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ABSTRACT
The urban transit routing problem (UTRP) is concerned with find-
ing efficient travelling routes for public transportation systems.
This problem is highly complex, and the development of effective
algorithms to solve it is very challenging. Furthermore, realistic
benchmark data sets are lacking, making it difficult for researchers
to compare their problem-solving techniques with those of other
researchers. In this paper we contribute a new set of benchmark
instances that have been generated by a procedure that scales down
a real world transportation network, yet preserves the vital char-
acteristics of the network layout including "terminal nodes" from
which buses are restricted to start and end their journeys. In ad-
dition, we present a hyper-heuristic solution approach, specially
tailored to solving instances with defined terminal nodes. We use
our hyper-heuristic technique to optimise the generalised costs
for passengers and operators, and compare the results with those
produced by an NSGAII implementation on the same data set. We
provide a set of competitive results that improve on the current bus
routes used by bus operators in Nottingham.
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1 INTRODUCTION
To fulfil the current needs of modern cities in delivering efficient,
economical, and environmentally friendly transportation systems,
careful planning is required in the design phase to avoid excessive
waiting and travelling times and reducing the operational costs.
Public transportation systems design is a topic that has been ad-
dressed extensively in the literature [9, 10, 12] using a variety of
models and solution methodologies. Yet the models in the literature
hugely differ, and there is a lack of public benchmarks that can
help researchers to effectively compare their algorithms. Moreover,
current models and benchmark instances fail to properly reflect real
world road network layouts or realistic operating constraints. For
example, Mandl’s Swiss network [16, 17] is considered the defacto
benchmark until very recent time, though it only contains 15 nodes
that does not represent a real network size. Another set of instances
published in [18] provides larger sizes that have been generated
based on user defined parameters which determine the number of
vertices, edges and the upper and lower bounds of demand at each
node in the network.

One of the key elements in public transportation systems plan-
ning is the design of routes over a given network to provide an
efficient service for passengers and network operators. This prob-
lem is referred to as the urban transit routing problem (UTRP).
The UTRP is considered an enormous challenge for optimisation
algorithms, because of the huge complexity imposed by the mul-
tiple constraints which define the criteria for accepting feasible
solutions, and the many conflicting objectives that the designed
network should satisfy. This makes finding near optimal solutions
extremely difficult.

In this work we introduce a constraint into the network model,
that restricts the start and end points of bus journeys to specific
points named terminals. Identifying end points for bus journeys
is essential when solving the routing design problem in an urban
context, to provide u-turn possibilities for buses. However, adding
this condition creates extra complexity bymaking it more difficult to
construct feasible solutions. Figure 1 illustrates a “legal" connected
network according to the feasible network definitions in [2, 18].
The same network becomes infeasible when three terminal points
are introduced (green) making one of the routes invalid with an
incorrect end terminal (node 4). This effect becomes more profound
with the increase in network size, or the decrease in the number of
valid terminals.

https://doi.org/10.1145/3321707.3321867
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Figure 1: Feasible route network becomes infeasible by in-
troducing three terminal points (green)

Very few models in the literature incorporate terminals, espe-
cially for large instances. However, Pattnaik et al. [19] solved the
network design problem for a small network representing parts of
Madras city in India, using genetic algorithms (GA) in two phases:
first a heuristic procedure is applied to generate a set of candi-
date routes and then the GA is applied in the second phase. Their
candidate route set generation procedure is based on the demand
matrix, route set constraints and designer’s knowledge. The proce-
dure involves finding the shortest path between every origin and
destination pair which are selected from a set of terminal points.
The designer identifies the terminal points by taking the network
layout into consideration. Szeto and Wu [20] solved the bus net-
work design of the suburban area of Tin shui Wai in Hong Kong
using a network model of 28 nodes, where trips originate from
specific terminal points and end at one of five destination nodes.
Seven terminal points are specified in their network model and a
GA incorporating a frequency setting heuristic is used to solve the
route design problem and determine bus frequencies. Amiripour
et al. [3] tackled the bus network design problem by considering
seasonal variation in the demand to provide a convenient bus ser-
vice throughout the year. A GA has been applied to solve their
model by testing it on two small benchmark instances and a real
case study in the city of Mashhad in Iran. In the larger network of
Mashahd, several terminal points have been identified by testing
their turning possibilities and performing K-shortest path between
pairs of terminal points to create feasible routes.

We propose in this work a new set of instances incorporating
terminal point information. These instances have been generated
following the procedure proposed in [11] which scales down a real
world street network into a size manageable by optimisation algo-
rithms while preserving the characteristics of the street network
layout. The procedure has been applied to the urban area of Notting-
ham city and all the data associated with the instances including
terminal points positions, travel and demand data are extracted
entirely from public and open sources. This data set can be down-
loaded from [1], thus improving the availability of benchmarks
that sufficiently reflect real world conditions. A hyper-heuristic
approach which has been specifically tailored to solve this version
of the problem with terminal nodes is used to optimise the route
network and the results are further compared to those generated
by the NSGAII genetic algorithm and also to real-world route sets
extracted from the study area.

Hyper-heuristics are motivated by the idea of automating the de-
sign of heuristic methods to solve difficult computational problems
[4]. There is currently a growing interest in using such cross-domain
methodologies which represent a general framework applicable to
several problem domains while requiring minimal adaption.

In a recent study, Ahmed et al. [2] have applied hyper-heuristics
to the UTRP for the first time. A sequence selection method was
used based on the hidden Markov model, in an attempt to miti-
gate the problems encountered by other meta-heuristic approaches,
particularly population based methods such as genetic algorithms
which require a huge computational time to maintain and evaluate
the individuals of the population and therefore fail to solve large
size networks in a reasonable run time.

The work showed the success of hyper-heuristics in delivering
excellent results compared to population based methods with faster
run times when tested on known benchmarks. A comparison be-
tween several selection hyper-heuristics was carried out, and the
best performing approach combined a sequence based selection
method (SSHH) with the great deluge acceptance method (GD).
Thus SSHH with GD is adopted for the present work to find good
solutions to the new Nottingham data set, and prove that hyper-
heuristics work equally well on larger scale, and more complicated
versions of the UTRP.

The rest of the sections describe the problem formulation, the
optimisation methodology, the data set description, and finally the
results and conclusions.

2 PROBLEM FORMULATION
Wewill use a simplified formulation for the UTRP utilised by several
previous studies [2, 5, 13, 15, 18], which is the graph representation
for a given road network with identified stop locations. The road
network comprises a set of stops connected by road segments,
this can be mapped into an undirected graph G = {V ,E}, where
the graph vertices V = {v1,v2, . . . ,vn } are access points (i.e. bus
stops), and the graph edges E = {e1, e2, . . . , em } are direct transport
links. Some of the vertices are identified as terminal points U =
{u1,u2, . . . ,uk }, such that U ⊆ V . These terminal points allow u-
turns to make the reverse trip in the opposite direction. A public
transport route, according to this graph definition, is a path in the
graph that connects a set of vertices, and starts and finishes at
terminal points r = {ui ,vi1 , . . . ,viq ,uj }. The route network, which
is the solution to this model, results from devising a set of routes
R = {r1, r2, ...r |N |} to form the transportation network, where |N |

is the total number of routes in the network. To evaluate a given
route network, the following information is required for every pair
of vertices in the transport network (vi ,vj ) ∈ V : the time to travel
between the two vertices, and the number of passengers travelling.
Travel time and demand between each pair of vertices is given
in the form of two dimensional matrices (i) travel time matrix
(ii) demand matrix. tvi ,vj , a single entry in the travel time matrix
refers to the time in minutes required to travel from vi to vj and
dvi ,vj in the demand matrix refers to the number of passengers
travelling between vi and vj . The travel time matrix records travel
times between directly connected nodes, with travel times of zero
between a node and itself, and ∞ between pairs of nodes that
are not directly connected in the graph. On the other hand, the
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demand matrix records travel demand between pairs of source-
destination nodes for the travellers. The two matrices are assumed
to be symmetrical for simplicity, meaning that the inbound and
outbound journeys along the route will have the same travelling
duration. We also assume that the demand level remains the same
and does not change for the duration of the day. The terminal points
are identified using a one dimensional vectorUrn×1, where n is the
number of vertices in the road network and each entryUri has a
value of one if vi is a valid terminal, or zero otherwise.

The feasibility of the solution (i.e. route network) determines to
what extent the solution obeys the problem constraints. A single
violation in any of the constraints results in rejecting the solution.
A solution is accepted if and only if the sum of constraint violations
is zero. The full list of constraints is presented below:

• The route set R includes exactly |N | routes and each route
is uniquely identified.

• ∀ri ∈ R, the length of ri in terms of the number of nodes is
between a defined minimum and maximum values.

• ∀ri ∈ R, no cycles or backtracks should be present.
• The route set taken as a whole (R) is fully connected to allow
a user to reach any point in the network from any other
point.

• ∀vi ∈ V , vi should be present in at least one route in the
route set.

• ∀ri ∈ R, the starting and ending nodes must be terminal
nodes.

3 OPTIMISATION PROCEDURE
In this section we describe the methodology applied to optimise
route set design, starting with the creation of a high quality (and
feasible) initial route set, followed by the optimisation procedure
using selection hyper-heuristics.

3.1 Creating Initial Route Set Using a Heuristic
Construction Procedure

The initial generation procedure produces an initial route set based
on the following parameters: the demand matrix, the terminal
points vector, the road network graph, the predetermined num-
ber of routes in the route set, and the minimum and maximum
length of each route (in terms of the number of nodes). Using this
information, an initial route set is generated guided by the demand
matrix to ensure that as much of the demand as possible is routed
along its shortest travel time path. This gives the optimisation
algorithm a good start. The initialisation algorithm involves the
following steps: (i) Produce an edge usage graph guided by de-
mand and shortest travel time path information. (ii) Create a pool
of candidate routes. (iii) Construct a route set from the candidate
route pool. Assuming the passenger prefers to travel along his/her
shortest travel time path, the shortest path between every pair of
nodes in the road network is calculated. It is then an easy matter to
create a “shortest-path-usage map" by adding up the total demand
travelling along each edge in the network, assuming all travellers
are able to traverse their shortest paths1. An example of such a map
is displayed in figure(2a), using the Clifton instance (described in

1The demand of each edge is aggregated in the two directions of travelling.

section 4). In the diagram the edge labels represent the total demand
along each link. A similar approach for calculating the edges usages
has been used in [15].

Next we perform a simple transformation on this map to convert
the usages into distances so that the largest usage becomes the
shortest distance and vice-versa. This is done by subtracting the
usage on each edge from some arbitrary large number. We have
chosen to use the total demand for the whole network for this
purpose. Figure (2b) demonstrates the transformed usage map using
the upper bound for Clifton (i.e equals 964). In this case the highest
usage (i.e from node 3 to node 8) becomes the shortest distance
(964 - 932 = 32). Our approach here differs from [15] where they
calculate probabilities to select edges based on their usage value.

The transformed usage map is then used to generate routes for
the routes pool, which will later be used as a palette from which
to select routes for the initial route set. The algorithm will iterate
through pairs of terminal nodes and create routes by performing
shortest path computations based only on the transformed usage
map. In this way the algorithm will generate routes that include the
busiest edges, and each of these will enter the pool as a candidate
route, provided its route length lies between the minimum and max-
imum allowed. However, to guarantee that the pool of routes covers
all of the nodes in the network, it is necessary to include some less
busy links. To achieve this, the shortest path algorithm iterates sev-
eral times between all pairs of terminal nodes. After each iteration,
the weights of the transformed usage map are updated by slightly
increasing the ones that correspond to edges selected by the route
generation procedure. This encourages the shortest path algorithm
to look for alternative paths that may include undiscovered nodes.
The weight values are increased by multiplying them with a very
small value which have been tuned to 1.1 after a series of trials. The
iterations terminate after the inclusion of all the network nodes in
the candidate pool.

The final step is to construct a legal route set from the route pool,
by selecting them one at a time, without replacement. The first route
in the route set is randomly chosen from the pool. Then the number
of unseen nodes with respect to the route set under construction
(currently including one route) is calculated for every candidate
route in the pool. The candidate route that has the highest number
of nodes that are not yet included in the route set and has at least
one node in common with the first route is selected as the second
route. The third route is chosen similarly while guaranteeing it has
at least one node in common with one of the first two routes. If all
the nodes have been included and the route set has not yet reached
the predetermined limit for the number of routes, the algorithm
selects the first route in the pool. This process continues until |N |

routes are constructed and all the nodes are included in the route
set.

3.2 Objectives and Evaluation
The UTRP is a multi-decision problem incorporating several stake-
holders with conflicting requirements. A designed transportation
system should take into consideration the passengers’ needs, the
limited budget of the operating companies, and the rules imposed
by the local authorities. In our model, the optimisation will fo-
cus on reducing the average travel time encountered by the single
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(a) Usage map (b) Transformed usage map

Figure 2: The usage map and the transformed usage map: darker colour = high demand edges, lighter colour = lower demand
edges. Green vertices = terminal vertices, red vertices = non-terminal vertices.

passenger, ensuring the passengers’ convenience in reaching their
destination as fast as possible with the least number of transfers,
while also lowering the network operator’s expenses. The following
formulae are used to calculate the objectives and to evaluate a given
solution:

Cp (R) =

∑n
i, j=1 di jαi j (R)∑n

i, j=1 di j
(1)

Co (R) =
∑

∀ri ∈R

∑
(vi ,vj )∈ri

ti j (2)

f (S) = α
Cp (R)

CPinit ial
+ γ

Co (R)

COinit ial
(3)

Equation 1 calculates the passenger objective, where we con-
sider reducing the average travel time of the single passenger in
the network. Our assumption is that the passenger choice of route
is always the path that requires minimum journey time (i.e the
shortest path), thus αi j in the equation denotes the shortest path
between stops i and j and it incorporates the in-vehicle travel time,
the waiting time, and the transfer time. The waiting time and the
penalty for making a transfer are combined as a single time set to
5 minutes. The total travelling distance in the transportation net-
work is an important consideration for the operator. Therefore we
consider the cost for travelling all the routes in a single direction cal-
culated by equation 2 as the operator objective. Equation 3 is used
to evaluate a given solution, whereCPinit ial andCOinit ial are the
initial values for the passenger and operator objectives respectively,
and α and γ are parameters to determine how to direct the optimi-
sation by either focusing on optimising one of the objectives, or
balancing them. To analyse candidate route sets more extensively,
the following parameters are used to calculate the percentages of
demand satisfied by direct (i.e. zero transfers) and indirect trips
(i.e. one or two transfers): d0, d1, d2, dun . The demand that requires
three transfers or more is considered unsatisfied (dun ). To calculate
these parameters, it is assumed that the passenger prefers the route
with the fewest transfers, if there is more than one shortest path
between two points.

3.3 Optimising Route Sets Using Selection
Hyper-heuristics

Hyper-heuristics, in contrast to other meta-heuristic techniques,
control and perturb a set of low level heuristics which work directly
on the solution space. Therefore hyper-heuristics are isolated from
any specific problem domain information and only control the low
level heuristics as a set of black boxes, giving them the advantage
of easily being applied to any problem by only providing the rele-
vant set of low level heuristics, the objective function and problem
instances. The general framework of selection hyper-heuristics is
that they iteratively improve a given initial solution through two
processes known as selection and move acceptance methods, using
the set of implemented low level heuristics until a termination con-
dition is met. The best solution is constantly updated and returned
at the end of the process.

Since the term hyper-heuristics was first introduced in [6] it has
been widely used to solve difficult optimisation problems, and has
been particularly popular in solving routing problems . In Ahmed
et al. [2] the UTRP is solved using hyper-heuristics, by testing
and comparing thirty selection hyper-heuristics. The best selection
hyper-heuristic algorithm combined a sequence based selection
method (SSHH) [14] with the great deluge acceptance method (GD)
[8].

SSHH is an online selection method based on the hidden Markov
model that constructs sequences of heuristics to apply at each
decision point. A probabilistic scheme is utilised in this method to
increase the chance of choosing successful sequences in later steps,
and the selection method maintains and learns these sequences
during the search. The great deluge acceptance method uses a
threshold value to determine an acceptance range for the solutions.
The threshold value equals the initial solution at the beginning of
the search and decreases with time in a linear rate. At each step,
the threshold value is recalculated using the following formula:
τt = f0 + ∆F × (1 − t

T ) where ∆F is the maximum change in the
objective value, f0 is the final expected objective value,T is the time
limit, and t is the time at the current step. Improved solutions are
always accepted, while worsening solutions are accepted if their
objective value is less than or equal to the calculated threshold
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value at the current step. The details of the winning algorithm and
the analysis are in [2]. This algorithm will be used to optimise the
proposed data set and will be known by the name SS-GD in the rest
of the paper.

At the start of the optimisation, the initial solution (Sinit ) built
using the heuristic method described above, is introduced to the
hyper-heuristics as the current solution (Scurr ) and the sequence
of heuristics constructed by SSHH is applied to Scurr to generate
a new solution (Snew ). The feasibility of Snew is tested, a single
violation in any of the constraints listed in section 2 results in
rejecting this solution (e.g. if at least one of the terminals of any
route in the route set is not valid). In this case a new sequence of
heuristics is constructed and applied to generate a new solution. If
Snew is feasible, it is evaluated using equation 3 and the parameters
are set to determine which objective the optimisation is focusing
on. For example to optimise the route set by balancing the two
objectives, the parameters α and γ are both set to 1, or one of them
can be slightly increased to favour one of the objectives. To generate
route sets optimised from one of the perspectives (i.e., passenger or
operator), one of the parameters is set to 1 and the other to a very
small value (e.g 10−4).

After evaluating Snew and if it is better than the best known
solution, the best solution is updated and the sequence of heuristics
is rewarded by increasing the probability of selecting this sequence
again. The great deluge (GD) move acceptance decides on the ac-
ceptance of Snew by comparing it to Scurr . If Snew is accepted, the
value of Scurr is updated to the value of Snew . The optimisation
terminates when a certain time set by the user elapses.

3.4 The Low Level Operators
The low level heuristics set has been carefully designed to to ensure
setting the correct route terminals. They also ensure that nodes are
placed in the right positions where they are directly connected with
the neighbouring nodes according to the adjacency relationships
defined by the travel time matrix (section 2). Our full list of low
level heuristics are presented below.

h1:Add. Selects a random route and a random position in the
route. A node is selected and added in this position according
to its adjacency relations with the neighbouring nodes.
h2: Delete. Selects a random route and a random position
in the route. The node in this position is deleted while con-
sidering the adjacency of the neighbouring nodes of this
position.
h3: Replace. Selects a random route and a random position.
A node is selected to replace the node in this position while
considering the adjacency of the neighbouring nodes with
the selected node.
h4: Swap. Selects a random route and two random positions
and swaps the nodes in these positions according to the
adjacency relationships.
h5: Shift. Selects a random route and two random positions.
The node in the first position is inserted into the second
position according to the adjacency relationships.
h6: Add terminal. Selects a random route and a random
terminal node and inserts it into one of the route terminals
by randomly selecting one of them.

h7: Reverse. Selects a random route and two random posi-
tions and reverses the order of nodes between these posi-
tions.
h8: Crossover. Selects two random routes and a random
position on each route and splits the route in this position.
Two different routes are created by swapping the parts of
the two routes.
h9: Delete(Add) nodes. Selects a random route and adds a
number of nodes at the route terminal or deletes a number
of nodes until the route reaches the maximum or minimum
length.
h10: Replace route. Selects a random route and deletes it.
A build procedure is then applied to construct a new route
by finding the shortest path between two randomly selected
terminal nodes. The deleted route is replaced by the new
constructed route.

4 NOTTINGHAM INSTANCES
In this study we introduce a set of instances based on different
parts of the urban area of Nottingham city in the UK (figure 3).
The instances vary in size: the largest covering the entire study
area and the smallest representing only the small Clifton area in
Nottingham. All instances are generated from official street and
census data of the year 2011. The procedure effectively reduces the
street network to a graph size tractable by optimisation algorithms
while maintaining the characteristics of the street network layout
to ensure they are reflected sufficiently in the instances.

The first step in the generation procedure is to select the streets
available for bus travel in the study area and construct a street
map. This is done based on official street classifications2 and the
positions of existing bus stops. After that, the positions of the
nodes are determined by placing initial nodes at all junctions and
intersections of the street map. In cases where initial nodes are
closer to each other than a defined distance, they are replaced by
a new node half way between the positions of the original nodes.
The resulting set of nodes do not represent concrete stop locations,
but more precisely routing points which define the course of the
bus route. It is assumed that vehicles travel on a path defined by
these nodes, and stop at defined locations along the way.

In order to ensure that the results of the optimisation are directly
comparable with the performance achieved by the real world bus
routes, the instance should only include the nodes that are present
in the paths of the real routes. The real bus routes are extracted
from UK 2011 National Transport Data Repository (NPTDR) where
bus journeys are stored in the form of journey patterns. Therefore
the initial nodes determined by the previous step are filtered out to
exclude the nodes that are not present in the real bus routes.

A number of nodes need to be designated as terminals repre-
senting potential start and end points of routes where buses can
turn around. These nodes are identified by projecting the real world
journey patterns on the generated street map to determine at which
locations the actual bus journeys begin and end, and specify the
nodes at these locations as terminal nodes.

2The selected streets classifications are: “A-", “B-" ,“Minor Road" and "Local Street"
according to UK official road classifications. One-way streets are only included if travel
in the other direction is possible on parallel streets within a short distance.
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The travel times associated with the network edges are defined
by calculating the shortest paths between pairs of nodes. For every
nodes pair, the shortest path is found for each direction of travelling.
If these paths are direct, they are averaged, and recorded as the
travel time between this pair. If the paths pass by at least one other
node, the connection is considered indirect and assigned to the
travel time matrix as ∞. The final step is to determine the travel
demand between pairs of nodes in the network. For this, travel
to work data from 2011 UK census is used. It gives the number of
commuters between different census zones, and can be converted
into a matrix of passengers travelling between different nodes by
assigning zones demand to the network nodes. It is done by as-
signing the zone demand to a node if the zone’s centroid is not
more than 400 meters away from the node position. In case that the
zone centroid is close to more than one node, the travel demand is
divided equally between these nodes. Table 1 summarises the fea-
tures of the data set. Note that the instances generation procedure
ensures producing symmetrical demand and travel time matrices

Figure 3: Map of the study area together with nodes and
network edges generated with the method described in sec-
tion 4. (map source: https://www.openstreetmap.org.) The
colours and numbers indicate the areas of the instances: 1:
Clifton (red), 2: Hucknall (blue), 3: South of Trent (brown)
and 4: Nottingham (green). It should be noted that the in-
stances Hucknall and South of Trent are subsets of the Not-
tingham instance and in the same way Clifton is a subset of
South of Trent.

Table 1: Features of the data set

Instance No. of ver-
tices/edges

No. of
routes

No. of vertices per
route (min/max)

No. of terminal
nodes

Clifton 10, 15 4 2 - 8 7
Hucknall 17, 28 5 2 - 9 10

South of Trent 54, 86 18 2 - 13 25
Nottingham 376, 656 69 3 - 45 159

matching the problem description (section 2). The Journey patterns
used in generating the real route sets are also modified to satisfy
the problem constraints, in order to ensure fair comparison to the
optimisation results.

The problem objectives are highly sensitive to the route set
parameters, therefore they should be carefully set to ensure route
set feasibilitywhile considering the stakeholders needs. For example
having a large number of particularly long routes is not beneficial to
operators because longer travel distances require more vehicles and
staff. On the other hand short routes increase the numbers of vehicle
transfers for passengers. Sufficient routes should be present to cover
the entire network nodes while maintaining the connectivity of the
routes.

For the larger instances the solution parameters are determined
from the real route sets, to ensure the optimisation results are
fairly compared against them. The number of routes is the same
as the extracted real world route set, while the maximum number
of nodes is 10% longer than the longest real world route to give
the optimisation algorithm freedom to slightly extend the existing
routes. The minimum length is one node less than the shortest real
world route. The parameters of the two smaller instances - Hucknall
and Clifton - have been tuned to ensure route set coverage and
connectivity while delivering good initial results for both objectives.

The original description of the instances generation procedure
is in [11] where the steps described above are applied to generate
the larger instance of Nottingham, and the same steps are applied
in this work to generate the smaller instances set. All the instances
and information on how to use them can be downloaded from [1].

5 EXPERIMENTAL RESULTS
5.1 NSGAII Optimisation
NSGAII [7] is an elitist non-dominated sorting algorithm used very
widely in multi-objective optimisation. The idea is to generate a
parent population of size Npop and use it to generate an offspring
population of size Npop through crossover and mutation operations.
The parent and the offspring populations are combined to produce
a population of size 2 ·Npop from which the population for the next
generation is selected by applying non-dominated sorting algorithm
and crowding distance and choosing the first Npop solutions of
the sorted population. The NSGAII is applied in [13] to solve the
UTRP problem in Mandl and Mumford data sets, and in [11] it
has been tailored to adapt to the presence of terminal nodes. In
this work we have used the algorithm applied in [11] that found
preliminary optimised results for Nottingham instance. We will
give a brief outline here for the crossover and mutation operators of
this algorithm. The crossover operator generates an offspring route
set from pairs of parent route sets, where the routes from the two
parents are selected alternately such that the proportion of unseen
vertices in the offspring is maximised. The generated offspring route
set has then a certain chance to undergo mutation. For the mutation,
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one of the followingmutation operators is selected randomly: delete
nodes, add nodes, exchange two routes, replace route, merge two
routes. These operators are similar to the ones implemented in [13]
with some modified to the presence of terminals. Note that the
NSGAII is subject to the same constraints described in section 2,
and a feasibility test after both crossover and mutation ensures that
all the offspring route sets obey these constraints. Repair operators
to add the missing nodes, and replace overlapping routes are also
implemented to avoid rejecting toomany solutions. Further, NSGAII
attempts to minimise the same objectives as the hyper-heuristics,
using the equations 1 and 2. The parameters for route lengths and
numbers of routes in the route set are are also the same as in the
hyper-heuristics experiments. We will be comparing the results of
NSGAII with SS-GD in the following subsection.

5.2 Comparison of SS-GD and NSGAII
The experiments were conducted by applying SS-GD (i.e. SSHH
used with great deluge, GD) to each instance of the data set follow-
ing three scenarios: 1) from the perspective of passenger 2) from
the perspective of operator 3) balancing the two objectives. This
is achieved by setting the parameters in equation 3 as follows: to
generate route sets biased toward the passenger (operator) objective
α (γ ) is set to 10−4 while the other parameter is set to 1. Whilst
for balancing the two objectives α is set to 2 and γ to 1. The three
scenarios are applied to each instance, and for each scenario the
hyper-heuristic is run for 10 trials, each terminating after a spe-
cific time period. The running length of each trial increases with
the instance size, with the smallest instance run for five minutes
and the largest for three hours. The NSGAII experiments use the
following sizes for the initial population: 50 for Nottingham and
South of Trent, 25 for Hucknall and 10 for Clifton. The experiments
are run for 200 generations for each instance.

Table 2 summarises and compares the results of SS-GD against
NSGAII from the perspective of passenger and operator measured
in minutes for the average passenger travel time and the total routes
length. The minimum result in the 10 trials is compared to the best
result found by NSGAII from the perspective of passenger and
operator. The average of the 10 trials is also recorded. Figure 4
plots the results of SS-GD with the evaluation results of the final
population which forms a clear Pareto front. SS-GD results are
taken from four key positions: the best result from the passenger
perspective, the best result from the operator perspective, the most
passenger friendly and the most operator friendly route sets in the
10 trials that balance the two objectives.

From results in table 2 and the plots, it can be clearly seen that
SS-GD outperforms NSGAII from the passenger and operator per-
spectives in all instances. In fact, the best passenger results for
SS-GD not only succeeded in improving the passenger average
travel time, but also the operator cost has improved. The best oper-
ator results for SS-GD also improve significantly over NSGAII in
all instances, especially the largest instance Nottingham, although
NSGAII could find better average travel times for passengers in this
case. The compromise solutions (i.e. balancing the two objectives)
of SS-GD are also very successful. Comparing these solutions to
the solutions of NSGAII with the same passenger objective, SS-GD
is successful in finding much improved costs for the operator, and

this observation applies for all instances. The greatest success is
witnessed in the largest instance of Nottingham, where the most
passenger friendly route set in the compromise solutions is better
than the best passenger result found by NSGAII, while the operator
cost is improved by more than 50%.

Also comparing the run time of these algorithms for the largest
instance Nottingham, NSGAII requires more than a week to gener-
ate a final population of Pareto solutions. SS-GD is much faster in
producing a single solution of high quality compared to NSGAII in
a single run, which takes only three hours, as mentioned previously.
This can be clearly seen in the best passenger results of Nottingham
instance where SS-GD was able to reduce the passenger travel time
by 1 minute and offer better operator costs compared to NSGAII in
an individual run of three hours.

Table 2: Comparison between the best results from the per-
spectives of passenger and operator between SS-GD and NS-
GAII for each instance.

Instance Objective SS-GD NSGAII

Passenger Perspective
min avg

Clifton Cp 3.11 3.14 3.30
Co 50.67 45.31 54.65

Hucknall Cp 4.42 4.80 4.56
Co 65.40 65.91 58.64

South of Trent Cp 7.07 7.20 7.31
Co 278.17 275.35 303.75

Nottingham Cp 11.00 11.11 12.44
Co 2105.06 2060.18 2325.87

Operator Perspective

Clifton Cp 7.69 7.69 8.61
Co 14.91 14.91 17.01

Hucknall Cp 12.36 13.34 8.43
Co 26.24 26.24 26.96

South of Trent Cp 22.00 23.43 18.55
Co 82.32 84.30 99.83

Nottingham Cp 43.74 35.36 19.77
Co 564.23 619.88 741.83

5.3 Comparison with Real World Route Sets
In this section we compare the optimisation results with the real
world routes for the two largest instances: Nottingham and South
of Trent. The real world bus routes are the operating routes in the
city of Nottingham from the year 2011 extracted from the national
public transport data repository (NPTDR) as described in section 4.

The plots in figure 4 indicate that SS-GD is able to provide im-
proved solutions over the real routes, given that there are Pareto
points (red) that clearly dominate the real route positions (green).
Taking the Nottingham instance as an example, the real routes offer
a single passenger an average travel time of 14.3 minutes and the
summed route length for the entire route set in minutes is 1369.
The best result from the passenger perspective found by SS-GD
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Figure 4: SS-GD results plotted against the evaluation results of the final population. The blue dots are the results of the
population evaluation and the red dots are SS-GD results.

(11.00) decreased the average travel time by 3 minutes, while the
average routes length increased by almost 50% (2105). On the other
hand the most passenger friendly route set in the compromise route
sets (12.46) improved the average travel time of the real routes by
2 minutes, and the routes length improved by almost 25% (1029).
Also trip directness is enhanced by decreasing the percentage of
passengers needing two transfers from 14% to 10% while increasing
the percentage of direct travellers from 30% to 33%. More detailed
results for this comparison with percentages of improvement over
the real routes are found in the supplementary material [1].

6 CONCLUSIONS
In this paper we have described a new hyper-heuristic approach
to solving the UTRP and presented a set of benchmark instances
generated using a novel procedure that reduces and simplifies a real
street network to be easily managed by optimisation algorithms,
while at the same time maintaining the characteristics of the street
network layout. Four new instances of varying sizes are introduced,
and certain nodes in the network are designated as terminal nodes,
which exclusively allow the start and end of bus journeys. The
SS-GD hyper-heuristic is tested on the new data set with specific

implementation tailored to the presence of terminal points and
compared to the solutions generated by NSGAII genetic algorithm
and also to the real bus routes used by local bus companies. Com-
parisons show the success of SS-GD in finding solutions better than
NSGAII in all the instances from the perspective of passenger and
operator. Also SS-GD was able to improve the existing routes ser-
vice for both passengers and operators, and shows a great potential
for handling complicated and real world versions of UTRP in very
short run times compared to genetic algorithms. The data set is
publicly accessible for free use by researchers.

In future work We plan to take the hyper-heuristics approach
further to consider one-way streets, set bus arrival frequencies on
the routes, and model passenger behaviours in a more realistic way.
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