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ORIGIN  
Over the past few years, main group reagents (particularly Lewis acidic boranes) have garnered significant attention in synthetic bond-forming processes. Recently, tris 
(pentafluorophenyl)borane has been shown to activate C–C π-bonds, enabling synthesis of biologically active heterocyclic and aromatic compounds. 

 
REACTION MECHANISM  
The synthesis of heterocyclic and aromatic compounds can be achieved through borane-catalyzed activation of C–C π-bonds towards pendant nucleophiles. Recently, tris (pentafluorophenyl)borane 

[B(C6F5)3] has been shown to exhibit unique properties, acting as either a hard Lewis acid with high oxophilic character or as a π-acid (analogous to gold) to activate alkynes. At the beginning of the 

catalytic cycle, free B(C6F5)3 (I) is in equilibrium with the borane-carboxyl adduct (II). This was corroborated by the detection of a broad resonance in the 11B NMR spectrum corresponding to the 

formation of this adduct. However, at an elevated temperature (70oC), decomplexation of B(C6F5)3 from the carboxyl group occurs, followed by coordination to alkyne π-bond. This coordination 

facilitates a 6-endo-dig cyclization (formally a trans-1,2-oxyboration) furnishing (III). Formation of (III) was determined by the observation of a transient sharp singlet at approximately −15 ppm in the 
11B NMR spectrum characteristic of the formation of an alkenyl borate that can be isolated when R1 = Me. Subsequent elimination of either a carbenium ion or proton [R1]+ from the ester, followed by 

proto- or carbo-deboronation, yields the desired 3,4-dihydropyrone (IV) and releases B(C6F5)3 to re-enter the catalytic cycle. While this transformation has been demonstrated for the synthesis of 

dihydropyrones and isocoumarins, the overall 1,2-oxoboration process is more general. As a result, a wide range of different heterocycles can be accessed in a facile manner, such as pyryliums, 

oxazoles, oxazolines, indoles, and dihydroquinolines, among others. All carbon scaffolds, such as polycyclic dibenzapentalenes, can also be accessed from a B(C6F5)3-induced cyclization of 1,2-

bis(phenylethynyl)benzenes. 
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IMPORTANCE  
The use of a strong boron-based Lewis acid to promote catalytic cyclizations is a powerful metal-free approach leading to the formation of useful heteroaromatics and aromatics. This 

mechanism highlights the unique behavior of B(C6F5)3 to act as both a hard Lewis acid and π-acid, and that divergent reactivity is possible employing B(C6F5)3 as a catalyst. Borane-

catalyzed reactions allow for the synthesis of high-value products in a sustainable manner, from cheap and readily available starting materials. 
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