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Multistart with early termination of descents

Antanas Žilinskas, Jonathan Gillard, Megan

Scammell, Anatoly Zhigljavsky

Abstract Multistart is a celebrated global optimization technique frequently applied in practice.
In its pure form, multistart has low efficiency. However, the simplicity of multistart and multitude
of possibilities of its generalization make it very attractive especially in high-dimensional problems
where e.g. Lipschitzian and Bayesian algorithms are not applicable. We propose a version of mul-
tistart where most of the local descents are terminated very early; we will call it METOD as an
abbreviation for Multistart with Early Termination Of Descents. The performance of the proposed
algorithm is demonstrated on randomly generated test functions with 100 variables and a modest
number of local minimizers.

Keywords global optimization; random search; multistart; statistical inference

1 Introduction

Multistart is, seemingly, the oldest global optimization method. Although frequently claimed in-
efficient, it is nevertheless often used in various applications (see for example [4], [5] and [9]). The
main advantage of multistart is its simplicity and clear interpretability of results. Multistart remains
attractive for researchers in various applied areas where optimization problems are multi-extremal
and high-dimensional. The known theoretically well-substantiated methods (e.g. Lipschitzian and
Bayesian) which are efficient for the problems of small or sometimes modest dimensionality are not
appropriate for high-dimensional problems in view of inherent complexity of the corresponding al-
gorithms. The choice between multistart and a heuristic algorithm depends on many details of the
available information about the optimization problem in question.

Repeated descents to the same local minimizers is the obvious disadvantage of multistart. There
were numerous extensions of the method which reduce this disadvantage. A heuristic termination
condition is the stagnation of search caused by the repeated descents to the found minimizers. The
redundant descents could be avoided if the fact of finding of the global minimum could be indicated
with a reasonable accuracy.
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The other direction to enhance the efficiency of multistart is the termination of local descents
which approach already found minimizers before they are stopped by conventional conditions based
on local optimality. The clustering aided implementation of this idea was started by A.Törn; for
the early investigations see [10], and for the later results and references see [11]. Recent discussions
on the use of multistart are included in [3] and [6]. In this paper, we further develop this idea and
demonstrate that some local descents can be stopped very early, well before they get close to a local
minimizer.

Any optimization algorithm cannot be most efficient in all possible cases. We aim at the global
optimization problems with a black-box objective function f(·) characterized by the following prop-
erties:

(a) the feasible domain X is high-dimensional but has simple structure; in numerical studies we will
assume X = [0, 1]d with d = 100;

(b) ‖∇f(x)‖ 6= 0 for almost all x ∈ X, where ∇f(x) is the gradient of f(·);
(c) computation of the objective function values and its derivatives is not expensive;
(d) the total number of local minimizers is not very large;
(e) the volume of the region of attraction of the global minimizer is not very small.

The paper is organized as follows. In Section 2 we prove the key result showing that for a quadratic
function and two arbitrary points the gradients force the two points to move closer to each other.
This will be our main base for making early terminations of local descents. In Section 3 we formulate
our main algorithm called METOD (Multistart with Early Termination Of Descents), discuss its
properties and modifications and suggest a reasonable choice of the algorithm’s parameters. In
Section 4 we describe several statistical procedures which can be used for devised intelligent stopping
rules in METOD. Finally, in Section 5 we provide results of numerical studies on 100-dimensional
test functions.

2 Monotonicity of descent trajectories

2.1 The main result

Assume we have a quadratic function

f(x) =
1

2
xTAx+ bTx+ c , x ∈ R

d, (1)

where A is a positive definite d× d matrix, b is some vector in R
d and c is some constant.

The gradient of f(·) at x is ∇f(x) = Ax+ b . In this case, given a point xk ∈ R
d, a k-th iteration

of a gradient descent algorithm would return the point

xk+1 = xk − γk∇f(xk) = xk − γk(Axk + b) , (2)

where γk ≥ 0 is some step-size.
Theorem 1. Assume that f is a quadratic function (1), where A is a positive definite matrix.

Let x and y be two arbitrary points in R
d such that ‖∇f(x)‖ > 0 and ‖∇f(y)‖ > 0. Fix some β > 0

and define

{

x̃ = x− β∇f(x) ,
ỹ = y − β∇f(y) ;

(3)
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that is, we apply the rule (2) to the points x and y with the same step-size β. If β < 1/λmax, where
λmax is the maximal eigenvalue of the matrix A, then

‖x̃− ỹ‖ < ‖x− y‖ , (4)

where ‖ · ‖ denotes the Euclidean norm of a vector in R
d.

Proof. We have

x̃− ỹ = [x− β(Ax+ b)]− [y − β(Ay + b)] = (Id − βA)(x− y) (5)

where Id is the identity matrix of size d× d. Since 0 < β < 1/λmax, the matrix Id − βA is positive
definite and Id−βA < Id, where the inequality < means that the difference between the matrices in
the right-hand and left-hand sides is positive definite. As Id−βA < Id we also have (Id−βA)2 < Id.

For arbitrary x and y in R
d with ‖∇f(x)‖ > 0 and ‖∇f(y)‖ > 0 we obtain from (5):

‖x̃− ỹ‖2 = (x̃− ỹ)T (x̃− ỹ) = (x− y)T (Id − βA)2(x− y) < (x− y)T (x− y) = ‖x− y‖2 ,

where the inequality above is a consequence of (Id − βA)2 < Id. �

We will call the points x̃ and ỹ computed by the rule (3) ‘the partner points associated with x and
y respectively’. Theorem 1 can be interpreted as saying that if the objective function f is quadratic
and the coefficient β in (3) is small enough then for arbitrary x and y the associated partner points
x̃ and ỹ are always closer to each other than the original points x and y.

2.2 Using gradients of different functions

Let us now discuss what happens when the partner points x̃ and ỹ are computed for gradients of
two different functions.

Assume we have two quadratic functions

fi(x) =
1

2
xTAix+ bTi x+ ci (i = 1, 2) , x ∈ R

d,

where A1 and A2 are two different non-negative definite d× d matrices, b1 and b2 are two vectors in
R

d and c1, c2 are some constants.

For two arbitrary points x and y in R
d define their partner points by

x̃ = x− β∇f1(x) = x− β(A1x+ b1) ,
ỹ = y − β∇f2(y) = y − β(A2y + b2) .

Then

x̃− ỹ = (x− y)− β(A1x+ b1 −A2y − b2) .

If we impose some natural randomness assumptions on either points x and y, vectors b1 and b2 or
matrices A1 and A2 then we may observe that the inequality (4) holds with probability much smaller
than 1.
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2.3 Generalization of Theorem 1 to the case when the derivatives are computed in a few directions
only

Since our main range of optimization problems is high-dimensional, computing full gradients for per-
forming local descents can be costly and in modern literature [8] it is suggested at a given iteration
to compute derivatives only in very few directions (different at different iterations). A generalization
of Theorem 1 to this case is as follows.

Theorem 2. Assume that f is a quadratic function (1), where A is a non-negative definite
matrix and 0 ≤ β ≤ 1/λmax. Let x and y be two arbitrary points in R

d and

{

x̃ = x− β[∇f(x)]i1,...,ik
ỹ = y − β[∇f(y)]i1,...,ik ,

where for any 1 ≤ i1 < . . . < ik ≤ d and a vector a = (a1, . . . , ad)
T ∈ R

d we define the vector
ai1,...,ik ∈ R

d as a vector u = (u1, . . . , ud)
T with components

ui =

{

ai, if i ∈ {i1, . . . , ik}
0, otherwise.

Then

‖x̃− ỹ‖ ≤ ‖x− y‖ . (6)

Proof. Similar to (5) we have

x̃− ỹ = (x− y)− β[A(x− y)]i1,...,ik = (Id − βAi1,...,ik)(x− y)

where Ai1,...,ik = (ãi,j)
d
i,j=1 is a d× d matrix with elements ãi,j defined as follows:

ãi,j =

{

ai,j , if i, j ∈ {i1, . . . , ik}
0, otherwise.

Since the matrix Id − βAi1,...,ik is non-negative definite, the proof follows. �

Remarks.

(a) The inequality (4) is strict but the inequality (6) is not.
(b) Depending on the set I = {i1, . . . , ik}, the probability that the inequality (6) is true when

derivatives are computed for two different functions as in Section 2.2, can be significantly larger
than 1

2 .
(c) It is important that the set of indices I = {i1, . . . , ik}, where the derivatives of f at both points

are computed, is the same. If the sets are different, the inequality (6) may not hold. This is
the case even if one set of indices is a subset of the other one: assume, as an example, d = 2,
the function f(x) = xTAx with A > 0 and two points: x ∈ R

2 and y = cx with c > 1. Using
any non-empty set of indices for x and the empty set for y (so that ỹ = y) we clearly have
‖x̃− ỹ‖ > ‖x− y‖.

(d) Assume that we compute derivatives for x and y for the sets of indices I = {i1, . . . , ik} and
J = {j1, . . . , jl} respectively. Then we can apply Theorem 2 and therefore the inequality (6) for
the set of indices I ∩ J , the intersection of I and J .
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3 Description of the algorithm

3.1 Notations

– β and δ: small positive constants.
– N : number of starting points;

– xn = x
(0)
n ∈ X: random starting points uniformly distributed on X (n = 1, 2, . . . , N);

– Kl: the number of local decent iterations needed to get close to l-th local minimizer;

– x
(k)
n : the n-th point after k iterations;

– steepest descent iteration:

x(k+1)
n = x(k)

n − γ(k)
n ∇f(x(k)

n ) (7)

where γ
(k)
n = argminγ>0f(x

(k)
n − γ∇f(x

(k)
n )); if the function h(γ) = f(x

(k)
n − γ∇f(x

(k)
n )) has

several minimizers in the region γ ∈ (0,+∞), then the local minimizer with smallest value of γ
is used;

– partner point associated with x
(k)
n :

x̃(k)
n = x(k)

n − β∇f(x(k)
n ) ; (8)

– M : the minimum number of the steepest descent iterations applied starting at each initial point

xn = x
(0)
n (n = 1, 2, . . . , N);

– l: index for the local minimizers and regions of attraction, l = 1, ..., L; here L is the total number
of regions of local minimizers found so far;

– x∗
l : l-th local minimizer (l = 1, ..., L);

– Al: notation for the l-th region of attraction (l = 1, ..., L);

3.2 METOD: Multistart with Early Termination Of Descents

1. Initialization.

Generate a uniformly distributed point x1 = x
(0)
1 ∈ X. Use iterations (7) to find a local mini-

mizer x∗
1. Stop iterations at the smallest k = K1 such that ‖∇f(x

(k)
1 )‖ < δ.

For all points x
(k)
1 computed in (7) with k = M − 1,M, . . . ,K1 compute the associated partner

points using (8).
Set n := 2, L := 1.

2. n-th iteration.

1. Initial point. Generate a uniformly distributed point xn = x
(0)
n ∈ X.

2. Warming-up period. Compute x
(j)
n (j = 1, . . . ,M) by applying M iterations (7) starting at

x
(0)
n .

3. Checking if xn belongs to one of previously identified regions of attractions. Using (8) compute

x̃
(M−1)
n and x̃

(M)
n , the partner points associated with x

(M−1)
n and x

(M)
n respectively. For all

l = 1, . . . , L check the conditions

‖x̃(M)
n − x̃

(i)
l ‖ < ‖x(M)

n − x
(i)
l ‖ and ‖x̃(M−1)

n − x̃
(i)
l ‖ < ‖x(M−1)

n − x
(i)
l ‖ (9)

for all l = 1, . . . , L and i = M − 1,M, . . . ,Kl.
If for a given l the inequalities (9) hold for all i = M − 1,M, . . . ,Kl then we presume that
xn may belong to the region of attraction Al.
Let Sn be the set of indices l such that xn may presumably belong to Al.
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4. Making the decision of whether to continue the descent.
(4a) If the set Sn contains exactly one index l then we terminate iterations (7) which have
started at xn and assign xn to Al.
(4b) If the set Sn contains more than one index l then we assign xn to the attraction region

Al which corresponds to the local minimizer x∗
l closest to the point x

(M)
n .

(4c) If the set Sn is empty then we continue iterations (7) which have started at xn. Find a

local minimizer x∗
l+1. Stop iterations at the smallest k = Kl+1 such that ‖∇f(x

(k)
n )‖ < δ. For

all points x
(k)
n computed in (7) with k = M − 1,M, . . . ,Kl+1 compute the associated partner

points using (8). Set L := L+ 1.

3. Stopping rule. Check a stopping rule (for example, n = N). If there is no decision made to
stop the algorithm, then set n := n+ 1 and return to the main iteration 2.

3.3 Comments and choice of parameters

– Choice of β should be made as discussed in Theorem 1. If some regions of attractions are badly
defined (very long in some directions and short in other ones) then β should be very small.
Generally, β = 0.01 would work well in typical problems.

– δ is needed to terminate steepest descent iterations. We recommend δ = 0.001 or similar. If
one requires higher precision for determining local minimizers then this can either be done after
termination of the main algorithm or in the process of running the algorithm; we simply suggest
not to take into account the iterations of the steepest descent when the norm of the gradient
becomes too small as this can cause numerical instability related to conditions of Theorem 1. A
detailed study of the convergence of various gradient algorithms is available in [1].

– The algorithm may have difficulties when some of local minimizers are very easy to compute
(that is, when some regions of attractions are too round and the steepest descent finds the
corresponding local minima very fast). In this case, the values Kl will be very small and the
checking conditions (9) will be unreliable. One of a number of natural suggestions to combat this
would be to avoid checking (9) for l with small values of Kl; in this case, we may descend to
this local minima many times but it would not be too costly as these descents are fast and hence
cheap.

– For any starting point xn, it may happen that ‖∇f(xn)‖ < δ. This may happen either if xn is
very close to a local minimizer (in this case we do not perform any iterations) or local maximizer
(in this case, make any first iteration which takes you out of the small vicinity of the maximizer).

– We have introduced the parameterM for making a warming-up period at the start of all descents.
This is done for the following reason: if an initial point xn is located very far from a local minimizer
and somewhere in-between two different regions of attractions then the objective function may
be locally non-convex and certainly very far from being locally quadratic. The first few steepest
descent iterations are often very long and very efficient (the convergence of the steepest descent
slows down as iterations progress). By introducing the warming-up period we give iterations time
to arrive at a distant vicinity of the related local minimizer where the conditions of Theorem 1
start to be approximately applicable. Our recommendation is to choose M = 3 or M = 4. This
seems to be sufficient in all our practical experiments. Reducing M down to 1 may cause too
many decisions based on (9) made in the conditions when the region with local quadraticity
is far from being reached. On the other hand, choosing larger values of M would decrease the
computational efficiency of the algorithm.
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– In (9), we require checking the monotonicity conditions of Theorem 1 for two consecutive points,

x
(M−1)
n and x

(M)
n . This is related to the fact that steepest descent iterations often approach local

minimizers in a zig-zag manner, see [7, Chapter 7].
– Of course it may happen that we descend to the same local minimizer several times without

making an early stop of the iterations. This may happen ifM is either too small (local quadraticity
has not been achieved and the monotonicity condition of Theorem 1 is not seen) or too large
(leading to decrease of values Kl and hence to smaller number of necessary conditions (9) to
be checked). Descending to the same local minimizers without early stops makes the algorithm
less computationally efficient but does not lead to any decision errors as long as at the end of
computations we check all found local minimizers and join the ones which are very close.

– A more serious issue is the mistake when we assign an initial point to a wrong region of attraction.
This mistake can easily happen if some of the values Kl are too small (see one of the first remarks
above) or simply when some regions are non-convex even in the small neighbourhood of local
minimizers. One of the advices on how to reduce errors of this type would be to add an extra

condition of closeness of x
(k)
n to x∗

l when assigning an initial point xn to Al. Of course, if this
closeness condition would be too strong then it would dominate the main conditions (9) and the
algorithm would become very similar to a standard multistart algorithm with clustering.
We shall account for this kind of error in decision making when we shall talk about statistical
procedures in Section 4.

– In view of Theorem 2 the algorithm METOD can be generalized to the case when at each iteration
of a local descent the derivatives of f are computed only in one or several directions.

– In the algorithm METOD above we used the steepest descent iterations (7) for local descent.
Any other local descent algorithm can also be used; the only essential part of the suggested
methodology is the use of the partner points (8).

4 Statistical inferences in random multistart and algorithm METOD

In this section, we recall some results of R. Zieliński published in a seminal paper [13], which can
be used to devise intelligent stopping rules in METOD which is a variation of a random multistart;
that is of a multistart method with i.i.d. random initial points. Note that there has been very little
progress in the area of making statistical inferences in random multistart since 1981, the time of the
publication of [13]; see a short literature review in [12, Section 2.6.2].

Assume that vol(X)=1, f(·) has a finite but unknown number l of local minimizers x
(1)
∗ , . . . , x

(l)
∗ ,

and D be a local descent algorithm. We write A(x) = x
(i)
∗ for x ∈ X, if starting at the initial

point x the algorithm D leads to the local minimizer x
(i)
∗ . Set θi = vol(Ai) for i = 1, . . . , l, where

Ai = {x ∈ X : D(x) = x
(i)
∗ } is the region of attraction of x

(i)
∗ It follows from the definition that

θi > 0 for i = 1, . . . , l and
∑l

i=1 θi = 1.

The simplest version of random multistart is the following primitive algorithm: an independent
sample XN = {x1, . . . , xN} from the uniform distribution on X is generated and a local optimization
algorithm D is applied at each xj ∈ XN . Let Ni (i = 1, . . . , l) be the number of points xj ∈ XN

belonging to Ai; that is, Ni is the number of descents to x
(i)
∗ from the points x1, . . . , xN . According

to the definition, Ni > 0 (i = 1, . . . , l),
∑l

i=1 Ni = N, and the random vector (N1, . . . , Nl) follows
the multinomial distribution

Pr{N1 = n1, . . . , Nl = nl} =

(

N
n1, . . . , nl

)

θn1

1 . . . θnl

l ,



8 Antanas Žilinskas, Jonathan Gillard, Megan Scammell, Anatoly Zhigljavsky

where

l
∑

i=1

ni = N,

(

N
n1, . . . , nl

)

=
N !

n1! . . . nl!
, ni > 0 (i = 1, . . . , l).

If l is known, then the problem of drawing statistical inferences concerning the number of local
minimizers l, the parameter vector θ = (θ1, . . . , θl), and the number N∗ of trials that guarantees with
a given probability that all local minimizers are found, is the standard problem of making statistical
inferences about parameters of a multinomial distribution. This problem is well documented in
literature, see e.g. Chap. 35 in [2]. The main difficulty is caused by the fact that l is usually unknown.
If an upper bound for l is known, then one can apply standard statistical methods; if an upper
bound for l is unknown, the Bayesian approach is a natural alternative. Both of these methods are
comprehensively studied and explained in [13]; see also [12, Section 2.6.2].

In relation to the algorithm METOD described and discussed in Section 3, we are more interested
in whether we have succeeded in finding the global minimizer taking into account that some of our
decisions about early termination of local descents may be erroneous. Assume that vol(X) = 1 and
vol(A∗) = α > 0, where A∗ is the region of attraction of the global minimizer (the value of α
does not have to be known, of course). In view of the difficulties discussed in Section 3.3, local
descents, including the ones which would lead to the global minimizer, can be stopped early and the
corresponding initial points assigned to a wrong region of attraction. As noted in Section 2.2 the
probability of this event is related to the number of checks of the inequality (4) and the degree of
local non-convexity of the objective function. As follows from the discussion at the end of Section 2.2,
the probability of the fact that an initial point is assigned to a wrong region of attraction is very
roughly 1/2k, where k is the number of checks of the inequalities (9).

So we end up with the following rather simple situation. We have a Bernoulli trial with success
probability α (when our uniformly distributed starting point xn belongs to A∗) but on top of this we
have a drop-out event (happening with rather small probability κ, which we for simplicity assume
the same for all decisions) where we will reassign this initial point to another region of attraction.
Therefore, each starting point xn (taken randomly and independently of the other points) will be
assigned to A∗ with probability at least δ = α(1 − κ). The first starting point assigned to A∗ will
create a full local descent trajectory converging to the global minimizer. Note that after finding the
first point in A∗, the probability of assigning starting points to A∗ will increase from δ = α(1 − κ)
to δ′ = α(1−κ)+ (1−α)κ/(L− 1), where L is the number of local minimizers found so far, as there
appears a new possibility of assigning points to A∗ when they do not belong there. We can ignore
this as we are only interested in the event that at least one initial point will be assigned to A∗ and
hence that the global minimizer is found.

With N initial i.i.d. uniform starting points, the probability of finding the global minimum is
pδ,N = 1 − (1 − δ)N . Let Nδ,γ be the smallest N such that pδ,N ≥ 1 − γ; that is, if we choose
N ≥ Nδ,γ then we would guarantee that the probability of finding the global minimizer is at least
1− γ. Solving the inequality pδ,N ≥ 1− γ with respect to N we find

Nδ,γ =

⌈

log γ

log(1− δ)

⌉

. (10)

Table 4 shows some values of Nδ,γ . From this table we can conclude that there is very little hope
of finding the global minimum if the volume of attraction of the global minimizer is smaller than
0.00001. On the other hand, if δ ≤ 0.001 then METOD would not require many starting points for
guaranteeing high probabilities of finding the global minimizer.
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r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8
γ = 0.05 29 299 2995 29956 299572 2995731 29957322 299573226
γ = 0.01 44 459 4603 46050 460515 4605168 46051700 460517017

Table 1 Values of Nδ,γ , see (10), for γ = 0.01 and 0.05, δ = 10−r, r = 1, 2, . . . , 8.

5 Numerical results

5.1 Objective function 1: Minimum of several quadratic forms

In numerical experiments, we have considered two families of the objective function. The first family
of objective functions is ideally suited for our algorithm as the objective function is always exactly
quadratic in regions of attraction of all local minimizers:

f(x) = min
1≤p≤P

(x− x0p)
TAT

p ΣpAp(x− x0p), (11)

where P is the number of minima; Ap (p = 1, ..., P ) are randomly chosen rotation matrices of size
d × d; Σp (p = 1, ..., P ) are diagonal positive definite matrices of size d × d; x0p (p = 1, ..., P ) are
random points in X. All minima of (11) are (equally) global, and for this function it is desirable to
find all minimizers.
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Fig. 1 The contour lines of a function of the form (11) with d = 2 (left) and the contour lines of a two-dimensional
section of a function of the form (11) with d = 100 (right). Stars denote the minimizers in the case d = 2 and the
projections of the minimizers to the secant plane in the case d = 100.
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The contours of a two-dimensional function (11), and of a two-dimensional section of a hundred-
dimensional function (11) are presented in Figure 1 in the cases when the matrices AT

p ΣpAp are the
same (different in two dimensions, of course); the contours show that the surfaces are quite different
despite in both cases P = 10. Typical steepest descent iterations initialized at random starting
points are displayed in Fig. 2 for the case d = 2 and function (11) with P = 6.
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Fig. 2 Typical steepest decent iterations for the case d = 2 with function (11) initialized at two different sets of ten
starting points for the objective function (11). The minimizers are (0.1, 0.7), (0.3, 0.9), (0.7, 0.8), (0.7, 0.2), (0.5, 0.5)
and (0.25, 0.25).

Standard multistart and METOD were compared with respect to the number of evaluations of
the objective function values needed to solve a problem, i.e. to find all minima. The cases d = 2 and
d = 100 were considered. The same 1000 randomly generated test functions (11) were minimized
by multistart and METOD. The average condition number of the test functions was equal to 2.11
(standard deviation 0.31) in the case d = 2, and equal to 3.23 (standard deviation was equal to 0.82)
in the case d = 100. The starting points for the local descent for both algorithms were the same.
The termination condition was defined either by the minimum norm of gradient equal to 10−7, or
by the minimum step length equal to 10−5; note that in the majority of cases the termination of
METOD was due to the latter condition.

The average number of function evaluations (n̄f) and the average number of local descents
(n̄d) are presented in Table 2 as well as the corresponding standard deviations σnf and σnd. In
the case d = 2, the average number of local descents needed for multistart was smaller about 2/3
of that needed for METOD. Some local descents, despite moving to an undiscovered minimizer,
were terminated because they closely approached an earlier found minimizer. Therefore, METOD
continued after multistart completed the global minimization. Multistart found nine minima out of
ten in three cases, and METOD in four cases.

The advantage of METOD was much more impressive in the case d = 100 where the total number
(for all 1000 functions) of started local searches was 48291 and 48298 for the multistart and METOD
respectively. The average number of objective function evaluations was equal to 1581 for multistart
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Multistart METOD
d n̄f σnf n̄d σnd n̄f σnf n̄d σnd

2 605.3 300.3 39.3 19.7 404.3 166.1 40.4 20.5
100 1581.0 900.8 48.3 27.6 433.9 73.5 48.3 2.6

Table 2 The computational resources needed to the multistart and METOD to minimize the objective functions
(11).

and 433.9 for METOD. Other statistical data are presented in Table 2. Nine minima (out of ten)
were found by the multistart 4 times, and by METOD 5 times.

The histograms in Figures 3 and 4 complement Table 2 where the presented parameters do not
fully represent the corresponding distributions in view of the non-symmetry of the histograms.
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Fig. 3 The histograms of the number of computations of the objective function (d = 2) values: by the multistart
(left) and by METOD (right).

Different values of the algorithm parameters, M and β, are tested for the objective functions
(11), to see the effect they have on correctly classifying each starting point to the correct region of
attraction. A single experiment consists of choosing random function parameters for the objective
functions (11), and a set of random starting points in X. The algorithm then classifies each starting
point to a region of attraction, Al. To check if the algorithm has correctly classified a starting point,

the local minima is found by using iterations (7) and stopped when ‖∇f(x
(k)
n )‖ < δ. The region of

attraction the local minima belongs to is then compared to the region of attraction assigned by the
algorithm.
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Fig. 4 The histograms of the number of objective function evaluations for d = 100: by the multistart (left) and by
METOD (right).

For the class of objective functions (11), Tables 3 and 4 display the total number of regions of
attraction identified, the number of times a point did not satisfy the inequalities (9) and consequently
the number of descents (7) that were applied to find the corresponding local minima and the total
percentage of misclassifications of points for dimensions d = 50 and d = 100.

β M
Number of regions of attraction Number of descents Total % of

misclassifications
50 49 ≤ 48 50 49 ≤ 48

0.005
2 27 33 40 27 33 40 0.084
3 31 38 31 31 38 31 0.028

0.01
2 29 31 40 29 31 40 0.076
3 33 37 30 33 37 30 0.023

0.05
2 36 34 30 36 34 30 0.025
3 39 34 27 39 34 27 0.005

0.1
2 41 31 28 41 31 28 0.005
3 41 33 26 41 33 26 0.001

Table 3 Outputs for 100 random functions from (11) with d = 50, N = 1000 and P = 50.

Tables 3 and 4 show that the total percentage of misclassifications decreases as d increases. Also,
each time a point did not satisfy the inequalities (9) and consequently iterations (7) were applied
to find the corresponding local minima, this always resulted in a new region of attraction being
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Fig. 5 Total number of points satisfying step (4b) of the METOD Algorithm for 100 random functions from (11) for
d = 50 (left) and d = 100 (right), with N = 1000 and P = 50

β M
Number of regions of attraction Number of descents Total % of

misclassifications
50 49 ≤ 48 50 49 ≤ 48

0.005
2 34 31 35 34 31 35 0.001
3 34 32 34 34 32 34 0

0.01
2 34 31 35 34 31 35 0.001
3 34 32 34 34 32 34 0

0.05
2 34 32 34 34 32 34 0
3 34 32 34 34 32 34 0

0.1
2 34 32 34 34 32 34 0
3 34 32 34 34 32 34 0

Table 4 Outputs for 100 random functions from (11) with d = 100, N = 1000 and P = 50.

identified. Figure 5 shows the total number of points satisfying step (4b) of the algorithm decreases
as M and β increase. When d = 50, the total number of points satisfying step (4b) of the algorithm
is much higher in comparison to when d = 100. It may be of consideration to alter step (4b) of the
algorithm to apply an iteration of local descent to xn if the set Sn contains more than one index l
and repeating this until set Sn has exactly one index l or is empty. However, from the results shown
in Table 4, the alteration of step (4b) would not improve results, as the single misclassification occurs
from (9) being satisfied for a single region of attraction which the point did not belong to.

5.2 Objective function 2: Weighted sum of Gaussian densities

The second family is a constant minus a weighted sum of Gaussian densities:

f(x) = C −

P
∑

p=1

cp exp

{

−
1

2σ2
(x− x0p)

TAT
p ΣpAp(x− x0p)

}

. (12)

Here we have: C is a constant (served only for making plots looking more attractive); P is the
number of Gaussian densities; Ap (p = 1, ..., P ) are randomly chosen rotation matrices of size d× d;
Σp (p = 1, ..., P ) are diagonal positive definite matrices of size d× d; x0p (p = 1, ..., P ) are random
points in X (centers of the Gaussian densities); cp (p = 1, ..., P ) are fixed constants.
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The function (12) has the gradient

∇f(x) =
P
∑

p=1

cp
σ2

exp

{

−
1

2σ2
(x− x0p)

TAT
p ΣpA(x− x0p)

}

AT
p ΣpA(xn − x0p) .

Typical steepest descent iterations initialized at random starting points are displayed in Fig. 6
for the case d = 2 and function (12) with P = 6, σ2 = 1/50, C = 0.
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Fig. 6 Typical steepest decent iterations for the case d = 2 initialized at two different sets of ten starting points for
objective function (12). Local minima at (0.2, 0.1), (0.3, 0.9), (0.7, 0.8), (0.7, 0.2), (0.5, 0.5) and (0.25, 0.25).

For the class of objective functions (12), Tables 5 and 6 show the total number of regions of
attraction identified; the average, minimum and maximum number of times a point did not satisfy
the inequalities (9) and consequently the number of descents (7) that were applied to find the
corresponding local minima and the total percentage of misclassifications of points for dimensions
d = 50 and d = 100.

Tables 5 and 6 show that the total percentage of misclassifications decreases as d increases. Also,
the smaller the values of β and M , the higher the total percentage of misclassifications. Although
there are some misclassifications, no misclassifications result in a region of attraction being missed.
In some cases less than 20 regions of attraction are found and this is due to the insufficient number
of starting points.

It can be observed from Figure 7 that the total number of points satisfying step (4b) of the
algorithm is much lower in comparison to Figure 5. Even though some points still do satisfy (4b)
of the algorithm, this does not result in any regions of attraction being missed and is due to the
insufficient number of starting points. For Table 6, only one point out of 100,000 satisfied step (4b)
of the algorithm. This occurred for the algorithm parameters M = 4 and β = 0.005 or β = 0.01, but
it did not result in a misclassification. Hence, altering the condition (4b) would not improve results
observed in Tables 5 and 6.
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β M
Number of regions Descents Total % of

misclassifications
20 19 ≤ 18 Min Max Avg

0.005
2 95.0 5.0 0.0 355.0 693.0 500.01 0.135
3 95.0 5.0 0.0 48.0 337.0 105.98 0.032
4 95.0 5.0 0.0 21.0 84.0 29.09 0.007

0.01
2 95.0 5.0 0.0 357.0 694.0 501.48 0.131
3 95.0 5.0 0.0 48.0 337.0 106.34 0.032
4 95.0 5.0 0.0 21.0 84.0 29.13 0.007

0.05
2 95.0 5.0 0.0 364.0 707.0 514.48 0.110
3 95.0 5.0 0.0 53.0 353.0 108.75 0.029
4 95.0 5.0 0.0 21.0 85.0 29.42 0.004

0.1
2 95.0 5.0 0.0 380.0 723.0 530.58 0.100
3 95.0 5.0 0.0 53.0 371.0 111.92 0.023
4 95.0 5.0 0.0 21.0 86.0 29.73 0.004

Table 5 Outputs for 100 random functions from (12) with d = 50, N = 1000, P = 20. and σ2 = 4
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Fig. 7 Total number of points satisfying step (4b) of the METOD Algorithm for 100 random functions from (12)
with d = 50, N = 1000, P = 20 and σ2 = 4
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