contains 37,497 images with both noisy
labels and ground truth. The initial label accuracy is 61.73% for this
subset. To optimize feature spaces for more accurate classification,
a 4096-dimensional feature vector for each image is extracted from
the second last fully connected layer of a well-developed VGG-16
model pre-trained on ImageNet [46].

6.1 Quantitative Experiments
6.1.1 Outlier Biased Sampling
We conduct an experiment to evaluate the performance of two pro-
posed sampling methods (OBBNS and OBDBS). They are compared
with the original blue noise sampling (BNS), density-based sam-
pling (DBS), and random sampling (RS). In our use scenario, we
are interested in how outliers and class structures are preserved in
the projected 2D space. Therefore, we project the sampling results
into 2D space by tSNE and evaluate outlier metrics (true positive
ratio) and structure metric (distance consistency difference).

True Positive Ratio (TPR). We are interested in counting the
ratio of preserved outliers in the sampled and projected result. If
an item i with πi > 0.5, we call it a positive. If an item is positive
in both the original data, in the high-dimensional space, and the
sampled data, in the projected space, we call it a true positive. Only
true positives can be observed in the projection and provide correct
outlier information to users. The TPR is defined as N p/Nh, where
N p is the number of true positives, and Nh is the number of positives
in the original data, in the high-dimensional space. The higher the
TPR is, the better the sampling method performs with respect to
outlier preservation.

Distance consistency difference (DSCD) To evaluate the perfor-
mance of class structure preservation after sampling and projection,
we adopt the density-aware distance consistency (DSC) [50], which
measures the position of an item in its class. Given an item i, when
its DSC value ci is close to 1, it is located close to the center of its
class; when ci is close to -1, i is likely to located in wrong classes.
Given an item set S, we define its DSCD dDSC(S) as the average
difference between DSC values in the original space and the sampled
and projected space. The smaller dDSC(S) is, the more consistent
the cluster distribution is.

Experiments are carried out on the MNIST dataset and a further
sampled subset of the Clothing data which contains 10K items. In
both datasets, we denote an item as an outlier if its outlier probability
is larger than 0.5. With this notion, the MNIST dataset contains
715 outliers and the Clothing dataset contains 1515 outliers. In our
test, we sample 3k items from the dataset in the sampling stage and
project the sampled data into 2-dimensional space by t-SNE. We
test the five sampling methods for ten times and record the average
metrics of each method. The results of the two datasets are presented
in Table 1 and Table 2. In the two tables, D-SAMP represents the
DSCD caused by the sampling stage. D-PROJ measures the class
inconsistency caused by the projection stage. D-ALL refers to the
overall inconsistency due to sampling and projection.

The results demonstrate that the proposed OBDBS performs bet-
ter than other sampling methods in both datasets. In terms of out-
lier preserving (TPR), OBDBS preserves outliers 1.5–2.0 times of
the other methods. Considering class structure preserving metric
(DSCD-3), OBDBS performs comparable to, or even slightly bet-
ter than the other methods. Specifically, OBDBS is ranked the
first on the Clothing dataset and the second on the MNIST dataset.
Considering the stages of sampling and projection separately, the
results of DSCD-1 and DSCD-2 suggest that major distortion of
class consistency is caused by the projection. Since the proposed



Table 1: Numerical experiments of samplings on the MNIST dataset.
Four metrics are used to compare the outlier-preserving performance
of five sampling methods in different stages.

Metric BNS OBBNS DBS OBDBS RS
TPR 0.2439 0.1969 0.2192 0.3817 0.2468
D-SAMP 0.0269 0.0329 0.0174 0.0138 0.0144
D-PROJ 0.4370 0.3782 0.3739 0.4485 0.5177
D-ALL 0.4424 0.4187 0.3721 0.3803 0.5200

Table 2: Numerical experiments of samplings on the Clothing
dataset. Four metrics are used to compare the outlier-preserving
performance of five sampling methods in different stages.

Metric BNS OBBNS DBS OBDBS RS
TPR 0.2039 0.2215 0.2129 0.3234 0.2156
D-SAMP 0.0169 0.0163 0.0197 0.0144 0.0184
D-PROJ 0.4378 0.4968 0.4402 0.4825 0.4619
D-ALL 0.4402 0.5008 0.4485 0.4174 0.4643

OBDBS preserves the most outliers while maintaining relative good
class structures, we employ OBDBS as the sampling method in our
hierarchical representation.

6.1.2 Trusted Item Recommendation
Experiments in this section aim to evaluate the effectiveness of
the trusted-item-based data correction method. Trusted items are
recommended by density-based selection which tries to select more
candidates from sparse regions [41].

Experiments are carried out on both MNIST and Clothing
datasets, with different numbers of trusted items recommended,
and their ground-truth labels are treated as the expert-verified labels
in the experiments. Each set of trusted items are then used as input
to the data correction method to propagate their labels to the whole
dataset. The label accuracy is calculated by comparing all the labels
to the ground-truth, which is used as the evaluation criteria. In this
experiment, 20% error rate was introduced into the MNIST dataset.
The results are presented in Table 3.

Table 3: Numerical experiments on different no. of trusted items.

0 100 200 300
MNIST 80.00% 88.27% 91.57% 92.27%

0 200 400 600
Clothing 61.73% 70.20% 73.52% 74.61%

The results demonstrate that the proposed data correction method
can effectively improve the label accuracy of the whole dataset
with only a small fraction of data trusted. For example, an around
8% improved accuracy is achieved on both datasets using only 100
(MNIST) and 200 (Clothing) data as trusted items. Increasing the
number of trusted items achieves higher accuracy. Comparing the
two datasets, to achieve a similar percentage of improvement, double
number of trusted items are needed for the Clothing dataset as for
the MNIST dataset, showing the former a more challenging case.

A further experiment was carried out on MNIST dataset with
300 trusted items. The aim is to evaluate the robustness of the data
correction method to different error rates. Error rates from 10%
to 40% were introduced into the dataset. The results are shown in
Table 4. We compared the propagated labels with ground-truth, and
noticed that propagation of trusted item labels did make mistakes, as
can be seen from columns 3 and 4 in the table. However, despite the
mistakes, the label accuracy is consistently improved on presence of
different error rates, demonstrating the effectiveness and robustness
of the proposed data correction method.

Table 4: Numerical experiments on different error rate in MNIST.

Error No. of corrections Accuracy
Ratio trusted items propagation correct after

10.00% 28 875 573 94.89%
20.00% 58 1749 1389 92.27%
30.00% 91 2836 2326 91.33%
40.00% 116 3914 3132 89.26%

6.2 Case Study
DataDebugger has been implemented as a web-based system with
Javascript and Flask. We invited one of our collaborators (E1), a
machine learning expert, to use the system on both datasets to eval-
uate its usefulness. E1 is familiar with both data, and the Clothing
1M data is used in one of his on-going projects. Although the ex-
pert has made several prior attempts to clean the data, he wanted to
evaluate if DataDebugger could achieve better quality and facilitate
the correction process. We set up the data and system, provided a
necessary guidance, and recorded the entire correction process for
both datasets. Due to the limited space, here we present the case
study on the more challenging Clothing data.
Overview of data distribution and initial trusted items. E1 be-
gan the correction by observing how the data were distributed with
their noisy labels. Immediately at the top level in the item view, he
noticed that the distribution was messy, as shown in Fig. 6 (a). He
further observed the distribution can be categorized into three types
of regions as marked in Fig. 6 (a):
One-class-dominant regions where items of the same class embed-
ded in clusters apart from items of other classes (e.g. the brown
cluster at the bottom and the light pink cluster at the top left);
Mixed regions where multiple classes are mixed and there is no
dominant label (e.g. the green and orange clusters);
Scattered regions where items of the same class are scattered into
more than one disconnected regions (e.g. the pink and the blue
clusters).
Hovering over the different regions, E1 decided the scattered and
mixed regions are more suspicious of label errors and warrant more
attention during the correction process.

To facilitate the correction, E1 let the system recommend 100
trusted items at the top level to get an initial set that coarsely reflects
the overall distribution of the training data. These recommended
trusted items were highlighted in the item view, and their images
with border color indicating the label were displayed in the selected
item view (Fig. 1 (c)).

To avoid information overload, E1 examined the recommended
items class by class in the selected item view. He started with the
class “T-shirt” (in blue) which seemed scattered into several regions
in the item view. 9 trusted items were recommended for this class,
and E1 immediately noticed that 3 of them were mislabeled (Fig. 1
(c)). He displayed their thumbnail images, checked the positions of
the 3 items in the item view, and corrected their labels. The 9 items
with corrected labels were then added into the trusted item set and
displayed in the trusted item view (Fig.1 (d)).

For some classes, e.g., the class “Shawl” (in brown), the items
gathered in a one-class-dominant region. When checking the recom-
mended items for this class, E1 easily determined that these items
were all of true labels, only at a glance of their images and distribu-
tion (Fig. 1 (d)). He made no corrections and directly added the 10
recommended items into the trusted item set.

A particular item drew E1’s attention when he was checking
the item labels for the class “Knitwear” (in orange). From the
distribution in the item view, he noticed that this recommended
orange item was surrounded by items labeled in blue. Hovering
around and checking the items’ pop up infomation, he further found
none of these surrounding items have their true labels in orange. At



this point, E1 realized that propagating the label of this orange item
could be detrimental to the surrounding items, and decided not to
add this ‘isolated’ item to the trusted item set.

At the end, among the 100 recommended trusted items, E1 flagged
37 label errors. After the propagation, the distribution in the item
view is updated, as shown in Fig. 6 (b), and the action trail bar
charts indicated the labels of 7961 items had been corrected from
the propagation. After the first iteration, E1 observed noticeable
changes of the distribution in the item view. He hovered over the
distribution to examine items and focused on regions with obvious
changes. He found several regions had been effectively repaired
such as those in Fig. 6 (b) (green circles). But he also noticed further
problems in some regions. He decided to refine the trusted items
there at detailed levels.
Refining trusted items in local regions. During the examination,
E1 immediately noticed region rgn.1, where a cluster of labels were
changed wrongly from “Jacket” (in pink) to “Down Coat” (in purple)
in the first iteration (Fig. 6(b)). Moreover, the region was mixed by
items of several labels. E1 decided to zoom into the detailed level
for further refinement. As he zoomed in, it became clear that there
were no trusted items in the sub-region where labels were wrongly
changed. He speculated that the lack of trusted items allowed the
invasion of surrounding labels. To fix the problem and reduce the
mixed degree, E1 first let the system recommend 20 more items in
region rgn.1 at the detailed level, and then further selected 5 items
manually in the sub-region. Examining images of the recommended
and selected items in the selected item view, he verified and corrected
their labels, and added them to the set of trusted items.

E1 then continued exploring the changes made in the first iteration
and noticed the region rgn.2, where the boundary between the two
classes shifted substantially (Fig. 6 (a) and (b)). He suspected a high
degree of confusion along the boundary and zoomed into the region.
Examining the items at the detailed level confirmed his suspicion.
He then let the system recommended 25 items at the detailed level
and manually selected 5 more along the boundary to enhance the
attention there. These recommended and selected items were added
to the trusted item set, after their labels being verified and corrected.

After refining rgn.1, rgn.2, and a few more regions with similar
changes, E1 added 89 new trusted items to the initial trusted item set.
A second propagation was carried out, and the distribution was up-
dated as shown in Fig. 6 (c). The labels of 4372 items were changed
during this iteration indicated by the bar charts in the action trail.

The changes from the second iteration were more local and less
obvious. E1 turned his attention to the scattered and the mixed
regions. The expert first looked at the region rgn.3, which mainly
contained items of the class “Vest” (in pink) but was scattered from
its main cluster (Fig. 6 (c)). Checking the previous propagation using
the action trail (Fig. 6 (a) and (b)), he also noticed its neighboring
region which was dominated by the same class had been corrected to
the class “Down Coat” (in purple) indicating some bias in the initial
labeling process. He suspected biased labeling in rgn.3 as well, and
zoomed into this region. At the detailed level, he hovered around
checking the pop up information of items, and found all the checked
items were actually of the class “Down Coat” but mislabeled “Vest”,
which confirmed his suspicion of biased labeling in rgn.3. He thus
manually selected 3 items in this region, corrected their labels, and
added them into the trusted item set.

E1 then moved on to more challenging regions. He selected the lo-
cal region rgn.4, where the class “knitwear” (in orange) and the class
“sweater” (in green) were heavily mixed. Again, as E1 zoomed in,
he let the system recommend 25 more trusted items and display their
images in the selected item view. From the images, he found the two
classes were indeed hard to distinguish due to their similar appear-
ance, which was probably the cause of many mislabeled items in
this region. In the selected item view, E1 verified/corrected the label
of each recommended item, and added them to the trusted item set.

A few more scattered and mixed regions were handled. A total of
40 trusted items were added in this iteration. After the propagation,
the updated distribution is shown in Fig. 6 (d). E1 specifically praised
the smooth transition between levels and found the hierarchical visu-
alization helpful in switching between global and local exploration.
Iterative exploration and correction. After the three iterations as
mentioned above, E1 noticed no obvious changes in the overall distri-
bution. But from the action trail bar charts, the number of corrected
items was 2810, still substantial compared to the 40 added trusted
items. Given this notice, he carried out one more iteration and fixed
a few more scattered and mixed regions with similar operations. As
for now, E1 was satisfied with the results upon both the distribution
and the bar charts, and thus stopped the iteration. He commented
that the visual comparison of the distributions and statistics of dif-
ferent iterations along the action trail was really useful, especially
as a stopping indicator for driving the iterations and justifying the
overall propagation contribution.

Table 5 summarizes the post-analysis result based on the system
log data, where the last four iterations carried out by the expert
were compared to the ground-truth. The results showed continu-
ous improvements in label accuracy after each iteration, and the
accuracy was increased from 61.73% to 75.02% after the four it-
erations. It also showed that the improvements slowed down with
more iterations, which is consistent with the expert’s experience
from observing the changes in the distribution and in the bar charts.

Table 5: Iterative correction. The first row shows the original
label accuracy before any correction. The following rows show the
number of trusted items added and corrections made at each iteration,
and the label accuracy after each iteration.

Iter No. of trusted items No. of corrections Accuracy
added total E1 propagation after

0 0 0 0 0 61.73%
1 100 100 36 7961 69.14%
2 89 189 39 4372 71.28%
3 40 229 11 2810 74.21%
4 77 306 18 1317 75.02%

Table 6: Comparative study: iterative correction without interactive
selection of trusted items.

Iter No. of trusted items No. of corrections Accuracy
added total E1 propagation after

0 0 0 0 0 61.73%
1 100 100 39 8015 68.93%
2 89 189 33 4992 70.11%
3 40 229 21 2615 71.23%
4 77 306 34 2427 72.44%

Discussion. A comparative study was carried out, in which at each
iteration, the same number of trusted items as in Table 5 were au-
tomatically recommended by density-based sampling without using
DataDebugger for interactive selection. Following the recommenda-
tion, E1 manually verified the labels of the added trusted items, and
propagated the verified labels to the whole dataset. Table 6 shows
the results after each iteration. Compared with the case study above,
the difference in the label correction process with/without the aid
of DataDebugger mainly lies in the step of selecting trusted items.
An automatic recommendation is more efficient than interactive se-
lection, but loses the benefit of more informative selection from user
interaction. As shown in Table 6, with the same number of trusted
items added at each iteration, the improvement in labeling accuracy
is not as much. Moreover, E1 commented that the verification step
actually took longer without the spatial visualization and interac-
tions provided in DataDebugger. E1 considered DataDebugger an
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Figure 6: Top level item distribution through the iterations.

effective tool to both reduce the labor required from the user and
improve the accuracy and efficiency for label correction.

The debugging process also helps his knowledge gain about the
data, mentioned by E1 as well. The formation of the three types
of regions not only indicates where may lie the labeling issues, but
also reflects potential causes. The one-class-dominant regions are
as expected and usually do not warrant labeling issues. During
the process, the expert observed these regions are of classes that
have more distinctive appearance such as “Shawl” and “Underwear”.
Scattered regions are observed for more general classes such as
“T-shirt” and “Vest”. Because of the diverse appearance covered
by these classes, biased labeling is more likely and is the main
cause of the scattering. An example is the labeling of sleeveless
“Down coat” as “Vest”. Mixed regions are usually caused by similar
appearance between the two classes. An example is the observed
mixture of “Knitwear” and “Sweater” in the debugging process.
For one-class-dominant regions, because of the items distinctive
appearance, usually a glance at the recommended items at the top
level suffices for verification. But for scattered and mixed regions,
although the causes may be different, they both require more careful
examinations at the detailed level and some manual refinement of
trusted items. The multiple coordinated views and rich interactions
provided in our system support various operations (e.g., selection,
verification, correction) on individual data items or groups of them,
making our system well adapted to examination of different types of
regions, as has been demonstrated in the case study.

7 CONCLUSION, DISCUSSION, AND FUTURE WORK

In this paper, we presented DataDebugger, a visual analysis tool that
combines a hierarchical visualization and a trusted-item-based data
correction method to facilitate the correction of label errors in train-
ing data. The hierarchical visualization, supported by an incremental
t-SNE and an outlier biased sampling, allows interactive exploration
of large scale and noisy training items. Accompanied by an info view
displaying auxiliary information of selected items, the visualization
enables quick localization of label issues and informative selection
of trusted items. The scalable trusted-item-based data correction
method automatically propagates the labels of trusted items to the
whole dataset and significantly reduces the labor required in the data
correction process. We conducted both quantitative experiments
and a representative case study to demonstrate the effectiveness of
our method and the usefulness of visualization to improve the label
correction in terms of both accuracy and efficiency.

Nevertheless, our work is a first step and there are a few limita-
tions that open avenues for future research.
Generalization. We currently only demonstrated the application of
our method to image data. However, the visual analysis pipeline can
be easily applied to other types of data such as textual data. The
trusted-item-based label correction method can be directly applied
to other high-dimensional data. Most high-dimensional data correc-

tion can employ the tSNE-based visualization. The only changes
needed are some customization to visualize the data distribution.
For example, to visually illustrate the contents of textual document
data, representative keywords can be extracted and displayed around
when hovering over the document points.
Algorithm efficiency. The data correction algorithm tends to be rel-
atively inefficient when the training data is large. For example, when
there are over 10,000 training items, several minutes are needed
to propagate the labels of trusted items to other items. As a result,
an avenue for future research is to improve the efficiency of the
correction algorithm. A potential solution is to parallel the algo-
rithm. Another solution is to design a more efficient approximation
algorithm with no sacrifice of accuracy.
Distortion caused by projection. In the experiments, we found that
most of the distortion between items in the visualization was caused
by the tSNE projection (Sec. 6.1.1). This is an inherent limitation
of the projection-based method [40]. To alleviate such distortion in
terms of class consistency, we updated the k nearest neighbors of the
items with changed labels. Another potential solution is to use the
corrected dataset to fine-tune the deep neural network and extract the
fine-tuned new features for each item. However, fine-tuning a neural
network is usually very time-consuming, taking from several hours
to several days. As a result, it is worthy to study a more efficient and
effective way to reduce the distortion effects caused by the tSNE.

Another interesting topic is that the conflicts between the visual
perceptual grouping formed by colors and the one formed by the
proximities [3] actually indicate possible labeling issues. After a
correction, visual conflicts should be eliminated allowing users to
focus on other possible issues. Therefore, we proposed a semi-
supervised incremental tSNE to group corrected items with the
same label together. Other projection methods, such as Lespinats et
al. [29], may be considered as well.
Color scalability. The number of colors is an inherent limitation
in a multiple-class scenario. When the number of classes exceeds
seven, which is considered as the number of distinguishable classes,
the visual encoding will be less efficient. A possible solution is to
encode only classes of interest. In an extreme case, we can use only
two colors to distinguish the class of interest from all other classes.
While this degeneration reduces the analysis efficiency, it will be
interesting to develop an encoding algorithm to obtain the balance
between the efficiency of analysis and visual perception.
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plause: Visual data quality assessment of many time series using plau-
sibility checks. IEEE transactions on visualization and computer
graphics, 23(1):641–650, 2017.

[3] M. Aupetit. Sanity check for class-coloring-based evaluation of dimen-
sion reduction techniques. BELIV ’14, pages 134–141, 2014.

[4] J. Bernard, M. Hutter, M. Zeppelzauer, D. W. Fellner, and M. Sedl-
mair. Comparing visual-interactive labeling with active learning: An
experimental study. IEEE transactions on visualization and computer
graphics, 24(1):298–308, 2018.

[5] J. Bernard, M. Zeppelzauer, M. Lehmann, M. Müller, and M. Sedlmair.
Towards user-centered active learning algorithms. Computer Graphics
Forum, 37(3):121–132, 2018.

[6] J. Bernard, M. Zeppelzauer, M. Sedlmair, and W. Aigner. Vial: a
unified process for visual interactive labeling. The Visual Computer,
34(9):1189–1207, 2018.

[7] S. K. Bhatia et al. Adaptive k-means clustering. In FLAIRS conference,
pages 695–699, 2004.

[8] C. Bors, T. Gschwandtner, S. Kriglstein, S. Miksch, and M. Pohl.
Visual interactive creation, customization, and analysis of data quality
metrics. J. Data and Information Quality, 10(1):3:1–3:26, May 2018.

[9] S. Burr. Active learning literature survey. Technical Report Computer
Sciences Technical Report 1648, Univ. of WisconsinMadison, 2009.

[10] N. Cao, C. Lin, Q. Zhu, Y.-R. Lin, X. Teng, and X. Wen. Voila: Visual
anomaly detection and monitoring with streaming spatiotemporal data.
IEEE Transactions on Visualization and Computer Graphics, 24(1):23–
33, 2018.

[11] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and
K. Ma. Visual abstraction and exploration of multi-class scatter-
plots. IEEE Transactions on Visualization and Computer Graphics,
20(12):1683–1692, 2014.

[12] A. C. Chiang. Fundamental methods of mathematical economics.
Aukland (New Zealand) McGraw-Hill, 1984.

[13] R. L. Cook. Stochastic sampling in computer graphics. ACM Trans.
Graph., 5(1):51–72, 1986.

[14] C. Cortes, L. D. Jackel, and W.-P. Chiang. Limits on learning machine
accuracy imposed by data quality. In In, pages 57–62. AAAI Press,
1995.

[15] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. IEEE
Transactions on Visualization and Computer Graphics, 16(3):439–454,
2010.

[16] B. Frénay and M. Verleysen. Classification in the presence of label
noise: a survey. IEEE Transactions on Neural Networks and Learning
Systems, 25(5):845–869, May 2014.

[17] T. Gschwandtner, W. Aigner, S. Miksch, J. Gärtner, S. Kriglstein,
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