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Abstract 

A modified cohesive zone model (CZM) has been developed to simulate damage initiation and 

evolution in Fibre-Metal Laminates (FMLs) manufactured in-house but based on the Glare® material 

specifications. Specimens containing both splice and doubler features under high cycle fatigue 

loading. The model uses a novel trapezoidal traction-separation law to describe the elastic-plastic 

behaviour of this material under monotonic and high-cycle fatigue loading. The model is implemented 

in the software Abaqus/Explicit via an user-defined cohesive material subroutine. Several models of 

increasing complexity were investigated to validate the proposed approach. A two-stage 

experimental testing programme was then conducted to validate the numerical analyses. Firstly, 

quasi-static tests were used to determine the ultimate tensile strength (UTS) of a series of specimens 

with and without internal features. Secondly, high-cycle fatigue tests were conducted on both 

laminate types with variable load amplitude so that S-N curves could be built. Tests were monitored 

using digital image correlation (DIC) for full-field strain mapping and acoustic emission (AE) sensing 

to detect the initiation and propagation of damage during quasi-static and fatigue tests. Good 

correlation was observed between predicted onset and growth of delaminations and the history of 

cumulative AE energy during the tests, which supports the validity of the cohesive modelling 

approach for FMLs. 

Keywords: Fibre Metal Laminates (FMLs), Glare®, Fatigue, Delamination, Cohesive Zone Model 

(CZM), Digital Image Correlation (DIC) and Acoustic Emission (AE). 
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1 Introduction 

Fibre-metal laminates (FMLs) like Glare® are manufactured from metal sheets bonded with glass 

fibre reinforced composites using high toughness thermoset matrix materials. Where large panels 

are required, joints including splices (staggered overlapping layers) and doublers (additional external 

or internal layers) are used. One of the most common failure modes for FML structures is 

delamination in these joints [1]. Delamination in fibre composites has been modelled by researchers 

using a number of different approaches. These include the cohesive zone model (CZM) which 

incorporates both continuum damage and fracture mechanics concepts [2] and which has been used 

to model delamination initiation and propagation under high cycle fatigue [3-7]. This paper describes 

work done to extend the CZM approach to model elastic-plastic behaviour such as that exhibited in 

FMLs. 

Fatigue has been shown to account for at least 90% of all service failures due to mechanical faults 

across a range of industries [8]. With the increased use of hybrid materials such as Glare® in aircraft 

and other critical structures it is important to be able to predict fatigue damage behaviour in these 

more complex materials and particularly in associated manufacturing features such as splices and 

doublers. This can be achieved by both experimental and analytical methods. Experimental studies 

usually focus on mechanical characterisation through tension-tension cyclic loading tests, yielding 

either S-N curves for fatigue life estimation or Paris-type curves for crack growth rate estimation. 

Analytical techniques provide efficient design and analysis methods which are particularly important 

for industrial applications. A number of studies have been conducted into modelling damage in the 

adhesive joints of composite laminates under fatigue loads. Models are generally based on either 

stress or strain analysis. Adhesive damage models reported in the literature use a number 

approaches including fracture mechanics and continuum damage mechanics [9-12]. In such 

approaches a damage parameter (𝐷) is defined which modifies the constitutive response of the 

adhesive, with damage accumulation expressed in terms of the number of cycles to failure. However, 

although continuum damage approaches provide a valuable predictive framework, they do not give 

a clear definition of the fatigue initiation and propagation phases. 

Nowadays, nonlinear Finite Element (FE) simulations including cohesive zone models (CZM) are 

widely used in modelling damage in fibre composites and FML joints. These models are based on 

both continuum damage mechanics and fracture mechanics concepts. The CZM was originally 

introduced by Barenblatt [13] based on Griffith’s theory of fracture. Hillerborg et al. [14] implemented 

CZM in the framework of the FE method. Contrary to previous works, where the cohesive zone 

tractions had been defined as a function of the distance to the crack tip, they defined tractions versus 

crack opening displacement and the prevailing CZM traction–separation law was formed. Other 



3 

 

researchers including Needleman [15] and Tvergaard [16] extended the model by proposing various 

traction–separation functions and applying it to different problems. The fundamental concept 

however remained essentially unchanged. The cohesive zone model has since been employed by 

numerous authors for predicting the fatigue response of structures, coupling the CZM with fatigue 

damage evolution laws to simulate fatigue degradation. A number of authors [17-21] modelled 

fatigue loading cycle by cycle, which is computationally expensive and impractical in the case of high 

cycle fatigue. Others have tried to reduce the computational effort by the employment of cyclic 

extrapolation techniques [3, 22]. May and Hallett [23] first developed a cohesive law that combines 

phenomenological S-N curves for damage initiation with a fracture and damage mechanics approach 

for crack propagation for the simulation of damage under cyclic loading. This model was further 

developed by Harper and Hallett [6] for modelling delamination crack propagation in composite 

laminates under cyclic loading. The methodology has been further developed and expanded for the 

analysis of delamination propagation in composites under mixed-mode high-cycle fatigue loading [4, 

7, 24]. 

Little work has been done however to examine the initiation and propagation of damage in the 

adhesive joints of fibre metal laminates under high cycle fatigue. Crocombe and Sugiman [25] 

conducted experimental and numerical investigations on metal laminate (ML) and Glare® laminates 

with doublers under fatigue tension loading, using the cohesive zone model proposed by 

Khoramishad et al. [24] for the simulation of damage evolution at interfaces. More recently Hosseini- 

Mazaheri and Toudeshky [26] developed an elastic–plastic-damage constitutive law to simulate 

delamination initiation and propagation in FMLs; however this model was limited to a low-cycle 

fatigue loading regime. 

This study concentrates on modelling damage in Glare® laminate joints (both splices and doublers) 

under high cycle fatigue loading. This is achieved by applying a trapezoidal traction law for the 

cohesive layers at the metal-fibre interfaces which is more representative of high toughness 

adhesive interfaces. A modified cohesive zone model using this mixed mode traction law is 

developed and implemented through a user-defined VUMAT subroutine in the Abaqus/Explicit 

software, to model the onset and growth of delamination in the aluminium-composite interfaces. 

Experimental tests on Glare® laminates containing either splice or doubler features are then used to 

validate the model. 

2 Cohesive Zone Model (CZM) 

Cohesive zone models have been widely used for predicting delamination in adhesively bonded 

structures under fatigue loading. Models used in these analyses which are mostly based on a bi-
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linear traction-separation law have been found to be a particularly efficient approach for elastic 

materials. The same approach however has not been found to be accurate for elastic-plastic 

materials where a trapezoidal traction-separation law has proved to be more efficient in predicting 

the plastic flow of ductile adhesives [27]. 

 

Figure 1: Mixed mode trapezoidal traction law; 𝑢1  and 𝑢2  are the separations at the end of the elastic and 

plastic (constant-stress) regions respectively, 𝑢3 are the separations at failure, and 𝜎c are the constant 

stresses. The subscripts I and II represent mode-I and mode-II respectively. 

The trapezoidal traction law shown in Figure 1(a) has been adopted by many researchers [16, 28-35] 

to model interface damage behaviour in elastic or elastic-plastic materials in either mode-I or mode-II 

under static loading. In this work, a mixed mode trapezoidal traction-separation law has been 

developed (Figure 1 (b)) to model first static and then high cycle fatigue damage in FML structures 

including adhesively bonded joints. Deterioration due to the influence of fatigue loading is simulated 

by degrading the trapezoidal traction-separation response based on a fatigue damage variable 

derived from the Paris law for the material and the elapsed number of load cycles. This trapezoidal 

traction separation law has been implemented in Abaqus/Explicit using 2D cohesive elements which 

have been utilised in a two-stage fatigue loading analysis as shown Figure 2. 

In the first step static loading up to the maximum fatigue load value is applied after which the second 

step including the loading envelope approach shown in Figure 2 (a) begins. This process requires 

the use of two algorithms to simulate both quasi-static and high cycle fatigue damage behaviour, 

following the trapezoidal traction law and the fatigue Paris law respectively. This fatigue degradation 

process is illustrated in Figure 2 (b) and is based on a total damage variable which is the sum of both 

static and fatigue damage variables. This fatigue damage variable (𝐷f) is zero at the end of the static 

step and is then updated according to the Paris law for each increment. During analysis, it increases 
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up to certain value 𝐷f,𝑡1 at simulation time 𝑡1 which indicates the start of the loading envelope-based 

fatigue degradation. Fatigue damage then continues to evolve following the trapezoidal traction law 

up to damage variable 𝐷f,𝑡2 at simulation time 𝑡2 at the beginning of the softening region. The process 

continues until final fatigue failure occurs, when 𝐷f = 1 and the simulation time indicates the number 

of elapsed fatigue cycles. 

A detailed explanation of the static and fatigue cohesive models is provided below, with a flowchart 

summarising the implementation being provided later (Figure 5). 

 

Figure 2: Fatigue load envelope (a) and fatigue degradation of the cohesive zone (b). 

2.1 Quasi-static damage model 

The first stage in this process was to create a static damage model based on the trapezoidal traction-

separation law shown in Figure 1. This was done by writing a user-defined material subroutine which 

was then built into the software Abaqus/Explicit. The VUMAT interface provides the displacement 

jump at each cohesive integration point and requires the user subroutine to return the resulting 

traction vector, with the ability to store and update a number of extra state variables (SDVs). The 

subroutine developed here decomposed the displacement jump increments into mode-I (𝑢I) and 

mode-II (𝑢II ) components, which were then used to update the normal stresses 𝜎I and shear 

stresses 𝜎II at each cohesive integration point. These displacements are then used to calculate the 

damage initiation index, 𝐷init, which predicts initiation based on a quadratic stress criterion [36], i.e. 

(
𝜎I
𝜎IC

 )
2

+ (
𝜎II
𝜎IIC

 )
2

= 𝐷init (1) 

Strain energy release rates (SERRs) 𝐺I and 𝐺II are then calculated from the areas under the 
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trapezoidal traction-separation curves for mode-I and mode-II, namely 

𝐺I = ∫ 𝜎I

𝑢I

0

 d𝑢I  , (2) 

𝐺II = ∫ 𝜎II

𝑢II

0

d𝑢II  . (3) 

Finally, the damage evolution variable 𝐷e is calculated using a power law failure criterion, 

(
𝐺I

𝐺IC

 )
𝜙

+ (
𝐺II

𝐺IIC

 )
𝜙

=  𝐷e  , (4) 

where the power law parameter 𝜙 must be determined from a best fit to mixed-mode delamination 

data from the literature [37,38]. The strain energy release rate for the interface between aluminium 

2024-T3 and FM94 reinforced with S2 glass fibre used here is based on experiments performed by 

Vesco et al. [39]. An important aspect of the mixed mode case is the lower total critical energy 

release rate 𝐺C compared to pure mode-I and mode-II situations. Neither the Benzeggagh-Kenane 

criterion described in [3], nor the power law criterion with 𝜙 ≥ 1 can correctly describe the 

delamination behaviour of Glare®. A better relationship for this specific case is the power law with 

𝜙 =
1

2
 [38]. 

2.2 Fatigue damage model 

A fatigue damage degradation law was then developed for this trapezoidal traction-separation law. 

The fatigue damage approach adopted in this model to calculate crack growth rate is a normalised 

Paris law according to [3, 5-7], 

d𝑎

d𝑁
= 𝐶 (

∆𝐺

𝐺C

)
𝑚

, (5) 

where d𝑎/d𝑁 is the crack growth rate (the increment in crack length with increasing number of 

cycles) while 𝐶 and 𝑚 are best fit coefficients to experimental data in a log-log plot for crack length 

𝑎 versus number of cycles 𝑁. The total critical strain energy 𝐺C is a material property for the interface 

cohesive layer (whose value has been adapted from [40]) and represents the area under the curve 

of the trapezoidal traction–separation relation which in this study is for pure mode-II – the 

predominant failure mechanism for both splice and doubler specimens according to previous work 

by the authors [41, 42]. 
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The mode-II strain energy release rate amplitude is calculated as in [39, 40], 

𝛥𝐺 = (1 − 𝑅2) 𝐺max  , (6) 

where 𝑅 is the load ratio (trough load divided by peak load), which in this study is equal to 0.1, and 

𝐺max is the peak strain energy release rate. 

The fatigue damage variable 𝐷f is calculated based on an effective length �̅� which is associated with 

a single cohesive integration point in the direction of crack propagation. The delamination will 

propagate this distance �̅� when this cohesive integration point fails, which will happen after a given 

number of cycles has elapsed, i.e. 

𝑁f = �̅� ⋅ (
d𝑎

d𝑁
)
−1

, (7) 

where d𝑎 d𝑁⁄  is the crack growth rate obtained from the modified Paris law, equation (5). We define 

the time of failure for the cohesive integration point as, 

𝑡f = 𝑁f ⋅ 𝜔
−1, (8) 

where 𝜔 is the user-defined loading frequency in cycles per unit pseudo-time. The damage 

accumulated during the current time step Δ𝑡 is therefore, 

Δ𝐷 = Δ𝑡 ⋅ (𝑡f)
−1. (9) 

Finally, this damage increment updates the fatigue damage variable for the next time step [6, 7, 43], 

i.e. 

𝐷f
𝑡+Δ𝑡 = 𝐷f

𝑡 + Δ𝐷 . (10) 

2.3 Unloading – reloading 

To account for the partial unloading and reloading which may occur during crack propagation, the 

unloading and reloading paths need to be defined in the cohesive zone model. When the separation 

of the corresponding cohesive surfaces is smaller than in the previous time step, the unloading path 

is followed. In this research, unloading is prescribed to be directed back to the origin of the traction-

separation curve [37] as shown in Figure 3. The traction components during unloading are then 

calculated algorithmically as follows. 
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(a)       (b) 

Figure 3: Unloading/reloading path for mixed mode trapezoidal traction law for (a) the constant stress-region 
and (b) the softening region. 

Constant stress-region, Figure 3 (a): 

If 𝑢 ≥ �̅� (i.e. ‘loading’) 

𝜎 = 𝜎c (11) 

Else if 𝑢 < �̅� (i.e. ‘unloading’) 

𝐾1 =
𝜎c
�̅�

 (12) 

𝜎 = 𝐾1 ⋅ 𝑢 (13) 

Linear softening region, Figure 3 (b): 

If 𝑢 ≥ �̅� (i.e. ‘loading’) 

𝜎 = 𝜎c ⋅
𝑢3 − 𝑢

𝑢3 − 𝑢2
 (14) 

Else if 𝑢 < �̅� (i.e. ‘unloading’) 

𝜎 = 𝜎c ⋅
𝑢3 − �̅�

𝑢3 − 𝑢2
 (15) 

𝐾2 =
𝜎

�̅�
 (16) 

𝜎 = 𝐾2 ⋅ 𝑢 (17) 

where 𝑢 is the is the displacement jump at the current increment, �̅� is the local maximum 

displacement jump (i.e. the ‘envelope’ value of 𝑢), 𝜎c is the ‘plateau’ (i.e. constant) value of the 

cohesive traction, 𝜎 is the stress at the current time step, 𝑢1, 𝑢2, and 𝑢3 are characteristic 

displacements of the trapezoidal law, and 𝐾1 and 𝐾2 are cohesive stiffnesses for the constant stress 

and the linear softening regions of the trapezoidal law, respectively. 
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2.4 Model implementation 

The two-dimensional cohesive elements in Abaqus (COH2D4) have two integration points as shown 

in Figure 4. In order to provide a conservative criterion for cohesive element failure and subsequent 

removal from the analysis, the VUMAT subroutine requests the deletion of the element once either 

of the two integration points is completely degraded. Once this happens all element stresses and 

strains are set to zero and the deletion flag is activated; the solver then removes the failed element 

from the simulation in the following time step [44]. 

 

Figure 4: Schematic of a two-dimensional cohesive element (COH2D4). 

 

Figure 5: Flowchart describing the VUMAT implementation. 

The VUMAT subroutine is called at each time increment for each cohesive integration point in the 

 

Integration point-2 
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model. The cohesive traction update scheme is shown in the form of a flowchart in Figure 5, which 

also indicates the sequence in which the various equations described above are evaluated. 

2.5 Model verification 

The proposed mode-II fatigue damage model was verified through the analysis of specimens 

containing a discontinuous (i.e. ‘cut’) central layer as shown in Figure 6. The FE model represents 

only a quarter of the specimen due to symmetries. The central aluminium layer was 0.1 mm thick 

while the two neighbouring aluminium layers were 0.4 mm thick. Each layer comprised 200 elements 

0.25 mm long and was one element thick. The elements used were linear two-dimensional plane 

strain continuum elements (CPE4). The interfaces were meshed using the 2D cohesive elements 

described above (COH2D4) with an arbitrary ‘geometrical thickness’ of 0.01 mm (the ‘constitutive 

thickness’ is unity as usual). The model had an 𝑥-direction symmetry boundary condition applied to 

the left hand-side edge nodes of the continuous layers only. The properties of the aluminium and 

cohesive materials used in this model are given in Tables 1-5. RHS edge elements were subjected 

to prescribed horizontal displacements in quasi-static simulations, and prescribed loads in fatigue 

simulations (according to the envelope approach described earlier). 

 

Figure 6: Quarter-model of the cut-ply specimen, showing planes of symmetry and four cohesive elements 
selected (arbitrarily) for detailed data output. 

2.5.1 Quasi-static loading 

The traction-separation curves for the cut ply model resulting from the VUMAT code proposed here 

are shown in Figure 7. A good representation of the trapezoidal traction law reported by Hutchinson 

[16] is achieved, as expected. The mode-II cohesive stiffness of 8.32×104 N/mm3 and the shear ‘yield 

stress’ of 40 MPa are reproduced exactly, with damage initiation and linear softening occurring at a 

displacement jumps of 0.49 µm and 15.18 µm respectively, which agree with the input data provided. 

Continuous layer

(𝑥-direction symmetry)

Discontinuous layer

(free edge)

Cohesive layer

 -direction symmetry Prescribed 

displacement or 

distributed load

Elem. 1 Elem. 2 Elem. 3

Output elements

Elem. 4

 

𝑥
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Figure 7: Traction-separation curve for ‘output element 1’ in the simplified cut ply model under quasi-static 
loading. 

2.5.2 Fatigue loading 

The traction-separation curves for the cut ply model under fatigue (70% load severity, 𝑅-ratio of 0.1) 

are shown in Figure 8. These prove that both static and fatigue curves are identical in the elastic 

region and the initial part of the constant stress region before fatigue damage is incurred. After this 

fatigue damage initiates (user-defined start time of 0.3 ms) leading to fatigue degradation in four 

‘sample’ elements ahead of the numerical crack tip, confirming stable fatigue delamination growth 

due to the near-constant strain energy release rates observed in cut ply tests [7]. 

In order to validate the fatigue parameters used which were taken from experimental data reported 

by Alderliesten [45], the response for different fatigue load severities was predicted using the VUMAT 

code as shown in Figure 9. For clarity results for only four cohesive elements out of the 200 elements 

modelled are shown for four different severities (70%, 60%, 50% and 40%) which are compared with 

experimental Paris law results. The normalised mode-II strain energy release rate amplitudes 

Δ𝐺II 𝐺IIC⁄  are plotted against crack growth rates d𝑎 d𝑁⁄ , showing excellent correlation between 

predicted and experimental results. 
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Figure 8: Traction-separation curves for the cut ply model under fatigue loading (70% severity); (a) 
comparison of fatigue and static traction separation curves, and (b) detail of the fatigue curves for 

four output elements. (b) 

(a) 
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Figure 9: Experimental [45] and numerical Paris curves for the cut ply model under 𝑅 = 0.1 and severities of 

70%, 60%, 50% and 40%, as computed by the four output cohesive elements. 

 

3 Fatigue of doubler and splice joints 

3.1 Specimen design 

The joints examined were longitudinal splice and transverse doubler joints manufactured in-house 

but based on the Glare®4B specification as shown in Figure 10. The specimens had a gauge section 

measuring 153 mm × 13.5 mm and two 53 mm long aluminium tabs bonded on each end. These 

were manufactured from 0.4 mm thick sheets of aluminium alloy 2024-T3 and Cytec™ 

S2-glass/FM94 glass fibre reinforced polymer (GFRP) unidirectional prepreg. The layups were 

designed according to the specification for commercial Glare® 4B shown in Table 1 [1].  
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The manufacturing process involved first etching the aluminium sheets to remove the oxide layers. 

Mechanical abrasion using Scotch-Brite™ abrasive sponges was followed by degreasing using 

Methyl Ethyl Ketone (MEK). The sheets were then immersed in a solution of 100 g/L of water of 

sodium hydroxide (NaOH), at 60 °C for 1 min and then a water solution of 330 mL/L chromic-

sulphuric acid (97% v/v) and 50 g/L potassium dichromate at 60 °C for 15 min. After these latter two 

stages the sheets were rinsed in tap water for 20 minutes and then dried in an oven at 40 °C for 30 

minutes. 

Lay-up was carried out by hand and followed by autoclave curing. The cure cycle involved heating 

to 120 °C at a rate of (1.7 - 2.8 °C) min-1 under a pressure of 1.86 bar and with a vacuum of 0.9 bar 

applied, holding for 60 minutes and then cooling at a rate of 3 °C min-1. Finally the specimens were 

cut to size using a spiral tooth carbide milling cutter at a cutting speed of 2000 – 3000 rpm and a 

feed rate of 500 mm/min. 

As these laminates were manufactured in-house their mechanical properties are not guaranteed to 

meet the specification of commercial Glare®; however the authors have observed comparable 

properties between the two materials in previous work [41-43]. Each GFRP layer had three plies with 

the layup [90o/0o/90o] and a cured ply thickness of 0.133 mm. The layup on one side of the joint was 

‘3/2’ (three layers of aluminium and two layers of GFRP) and on the other ‘4/3’ (four layers of 

aluminium and three layers of GFRP). 

Table 1: Standard grades of commercial Glare® [1]. 

Grade Sub-grade Alloy Metal sheet 
thickness 
[mm] 

GFRP sub-
laminate 
layup 

Main beneficial 
characteristics 

Glare® 1 - 7475-T761 0.3 – 0.4 0 / 0 fatigue, strength 

Glare® 2 Glare® 2A 2024-T3 0.2 – 0.5 0 / 0 fatigue, strength 

Glare® 2 Glare® 2B 2024-T3 0.2 – 0.5 90 / 90 fatigue, strength 
Glare® 3 - 2024-T3 0.2 – 0.5 0 / 90 fatigue, impact 
Glare® 4 Glare® 4A 2024-T3 0.2 – 0.5 0 / 90 / 0 fatigue, strength (especially 

in 0° direction) 
Glare® 4 Glare® 4B 2024-T3 0.2 – 0.5 90 / 0 / 90 fatigue, strength (especially 

in 90° direction) 
Glare® 5 - 2024-T3 0.2 – 0.5 0 / 90 / 90 / 0 impact 

Glare® 6 Glare® 6A 2024-T3 0.2 – 0.5 +45 / -45 shear, off-axis properties 

Glare® 6 Glare® 6B 2024-T3 0.2 – 0.5 -45 / +45 shear, off-axis properties 
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Figure 10: Specimen design for (a) doubler (b) splice (images resized for clarity, not to scale). 

3.2 Finite element models 

Two-dimensional FE models of the splice and doubler joints were created to simulate the effect of 

fatigue delamination in fibre metal laminate structures containing adhesive joints. This involved 

extracting the geometry and thickness of each layer from detailed scans of the actual specimens, as 

shown in Figure 10, and then meshing them using plane strain elements (CPE4), Figures 11 and 12. 

The interfaces were meshed using 2D cohesive elements (COH2D4). The geometry and thickness 

of each layer were extracted from detailed scans of real specimens and a high-fidelity structural 

mesh was generated to represent the observed internal geometry. 

 

Figure 11: Finite element mesh of the splice specimen (top) based on optical scans of real specimens 
(bottom) (images resized for clarity, not to scale). 

Splice joint Discontinuous region

153 mm53 mm

Aluminium tabs

1.92 

mm 
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(b)

1
3
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m
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Figure 12: Finite element mesh of the doubler specimen (top) based on optical scans of real specimens 
(bottom) (images resized for clarity, not to scale). 

A comprehensive literature review was carried out in order to gather reliable mechanical properties 

for the Glare® material constituents. The properties of aluminium, GFRP, bulk FM94 resin and 

cohesive layers used are presented in Tables 2-6. Mechanical properties for the S2-glass/FM94 

GFRP material were given in [25] and are shown in Table 2. Properties for the aluminium alloy 

2024-T3 were obtained from [45] and are summarised in Table 3. The cohesive properties for GFRP-

metal interfaces were obtained from [46] and are shown in Table 4. The cohesive stiffnesses 𝐾I and 

𝐾II were calculated based on the elastic properties of bulk FM94 resin, shown in Table 5, assuming 

that the interfacial stiffness is dominated by the deformation of a 10 µm thick resin rich layer, as 

described in [7] (it should be noted that these stiffnesses have only minor influence on the fracture 

initiation and propagation behaviour of the CZM, which instead is more strongly dependent on the 

initiation stresses, 𝜎Ic and 𝜎IIc, and the critical strain energy release rates, 𝐺IC and 𝐺IIC). The fracture 

process resulting from the delamination of the GFRP-metal interfaces is micro-mechanically different 

from the fracture process observed between the same metal and resin in the absence of fibres, since 

the presence of fibres precludes the development of a local plastic zone within the toughened epoxy 

material [47]. As a result, much higher fracture energies are expected within the resin pockets formed 

around the splice and doubler features contained in the laminates investigated here. Indeed, Katnam 

et al. [48] obtained the cohesive properties shown in Table 6 for fracture in a similar material system, 

but along a 100 µm thick unreinforced resin layer. The properties in Table 6 were therefore assumed 

for the interfaces formed around resin pockets in the splice and doubler features investigated here. 

 

 

  

Glare4B- 3/2 region Doubler joint region Glare4B- 4/3 region
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Table 2: Mechanical properties for S2-glass/FM94 prepreg material [25] 

 

 

Table 3: Mechanical properties for aluminium alloy 2024-T3 [1]. 

Property Value Units 

Young’s modulus 72.4 GPa 

Stress at 4.7% strain 420 MPa 

Tensile yield strength, rolling direction 300 MPa 

Tensile yield strength, transverse direction 299 MPa 

Shear modulus 27.6 GPa 

Poisson’s ratio 0.33 - 

Coefficient of thermal expansion 22×10-6 oC-1 

Mass density 2780 kg·m-3 

 

  

Property Value Units 

Young’s modulus, fibre direction, 𝐸11  50.0 GPa 

Young’s modulus, transverse direction, 𝐸22 9.0 GPa 

Poisson’s ratio,  𝜈12 0.33 - 

Poisson’s ratio,  𝜈23 0.04 - 

In-plane shear modulus,  𝐺12 3.5 GPa 

Transverse shear modulus,  𝐺23 3.0 GPa 

Fibre-direction tensile strength,  𝑋T 2000 MPa 

Fibre-direction compressive strength,  𝑋C 550 MPa 

Transverse tensile strength,  𝑌T 43 MPa 

Transverse compressive strength,  𝑌C 90 MPa 

In-plane shear strength,  𝑆12 93 MPa 

Transverse shear strength,  𝑆23 50 MPa 

Critical SERR, fibre direction,  𝐺C,𝑋 12.0 kJ·m-2 

Critical SERR, transverse direction,  𝐺C,𝑌 1.0 kJ·m-2 

Mass density, 𝜌 [49] 2000 kg·m-3 

Coefficient of thermal expansion, fibre direction [45] 6.1×10-6 ºC-1 

Coefficient of thermal expansion, transverse direction [45] 26.2×10-6 ºC-1 
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Table 4: Cohesive zone properties for GFRP-metal interfaces. 

 𝐺IC  

(kJ·m-2) 
[46] 

 𝐺IIC  

(kJ·m-2) 
[46] 

𝜎Ic  
(MPa) 
[46] 

𝜎IIc  
(MPa) 
[46] 

 𝐾I  

(N·mm-3) 
 

 𝐾II  

(N·mm-3) 
 

0.45 1.0 40 40 2.189×105 0.823×105 

 

Table 5: Mechanical properties for the FM94 resin [50]. 

Property Value Units 

Young’s modulus 2.19 GPa 

Poisson’s ratio 0.33 - 

Mass density [50, 51] 1280 kg·m-3 

Coefficient of thermal expansion [51] 100×10-6 ºC-1 

 

Table 6: Cohesive zone properties for bulk resin-metal interfaces. 

 𝐺IC  

(kJ·m-2) 
[48] 

 𝐺IIC  

(kJ·m-2) 
[48] 

𝜎Ic  
(MPa) 
[38] 

𝜎IIc  
(MPa) 
[38] 

 𝐾I  

(N·mm-3) 
 

 𝐾II  

(N·mm-3) 
 

2.0 4.0 50 50 2.189×105 0.823×105 

 

3.3 Test setup 

A two-stage experimental testing programme was performed in order to support the numerical 

analyses. Firstly, quasi-static tests were used to obtain the ultimate tensile strength (UTS) of the 

manufactured specimens and hence determine appropriate values for the fatigue loading severities. 

Then, fatigue life curves were extracted for specimens containing both splice and doubler joints in 

order to study fatigue behaviour of FMLs including these features. 

Prior to testing, doubler specimens were pre-loaded to generate a crack initiation site (this was not 

necessary for splice specimens in which cracks naturally grow from the discontinuity at the outer 

surface). This was achieved by loading the specimens slowly in tension whilst using a camera with 

a high magnification micro-lens as shown in Figure 13 to monitor crack initiation and propagation. 

When the crack length reached 1 mm the test was stopped. 
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Figure 13: Micro-video camera setup for through-thickness crack measurement left and 2D micro-image for 
pre-cracked doubler specimen right. 

 

Figure 14: Experimental fatigue test setup. 

 

Figure 15: AE sensor’s position on a Glare® 4B specimen. 

Specimens were tested in an MTS servo-Hydraulic (50 kN) machine as shown in Figure 14 with a 

constant load ratio 𝑅 = 0.1 and a frequency of 5 Hz. Different severities were investigated for both 

splice and doubler specimens based on maximum fatigue loads calculated from ultimate tensile 

strengths obtained from quasi-static tests on splice and doubler specimens and described in [52]. 
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Two Acoustic Emission (AE) sensors were mounted on the specimens to monitor damage events 

during fatigue tests. These were Nano-30 sensors supplied by Mistras Group™ which have a mid-

band frequency range of 125-750 kHz. These sensors were chosen because of their small size 

(8 mm diameter) which enabled them to be mounted on these relatively narrow specimens, and 

because they have a high resonant response up to 300 kHz making them suitable for monitoring the 

signals expected. They were bonded to the specimens using the multi-purpose silicone sealant 

Loctite™ 595 as shown in Figure 15. Each sensor was connected to a Mistras Group™ pre-amplifier 

with a 40 dB gain (just above the background noise level) to allow the signal to be translated along 

the required length of cable and low frequency filtering was applied using a band-pass filter of 

20-1200 kHz to remove undesirable mechanical noise. The pre-amplifiers were in turn connected to 

a Mistras Group™ PCI2 acquisition unit. The detection settings were a 45 dB threshold and a 

sampling rate of 5 MHz. 

4 Numerical results 

The traction-separation curves for a series of five cohesive elements in the path of the fatigue crack 

growth in the splice specimen are shown in Figure 16 (b) (note that damage propagates from left to 

right, i.e. from element 1 towards element 5). It can be seen that for each element these curves 

follow the static softening curve for a considerable portion of the elastic region, up to the point where 

the elements become part of the numerical crack front and degrade rapidly due to fatigue damage. 

It should be noted that the computed strain energy release rate 𝐺II increases with increasing crack 

length (since the areas under the traction-separation curves increase between elements 1 and 5) 

which suggests an acceleration in crack growth upon fatigue damage initiation. The evolution of the 

damage variable 𝐷tot is illustrated in Figure 18 for the 50% severity case, where fringe colours vary 

continually from blue (𝐷tot = 0) to red (𝐷tot = 1) confirming the progressive nature of the traction-

separation curves under fatigue. 

In order to validate the numerical results, failure times from the VUMAT model were compared with 

experimental data obtained by Alderliesten [45] from fatigue tests on Glare® 2 and Glare® 4B 

specimens giving Paris Law coefficients 𝐶 = 0.005 and 𝑚 = 0.75. These coefficients were used to 

derive the continuous line in Figure 19 against which numerical results are compared. It can be seen 

that the numerical VUMAT subroutine results correlate well with the experimental results, for all five 

‘sample’ elements and all severity levels. 
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Figure 16: (a) Location of four cohesive elements in the splice model selected (arbitrarily) for 

detailed data output, and (b) comparison between static and fatigue traction-separation curves 
(50% severity) for these elements. 
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Figure 17: (a) 

Location of four cohesive elements in the doubler model selected (arbitrarily) for detailed data output, and (b) 
comparison between static and fatigue traction-separation curves (50% severity) for these elements. 

For the doubler model, traction–separation curves are shown in Figure 17 for a series of five 

cohesive elements 5 mm from the crack tip in the path of the fatigue crack propagation. As for the 

splice specimens, these elements were chosen to validate the VUMAT code since at this stage the 

crack growth is stable. The upper and lower interfaces behave in exactly the same way, so only the 

results for the lower interface are shown. The fatigue traction-separation curves follow the reference 

(static) curve up to the end of elastic region, at a displacement of 0.82 µm. However, unlike the 

splice, after this point no fatigue degradation occurs in any of the elements along the interface 

indicating that delamination does not propagate along either the upper or the lower interfaces. This 

is consistent with the experimentally derived S-N curves discussed next. 
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Figure 18: Contour plots of the damage variable 𝐷f for cohesive elements in the splice specimen under 

fatigue loading (50% severity) showing the progressive nature of fatigue damage accumulation. 

5 Experimental results 

Fatigue test data for the splice and doubler specimens (pristine and pre-cracked) are presented in 

Table 7. Pairs of points taken from tests at different severities are used to plot S-N curves for both 

types of specimens in Figure 20 (solid lines represent trend lines). The S-N curves show the 

expected relationship between stress and average cycles to failure for both the doubler and splice. 

The results reveal that the fatigue life for the doubler specimens is considerably higher than for the 

splice specimens, corresponding to the doubler joint exhibiting a higher fatigue damage tolerance 

compared with the splice joint. This is in agreement with the fact that delamination initiates and grows 

in the external discontinuous aluminium/GFRP interfaces for the splice specimens causing 
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significant stiffness degradation as shown in Figure 21, while the doubler specimens do not show 

any delamination. Final fatigue failure occurred in the outer aluminium layers in the thinner cross 

section for both splice and doubler specimens. 

 

Figure 19: Experimental [45] and numerical Paris curves for the splice model under 𝑅 = 0.1 and severities of 

70%, 60%, 50% and 40%, as computed by the four output cohesive elements. 

 

Table 7: Fatigue test results for the splice and doubler specimens. 

Specimen Peak load 
(kN) 

Severity 
(%) 
 

 Fatigue life 
(cycles) 
Set-1 

Fatigue life 
(cycles) 
Set-2 

 
Splice 

5.682 60  55912 49187 
4.735 50  110055 141878 
4.261 45  185093 180931 
3.788 40  374187 551276 
3.314 35  Run out Run out 

 
Pristine  
doubler 

6.260 50  35156 48874 
5.008 40  161388 201607 
4.382 35  456228 424827 
3.756 30  896389 769385 
3.130 25  Run out Run out 
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 6.260 50  49547 55945 
Pre-cracked 
doubler 

5.008 40  169251 174165 
4.382 35  394311 455357 
3.756 30  904207 912823 
3.130 25  Run out Run out 

 

Figure 20: Experimental S-N curves for the splice and doubler specimens with 𝑅-ratio 0.1. 

 

  

(a)     (b) 

Figure 21: Glare® 4B specimens after fatigue test with 𝑅-ratio 0.1 and maximum severities of (a) 60% for 

splice and (b) 50% for doubler specimens. 

Further insight into the initiation and propagation of damage is provided by the AE results. Figures 

22 and 23 show cumulative AE energy and AE amplitude against time, respectively, for splice 

specimens. During the first 1,300 seconds of the test (Figure 22 region A) the axial displacement 

increases from 0 to 0.3 mm, cumulative energy remains very low and AE signals are detected with 

amplitudes in the range of about 45-65 dB (Figure 23 region 1). This is potentially due to plastic 

deformation in the aluminium layers as observed in [53, 54], in which it was observed that plastic 

deformation in metals was accompanied by pronounced AE activity with an amplitude dependent on 

the type of metal. During the time period 1,300-4,000 s (Figure 22 region B) cumulative energy starts 

to increase gradually, potentially due to matrix cracking as demonstrated by [55, 56], resulting in AE 
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signals with an amplitude range of about 45-75 dB (Figure 23 region 2). This is accompanied by a 

small jump in axial displacement as seen in Figure 22. 

 

Figure 22: (a) Comparison between cumulative AE energy and axial displacement versus time for splice 
specimen under fatigue load with severity 60% and 𝑅-ratio of 0.1; (b) detailed curve of cumulative AE energy 

versus time for 0 < 𝑡 < 4,000 s. 
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Figure 23: Amplitude-versus time for splice specimen under fatigue load with severity 60% and 𝑅-ratio 0.1. 

 

Delamination initiation and growth are observed in the experiments during the period 5,500-11,000 s, 

and are seen to correspond to a gradual increase in the amplitude of the AE events which rise to a 

range of about 75-98 dB (Figure 23 region 3). This is accompanied by a steady increase in energy 

followed by a jump at a time of about 6,500 s. Finally, a small number of high amplitude events are 

seen in the range 87-98 dB (Figure 23 region 4) accompanied by a gradual increase followed by a 

large jump in cumulative energy and axial displacement during time period 11,000-12,000 s, 

observed to correspond to crack initiation and growth in the aluminium layers of the thinner region 

of the specimen followed by complete failure of the aluminium and hence the specimen. 

For the doubler specimens, AE results show similar behaviour for both pristine and pre-cracked 

specimens with the results for pristine specimen being presented in Figures 24 and 25. As for the 

splice specimens, high amplitude events were recorded at the beginning of the test with an amplitude 

range of 45-77 dB (Figure 25 region 1) while cumulative energy remained constant up to 500 s 

(Figure 24, region A). This was accompanied by an increase in axial displacement to about 0.5 mm, 

which again is anticipated to be mostly due to plastic deformation in the aluminium layers. During 

the time period from 550-4,000 s, AE activity increases as the test progresses (Figure 24 - region B) 

alongside an increase in axial displacement up to about 6 mm at time 5,500 s. This is accompanied 

by a gradual increase in the amplitude of the signals to between 45-87 dB (Figure 25 region 2) 

believed to be caused by matrix cracking in the doubler joint [55, 56]. This is followed during the time 
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period 5,500-6,500 s, by fibre breakage in the discontinuous GFRP layers, characterised by signal 

amplitudes of between 45-98 dB (Figure 25 region 3) again in agreement with reports in the literature 

[55, 56], accompanied by a large jump in cumulative energy and a noticeable increase in axial 

displacement as shown in Figure 24. Finally, a steady increase in signals in the amplitude range of 

87-98 dB is noticed (Figure 25 region 3), accompanied by a large jump in cumulative energy and 

axial displacement, corresponding to the propagation of cracks and then failure of the aluminium 

layers in the thinner section of the specimens, as observed during the test and confirmed by visual 

inspection of the failed specimens. 

 

Figure 24: (a) Comparison between cumulative AE energy and axial displacement versus time for a doubler 
specimen under fatigue load with severity 50% and 𝑅-ratio of 0.1; (b) detailed curve of cumulative AE energy 

versus time for 0 < 𝑡 < 4,000 s. 
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Figure 25: Amplitude-versus time for pristine doubler specimen under fatigue load with severity 50% and 

𝑅-ratio 0.1. 

6 Conclusions 

A novel cohesive zone model incorporating a mixed-mode trapezoidal traction-separation law was 

developed to simulate delamination initiation and growth in FML specimens including splice and 

doubler features, under both static and high-cycle fatigue loading. A series of experiments were 

performed on both types of specimen under constant amplitude high-cycle fatigue loading for 

validation. The experimental results showed that the fatigue life for doubler specimens was higher 

than for splice specimens as the doubler joint exhibited high fatigue damage tolerance compared 

with the splice joint. Pristine and pre-cracked doubler specimens did not show any delamination 

under fatigue loading while in the splice specimens delaminations occurred in the discontinuous 

outer aluminium layer / GFRP ply interfaces. Good correlation was observed between the FE results 

and the experiments for both splice and doubler specimens in terms of delamination propagation 

using the Paris law. These results revealed that CZM based on trapezoidal traction-separation 

enables the prediction of delamination growth in ductile adhesives more efficiently than bilinear CZM 

making it more suitable for modelling interfacial damage initiation and growth for any adhesive with 

plastic flow properties. AE results were successfully used to validate numerical fatigue results in 

terms of delamination initiation and propagation detection via high cumulative energy events. 
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