How we designed winning algorithms for abstract
argumentation and which insight we attained

Federico Cerutti®, Massimiliano Giacomin®, Mauro Vallati¢

%School of Computer Science € Informatics, Queen’s Buildings, Cardiff University, CF24
3AA, Cardiff, United Kingdom
b Department of Information Engineering, University of Brescia, via Branze, 38, 25123,
Brescia, Italy
¢School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH,
United Kingdom

Abstract

In this paper we illustrate the design choices that led to the development of
ArgSemSAT, the winner of the preferred semantics track at the 2017 International
Competition on Computational Models of Arguments (ICCMA 2017), a biennial
contest on problems associated to the Dung’s model of abstract argumentation
frameworks, widely recognised as a fundamental reference in computational
argumentation. The algorithms of ArgSemSAT are based on multiple calls to a
SAT solver to compute complete labellings, and on encoding constraints to drive
the search towards the solution of decision and enumeration problems. In this
paper we focus on preferred semantics (and incidentally stable as well), one of
the most popular and complex semantics for identifying acceptable arguments.
We discuss our design methodology that includes a systematic exploration and
empirical evaluation of labelling encodings, algorithmic variations and SAT solver
choices. In designing the successful ArgSemSAT, we discover that: (1) there is
a labelling encoding that appears to be universally better than other, logically
equivalent ones; (2) composition of different techniques such as AISAT and
enumerating stable extensions when searching for preferred semantics brings
advantages; (3) injecting domain specific knowledge in the algorithm design can
lead to significant improvements.

Keywords: Abstract Argumentation, SAT-based Algorithms, Stable and
Preferred Semantics

1. Introduction

Computational Argumentation is emerging in Artificial Intelligence as a
reasoning paradigm able to handle incomplete and inconsistent information in a

Email addresses: CeruttiF@cardiff.ac.uk (Federico Cerutti),

massimiliano.giacomin@unibs.it (Massimiliano Giacomin), m.vallati@hud.ac.uk (Mauro
Vallati)

Preprint submitted to Artificial Intelligence August 3, 2019

way that fosters the development of robust intelligent systems in e.g. the legal,
medical, e-government and debate systems domains [1]. In particular, argument-
based debate systems aim not only at supporting human-human argumentation,
but also at developing machine-generated arguments.

In this setting, Dung’s model of abstract argumentation frameworks [2] is
widely recognised as a fundamental reference in virtue of its simplicity and ability
to capture a variety of more specific approaches as special cases, in the areas
of non-monotonic reasoning, logic programming and structured argumentation
[2, 3, 4, 5, 6]. More specifically, Dung’s model plays a role in the assessment
layer of argumentation, i.e. to establish the justification of arguments and their
conclusions. In argument-based debate technology applications, it supports the
assessment of debatewide features such as which arguments are winning [1].

An abstract argumentation framework (AF') consists of a set of arguments
and an attack relation between them. The concept of extension plays a key role
in this simple setting, where an extension is intuitively a set of arguments which
can “survive the conflict together.” Different notions of extension correspond
to alternative argumentation semantics, whose definitions and properties are
actively investigated since more than two decades (see [7, 8] for an introduction).

The three traditional argumentation semantics introduced in Dung’s paper
[2], namely grounded, stable, and preferred semantics, currently represent the
most widely adopted approaches to determine the justification status of argu-
ments in abstract argumentation. They are all based on complete semantics, also
introduced in [2] as a unifying framework for different semantics, since exten-
sions are selected among the complete ones. While grounded semantics always
identifies a single extension which can be computed in polynomial time, stable
and preferred semantics allow multiple extensions, yielding in some cases the
capability of assigning a committed status to arguments that are left undecided
by grounded semantics [9]. Differently from stable semantics, preferred semantics
also guarantees the existence of extensions for any argumentation framework,
thus providing a justification status of arguments in cases where applying stable
semantics collapses [2]. In this respect, the name of preferred semantics reflects
a sort of preference w.r.t. the other traditional argumentation semantics.

The main computational problems in abstract argumentation are naturally
related to extensions and include decision problems, e.g. determining whether
an argument belongs to all extensions, and construction problems, such as
enumerating all of the extensions prescribed by a given semantics for a given AF'.
Unfortunately, the complexity of extension-related decision problems turns out to
be intractable for most of the semantics [10, 11] and this clearly has a substantial
detrimental effect whenever dealing with real-world problems, e.g. [12]. As to
stable semantics, credulous and skeptical reasoning are in the first level of the
polynomial hierarchy. As to preferred semantics, the advantages of preferred
semantics mentioned above come at a price in terms of computational complexity,
in particular skeptical reasoning is located at the second level. These complexity
issues motivate a recent interest for the investigation on efficient algorithms
for abstract argumentation and their empirical assessment. In order to foster
the development of such algorithms as well as determining the state-of-the-art

of current implementations, the International Competition on Computational
Models of Argumentation (ICCMA)! has been established on a biennial basis
starting in 2015.

While different approaches turn out to be complementary and can be success-
fully combined in portfolios [13], reduction-based approaches, most of them based
on SAT, had the best performance during ICCMA 2017,% the last competition.
It is worth noticing that this is not a universal truth as we already discussed at
length in [13].

In this paper we illustrate the design choices that led to the development of
SAT-based algorithms for preferred semantics, the most challenging semantics—
from the complexity perspective—among the traditional ones [2]. These design
choices are at the basis of the solver ArgSemSAT, the winner of the track at
ICCMA 2017 devoted to preferred semantics. We also consider stable semantics
since it can play a significant role also in the context of preferred semantics.

As it will be clear in the following, high performance of ArgSemSAT has been
achieved by applying SAT-reductions in a relatively simple way. In particular,
no decomposition techniques on the argumentation framework have been applied,
since previous experiences on the application of the SCC-recursive schema [14, 15]
seem to indicate that such techniques are efficient only when the number of
strongly connected components is large. Moreover, we have exploited classical
SAT solvers with hard clauses, leaving apart the use of soft clauses which may
play a role in the identification of preferred extensions [16]. It should be pointed
out that we are not claiming that more advanced SAT-based techniques have
a detrimental effect on performance, rather that one of the main reasons why
ArgSemSAT achieves efficiency is a careful identification of the features of the
reduction to SAT.

In particular, it turns out that modelling labellings (i.e. a counterpart of
extensions based on labels) with different boolean formulas, as well as expressing
the constraints involving labellings with different logically equivalent encodings,
has a dramatic impact on performance. In addition, there might be different
options in the exploration of the set of labellings; for instance in the context
of preferred semantics one may either begin from scratch or start from stable
labellings by exploiting the relevant algorithms. Finally, algorithms can be
implemented using different SAT solvers.

Since all of these aspects are interrelated, a systematic analysis is needed
to explore all different options, followed by an empirical evaluation to identify
the most efficient combinations. This is the reason why in this paper we do
not compare ArgSemSAT against the other solvers of the competition, rather we
focus on the above features that—as experiments show—have a dramatic impact
on performance. This way, we describe a methodology that can be applied also to
different SAT-based approaches for abstract argumentation, possibly exploiting
advanced features based e.g. on graph decomposition and soft clauses.

Ihttp://argumentationcompetition.org (on 15 February 2019).
2http://argumentationcompetition.org/2017/results.html (on 15 February 2019).

Our methodology comprises two steps: first correct algorithms and their
variations need to be identified. In this paper we introduce at an abstract level
the algorithms of ArgSemSAT in Section 3. We then explore possible encodings
of the labellings and of the relevant constraints in Section 4, and detail algorithm
implementations in Section 5.

Then, the various algorithms and variants need to be empirically evaluated,
and Section 6 is devoted to the experimental analysis of ArgSemSAT configu-
rations and to assess a number of hypotheses concerning the interplay of the
different features mentioned above.

One of the main take-home messages of our work is that it is of pivotal
importance to promote the flexibility and configurability of solvers. The well-
known no free-lunch theorem [17] indicates that any two solvers will deliver
indistinguishable performance when compared on a sufficiently large and diverse
set of benchmarks. However, since usually solvers are exploited on a much
smaller set of instances, the ability to specialise a solver for a class of instances
of interest can lead to paramount performance improvement. What our work
fosters, and our experimental analysis suggests, is that any general (i.e., domain
independent) solver dealing with complex problems should incorporate different
methods and techniques, and then allow the selection, configuration, and use of
the most suitable ones given the instances at hand. This is well-aligned with
the research done in the area of algorithm configuration [18, 19]. Furthermore,
it is worth emphasising that the specialisation of solvers according to some
testing benchmarks can also lead to a better understanding of solvers behaviours,
in terms of weaknesses and strengths (see, for instance [20]). Analysing and
comparing different configurations can shed some light on the elements that are
affecting performance, potentially leading to further improvements.

Such a data-driven methodology can then be applied to analyse advantages
and disadvantages of approaches based on advanced features. For instance, in
[15, 21] we discussed how SCC-decomposition might play a role when dealing
with certain classes of AF's. Besides the presence at the local level of similar
variants as in a global algorithm, such an advanced feature could potentially
be exploited by an algorithm, hence the need to analyse and compare different
configurations against a large set of benchmarks.

The validity of such a methodology is ensured by the fact that ArgSemSAT
is the winner of the preferred semantics track at ICCMA 2017: further analyses
with currently prototypical approaches to exploit advanced features are left as
future work.

Comparison with relevant work is provided in Section 7, while in Section 8
we have some conclusive remarks. Unless otherwise stated, proofs are listed in
Appendix A. Appendix B summarises the parameters used in the algorithms we
introduce in Section 5. Finally, Appendix C illustrates a pilot study investigating
the difference in performance when using one propositional variable instead of
three in the search for stable extensions using a SAT solver.

2. Background

2.1. Argumentation Frameworks and Semantics

An argumentation framework [2] consists of a set of arguments® and a binary
attack relation between them.

Definition 1. An argumentation framework (AF) is a pair I' = (A, R) where
A is a set of arguments and R < A x A. We say that b attacks a iff (b,a) e R,
also denoted as b — a. The set of attackers of an argument a is denoted
as a- = {b : b — a}, the set of arguments attacked by a is denoted as
at = {b:a — b}. An argument a without attackers, i.e. such that a~— = ¢,
is said initial. We also extend attack notations to sets of arguments, i.e. given
E,Sc A F > aifibe Est. b >a; a— Fiff dbe F st. a — b;
E - Siffibe Elae Sst. b > a; F~ = {(b| 3ae E,b — a} and
Et ={b|3aec E,a— b}

Each argumentation framework has an associated directed graph where the
vertices are the arguments, and the edges are the attacks.

The basic properties of conflict—freeness, acceptability, and admissibility of a
set of arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF I' = (A4, R):
e aset S < Ais a conflict—free set of I'if # a,be S s.t. a— b;

e an argument a € A is acceptable in I" with respect to a set S € Aif Vb e A
st. b—a,dce S s.t. c— b;

e the function Fr : 24 — 24 such that Fr(S) = {a| a is acceptable in I w.r.t. S}
is called the characteristic function of T

e aset S C Ais an admissible set of I' if S is a conflict—ree set of I and
every element of S is acceptable in " with respect to S, i.e. S < Fr(9).

An argumentation semantics o prescribes for any AF T' a set of extensions,
denoted as &,(T), namely a set of sets of arguments satisfying the conditions
dictated by o. The paper is focused on stable (denoted as ST), and preferred
(denoted as PR) semantics, introduced as follows.

Definition 3. Given an AF I' = (A4, R):

e aset S C Ais a stable extension of T', i.e. S e Est(T), iff S is a conflict-free
set of 'and S U ST = A;

e aset S S Ais a preferred extension of T, i.e. S € Epr(T), iff S is a maximal
(w.r.t. set inclusion) admissible set of T'.

3In this paper we consider only finite sets of arguments: see [22] for a discussion on infinite
sets of arguments.

The notion of complete extension introduced in [2] represents a common
ground for both semantics, i.e. both preferred and stable extensions can be
defined as complete extensions satisfying specific maximality properties. This is
recalled in Proposition 1.

Definition 4. Given an AF I' = (A, R), aset S < A is a complete extension of
T iff S is a conflict-free set of ' and S = Fr(S). The set of complete extensions
of T is denoted as Eco(T).

Proposition 1 (Originally introduced in [2]). Given an AF T' = (A, R), a set
S < A is a preferred extension of I' iff S is a maximal (w.r.t. set inclusion)
complete extension, it is a stable extension of I' iff it is a complete extension
such that for allae A, a€e (Su ST).

From the above proposition it is easy to see that Es1(T') < Epr(T) < Eco(T).

Taking into account that the extensions prescribed by any semantics are
conflict-free, one can note that each extension .S implicitly defines a three-valued
labelling of arguments: an argument a is labelled in iff a € S it is labelled out iff
S — a; it is labelled undec if neither of the above conditions holds. In the light
of this correspondence, argumentation semantics can be equivalently defined in
terms of labellings rather than of extensions [23, 24, 25, 8].

Definition 5. Given a set of arguments .S, a labelling of S is a total function
Lab : S — {in,out,undec}. The set of all labellings of S is denoted as Lg.
Given an AF T' = (A, R), a labelling of T is a labelling of .A. The set of all
labellings of I' is denoted as £(I").

Given a labelling Lab, we write in(Lab) for {A|Lab(A) = in}, out(Lab) for
{A|Lab(A) = out} and undec(Lab) for {A|Lab(A) = undec}.

Labellings can be related by the commitment relation introduced in [26]:
Definition 6. Let I' = (A, R) be an argumentation framework and Lab;, Laby €
L£(T"). Labs is more or equally committed than Laby (Laby E Labs) iff in(Laby) <

in(Laby) and out(Lab;) S out(Labs). Furthermore, Laby & Laby iff Laby E
Laby and Laby &£ Lab;.

As shown in [26], E is a partial order between labellings:

Proposition 2 (Originally introduced in [26]). The relation = between labellings
is reflexive, transitive and anti-symmetric.

Complete labellings can be defined* as follows.

Definition 7. Let I' = (A4, R) be an argumentation framework. A labelling
Lab e £(T') is a complete labelling of T" iff it satisfies the following conditions for
any a € A:

4The reader may notice that the definition is redundant, e.g. the third condition may be
dropped since it is entailed by the first two ones. The choice of this definition is for the sake of
exposition.

e Lab(a) = in < Vb € a~ Lab(b) = out;
e Lab(a) = out « Fbe a™ : Lab(b) = in;
e Lab(a) = undec < Yb e a~ Lab(b) # in A Ice€ a™ : Lab(c) = undec.

The stable and preferred labellings can then be defined on the basis of
complete labellings.

Definition 8. Let I' = (4, R) be an argumentation framework. A labelling
Labe £(T) is

e a stable labelling of T iff it is a complete labelling of I" and there is no
argument labelled undec;

o a preferred labelling of I iff it is a complete labelling of I' maximising the
set of arguments labelled in.

The sets including the complete, stable and preferred labellings of an argu-
mentation framework I' are denoted as £co(T'), Ls1(I") and Lpr(I'), respectively.
From the above definition, it is easy to see that £s1(I') € £pr(T") S Lco(T).

On the basis of the results in [2] and [26], the following relations between
complete and preferred labellings can be derived:

Proposition 3 (Originally introduced in [26]). Given an AF T" = (A, R) and
a labelling Lab, Lab is a preferred labelling of I' if and only if Lab is a maximal
complete labelling (w.r.t. £) of I'. Moreover, given a complete labelling Lab,
there exists a preferred labelling Lab’ such that Lab & Lab'.

In order to show the connection between extensions and labellings, let us
recall from [8] the definition of the function Ext2Lab, returning the labelling
corresponding to a conflict—free set of arguments S.

Definition 9. Given an AF T' = (A, R) and a conflict—free set S < A, the
corresponding labelling Ext2Lab(.S) is the labelling Lab such that

e Lab(a)=in<a€e S
e Lab(a)=out < IbeSst. b—a
e Lab(a) =undec = a¢ SAFbeSst. b—a

As shown in [25], there is a bijective correspondence between the complete,
stable, preferred extensions and the complete, stable, preferred labellings, re-
spectively.

Proposition 4 (Originally introduced in [25]). Given an an AF T' = (A, R),
Lab is a complete (stable, preferred) labelling of I' if and only if there is a
complete (stable, preferred) extension S of I' such that Lab = Ext2Lab(5).

Semantics o

ST PR

DC-¢ NpP-compl. NP-compl.

DS-0 coNP-compl. II5-compl.

Table 1: Computational complexity of credulous and skeptical acceptance in finite AFs: DC
denotes credulous acceptance, while DS skeptical acceptance.

2.2. Computational Problems in Abstract Argumentation

The main computational problems in abstract argumentation are related to
the different semantics and can be partitioned into two classes: decision problems
and construction problems. Decision problems pose yes/no questions like “Does
this argument belong to one (all) extensions?” or “Is this set an extension?”,
while construction problems require to explicitly produce some of the extensions
prescribed by a semantics. The complexity of extension-related decision problems
has been deeply investigated and, for most of the semantics proposed in the
literature they have been proven to be intractable. Intractability extends directly
to construction/enumeration problems, given that their solutions provide direct
answers to decision problems.

In this paper we focus on extension enumeration (a construction problem),
credulous acceptance and skeptical acceptance of an argument (both of them
decision problems).

Extension enumeration is the problem of constructing all of the extensions
prescribed by a given semantics for a given AF. Following [27], we denote such
a problem as EE-o.

Credulous and skeptical acceptance refer to a specific argument, where the
natural questions arising are related to extension inclusion. In particular, an
argument a is credulously accepted with regard to a given semantics ¢ and a
given AF T iff a belongs to at least one extension of " under o, i.e. IF € &,(T")
s.t. a€ E. We denote the problem of determining whether an argument of AF
is credulously accepted with regard to a semantics o as DC-o. An argument a is
skeptically accepted with regard to a given semantics o and a given AF T iff a
belongs to each extension of I under o, i.e. VE € £,(T") a € E. We denote the
corresponding decision problem as DS-0.%

The complexity of credulous and skeptical acceptance problems for stable
and preferred semantics are shown in Table 1 [10]. We refer the reader to [11] for
a recent investigation on the complexity of the extension enumeration problem
under different semantics.

Given the bijective correspondence between extensions and labellings proved
by Proposition 4, the above problems can be directly formulated as the problem

5Please note that if £;(T') = ¢, it is trivially true that Ya € A DS-o(a) = T (vacuous
truth).

of computing all labellings prescribed by a given semantics (corresponding to
extensions enumeration), determining whether there is a labelling where an
argument is labelled in (credulous acceptance) and whether an argument is
labelled in by all labellings (skeptical acceptance).

2.8. Propositional satisfiability and SAT solvers

A propositional formula over a set of boolean variables is satisfiable if and only
if there exists a truth assignment of the variables such that the formula evaluates
to True. Checking whether such an assignment exists is the satisfiability (SAT)
problem, and an algorithm able to solve this problem is called SAT solver.

Most SAT solvers require as input a propositional formula in conjunctive
normal form (CNF), i.e. expressed as a conjunction of clauses, where each clause
is a disjunction of literals (in the context of propositional logic, a literal is either
a propositional variable or its negation). Moreover, if the formula is satisfiable
SAT solvers are generally able to return as output a satisfying assignment.

A variation of the SAT problem is the so-called AIISAT problem, namely given
a CNF formula as input, determining the set of all its satisfying assignments.
A typical AIISAT solver (ALLSatS) iteratively computes satisfying assignments
using a traditional SAT solver and adds to the input formula some blocking
clauses which are the complement of total or partial assignments to exclude
previously identified solutions. More specifically, a practical ALLSatS receives
a CNF formula as input and solves the AIISAT problem by determining an
equivalent formula in disjunctive normal form (DNF), i.e. as a disjunction of
clauses where each clause is a conjunction of literals. From [28]—that builds on
top of [29] and [30]—the generic structure of an AIISAT solver is presented in
Algorithm 1. Line 3 uses a SAT solver (SatS) to compute a satisfying assignment
for the formula F' . Line 4 calls the unspecified function compute to obtain the
partial assignment (cube) ¢; from m; (total assignment). A blocking clause ¢; is
found and added to F; preventing these assignments from being enumerated any
further. This loop ends when F; becomes unsatisfiable.

Algorithm 1 Algorithm template for AIISAT solver, [28, Algorithm 1]

Input: F (a CNF Formula)
Output: @ (a DNF Formula) such that F < @

1:9:=1, F; :=F, Q:=1

2: while not unsat(F;) do

3: m; ;= SatS(F;) = get a satisfying assignment of F;
4: (¢, ¢;) := compute(m;) = get cube and blocking clause
5 Q:=Qvq,Fiy; =F, An¢g > update @ and F;
6: 1:=1+1

7: end while

8: return @

As noticed in [28], a very simple implementation of compute is to set ¢; := m;,
and ¢; := —¢;. In [28] the authors discuss at length more efficient ways to

implement such a compute function, and achieve speed improvements up to three
orders of magnitude.

There are also extensions to the SAT and AlISAT problems where clauses are
partitioned into hard and soft clauses, and the solutions are determined among
all assignments satisfying all hard clauses and maximising the sum of numerical
weights associated to soft clauses. However, as specified in Section 1, in this
paper we focus on classical SAT and AlISAT solvers: an application of weighted
MaxSAT to compute the preferred extensions is described in [16].

3. Abstract Algorithms for Stable and Preferred Semantics

In this section we provide in abstract form the algorithms we consider for the
solution to the computational problems under stable and preferred semantics,
respectively. These algorithms perform a search in the space of (a subset of) the
complete labellings, where each step of the search process requires the invocation
of a non-deterministic function which returns a complete labelling satisfying a
number of specific constraints. Acceptable solutions of the non-deterministic
functions are encoded as a propositional formula, in such a way that each
satisfying assignment corresponds to a desired complete labelling. This way,
the function can be implemented by means of a SAT solver. Different ways of
identifying the corresponding formulas will be introduced in Section 4.

3.1. Stable Semantics

The first problem we consider is the enumeration of stable labellings. Al-
gorithm 2 starts from an empty set of labellings £ (initalised at line 1) and
simply consists of a loop (lines 2—4) which at each iteration identifies a novel
stable labelling (line 2) and records it in L4 (line 3). In particular, FindST” is a
non-deterministic function that, given an argumentation framework I and a set
of stable labellings £, £57(I"), returns a stable labelling Lab € £s7(T") such
that Lab ¢ L, if such a labelling exists, and returns L in the other case. As
shown in Section 4, this function (as well as FindST, in Algorithms 3 and 4) can
identify a stable labelling as a satisfying assignment of a propositional formula
which encodes the constraints of complete labellings enriched with the condition
of having no undec arguments. The issue of encodings complete labellings is
dealt with in Section 4.1.

It can be seen that the loop of Algorithm 2 enumerates all the satisfying
assignments of a propositional formula, corresponding to the stable labellings
of I'. As a consequence, the loop can be replaced by a single call to an AIISAT
solver: this will be available as an option of the implemented algorithm (see
Section 5).

Credulous acceptance under stable semantics can simply be checked by
searching for a stable labelling which assigns the in-label to the input argument.
Accordingly, Algorithm 3 consists of a single line exploiting the non-deterministic
function FindST, which receives as input an argumentation framework I' =
{A,R), an argument a € A and a label s € {in, out}, and returns as output a

10

Algorithm 2 Enumeration of Stable Labellings
SAT-EL-ST
Input: T'={A4A,R)
Output: ,CS = EST(F)

1: Ly =

2: while Lab := FindST?(I', £,) do
30 Ly = L;u{Lab}

4: end while

5: return L,

stable labelling Lab € £57(T") such that Lab(a) = s if such a labelling exists, |
otherwise.

Algorithm 3 Credulous acceptance under Stable Semantics
SAT-DC-ST
Input: ' =(4A,R), ac A
Output: T if a is credulously accepted under ST, | otherwise
1: return FindST, (T, in) # L

As to skeptical acceptance, Algorithm 4 checks whether there is a stable
labelling such that the argument is out (line 1), returning L if this is the case (line
2). If such a labelling does not exist, then either the argumentation framework
has no stable labellings or every stable labelling labels the argument in: in
both cases the argument is skeptically accepted, and the algorithm returns T
accordingly (line 4).

Algorithm 4 Skeptical acceptance under Stable Semantics

SAT-DS-ST

Input: ' =(A,R), ac A

Output: T if a is skeptically accepted under ST, L otherwise
1: if FindST, (T, out) # L then
2 return |
3: end if
4: return T

Correctness of Algorithms 2, 3 and 4 is pointed out in the following theorem,
whose proof is obvious and is thus omitted.

Theorem 1. Given an AF ' =({A,R) and a€ A:
e {in(Lab) | Labe SAT-EL-ST(T"))} = &7(T)
e SAT-DC-ST(T,a) = (3S € &7(T),a € S)
e SAT-DS-ST(T,a) = (VS € &1(T),a € S)

11

8.2. Preferred Semantics

Due to the complexity gap between SAT and the preferred labelling enumer-
ation problem, it is not possible to identify in polynomial time a propositional
formula (of polynomial size) whose models correspond to preferred labellings.
In particular, differently to the case of stable semantics, in order to identify
preferred labellings it is necessary to maximise in-arguments among complete
labellings, thus the constraints corresponding to preferred labellings cannot be
obtained by adding a simple condition to the constraints of complete labellings.

Algorithm 5 enumerates the preferred labellings of a framework I' by means
of two nested loops. The outer loop (lines 2-7) starts from an empty set of
labellings £, (line 1) and identifies at each iteration a novel preferred labelling
Lab, which is added to £, (line 6).

In particular, FindCL¥ is a non-deterministic function that, given an argu-
mentation framework I' and a set of preferred labellings £, < Lpr(T"), picks
out a labelling Lab from a set of complete labellings £ subject to the following
constraints:

e LS £co(T), i.e. L only includes complete labellings of T

o VLal' € L,VLaY" € L, Lab' & Lab”, i.e. L doesnot include those labellings
that are less or equally committed w.r.t. a labelling of £,

o (Lpr(I)\Lp) < L, ie. L includes the preferred labellings that are not
already included in £,

If there is no labelling in £, the function returns L.

Note that the above constraints on £ are compatible, in particular the
preferred labellings that are not included in £, cannot be less committed than
any labelling of £, due to Proposition 3.

Ideally, the set £ should only include the preferred labellings of I that have
not yet been found, i.e. £ = £pr(I")\L,, entailing that a preferred labelling is
directly identified at line 2. Since this is not possible in general, FindCL* (T, Lp),
line 2, identifies a complete labelling which is not necessary preferred, but due to
the second constraint on £ there is a preferred labelling which is more or equally
committed w.r.t. it. This preferred labelling is identified by the inner loop (lines
3-5) which starts from the complete labelling Lab and produces a sequence of
more committed complete labellings strictly ordered w.r.t. =. In particular,
FindCL* is a non-deterministic function that, given an argumentation framework
I' and a complete labelling Lab € £co(T), returns a complete labelling Lab’ such
that Lab & Lab' if such a labelling exists, | otherwise. When the sequence can
no more be extended, FindCL= (T, Lab) returns L at line 3, and its last element
Lab correspond to a maximal complete labelling w.r.t. =, namely to a preferred
labelling.

Since stable labellings are also preferred, instead of starting from an empty
set of preferred labellings at line 1 it is possible to first compute the stable
labellings by Algorithm 2, i.e. line 1 is replaced with £, := SAT-EL-ST(T).
This straightforward variation is reported in Algorithm 6.

12

Algorithm 5 Enumeration of Preferred Labellings

EL-PR

Input: T' ={A,R)

Output: £, = Lpr(T")

L, =

while Lab := FindCL*(T, £,) do
while Lab' := FindCL=(T, Lab) do

Lab := Lal

end while
L, = L, U {Lab}

end while

return £,

Algorithm 6 Enumeration of Preferred Labellings: variation using the enumer-
ation of Stable Labellings

EL-PR-withST

Input: ' ={A4A,R)

Output: £, = Lpr(T")

L, := SAT-EL-ST(T)

while Lab := FindCL* (T, £,) do
while Lab' := FindCL=(T, Lab) do

Lab = Lal/

end while
L, = L, u{Lab}

end while

return £,

13

Since preferred labellings do not directly correspond to the satisfying as-
signments of a propositional formula, differently to the case of stable semantics
AlISAT solvers are not directly applicable here. An option would be to determine
all complete labellings by solving an AIISAT problem and then to identify the
maximal ones w.r.t. =, however this would be inefficient compared to Algorithms
5 and 6, which are able to cut the search space of complete labellings.

Turning to credulous acceptance, similarly to the case of stable semantics it
suffices to determine whether a complete labelling exists which assigns the in
label to the input argument (thus ensuring that there is a preferred labelling,
possibly coinciding with the identified complete one, satisfying this condition).
This corresponds to Algorithm 7, where FindCL, is a function that, given an
argumentation framework I', an argument a € A and a label s € {in,out},
returns a complete labelling Lab € £¢o(T") such that Lab(a) = s if such a
labelling exists, | otherwise.

Algorithm 7 Credulous acceptance under Preferred Semantics
DC-PR
Input: ' =(4A,R), ac A
Output: T if a is credulously accepted under PR, | otherwise
1: return FindCL,_ (T, in) # L

Skeptical acceptance can be determined by enumerating the preferred la-
bellings of the input argumentation framework, and checking whether all of them
assign the label in to the input argument. This corresponds to Algorithm &,
a straightforward adaptation of Algorithm 5 which iterates over the preferred
labellings of I and returns 1 whenever it identifies a preferred labelling where
the input argument a is not labelled in (lines 6 and 7). If for all preferred
labellings this is not the case, then a is skeptically accepted and the algorithm
returns T at line 11.

Similarly to the case of Algorithm 5, it is also possible to start from the
stable labellings to check whether one of them does not assign the label in to a.
However Algorithm 9 shows a rather different alternative to Algorithm 8. Since
stable extensions by definition do not assign the label undec, it is more efficient
to check with a single call to the function FindCL, whether there is a complete
labelling which assigns the label out to a, entailing the existence of a preferred
labelling satisfying this condition and thus disproving skeptical acceptance of a.
Moreover, it can also be checked whether there is a complete labelling assigning
the label in to a, and if this is not the case then a is not skeptically accepted
either (line 1-3).

If the algorithm enters line 4 then there are no preferred labellings where
a is out, and the algorithm looks for a preferred labelling assigning the label
undec to a in order to prove that a is not skeptically accepted. To this purpose,
a loop (lines 5-13) starts from an empty set of complete labellings £., and
considers at each iteration a maximal complete labelling such that a is labelled
undec. For ease of explanation, let us define L,,, as the set including the

14

Algorithm 8 Skeptical acceptance under Preferred Semantics 1

DS-PR-straightforward
Input: ' =(A,R),ac A
Output: T if a is skeptically accepted under PR, L otherwise
L, = &
while Lab := FindCL¥(T, £,) do
while Lab' := FindCL#(T, Lab) do
Lab = Lal/
end while
if Lab(a) # in then
return |
end if
L, = L, u{Lab}
end while
: return T

— =
= O

labellings of this kind, i.e. L, = {Lab e L£co(T) | Lab(a) = undec A ALab’ €
£co(D) s.t. (Lab/(a) = undec A Lab & Lab')}. FindCLUF is a non-deterministic
function that, given an argument a € A, an argumentation framework I' and a
set of complete labellings L. S Ly, picks out a complete labelling Lab (not
necessarily maximal) from a set of complete labellings £ subject to the following
constraints:

o L < {Lab € £co(T") | Lab'(a) = undec}, i.e. L only includes complete
labellings of I' which assign the label undec to a;

o VLab' € L,VLab" € L., Lab' & Lab”,i.e. L does not include those labellings
that are less or equally committed w.r.t. a labelling of L;

o ({Lab € Lpr(T") | Lab'(a) = undec}\L.) < L, i.e. L includes the preferred
labellings where a is undec that are not already included in L.

If there is no such labelling in £, the function returns L.

Note that the definition of FindCLUZ is well founded, i.e. the above constraints
are compatible due to the maximality w.r.t. = of preferred labellings (see
Proposition 3).

At each iteration of the loop (lines 5-13), a complete labelling Lab such
that Lab(a) = undec is selected (line 5). Then the inner loop (lines 6-8) starts
from the labelling Lab and replaces it with a (not necessarily strictly) more
committed labelling in £,,,. In particular, similarly to FindCL=, FindCLZ is
a non-deterministic function that, given an argument a, an argumentation
framework T', a complete labelling Lab € L£co(T') such that Lab(a) = undec
and a label s € {in, undec}, returns a complete labelling Lab’ € £co(T") such
that Lab'(a) = s and Lab & Lab' if such a labelling exists, L otherwise. At
each iteration of the inner loop, FindCLZ (T', Lab, undec) produces a strictly more
committed labelling such that a is undec, until the resulting sequence can not

15

more be extended and the loop is exited. This way, at line 9 the variable Lab
includes a labelling of £,,,,.

It should be noted that such a labelling Lab obtained is not necessarily a
preferred labelling, since there might exist a strictly more committed labelling
such that a is in (recall that from line 4 we are guaranteed that there are no
preferred labellings where a is labelled out). The existence of such a labelling
is checked at line 9. If FindCLZ (', Lab, in) = L, then there is no strictly more
committed labelling Lab” such that Lab” = in, i.e. Lab is a preferred labelling
such that Lab(a) = undec, thus a is not skeptically accepted and the algorithm
returns L. Otherwise, Lab is a labelling of £,,, which is not preferred (there is
a strictly more committed complete labelling) and such that all more committed
preferred labellings assign to a the label in (by the maximality of Lab there is
no more committed preferred labelling assigning to a the label undec, and as
mentioned above there is no preferred labelling where a is out). As a consequence,
Lab is recorded by adding it to L. at line 12, so that at the next iteration of the
loop all complete labellings less committed w.r.t. it (including Lab itself) are
excluded from the search, since according to the considerations above this does
not exclude the possible preferred labellings where a is undec.

If at line 5 the function FindCLU%(F, L) does not return any labelling, then
there are no preferred labellings where a is undec, and the algorithm returns T
(line 14).

Algorithm 9 Skeptical acceptance under Preferred Semantics 2
DS-PR
Input: ' ={(4A,R), ac A
Output: T if a is skeptically accepted under PR, L otherwise

1. if FindCL,(T",in) = L v FindCL_(T',out) # L then
2: return L

3: end if

4: L. =

5: while Lab := FindCLUS(T, £.) do

6: while Lab’ := FindCLZ (T, Lab,undec) do
7 Lab = Lab

8: end while

9. if FindCLZ(T, Lab, in) = | then

10: return |

11: end if

122 L. := L. U {Lab}

13: end while

14: return T

The correctness of Algorithms 5-9 is proved by the following theorem.
Theorem 2. Given an AF I' =({A,R) and a€ A:
e {in(Lab) | Labe EL-PR(I"))} = &Epr(T") (Algorithm 5);

16

{in(Lab) | Labe EL-PR-withST(I"))} = &r(T) (Algorithm 6);

e DC-PR(T,a) = (35 € &r(T),a € S) (Algorithm 7);

e DS-PR-straightforward(T',a) = (VS € &r(T),a € S) (Algorithm 8);
e DS-PR(I',a) = (VS € &r(T),a€ S) (Algorithm 9).

4. Encoding Complete Labellings and their Constraints

Each of the non-deterministic functions exploited by the algorithms described
in Section 3 returns a single complete labelling subject to specific constraints
(e.g. being related by & w.r.t. a given complete labelling). Taking into account
that a stable labelling is a complete labelling, this also holds for the functions
returning stable labellings that appear in the algorithms of Section 3.1.

Since a complete labelling can be expressed by means of local conditions
relating the label of each node with those of its attackers (see Definition 7), using
a SAT solver is a natural way to implement these functions. According to these
considerations, two problems have to be faced in this respect:

e How to encode the constraints corresponding to complete labellings as a
propositional formula?

e How to encode as propositional clauses, to be conjoined with the formula
above, the specific constraints on the complete labelling returned by each
function?

While these might seem clear-cut tasks, several syntactically different encodings
can be devised which, although logically equivalent, can significantly affect the
performance of the overall process of searching a satisfying assignment. For
instance, adding some “redundant” clauses to a formula may speed up the
search process, thanks to the additional information provided by the additional
constraints. On the other hand, increasing syntactic complexity might lead to
worse performances, thus a careful selection of the encoding is needed. These
aspects will be the main focus of Section 6.

The aim of the following two subsections instead is to explore possible
encodings for complete labellings and the relevant constraints.

4.1. Logical Encodings of Complete Labellings

Given an AF T' = (A, R) we are interested in identifying a boolean formula
such that its satisfying assignments have a one-to-one correspondence with the
complete labellings of T'.

As mentioned above, several ways to encode complete labellings can be
envisaged. In order to explore alternative encodings, let us consider again the
requirements of Definition 7. They can be expressed as a conjunction of 6 terms,

M — «— — «— — «—
1.e. Cin A Cin A Cout A C’ou’c A Cundec A Cundec’ Where

e O = (Lab(a) = in = Vb € a~ Lab(b) = out);

17

6 cg

c%&cg\c 8

C
s g

r===>_. CECECH
4 ‘e O @>.

c2 €% O (308 CBlos 07 ©

3 "® 6 06 06 06 06 060 060 06 0606 060 0 0 &
2 ®© © 0 0 0 0 0 0 0 0 0 0 0 o o
1 e o o o o o
0 °

Figure 1: Partial Hasse Diagram of 64 possible encodings of complete labellings.

Cs, = (Lab(a) = in <= Vb € a~ Lab(b) = out);

. = (Lab(a) = out = b € a~ : Lab(b) = in);

out —

Cs. = (Lab(a) = out <= Ib e a™ : Lab(b) = in);

out =

Cimiec = (Lab(a) = undec = Vb € a~ Lab(b) # in A 3c € a : Lab(c) =

undec
undec);

o Ciiec = (Lab(a) = undec <= Vb € a~ Lab(b) # in A 3c e a~ : Lab(c) =

undec

undec).

Let us also define Cf; = C; A Cf, Cote = Coe A Coty Camaec = Copaec A

in> out out? undec undec
Ca

undec*
We aim at exploring all the encodings corresponding to the 64 possible

subsets of the 6 terms above, characterised by a cardinality (i.e. the number
of terms) between 0 and 6 and partially ordered according to the C-relation.
We will denote these encodings as Cf, with i,0,u € {—,«, <, ~}, i.e. Ch =
Ci. ACO, ACY where C3, = C5, = Clu4ec = T (in other words, the symbol

u undec’ out undec

18

~ denotes that the corresponding term is not present in the encoding). For
instance, C8 = Cy A C3..

Using basic combinatorial calculus it can be seen that the 64 subsets can
be partitioned as follows: one encoding with cardinality 0 (i.e. the empty
encoding C%), 6 encodings with cardinality 1, 15 encodings with cardinality 2,
20 encodings with cardinality 3, 15 encodings with cardinality 4, 6 encodings
with cardinality 5 and one encoding with cardinality 6 (i.e. C8 corresponding
to Definition 7). Figure 1 depicts these encodings by arranging them according
to their cardinality (indicated at the left), and partially shows the inclusion
relationships (focusing on those that will be relevant in the following).

The encodings can be partitioned into three classes:

1. weak encodings, i.e. such that there is an argumentation framework and
a labelling satisfying all their terms which however is not a complete
labelling;

2. correct and non-redundant encodings, i.e. able to correctly identify com-
plete labellings and such that any strict subset of their terms is weak;

3. correct and redundant encodings, i.e. able to correctly identify complete
labellings and such that there is a strict subset of their terms which is
correct.

The corresponding characterisation of the 64 encodings is illustrated in
Figure 1: the dotted line separates the weak encodings (under the line) from
the correct ones (over the line), and among the correct ones those that are
non-redundant are depicted as squares, redundant encodings appear as circles®.
This characterisation is shown to be correct by Theorem 3, which requires two
preliminary propositions.

Proposition 5. Let (A, R) be an argumentation framework. A total function
Lab : A — {in,out,undec} is a complete labelling iff it satisfies any of the
following conjunctive constraints for any a € A:

C8 =0, ACy

Og = C::: A Cut:dec

Cﬁ = Cc;:t A Cl;)dec

03 = Cp A Coge A Cinaec
CE = C; A C;:t A ;dec

602 A C and CF A O A Cgec correspond to the alternative definitions of complete

labellings in [31], where a proof of their equivalence is provided.

19

Q
o

Q
u
Q
1

o3 (OF= Cgs cs cs cg cs cg C
Ce (0=

Figure 2: Hasse-like diagram for the 18 correct encodings of complete labellings.

Proposition 6. The following 6 encodings are weak:

C8 = Cungec N Oz A Cous
03 = Cungec N Cin A Cogs
Cg = C;t A O;r; A ;dec
05 = Coue A O A Cnaec
02 =Cii A Coge A Cinaec
C8 = Ci A Coue A Cnaec

In particular, the proof of Proposition 6 identifies for each encoding an
argumentation framework admitting a unique complete labelling which drastically
differs from the one satisfying the weak encoding, i.e. there are arguments labelled
in that should be labelled undec or there are arguments labelled out or undec
that should be labelled in (see the proof in Appendix A for details).

Theorem 3. All the encodings of cardinality 0, 1, and 2 are weak. Among the
encodings of cardinality 3, C3 = Cp AC 3 AC e and CE = C AC ACH

out undec out undec
are correct and non-redundant, the other 18 encodings are weak. Among
the encodings of cardinality 4, C8 = C A Cy, C2 = C2 A Cilgee and

out? ndec

Cs = O A Cipgec are correct and non-redundant, the 6 encodings C3 =

PEN — — — — > — — — — >
Cio n Ol A C8 =C AC A C3 =Ch ANCop A Cipiecs

out undec? undec? out
« > «— «— « __ «— > «— «— __ «— «— >
C:: - C’in A CVout A CVundec’ 02 - Cvin A C'out A CVundec? C: - C'in A CVout A C'undec

are correct and redundant, the other 6 encodings are weak. All the encodings of
cardinality 5 and 6 are correct and redundant.

Let € = {CE,C3,03,08,C5,03,03,C8,03,08,08,C3,08,03,
Cg,08,C8,C8} be the set of all the correct encodings of complete labellings
as identified by Theorem 3. The Hasse diagram for these 18 correct encodings is

20

reported in Figure 2. Correct and non-redundant encodings are the minimal ones
under set inclusion and correspond to the five encodings identified in Proposition
5.

4.2. Logical Encodings of Complete Labelling Constraints

We then need to encode the specific constraints that characterise the complete
labellings returned as output of the various functions considered in the algorithms
presented in Section 3. In this subsection we identify different ways such
constraints can be encoded, thus completing the analysis at the base of the
implementation of the algorithms detailed in Section 5.

Let us first consider the algorithms described in Section 3.1 relevant to the
stable semantics, which exploit the functions FindST” and FindST, (where a is
an argument). Both of them return a stable labelling £ab, which is defined as a
complete labelling without arguments labelled undec (see Section 2) and can
thus be obtained by constraining the encoding of a complete labelling with the
condition Cy; = Vb € A, Lab(b) # undec.

Focusing on the function FindST”, used in Algorithm 2, FindST* (T, £,)
returns a stable labelling Lab of I which is not included in L;, where L; is a
set of stable labellings. For each Lab’ € L,, the condition Lab # Lab’ must thus
be encoded. Since there are no arguments labelled undec by stable labellings, a
natural way to do it amounts to requiring that an argument labelled in by Lab’
is labelled out by Lab, or vice versa. While this can be encoded as a disjunction
over the whole set of arguments, Proposition 7, based on Lemma 1, shows that
such disjunction can be restricted to the arguments labelled in by Lab’ (or Lab),
or equivalently on arguments labelled out by Lab’ (or Lab). Lemma 1 shows
that an argument a is labelled out by a complete labelling Lab; and in or undec
by another complete labelling Labs if and only if another argument b is labelled
in by Lab; and out or undec by Labs.

Lemma 1. Let I' = (4, R) be an argumentation framework and Lab, Laby €
£(T") complete labellings. Ja € A such that Lab;(a) = out and Labs(a) # out
iff 3b € A such that Lab;(b) = in and Laby(b) # in.

Proposition 7. Let I' = (A, R) be an argumentation framework and Lab, Lab’ €
£(T') stable labellings. All of the following statements are equivalent to Lab #
Lab':

1. 3be A: Lab'(b) = out A Lab(b) = in
2. 3ce A: Lab/'(c) = in A Lab(c) = out

3.3b e A: Lab/'(b) = out A Lab(b) = in and Ic € A : Lab'(c) = in A
Lab(c) = out

Summing up, the encoding corresponding to Lab = FindST;’é(F, L) can be
expressed as C' A Cg A C, where C' is any encoding belonging to € and C.
is the conjunction of any of the three conditions of Proposition 7 applied to

21

all labellings of L;. It can be noted that the third condition of Proposition 7
corresponds to the conjunction of the first two conditions: As with redundant
encodings for complete labellings, we also consider redundant constraints that
may improve the efficiency of SAT-based algorithms, introduced in Section 3.

As to the function FindST,, exploited in Algorithms 3 and 4, it returns
a stable labelling Lab of T" such that Lab(a) is a specific label s € {in, out}.
Obviously, the corresponding encoding is C' A Cs; A Lab(a) = s.

Let us now turn to preferred semantics and first consider the function FindCL*
used in Algorithms 5 and 6 for the enumeration of preferred labellings and in
Algorithm 8 for skeptical acceptance under preferred semantics. In particular,
given an argumentation framework I' and a set of preferred labellings £, <
£pr(T), FindCL¥(T, £,) returns a complete labelling Lab such that YLab' €
Ly, Lab & Lab’. Proposition 8, in the following, shows that this constraint is
equivalent to require an argument labelled out by Lab’ to be labelled in by Lab,
or vice versa.

Proposition 8. Let I' = (A4, R) be an argumentation framework and Lab’ €
Lpr(T") a preferred labelling. Then, VLab € £co(T), all of the following state-
ments are equivalent to Lab &£ Lab':

1. 3be A: Lab'(b) = out A Lab(b) = in
2. 3ce A: Lab/(c) = in A Lab(c) = out

3.3b e A: Lab/'(b) = out A Lab(b) = in and Ic € A : Lab'(c) = in A
Lab(c) = out

According to Proposition 8, the constraint YLab' € L, Lab & Lab’ can be
expressed in the same way as in the case of the function FindST”, i.e. the
encoding corresponding to Lab = FindCL* (I, L£p) is C A Cy, where C € € and
C. is the conjunction of any of the three conditions of Proposition 8 applied to
all labellings of £,,. Note that C' A C captures all preferred labellings that do
not belong to £, complying with the definition of FindCL% (see Section 3.2).

As to the function FindCL, used again in Algorithms 5, 6 and 8, given an
argumentation framework I' and a complete labelling Lab’, FindCL=(T", Lab’)
returns a complete labelling Lab such that Lab’ = Lab. This constraint amounts
to require that in(Lab’) < in(Lab), out(Lad’) S out(Lad), and that there
is an argument a € undec(Lab’) such that Lab(a) # undec. Proposition 9,
based on Lemma 1, shows that this constraint can be strengthened by replacing
Lab(a) # undec with either Lab(a) = in or Lab(a) = out.

Proposition 9. Let I' = (A4, R) be an argumentation framework and Lab, Lab’ €
Lco(T). All of the following statements are equivalent to Lab' & Lab:

1. in(Lab') € in(Lab) rout(Lab') S out(Lab) ATb € undec(Lab') : Lab(b) =
out

2. in(Lab’) < in(Lab) nout(Lab’) S out(Lab) Adc € undec(Lab’) : Lab(c) =

in

22

Figure 3: A counterexample to the direct use of Proposition 8.

3. in(Lab’) € in(Lab) rout(Lab’) S out(Lab)ATb € undec(Lab’) : Lab(b) =
out A Jc € undec(Labd’) : Lab(c) = in

According to the proposition above, the encoding corresponding to Lab =
FindCL= (T, Lab') is C' A C, where C € € and C is any of the three conditions
of Proposition 9.

We now consider the function FindCL_, which is exploited by Algorithms 7
and 9 to identify a complete labelling where a is in and by Algorithm 9 to identify
a complete labelling where a is out. Accordingly, the encoding corresponding to
the labelling Lab = FindCL, (T, s), where s € {in, out}, is simply C' A Lab(a) = s,
where C' € €.

Let us finally turn to the functions appearing in Algorithm 9, namely
FindCLU% and FindCLZ, which roughly correspond to the functions FindCL* and
FindCL7, respectively, but with an additional constraint on the label assigned to
a by the output labelling Lab.

In particular, given an argumentation framework I' and a set of complete
labellings L. € L4, FindCLUiE (T, L) returns a complete labelling Lab such that
Lab(a) = undec and VLab' € L., Lab & Lab'. It would be tempting to directly
apply Proposition 8 to this case, however the example depicted in Figure 3 shows
that the corresponding result does not hold in general under the hypothesis that
L. € Ly Indeed, there are only three complete labellings such that a is undec,
namely the grounded labelling where all arguments are labelled undec, Lab =
{(e1,undec), (d1,undec), (c1, undec)(eq, out), (dg, in), (ca, out), (b, undec),
(a,undec)} and Lab' = {(e1,out),(dq,in), (c1,out), (€3, undec), (dz, undec),
(c2,undec), (b,undec), (a,undec)}. The grounded labelling is not maximal w.r.t.
E, thus L,,, = {Lab, Lab’}. Tt can be easily checked that, despite Lab’ € L,y
and Lab & Lab’, none of the conditions of Proposition 8 holds, i.e. there is no
argument which is labelled out by Lab’ and in by Lab, or vice versa. On the
other hand, the following proposition shows that these conditions are satisfied
under the hypothesis that Lab is a preferred labelling.

Proposition 10. Let I' = (4, R) be an argumentation framework, a an argu-
ment in A4 and Lab' € £(T") a maximal complete labelling such that Lab'(a) =
undec, i.e. #Lab* € £(I') such that Lab*(a) = undec and Lab' = Lab*. Then,
VLab € Lpr(T") such that Lab(a) = undec, all of the following statements are

23

equivalent to Lab # Lab':
1. 3be A: LaV' (b) = out A Lab(b) = in
2. dce A: Lab'(c) = in A Lab(c) = out

3.3b e A: Lab'(b) = out A Lab(b) = in and Jc € A : Lab'(c) = in A
Lab(c) = out

According to the proposition above, the encoding corresponding to Lab =
FindCLU (T, £,) is C A Cx A Lab(a) = undec, where C' € € and C. is the
conjunction of any of the three conditions of Proposition 10 applied to all
labellings of L.. Indeed, the set of labellings satisfying these constraints complies
with the set £ in the definition of FindCLUS (see Section 3.2): it is a subset of the
complete labellings (due to C') where a is labelled undec (due to Lab(a) = undec)
which does not include those labellings that are less or equally committed w.r.t.
a labelling of £. (due to the conditions of C), while including all preferred
labellings where a is undec that are outside £, (this is guaranteed by Proposition
10).

We have finally to consider the function FindCLZ', which given an argument
a, an argumentation framework I' and a complete labelling Lab' € Lco(T)
returns a complete labelling Lab such that Lab' = Lab and Lab(a) = s, with
s € {in,undec}. Taking into account Proposition 9, it is easy to see that the
encoding corresponding to Lab is C' A C5 A Lab(a) = s, where again C' € € and
C5 is any of the three conditions of Proposition 9.

5. Algorithms Implementation

In this section we present the detailed pseudo-codes” implementing the
abstract algorithms presented in Section 3.

In order to allow us to explore all the different encodings of complete labellings
and the relevant constraints, we will exploit a number of parameters, denoted as
m¥, and select algorithmic variants with conditional statements based on them:
Table B.5 summarises them.

Before presenting the detailed algorithms, we provide some details on the
encoding of complete labellings as required by existing SAT solvers.

5.1. SAT Encodings of Complete Labellings

To exploit existing SAT solvers, we need first to express the correct constraints
of € identified in Theorem 3 as a formula in conjunctive normal form. To this

"The actual C++ code is available at https://sourceforge.net/projects/argsemsat/ (on
11 May 2018)

24

purpose, for each argument a € A we define three boolean variables,® I, Oa,
and U,, with the intended meaning that I, is true when argument a is labelled
in, false otherwise, and analogously O, and U, correspond to labels out and
undec. Forrnally7 given I' = (A, R) we define the corresponding set of variables
as V(T U {I,0a,U,}. The constraints of Definition 7 can then be expressed

ac A
in terms of the variables V(I"). The detail of the resulting CNF formula is

given in Proposition 11: proof is omitted as it follows from straightforward
manipulations.

Proposition 11. Given an AF I' = (A, R):

Ca= N\ v \VARE®S

{acA} {b | b—a}
oo = —Iav O
{b | b—a}
Co = —Iy v Oy
{ae } \{b | b—a}
Comt = (\/ Iy,
{acA} {b | b—a}

mdec = /\ /\ Ua v —Up v \/ I.

{acA} \{b | b—a} {c | c—a}

81t is worth noticing that variations of the proposed algorithm can be used with fewer
variables. For instance, there are algorithms for preferred semantics using only one variable
per argument, cf. [32, 33]. In ICCMA-15 an earlier version of ArgSemSAT still using three
boolean variables per argument resulted faster than such algorithms when computing the
skeptical acceptance of arguments, despite relying on an external SAT solver as a new process.
For what concerns stable semantics, whose definition does not make use of the undec label, in
Appendix C an interested reader can find the results of a pilot study aimed at quantifying an
alleged improvement in using one variable instead of three when enumerating stable extensions.
Our preliminary results show cases where there is not a statistical significant change; and
when there is one, it might be that the version using three variables has a lower median
runtime. It seems to us that there is evidence that performance does not necessary improve
when considering fewer propositional variables when transforming the constraints imposed by
semantics into CNFs.

25

Casec = /\ N CUav =) | [-Uav| \/ Uy

{ac A} {b | b—a} {b | b—a}

Furthermore, since for each argument a the variables I, O,, and U, are
independent, an additional condition is needed to enforce an assignment corre-
sponding to a total function, i.e. to guarantee that exactly one of the variables
is assigned the value True. Moreover, as a small engineering improvement we
explicitly constrain unattacked arguments to be labelled in, and for technical
reasons we restrict to “non-empty” labellings (in the sense that at least one of
the arguments is labelled in). In order to express the resulting CNF identifying
non-empty complete labellings of a given argumentation framework, let us define
a function cnf that receives as input an element of € and an argumentation
framework I', and returns the equivalent CNF representation as specified by
Proposition 11, in conjunction with the following formulze:

A (v O v Ua) A (mla v =02 A= v ~Ua) A (=0a v =Ua)) (1)
acA

(Ia A =04 A —U,) (2)
{a | a"=g}

\ I (3)

acA

In particular, (1) enforces a total function, (2) constrains an unattacked
argument to be labelled in, and (3) enforces that at least one argument is
labelled in, thus forcing the search for a non-empty labelling.

5.2. Algorithms for Stable Semantics

In this section we detail the implementation of the algorithms presented in
Section 3.1 on the basis of the encodings identified in Section 4.

To this purpose, we first need to introduce some auxiliary functions referring
to a generic argumentation framework I' = (A, R).

The call to a SAT solver is expressed by means of the function SatS, which
receives as input a CNF formula and returns a labelling over A satisfying the
constraints expressed by the formula, or (J if the formula is not satisfiable.

Similarly, ALLSatS represents a call to an AIISAT Solver It receives as
input a CNF formula as well as two parameters 7y,,. .o and 7rA” |, and returns
two elements, where the first is the (possibly empty) set of labelhngs over A
satisfying the constraints expressed by the formula, and the second element is
the set of blocking formulse generated in the process. This second element is

26

sometimes needed to exclude from the subsequent search the set of labellings
returned by ALLSatS. Specifically, the implementation exploits the AIISAT solver
developed by [28] with the only modification to enable it to return the set of
blocking clauses along with the set of the found models. The input parameters
7r2";0 and 7r§”;| allow one to choose the form of the blocking clauses according to

Proposition 7. In particular, 7r2”;0 generates for each found labelling a blocking
clause based on arguments labelled in, requiring one of them to be labelled out,
while Wi”” generates a blocking clause that considers only arguments labelled

out. As shown below, they are in essence analogous to the parameters 71'(53 and
7r|5 used at lines 8-13 of Algorithm 10.

Finally, I-ARGS (resp. O-ARGS, U-ARGS) receives as input a labelling and
returns the set of arguments labelled in (resp. out, undec).

Algorithm 10 details the implementation of Algorithm 2 for the enumeration
of stable labellings. Besides I' = (A4, R), the algorithm receives as input the
specific encoding C* € € of complete labellings to be exploited (see Section
4.1) as well as five parameters, i.e. 7r2”, 772”;0, 7'('2“;“ 7T(S), and ’7T|S. The first one
enables the algorithm to directly exploit an AIISAT solver to identify all the
stable labellings, using in this case as input parameters 7rf\”;o and 7r2”;|, while
778 and 77,5, in case the AIISAT solver is not exploited, allow one to select the
way to encode the constraint relevant to the function FindST”.

In particular, if 7r2" = T then the AIISAT solver is called at line 2 on a
CNF which encodes the complete labellings without undecided arguments, i.e.
satisfying the additional requirement A, 4, —Ua. In the case ﬁi,, = 1, the
function FindST”(-,-), used at line 2 of Algorithm 2, is implemented within
lines 6-15. Line 6 identifies a stable labelling (if this exists) that has not been
identified in an earlier execution of the cycle. Proposition 7 shows that there are
three possibilities to ensure that: an argument labelled in should then become
labelled out, implemented at line 9 if ﬂg = T; an argument labelled out should
then become labelled in, implemented at line 12 if 7r|5 = T; or both of the
previous ones, in case 73 = T A 7p = T. As discussed in Section 4.2, we leave
room for all the three possibilities, including the redundant constraint, since
logically equivalent encodings may yield different behaviours from the efficiency
point of view.

Note that the algorithm returns as output also the blocking formulae used to
exclude the generated solutions from the search. These are useful in case the
algorithm is exploited as a first step of the enumeration of preferred labellings
(cf. Algorithm 13).

Moving to credulous and skeptical acceptance, Algorithm 11 uses a call to a
SAT solver (line 1) to implement in a rather straightforward fashion the function
FindST, (-,) called at line 1 of Algorithm 3. Similarly, at line 1 of Algorithm 12
the function FindST_(+,-) used at line 1 of Algorithm 4 is implemented with a
simple call to a SAT Solver.

27

Algorithm 10 Enumeration of Stable Labellings using SAT solvers

SAT-EL-ST
Input: T = (A, R), Cx € €, (13, 7TA5\||;077T2||;U 3.7y € {T, L}
Output: (L, < £s7(I'), blocking)

1: if 73, then

2: return ALLSatS (cnf(C*,F) A /\ ﬂUa,7r2”;|,7ri”;o>

ac A

3: end if

4: Ly = &, blocking == T

5: do

6: stb := SatS | cnf(Cx,T) A /\ﬁUa A blocking)
acA

7. if stb # J then

8: if 778 then

9: blocking := blocking A \/ Oa
acl-ARGS (stb)

10: end if

11: if 7r|5 then

12: blocking := blocking A \/ I,
aEO—ARGS(stb)

13: end if

14: Ly := Lsu {sth}

15: end if

16: while stb # &
17: return (L, blocking)

Algorithm 11 Credulous acceptance under Stable Semantics using SAT solvers
SAT-DC-ST
Input: T'=(A,R),xe A, Cxe €
Output: {T, 1}

1: return (SatS <cnf(C’*,F) A /\ —=Ua A Ix> # @)

acA

Algorithm 12 Skeptical acceptance under Stable Semantics using SAT solvers
SAT-DS-ST
Input: T =4, R),xe A, Cxe €
Output: {T, 1}

1. if SatS | enf(Cx,T) A /\ﬁUa A Ox> # (& then
acA
2: return |

3. end if
4: return T

28

Algorithm 13 Enumeration of Preferred Labellings using SAT solvers

—
—_

—

14:
15:
16:

17:
18:
19:
20:
21:
22:

23:

24:
25:

26:

27:

29:
30:
31:
32:
33:

—
T2

SAT-EL-PR
Input: I' = (A, R), Cx € €, <7TgaWf\lh”iu;o»Win;lﬂf(s)ﬂrlsﬂr%’W;ID»WEOJD €
{T, L}

Output: L, < £s7(I)
L, == &, blocking = T
if 7rSP then
(Ly, blocking) := SAT-EL-ST (T, Cx, <7r,§”,71'§”;0,772”;|,7r8,7r|5>)
end if
do
iblock = T, prf = &
do
cmp = SatS (enf(C#,T) A blocking A iblock)
if emp ! = J then
prf = cmp
iblock == NI. A /\ Oa
ael—ARGS(cmp) aEO—ARGS(cmp)
if Tl'i% then
iblock = iblock A \/ Oa
aEU-ARGS(cmp)
end if
if 7ri'|° then
iblock = iblock A \V2A
aGU—ARGS(cmp)
end if
end if
while emp # & A U-ARGS(cmp) # &
if prf # & then
L, := L, v {prf}
if 7T§o then
blocking := blocking A \/Oa
ae'—ARGS(prf)
end if
if 7r§| then
blocking := blocking A \/Ia
an-ARGS(prf)
end if
end if
while prf # &
if L, = & then
Ly, = {LU}
end if
return L,

29

5.8. Algorithms for Preferred Semantics

Algorithm 13 details the implementation of Algorithms 5 and 6 for the enu-
meration of preferred labellings. It receives in input an argumentation framework
I' = (A, R), the encoding Cx € € (with the same meaning as in the case of the
previous algorithms), and 10 configuration parameters. The first parameter &
is the selector between Algorithms 5 and 6, while the other 9 parameters specify
how to encode the constraints relevant to the non-deterministic functions corre-
sponding to the SAT solver invocations. In particular, (73, win;o, wilw TRy TPy
are related to the enumeration of stable labellings and have the same meaning
as detailed in the previous section.

If 7€ = T then the algorithm SAT-EL-ST is called at line 3, corresponding
to line 1 of Algorithm 6, passing it the parameters (73, ﬂi”;o, wiu;', 7R, My it
expects. Then the outer loop of Algorithms 5 and 6 correspond to lines 5-29 of
Algorithm 13, the inner loop to lines 7-19. The function FindCL¥, used at line 2
of Algorithms 5 and 6, is implemented within lines 8 and 22-27. Line 8 identifies
a non-empty complete labelling that is not less committed w.r.t. any found
preferred labelling. Proposition 8 shows that there are three ways to ensure
that: an argument labelled in should then become labelled out (cf. line 23); an
argument labelled out should then become labelled in (cf. line 26); or both of
the previous ones. Those options are controlled by the parameters 7T§O and ﬂ'eP,.

Moreover, the function FindCL=, used at line 3 of Algorithm 6, is implemented
within lines 8-18 of Algorithm 13. In particular, as from the second iteration
of the inner loop, line 8 identifies a new complete labelling which is strictly
more committed w.r.t. a previously found complete labelling. Proposition 9
shows that there are three ways to ensure that: besides maintaining the labels
of arguments labelled in and out (line 11), an argument labelled undec should
then become out (line 13); or an argument labelled undec should then become
in (line 16); or both conditions can be enforced. Those options are controlled
by the parameters 7ri% and 7ri'|) .

It should be noted that if in the argumentation framework there is only a
preferred extension which is empty, then due to the non-emptiness condition
in the encodings of € no labelling is identified in the main loop. In this case,
the algorithm correctly returns a unique labelling, denoted as LU, assigning the
label undec to all arguements (line 31).

While the credulous acceptance w.r.t. preferred semantics is rather straight-
forward—see Algorithms 7 and 14—and we report it only for completeness,
skeptical acceptance needs a little further explanation.

First of all, Algorithm 15 implements Algorithm 8, which as shown in Section
3.2 is a direct extension of the algorithm for enumerating preferred labellings
to the case of checking skeptical acceptance. As such, the input parameters are
exactly those of Algorithm 13.

Finally, Algorithm 16 implements Algorithm 9 which represents an improved
algorithm for skeptical acceptance. As shown in Section 4.2, the constraints on
the complete labelling Lab returned by the functions FindCLUE‘E and FindCLZ are
the same as those relevant to the functions FindCL* and FindCLZ, respectively,

30

with the addition of the condition Lab(a) = undec or Lab(a) = in. As a
consequence, the input parameters <7T1F(’),7TEF|’ ,7750,7T5> have the same meaning
as in Algorithm 13. In particular, it is easy to see that FindCLUf(F,Ec) is
implemented within lines 8-28, with the relevant constraint enforced in lines
23-28, while FindCLZ (T, Lab, undec) is implemented within lines 8-16, with the

relevant constraint enforced in lines 10-16.

Algorithm 14 Credulous acceptance under Preferred Semantics using SAT
solvers
SAT-DC-PR
Input: T =(4,R), xe A, Cxe €
Output: {T, 1}
1: return (SatS (enf(Cx,T') A Ix) # &)

31

Algorithm 15 Skeptical acceptance under Preferred Semantics using SAT
solvers 1
SAT-DS-PR-straightforward
Input: ' =(A,R),x€ A Cx € € (T8 TR, TR0 Talts T Ths Moy Ty s Thos Thy €
{T,J_}w
Output: {T,1}

1: L, := &, blocking := T
2: if 7£ then
3. (L, blocking) := SAT-EL-ST (F, Cx, <7r§||,71'§”;o,7r§||;|,7rg,7r|s>)
4: for all aL, € L, do
5: if x ¢ I-ARGS(aL,) then
6: return 1
7: end if
8: end for
9: end if
10: do
11: dblock = T, prf := &
12: do
13: cmp := SatS (enf(C*,T") A blocking A iblock)
14: if cmp # & then
15: prf = cmp, iblock = /\Ia A /\Oa
aEl-ARGS(c’mp) aEO-ARGS(cmp)
16: if 7l then
17: iblock := iblock A \/ Oa
aEU-ARGS(cmp)
18: end if
19: if 7% then
20: iblock = iblock A \/Ia
aEU—ARGS(cmp)
21: end if
22: end if

23: while cmp # J A U-ARGS(cmp) #
24: if prf # J then

25: if x ¢ IF-ARGS(prf) then

26: return L

27: end if

28: L, == L, v {prf}

29: if 75, then

30: blocking := blocking A \/Oa
ae|—ARGS(;m"f)

31: end if

32; if 77 then

33: blocking := blocking A \/Ia
an-ARGS(pr)

34: end if

35: end if

36: while prf #
37 if L, = J then
38: return L

39: end if

40: return T

32

Algorithm 16 Skeptical acceptance under Preferred Semantics using SAT solvers 2

SAT-DS-PR

Input: ' =(A,R), xe A, Cx € €, <7ri'z),7ri'|),7r§o,7r5> e {T,L}*

Output: {T, 1}

1:

2: return L

3: end if

4: blocking = T

5. do

6: iblock := T, prf =

T do

8: cmp = SatS(cnf(C'+,T) A blocking A iblock A Ux)

9: if emp # J then

10: prf = cmp, iblock := /\Ia

aEl—ARGS(cmp)

11: if 77% then

12: iblock = iblock A \/ 0a
aEU—ARGS(cmp)

13: end if

14: if 7} then

15: iblock := iblock A \V2A
acU-ARGS (cmp)

16: end if

17: end if

18: while cmp # &
19: if prf # (& then

A /\Oa

/\Ia A

ael—ARGS(cmp)

20: if SatS | enf(C'+,T') A blocking A

21: return L

22: end if

23: if Wfo then

24: blocking := blocking A \/Oa
aEl-ARGS(prf)

25: end if

26: if 7T§| then

27: blocking := blocking A
aEO-ARGS(pr)

28: end if

29: end if

30: while prf # &
31: return T

if SatS(enf(C*,T) A Ix) =& v SatS(enf(Cx,T) A Oy) # & then

aEO—ARGS(cmp)

/\Oa

aEO-ARGS(cmp)

A Iy

= ¢ then

33

6. Experimental Evaluation

6.1. Ezperimental Settings

We ground our experimental analysis with the ICCMA 2015 ? [27] and ICCMA
2017 benchmarks.'® Experiments have been run on a cluster with computing
nodes equipped with 2.5 Ghz Intel Core 2 Quad Processors, 4 GB of RAM and
Linux operating system. A cutoff of 900 seconds was imposed to compute the
labellings—either preferred or stable—for each AF' as well as for addressing each
decision problem. Decision problems have been run three times on randomly
selected arguments and results averaged, following the methodology designed for
ICCMA 2015 [27]. For each ArgSemSAT-configuration we recorded the overall
result: success (if it solved the considered problem), crashed, timed-out or ran
out of memory.

To analyse the results we considered two metrics: IPC (the higher the
better) and PAR10 (the lower the better). IPC is the International Planning
Competition score, as defined for the Agile track of the 2014 edition of the
competition [34, 35], and represents a relative performance measure among a
set of compared solvers: for a solver C and a problem p, Score(C,p) is 0 if p is
unsolved, and 1/(1 + log;,(7},(C)/T;)) otherwise (where T,(C) is the amount of
time required by C to solve the problem p, and T} is the minimum amount of
time required by any compared system). The IPC score on a set of instances is
given by the sum of the scores achieved on each considered instance. PAR10 is
the Penalized Average Runtime with a penalty equal to ten times the cutoff time.
It represents an absolute performance measure which trades off coverage—i.e.
the percentage of the AF's that are correctly solved below the cutoff time—and
runtime for successfully analysed AF's: runs that do not solve the given problem
get ten times the cutoff time, other runs get the actual runtime. The PAR10
score of a solver on a set of AF's is the average of the associated runtimes.

It should be noted that ITPC and PAR10 are independent measures, thus
considering both of them yields a detailed picture of solver performance. For
instance, a configuration of ArgSemSAT may have a good IPC but a worse
PAR10, allowing one to infer that the coverage is low but the solver is fast in
solving those instances it is able to solve (the opposite holds in the reverse case).

Algorithms have been implemented using two different SAT solvers, Minisat
[36] as a library, and Glucose [37] invoked through PIPE communication.!!

In the following we present the results of the experimental analysis, describing
in particular four findings that have been achieved therefrom.

34

190.68 1

184.73 1

178.79 -

172.84 1

166.89 -

sl LINNNTTIY

155.00 1 III I-

03 Ce O3 03 C5 OB C% CE O8 C8 Oy Om Cf C8 O C8 C8 O8

Minisat

Figure 4: IPC scores of enumerating stable labellings using Minisat varying the chosen encoding
on the ICCMA 2015 benchmarks.

301.23 q
291.02 4

280.82 4

270.61 4

260.41 4

- I I I I I I

240.00 A I I I .

03 CE C3 O3 C5 OB €% CE O8 C8 Oy Og Cg C8 O C8 C8 08

Minisat

Figure 5: IPC scores of enumerating stable labellings using Minisat varying the chosen encoding
on the ICCMA 2017 benchmarks.

35

187.51 1

179.59 1

171.67 1

163.76 1

155.84 1

147.92 1 I I I I
140.00 1 I I I I l I I I

C5 CE O3 C8 O Ce 05 C2 08 CX On Cs Cs 0% CE O8 CO8 C8

Glucose

Figure 6: IPC scores of enumerating stable labellings using Glucose varying the chosen encoding
on the ICCMA 2015 benchmarks.

59.21 7
mwm Glucose

- Minisat
50.18

41.14 A

32.11 A

23.07 1

14.04

500.II.IIIIIII|II IIII

C3 CE C3 C2 C5 OB C8 C2 C8 C% Cx Ca C5 C8 CE C8 O8 C8

Figure 7: PARI1O scores of enumerating stable labellings using both Minisat and Glucose
varying the chosen encoding on the ICCMA 2015 benchmarks.

36

o
=
I
=
I3
|

2564.6 1

2491.7 4

2418.7 4
2345.8
2200.0 4 I I I

% CE 03 Os O OB C5 O C8 C8 Cx Cg C§ CS CE C8 C8 C8

Minisat

©o

Figure 8: PARI1O0 scores of enumerating stable labellings using Minisat varying the chosen
encoding on the ICCMA 2017 benchmarks.

6.2. Experimental Results

6.2.1. Cip A C A Cipgec s the most efficient encoding of complete labellings

In order to determine the most efficient encoding of complete labellings in the
context of the problems tackled by ArgSemSAT, we computed the enumeration
of stable and preferred labellings varying the chosen encoding among the 18
correct ones identified in Section 4.1 (see Figure 2). Moreover, we also considered
credulous and skeptical acceptance w.r.t. preferred semantics, once again varying
the chosen encoding. Results for credulous and skeptical acceptance w.r.t. stable
semantics are omitted as they do not provide further insights.

Algorithms for stable and preferred semantics have been configured respec-
tively with options: 7P A 73; and P|g = 7§ A 7l A 7 A 78y (cf. Table B.5).
We sampled 50 data points considering other possible configurations: the results
we gathered do not provide evidence that different configurations could lead to
rejecting our experimental hypothesis.

Figures 4 and 5 depict the IPC scores obtained by each encoding in enumer-
ating stable labellings using Minisat. The same dynamics can be appreciated in
Figure 6, where Glucose is used instead (on ICCMA 2015 benchmarks only). We
chose not to depict the two graphs on the same figure because IPC is a relative
measure—i.e. the value of configuration depends on the pool of configurations
considered—therefore the resulting figure would have been misleading, as the

9http://argumentationcompetition.org/2015/ICCMA2015_benchmarks.zip (on 17th July
2017).

10http://argumentationcompetition.org/2017/results.html (on 6th February 2019).

11We refer any reader interested in knowing the effect of different SAT solvers configuration
parameters when addressing argumentation problems to [13].

37

190.69

183.91

177.12

170.34

163.56

156.78 I I I I I
150.00 - | - I I I I I

% CE 03 Os O OB C5 O C8 C8 Cx Cg C§ CS CE C8 C8 C8

Minisat

Figure 9: IPC scores of enumerating preferred labellings using Minisat varying the chosen
encoding on the ICCMA 2015 benchmarks.

numeric values of the results gathered with a SAT solver are not directly com-
parable with the results gathered with the second SAT solver. Figures 7 and 8
depict the PAR10 scores obtained in the enumeration of stable labellings. As
PARI10 is not a relative measure, i.e. the PAR10 score of a configuration does
not depend on the pool of configurations considered, the results can be safely
displayed on the same figure without risk of confusion. It is worth noticing that
Ca A O N Cgec has slightly higher PAR10 values than C; A Cop A Co,

undec out undec

and Ciy A Cingec When considering the ICCMA 2017 benchmarks (Figure 8),
while still being the one with highest IPC score (Figure 5). This seems to suggest
that for a few instances—the actual difference between the PAR10 values is
very small—the algorithm running with Ci; A Cop A Cipgec and Cipy A Cipgec
managed to find the solution in the assigned time, while the algorithm running
with O3 A Cogp A Cngec failed to do so hence incurring in the penalty.

Results obtained by enumerating preferred labellings are similarly shown
in Figures 9 and 10, which depict the IPC scores obtained by each encoding
using Minisat, Figure 11, which evidences a substantially similar dynamics using
Glucose (on ICCMA 2015 benchmarks only), and Figures 12 and 13, which
directly compare w.r.t. PAR10 score the implementations.

Overall, five encodings emerge as optimal according to IPC score (Figures 4,

5,6,9,10 and 11), namely C3 = C AC A Cliee, CS=C AC AC

undec? undec?
<« __ «> g g <> ___ «> «> <> ___ «> «> —>
== C’in A Cout A Cundec7 Ce = C4in A C’out and Cg = Cvin A Cout A Cu.ndec‘

The same observation substantially holds for PAR10 in the case of preferred
labellings (Figures 12 and 13) and in the case of stable labellings using Glucose
(Figure 7), while the resulting scores are more flat with Minisat, which is used
as a library. It is worth noting that all these five configurations have a single

commonality, i.e. they lack Cy 4., thus with a small abuse of notation we

38

214.77 7

196.51 1

187.38 1

178.26
- I I I I I I I
160.00 - I L

03 Ce O3 03 C5 OB C% CE O8 C8 Oy Om Cf C8 O C8 C8 O8

Minisat

Figure 10: IPC scores of enumerating preferred labellings using Minisat varying the chosen
encoding on the ICCMA 2017 benchmarks.

189.76 1

179.80 1

169.84 1

159.88 1

149.92 1

139.96 1 I I I
130.00 1 I l I I I I I . I

03 CE C3 O3 C5 OB €8 CE O8 C8 Oy Og Cg C8 O C8 C8 O8

Glucose

Figure 11: IPC scores of enumerating preferred labellings using Glucose varying the chosen
encoding on the ICCMA 2015 benchmarks.

39

84.61 7

mwm - Glucose
s Minisat
72.18
59.74 1
47.31 4
34.87 4

- I I I I||IIII II
10.00 - ' l l l I

C3 CeE O3 C3 CE Ot C2 C2 C8 CF O Ca C5 C3 Ce 08 C8 C8

Figure 12: PARI10 scores of enumerating preferred labellings using both Minisat and Glucose
varying the chosen encoding on the ICCMA 2015 benchmarks.

6605.3 1

6504.4 1

6403.5 1

6302.7 1

6201.8 1

6100.9 1 | I
6000.0 1 I

O3 Ce C3 C8 Cs Cs 08 Ce C8 C8 On Ca O O4 Ce C8 O8 Cg

Minisat

Figure 13: PARI10 scores of enumerating preferred labellings using Minisat varying the chosen
encoding on the ICCMA 2017 benchmarks.

40

188.34 4 r 4.255
183.62 F3.712
178.89 F3.170

o

8 174.17 4 -Q.GZ/E

= 5
169.45 4 F 2.085
164.72 4 II I| F1.542
160.004 M II I - II [I | | I II ll I I II L oo

S e B e e e e e o O O Ca Cs Ca Ca 0s o= o2

Figure 14: IPC (left axis, red) and PAR10 (right axis, blue) scores of solving credulous
acceptance w.r.t. preferred semantics using Minisat only and varying the chosen encoding, cf.
Figure 2, on the ICCMA 2015 benchmarks.

denote {C3,C3,C3,08,08} as —~Cyec- The only exception can be noticed
in Figure 13, where it can be seen that C3 allows to solve more cases than C'3
before the chosen cut-off time. From an investigation in the results, it appears
that most of this difference depends on the SemBuster benchmark set,'? where
C3 fails to provide an answer in 4 cases, and in general is slower than C'3. This
is hardly a surprise since those benchmarks were specifically designed to have
a large number of preferred extensions, but only one semi-stable extension.!3
Therefore for these benchmarks providing additional constraints on the undecided
arguments proves to be substantially advantageous.

Among —C{ 4., the global optimum is always in C3 = C; A C2 A Cgecs
while the worst encoding is C8. As to the other three encondings, the order
among them varies depending on the semantics, the SAT solver used and the
performance metric (i.e. IPC or PAR10). On the other hand, with the exception
of Figure 9, CS is always the second best encoding in —C,.., and C tends to
outperform C3 (see in particular Figures 4, 6, 9 and 11), even if the differences
between CS and C'8 are often small, and, depending on the performance metric,
Glucose and Minisat might lead to different ordering w.r.t. them.

Finally, it is worth mentioning the significant difference of performance
between Minisat and Glucose in enumerating stable labellings in terms of PAR10
outside =Cpgec (see Figure 7). The same great loss of performance is shown in
Figure 12 in the case of preferred labellings.

Since we believe that the evidence gathered so far is strong enough to

suggest that configurations in —C4.. Will be optima irrespectively of whether

2http://argumentationcompetition.org/2017/SemBuster.pdf (on 08 February 2019)
13Semi-stable semantics attempts to minimise the number of undecided arguments.

41

329.64 7 r 670.0

320.53 1 b 633.4
311.43 L 596.7
o
© 302.32 1 F560.0 &2
< <
o
293.21 F523.3

] I I j “ I | I| ‘ l I || i B
— [l] i I | I oo

. 00.

3% CE Cz 03 Cs O C8 C2 08 O2 Cn Cg Cs O3 Cg C8 08 OB

Figure 15: IPC (left axis, red) and PAR10 (right axis, blue) scores of solving credulous
acceptance w.r.t. preferred semantics using Minisat only and varying the chosen encoding, cf.
Figure 2 , on the ICCMA 2017 benchmarks

182.93 r8.139

178.28 F7.199

173.62 F 6.259
o
168.97 F5.319 E
g
164.31 F 4.380
159.66 I ‘ F 3.440
o 1ulld Il | . 1N

29. Ril

IPC

03 CE O3 O3 OF OB 0% g 8 % Oy Cg Cg C8 Cg C8 C8 C8

Figure 16: IPC (left axis, red) and PAR10 (right axis, blue) scores of solving skeptical
acceptance w.r.t. preferred semantics using Minisat only and varying the chosen encoding, cf.
Figure 2, on the ICCMA 2015 benchmarks.

42

272.92 r 1170.8
264.10 I 1109.0
255.28 [1047.2

246.46 I 985.4

237.64 L 923.6
228.82 l i I “ l I I L 861.8
220.00 II I I L 800.0

C% CE C= Cs Cs OB C5 Ce C8 C% Cn Cs Cs OS5 CE 8 OB C8

IPC
PAR10

Figure 17: IPC (left axis, red) and PAR10 (right axis, blue) scores of solving skeptical
acceptance w.r.t. preferred semantics using Minisat only and varying the chosen encoding, cf.
Figure 2 , on the ICCMA 2017 benchmarks

we consider Minisat or Glucose, in the interest of time and space we limit our
following results to Minisat only.

Figures 14, 15, 16, and 17 show the results of the experimental analysis when
considering, respectively, credulous and skeptical acceptance w.r.t. preferred
semantics using Minisat. Results are substantially in line with those highlighted
for the enumeration of preferred labellings.

Summing up, this large experimentation counting 97,560 executions'# of our
algorithms shows that C3 = C;; A C;, A Cngec 1S consistently the encoding
leading to the best performance.

We believe that the above results can be explained by looking at the CNF
formulee of the encodings of complete labellings presented in Proposition 11.

Indeed, it is known [38] that the 2-SAT problem—i.e. the SAT problem where
all the formulee are binary—is polynomial. Moreover in [39] the authors show
how reducing the length of disjunctive formulae leads to significant computational
benefits. Modern SAT solvers rely on conflict-driven clause learning [40], which
is an improvement built around the DPLL unit-propagation algorithm—a typical
conflict-driven clause learning based SAT solver spends at least 80% of the time
running the unit propagation procedure [41]—and thus it will also benefit from
short—best with 2-SAT—formulze.

According to Proposition 11, C§ 4. maximises the number of disjunctions

per clause. This seems to explain why the best configurations belong to —Cg ...

14192 AFs in the ICCMA 2015 benchmark, 350 in the ICCMA 2017 benchmark, each of
those analysed in 36 configurations both for enumeration of stable and of preferred labellings,
on top of 3 runs for credulous and skeptical acceptance w.r.t. preferred semantics against 18
different configurations.

43

Moreover, there are only two non-redundant encodings in —Cj_4.., namely
C3 and C8, and both of them minimise the number of clauses. The fact
that C3 achieves a better performance can be explained in the case of the
enumeration of stable labellings by taking into account that, for each argument
a, the condition —U, is enforced, thus the constraint C_.,.. does not play any
role. As a consequence, differently from C3, C8 becomes redundant, and
the presence of redundant clauses is known to have a negative impact on the
performance of SAT solvers [42]. This may also explain the relatively good
performance achieved by C'S. We conjecture that similar reasons underlie the
performance results in the case of preferred semantics, though the performance
difference is less noticeable.

As to the comparison between Glucose and Minisat, the first seems to be more
sensible to the presence of C .., and its decrease of performance is possibly
particularly accentuated by the fact that it has been not implemented as an
internal library but called as an external process using PIPE communications.
On the other hand, from Figure 12 Glucose emerges as the winner against
Minisat according to PAR10 for the configurations in —C_4... It must also be
acknowledged that the differences between the two are quite minimal so that
they do not justify further investigations: Glucose is the result of almost 10
years of improvements from the SAT community, and enumerating preferred
labellings is significantly more complex than enumerating stable labellings. It
seems reasonable that a better solver would have the opportunity to demonstrate
its value.

In this section we have experimentally shown that C3 = C A Cjp A Condec
overall is the encoding leading to the best performance for all the considered
algorithms and different configurations of the algorithm parameters. In the sub-
sequent subsections we discuss how such parameters exhibit positive interactions

that can be exploited to gain a better performance.

6.2.2. Using an AlISAT solver leads to a significant improvement for enumerating
stable labellings

We fixed the encoding to be the most efficient, i.e. C3 = C; A C A

adecs and we enumerated stable labellings on the benchmark AF's varying the
configuration of the algorithm.

Tables 2 and 3 summarise the results in terms of IPC score, PAR10, and
coverage. Only the parameters set to T are indicated, while false parameters
are omitted for brevity. It is immediate to see that the use of AIISAT leads to
a significant improvement for enumerating stable labellings. It is also worth
noticing that varying the other parameters, i.e. 71'(5) and 7r|5, leads to statistically
significant results with p < 0.05 but not with p < 0.01 (Friedman test, x2(2) =
6.776,p = 0.034) on the ICCMA 2015 benchmarks. In the case of the ICCMA
2017, it is self-evident from the magnitude of values that the results are also
stastistically significant. Varying parameters win;l and Wiu;o do not lead to
statistically significant variations on the ICCMA 2015 benchmarks, hence in
Tables 2 and 3 we considered only the combination 73, A win;l A 7T/§II;O'

44

Parameters IPC Score PAR10 Coverage

e 177.57 8.20 100.0
o 177.26 8.24 100.0
T AT} 177.15 8.49 100.0
T2 A Tl A TaLo 191.87 5.40 100.0

Table 2: IPC score, PAR10 and coverage (percentage of AF's successfully analysed) when
considering different algorithmic parameters for enumerating stable labellings on the ICCMA
2014 benchmarks. In bold the best results.

Parameters IPC Score PAR10 Coverage
3 214.45 4460.49 73.43
oe 215.02 4503.22 73.14
S AT 210.31 4834.84 71.14
A A T A TalLO 303.58 2263.87 86.86

Table 3: IPC score, PAR10 and coverage (percentage of AF's successfully analysed) when
considering different algorithmic parameters for enumerating stable labellings on the ICCMA
2017 benchmarks. In bold the best results.

The improvement yielded by the AIISAT solver is hardly a surprise, given
that our algorithm for enumerating stable labellings is less engineered than the
AIISAT algorithm that uses only Minisat data structures.

6.2.3. Enumerating stable labellings first can lead to a significant improvement
for enumerating preferred labellings

Also in this case we fixed the encoding to be the most efficient one, i.e.
C3 =Ch ACL AN Cyec; and we enumerated the preferred labellings on the
benchmark AF's varying the configuration of the algorithm.

Figures 18, 19, 20, and 21 depict the box-and-whisker plot of three groups of
results. As above, false parameters are omitted for brevity, unless necessary to
avoid confusion.

Group (A) considers performance results collected when running the algorithm
with the option 7§ = L, i.e. without searching for stable labellings first, with
combinations of options 7, 7y, 7, and 7F,.

Group (B) considers the case where the algorithm is run with 7€ = T and
73 = L, i.e. stable labellings are enumerated first, but without using an AIISAT
solver.

Finally, group (C) considers the usual combinations of options 7, 7, 7f,
iy with 7€ = 73, = T.

45

188 -~

187 - —

186 -

184 |- o —

183 -
182 -
181 +

180 -

179 - T

178 :
(A) (B) (©)

Figure 18: IPC scores (higher better) when enumerating preferred labellings on ICCMA 2015
benchmarks varying algorithm configurations: (A) computing without searching for stable
labellings first; (B) searching for stable labellings first (x£) but without using an ANISAT solver;
(C) searching for stable labellings first (7£) using an AIISAT solver (w3, with 71'§”;| A ﬂin;o).

Overall, our empirical evaluation supports the claim that searching for stable
labellings first leads to a significant improvement for enumerating preferred
labellings, but only when an AIISAT solver is exploited. If this is not the
case, Figures 18, 19, 20, and 21 suggest that starting from stable labellings
improves the coverage of the algorithm, while slowing down the overall search.
We believe this is due to the additional time required for proving that the search
for stable labellings is completed, as well as to the cost of parameters passing,
particularly in cases where the stable labellings are a few percentage of the
preferred labellings. These disadvantages appear as completely compensated by
the use of the engineered AIISAT algorithm.

Post-hoc analysis: on the positive interactions between options when enumerating
stable labellings first. We also considered the interactions between choosing
different options for enumerating stable labellings at the beginning using an
AIISAT solver, together with the acceptable combination of parameters for
computing blocking clauses when exploring the space of complete labellings, i.e.
parameters 7Ti'|3 , 7ri%, 7r§|, and 71'50. Figures 22 and 23 depict the results of this
analysis. The best performance is obtained by combining 7§ A 73, A T30 With
P:8 = 7ri'|D A 7ri% A 7rf| A 7{0 over the ICCMA 2015 benchmarks, and by combining
T A TR A wiu;o with P} = 7l A 75 over the ICCMA 2017 benchmarks. As

noticed earlier, the ICCMA 2017 benchmark set is substantially more complex

46

280 -

270 - T

260 -

250 -

240 -

230 -

220 -

210 -

200 - :
——

190 -

180 - s
(4) (B) (©)

Figure 19: IPC scores (higher better) when enumerating preferred labellings on ICCMA 2017
benchmarks varying algorithm configurations: (A) computing without searching for stable
labellings first; (B) searching for stable labellings first (7r§) but without using an AIISAT solver;
(C) searching for stable labellings first (7£) using an AlISAT solver (r3,, with WRII;I A 7'1'/5\”;0).

Version IPC Score PAR10 Coverage
Straightforward 186.49 2.22 100.0
Improved 188.30 1.39 100.0

Table 4: IPC score, PAR10 and coverage (percentage of AF's successfully analysed) when
considering straightforward and improved algorithms for computing skeptical acceptability
w.r.t. preferred semantics on ICCMA 2015 benchmarks. In bold the best results.

when dealing with preferred semantics, hence this difference suggests that such
parameter optimisation is heavily benchmark dependent consistently with the
no free-lunch theorem [17].

6.2.4. The improved algorithm for skeptical acceptance w.r.t. preferred semantics
leads to significant improvements

We fixed the encoding to be the most efficient, i.e. C3 = Cy A Coyp A

Cindec, and we computed skeptical acceptance of arguments w.r.t. preferred

semantics on the ICCMA 2015 benchmark AF's varying the configuration of the

straightforward algorithm, i.e. Algorithm 15, and of the improved algorithm,

i.e. Algorithm 16. In order to provide a fair comparison where neither algorithm is

allowed to exploit an AIISAT solver, we did not consider the option of computing

47

18 -~

175 | $

17 -

16.5 -

16 -

155 -

14.5 - T

14 -

135 |
(A) (B) ©

Figure 20: PARI10 scores (lower better) when enumerating preferred labellings on ICCMA 2015
benchmarks varying algorithm configurations: (A) computing without searching for stable
labellings first; (B) searching for stable labellings first (ﬂ'g) but without using an AIISAT solver;
(C) searching for stable labellings first (7£) using an AIISAT solver (win, with 7I'/§”;| A ”iu;o)~

stable extensions first in the straightforward algorithm. As a matter of fact,
considering this option would not lead to different conclusions, as discussed in
the post-hoc analysis below.

Table 4 compares the best configuration for the straightforward algorithm
against the best configuration for the improved algorithm. According to the
results we achieved, the best configuration of the straightforward algorithm is

with options 7ri'|) A 7r§| while for the improved version is with 7ri'|) A 7riPO ATh

ol A Teo-
The results of Table 4 are statistically significant (Wilcoxon, Z=-2.487, p =
0.013) and show that there is an improvement of performance using the improved
algorithm.

This analysis, first performed before submitting ArgSemSAT to the ICCMA
2017, has been confirmed in the results of that competition. Indeed Algorithm
16 resulted to be the winner of the sub-track of ICCMA 2017 for skeptical

acceptance of preferred semantics by a large margin.'®

Post-hoc analysis: on the positive interactions between options when considering
skeptical acceptance w.r.t. preferred semantics. We also analysed the interactions
between choosing to use different options for considering (or not) stable labellings

5http://argumentationcompetition.org/2017/ICCMA2017-slides-tafa.pdf (on 6th
February 2019), page 26.

48

6500

6000 T

5500 =

5000

4500

4000

3500

3000

(A) (B) (©)

Figure 21: PARI10 scores (lower better) when enumerating preferred labellings on ICCMA 2017
benchmarks varying algorithm configurations: (A) computing without searching for stable
labellings first; (B) searching for stable labellings first (7rSP) but without using an AIISAT solver;
(C) searching for stable labellings first (7£) using an AIISAT solver (ﬂ'ill’ with ﬁin;l A ”in;o)'

187.05

1871\ D
\ N 14.2 S
186.95 + \\"‘” N Y ==
\e7 S et
1509 | “::\:I\:"-?;"f’///}\t\‘\'a > ay .
= N \ %
wos |l NN 7 A vt /f f///,//;‘—,’\\%%a—_:
/ « ™
; 3.9 % 8%
186.8 13.9 %%
\
7€ AR A mAiko 78 ARy A TR0 \9/

P aS A
s AR A TR

P rS A s
7S AR A TRio A TRk
0 PY
plo P} 10
ig 8

(a) (b)

Figure 22: IPC scores (a) and PAR10 (b) when enumerating preferred labellings varying
algorithm parameters on ICCMA 2015 benchmarks. Here, P: = 7Ti||) A 7rf|, P'O = 7ri'|° A TFEO,
| P, P P pO__P P pO__P . P pO __ P . P plO__P . P
Pig = ”}y A e A Tegy P = 7;io A g, Po = Tig A Te, Pig = g A o, P = g A Tieos

10 — P P 10 — P P
PG =7 AT AT, Po =T AT AT

p
i el N Te0"

49

=7
Nk
SN
AN o
_<
IR
'///N/N////// W

nZ
(5
<
Qe
P
. ° - £
2 .z <
s 2 2 = 2 2 g o= S =
2 8 § 8§ 8 8 8 §% nZ
2 8 2 2 2 %2 g 3 < (5
5 8 8 8 8 3 F 3 <
S aw <
nZ ¢
<
an
W

P

o

P

= THL
RIS
R R
D\
N s
ittt

%

1l
i _.____““_\. -—%——-—u—‘ll
G G
AN,
NNttt
ORSTHIHES,

R

SRR
i SN\

0
10

plo P

10
o

10 P

10

RN

R
SEHERRRss ~
SRR
AR - >
EY
oz
e ° ~ b
sgmgazagapae® T oz
ESESESESafgR L £ %
E"EF"E“RESRY < g5 %
e (4 oo
< &

o

&

el?

P
P P
Tio N Te0>

P P
71';' A 7TEO,
Tio N Te0>

(@)

el

P
P P plO
Tio A Teos P

7TiT AN T
P poO
A Teos Pio

P

PO = o

P
A 7l'eo.

"z

o
PIO
Ao AT,
(0]
el’
P
el

P

s

AT,

_ P P
0 = Tio N Teo>
P
el
7€ AT

_ P

=T AT

50

P
A 7reo.

[0)

0 —

P

10 — P P P plO—_ P P
PS5 =7 Ao AT, Pig =T Ao AT

P
el?
P
A T, P

P
el

P
Tig AT,
10 — P P 10 — P P P 10 — P P
P\¥ =mg A mgo, PG =T AT AT, Plg =T AT AT

and PAR10 (b) when computing skeptical acceptance w.r.t. preferred

(0]

7Ti'|>/\7r

0 =

p!

P
A Teo P

p
el

s s

A0 A\ TR

7TiF|,/\7T

AT,

10
1825 ¢
182 +
1815 |
WSP AT
| — P P
0 = Tii N Teo>

Figure 23: IPC scores (a) and PAR10 (b) when enumerating preferred labellings varying
semantics varying algorithm parameters on ICCMA 2015 benchmarks. Here, P: = 7riF|’ AT

algorithm parameters on ICCMA 2017 benchmarks. Here, P

Figure 24: IPC scores (a)

TP A S A S s
po PY s AR A TR0 A TR
PS i

(a) (b)

Figure 25: IPC scores (a) and PAR10 (b) when computing skeptical acceptance w.r.t. preferred

semantics varying algorithm parameters on ICCMA 2017 benchmarks. Here, P: = 7riF|’ ATh

el?
| — P P pl — P P P pO _ P P pO — . P P pO _ P P
Po = A Tegs Pio = T A g A T, PP = i A Ty, Pg = T A g, Plg = i A T,

el?
10 — P P 10 — P P P 10 — P P P
PP =mo ATio, PG =m) ATg AT, Plg =7 AT AT

il i i el N Te0"

at the beginning of the skeptical acceptance w.r.t. preferred semantics in
the straightforward algorithm, together with the acceptable combination of
parameters for computing blocking clauses when exploring the space of complete
extensions, i.e. parameters 7ri'|) , wi%, 7'('5, and 7750. Figures 24 and 25 depict the
results of this analysis: although the magnitude of the effect in the performance
of varying the parameters is minimal-—sometimes even negligible, in particular
according to the PAR10 measures, cf. Figure 24b—according to the IPC (Figure
24a and 25a) it appears that the best option is not to exploit the inclusion
relation between the sets of stable and preferred labellings, as highlighted by the
peak in Figure 24a and confirmed in Figure 25a.

7. Related Work

The idea of exploiting satisfiability techniques for solving abstract argumenta-
tion problems (even if no specific algorithm is devised) can be traced back to the
work in [43], where encodings of stable and complete extensions are introduced
in terms of variables associated to arguments indicating whether each argument
belongs to the extension, rather than in terms of labels as in our approach. A
similar approach has been used also more recently in a probabilistic setting [44],
but with the aim of estimating the probability for a fixed set of arguments of
being conflict-free or admissible, rather than to identify a formula whose models
characterize the extensions under a given semantics.

In [32, 33] various NP fragments of abstract argumentation reasoning problems
located at the second level of the polynomial hierarchy are identified. Driven by
this analysis, complexity-sensitive algorithms for preferred semantics (as well
as semi-stable and stage semantics) are proposed which require a polynomial

o1

number of calls to a SAT solver in the identified NP fragments. In particular, the
proof of Theorem 3 in [33] contains a procedure for the enumeration of preferred
extensions resembling Algorithm 5, and a procedure for skeptical acceptance
under preferred semantics is reported which shares the basic schema underlying
our Algorithms 8 and 9. There are however substantial differences w.r.t. [32, 33].
From a strictly technical point of view, we make use of labelling-based encodings,
while in [33] similarly to [43] a single variable is associated to each argument.
Moreover, our algorithms are somewhat generic w.r.t. the specific functions that
identify the complete labellings at the basis of the search for preferred labellings
(see in particular the definitions of FindCL* and FindCLUE in Section 3.2). This
feature as well as the use of labellings are at the basis of the novel strategy
underlying Algorithm 9, which at each iteration looks for a maximal complete
labelling where a is undec, and then checks with a single call to the SAT solver
whether it can be extended to a preferred labelling where a is in, whereas the
algorithm in [33] does not use this constraint in maximising complete extensions.
From a more general point of view, our focus is different w.r.t. [32, 33], since
we are concerned with a systematic exploration and evaluation of the possible
encodings and algorithmic variants underlying the above mentioned methodology.

The complexity of the problem of enumerating extensions is investigated
in [11] under different semantics and by considering classes of argumentation
frameworks that lead to tractability. In the case of symmetric argumentation
frameworks, preferred extensions coincide with maximal conflict-free sets, that
can be computed with polynomial delay (between one solution and the subsequent
one) by means of e.g. the algorithm proposed in [45] to enumerate maximal
independent sets in undirected graphs. This also applies to stable semantics for
symmetric argumentation frameworks without self-defeating arguments, since in
this case stable semantics coincide with preferred semantics. Another tractable
class considered in [45] includes argumentation frameworks without even cycles,
and in particular acyclic graphs. In this case, there is a unique complete
and preferred extension coinciding with the grounded extension, which can be
computed in polynomial time. As to stable semantics, it can also be easily
checked if the grounded extension is stable.

Since it is possible to determine in polynomial time whether a graph belongs
to one of the above classes, it would be easy to use a dedicated polynomial
algorithm to solve tractable input instances (in the above sense). Dedicated
algorithms can then be used in a portfolio fashion: a pre-processing step can
be put in place to identify whether a framework is a member of one of the
above mentioned classes, and select the appropriate algorithm to use. There is
an extensive literature on portfolio approaches, and techniques to select online
promising algorithms. While the exploration of portfolio-based approaches for
dealing with argumentation problems is outside the scope of this paper, we refer
the interested reader to [46, 47] for an overview of the area, and to [48, 49, 50] for
more general information about portfolio approaches in AI. On the other hand, it
has to be remarked that the tractable classes mentioned above, while interesting
from a computational complexity point of view, represent very specific instances
from a knowledge representation perspective if one considers the structure of

92

original arguments. For instance, symmetric argumentation frameworks require
any attacker to be counterattacked, a condition which is violated whenever two
rebutting arguments have different strength, or whenever an argument undercuts
another argument by denying the application of a defeasible rule used in its
construction. As to the class where even-length cycles are not present, this
condition prevents e.g. two equally plausible arguments to attack each other, a
situation which is very common in structured argumentation.

In [21] we discussed a parallel algorithm for computing preferred extensions
based on the SCC-decomposability. Since ArgSemSAT exploits a SAT solver as a
black box, any solver that supports the DIMACS format—the standard language
used in SAT competitions—can be easily integrated and tested. Therefore, if
ArgSemSAT is running on a multi-core machine, this black-box approach allows
to take advantage of parallel SAT solvers as well. In particular, since the most
effective approach to exploit parallelisation is to run a portfolio of solvers [51],
this will result in having multiple SAT solvers invoked by ArgSemSAT, and
maximising the use of available cores.

Finally, it has to be remarked that some of the results of this paper are
based on a preliminary approach we presented in [52], where in particular the
logically equivalent encodings of complete labellings exploited in this paper has
been first identified. In [52] we only tackle the problem of enumerating preferred
extensions, with a preliminary algorithm which is not parameterised w.r.t. all the
different variants considered in this paper. Such variants include e.g. different
ways to encode the constraints on complete labellings, different SAT solvers
with a variety of configurations, and the exploitation of stable labellings. More
generally, we believe that the main advancement of the present paper is the
identification and application of the general methodology introduced in Section
1, which led to the winning solver of the preferred semantics track at ICCMA
2017.

We refrain from further comparison with state of the art approaches as this
has been the subject of ICCMA 2015 [27, 53]; a re-run of the competition to
further analyse the results [13]; and a survey of various approaches [54], which in
turn has been superseded by a chapter in the Handbook of Formal Argumentation
[65], also published as a journal paper in [56]. We refer an interested reader to
those references for further analysis on other techniques for solving problems in
abstract argumentation.

8. Conclusion

In this paper we illustrated the design choices that led to the development
of ArgSemSAT, which managed the first place at the track devoted to preferred
semantics of the most recent edition of the international competition on abstract
argumentation (ICCMA 2017). The comprehensive experimental analysis we
performed informed not only the development of ArgSemSAT but provided us
with useful insight we desire to share with the community.

First of all, as discussed in Section 6.2.1, although there are 18 correct
logically equivalent SAT encodings of complete labellings, one of them leads

]

to the highest performance independently of the problem and the semantics
considered. Moreover, as discussed in Sections 6.2.2 and 6.2.3, composing
different techniques such as AIISAT and enumerating stable extensions when
searching for preferred extensions, brings advantages. Finally, as we discussed in
Section 6.2.4 for the case of skeptical acceptance of arguments w.r.t. preferred
semantics, injecting domain specific knowledge in the algorithm design can lead
to statistically significant improvements.

Such insight has been attained through the systematic analysis that we devised
of different labelling-based encodings and of the ways the relevant constraints can
be expressed, and the empirical evaluation of a number of algorithm variations
as well as the use of different SAT solvers. While relatively simple algorithms,
in particular without resorting to graph decomposition, seem to achieve the
best performance at the current stage of the research, the experimental analysis
shows that our methodology is a key factor in boosting solver coverage and
speed. In fact, the choices concerning encodings, constraints and SAT solvers
are interdependent, thus a systematic analysis and experimentation is needed to
find a good combination.

As to future work, we believe our approach can be extended in several respects.
First, there is a significant interest towards graph-decomposition techniques to
lower the computational effort [57]. Experiments using the SCC-based schema
[58] show that advantages can be achieved in the case the number of strongly
connected components is high [15] or the density is low [14]. A related issue
is the development of incremental algorithms in presence of addition/removal
of arguments and attacks [59, 60, 61]. Another interesting extension is the
use of stochastic local search in incomplete SAT-based algorithms, which has
recently been proposed in [62] for enumerating preferred extensions. Moroever,
SAT-based techniques can be exploited for several other semantics, such as semi-
stable, ideal and eager semantics [63]. Again, we remark that the methodology
described in this paper may play a key role in boosting performance also in these
extended contexts.

Acknowledgements

The authors wish to thank Yinlei Yu, Pramod Subramanyan, Nestan Tsiskaridze,
and Sharad Malik, for having shared the implementation of the AIISAT solver
they developed for [28]; and Alessandro Cherubini and Tobia Zanetti for their
contribution in coding ArgSemSAT.

References

[1] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed,
G. Simari, M. Thimm, S. Villata, Toward artificial argumentation, Al
Magazine 38 (3) (2017) 25-36.

[2] P. M. Dung, On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming, and n-person games, Artificial

Intelligence 77 (2) (1995) 321-357.

o4

[3]

C. Cayrol, On the relation between argumentation and non-monotonic coher-
ence based entailment, in: Proc. of the 14th International Joint Conference
on Artificial Intelligence (IJCAT’95), Morgan Kaufmann Publishers Inc.,
1995, pp. 1443-1448.

G. Governatori, M. Maher, G. Antoniou, D. Billington, Argumentation
semantics for defeasible logic, Journal of Logic and Computation 14 (5)
(2004) 675-702.

M. Caminada, S. Sé, J. Alcantara, W. Dvorak, On the equivalence between
logic programming semantics and argumentation semantics, International
Journal of Approximate Reasoning 58 (2015) 87-111.

H. Prakken, An abstract framework for argumentation with structured
arguments, Argument and Computation 1 (2) (2010) 93-124.

P. Baroni, M. Giacomin, Semantics of abstract argumentation systems, in:
Argumentation in Artificial Intelligence, Springer, 2009, pp. 25-44.

P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation
semantics, Knowledge Engineering Review 26 (4) (2011) 365-410.

M. David, S. Karl, Floating conclusions and zombie paths: Two deep
difficulties in the "directly skeptical” approach to defeasible inheritance
nets, Artificial Intelligence 48 (2) (1991) 199-209.

P. E. Dunne, M. Wooldridge, Complexity of abstract argumentation, in:
Argumentation in Artificial Intelligence, Springer, 2009, pp. 85-104.

M. Kroll, R. Pichler, S. Woltran, On the complexity of enumerating the exten-
sions of abstract argumentation frameworks, in: Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17,
2017, pp. 1145-1152. doi:10.24963 /ijcai.2017/159.

A. Toniolo, T. Norman, A. Etuk, F. Cerutti, R. Ouyang, M. Srivastava,
N. Oren, T. Dropps, J. Allen, P. Sullivan, Supporting reasoning with different
types of evidence in intelligence analysis, in: Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS,
Vol. 2, 2015, pp. 781-789.

F. Cerutti, M. Vallati, M. Giacomin, On the impact of configu-
ration on abstract argumentation automated reasoning, Interna-
tional Journal of Approximate Reasoning 92 (2018) 120 — 138.
doi:https://doi.org/10.1016/j.ijar.2017.10.002.

URL http://www.sciencedirect.com/science/article/pii/
S0888613X16303085

B. Liao, L. Lei, J. Dai, Computing Preferred Labellings by Exploiting
SCCs and Most Sceptically Rejected Arguments, in: Second International
Workshop on Theory and Applications of Formal Argumentation (TAFA-13),
2013, pp. 194-208.

99

[15]

[16]

[17]

[18]

F. Cerutti, M. Giacomin, M. Vallati, M. Zanella, An SCC recursive meta-
algorithm for computing preferred labellings in abstract argumentation, in:
Proc. of the 14th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2014), 2014, pp. 42-51.

W. Faber, M. Vallati, F. Cerutti, M. Giacomin, Solving set optimization
problems by cardinality optimization with an application to argumenta-
tion, in: ECAI 2016 - 22nd European Conference on Artificial Intelligence,
29 August-2 September 2016, The Hague, The Netherlands - Including
Prestigious Applications of Artificial Intelligence (PAIS 2016), 2016, pp.
966-973.

D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization,
IEEE transactions on evolutionary computation 1 (1) (1997) 67-82.

F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. H. Hoos, K. Leyton-Brown,
The configurable SAT solver challenge (CSSC), Artif. Intell. 243 (2017) 1-25.

S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney, Isac—instance-specific
algorithm configuration, in: Proceedings of the 2010 conference on ECAI
2010: 19th European Conference on Artificial Intelligence, 2010, pp. 751—
756.

C. Fawcett, H. H. Hoos, Analysing differences between algorithm configura-
tions through ablation, J. Heuristics 22 (4) (2016) 431-458.

F. Cerutti, I. Tachmazidis, M. Vallati, S. Batsakis, M. Giacomin, G. Anto-
niou, Exploiting parallelism for hard problems in abstract argumentation, in:
Proceedings of the Twenty-Ninth AAAT Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., 2015, pp. 1475-1481.

P. Baroni, F. Cerutti, P. E. Dunne, M. Giacomin, Automata for infinite
argumentation structures, Artificial Intelligence 203 (0) (2013) 104 — 150.

B. Verheij, Two approaches to dialectical argumentation: admissible sets
and argumentation stages, in: J.-J. C. Meyer, L. C. van der Gaag (Eds.),
NAIC’96. Proceedings of the Eighth Dutch Conference on Artificial Intelli-
gence, Vol. 96, 1996, pp. 357-368.

B. Verheij, Artificial argument assistants for defeasible argumentation, Artifi-
cial Intelligence 150 (1) (2003) 291-324. doi:10.1016/S0004-3702(03)00107-3.

M. Caminada, On the issue of reinstatement in argumentation, in: Proceed-
ings of JELIA 2006, 2006, pp. 111-123.

M. Caminada, G. Pigozzi, On judgment aggregation in abstract argumenta-
tion, Autonomous Agents and Multi-Agent Systems 22 (1) (2011) 64-102.

96

[27]

[28]

[29]

[32]

[33]

[35]

[36]

M. Thimm, S. Villata, F. Cerutti, N. Oren, H. Strass, M. Vallati, Summary
Report of The First International Competition on Computational Models
of Argumentation, Al Magazine.

URL http://eprints.hud.ac.uk/26063/

Y. Yu, P. Subramanyan, N. Tsiskaridze, S. Malik, All-SAT Using Minimal
Blocking Clauses, in: 2014 27th International Conference on VLSI Design
and 2014 13th International Conference on Embedded Systems, IEEE,
2014, pp. 86-91. doi:10.1109/VLSID.2014.22.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6733111

K. L. McMillan, Applying SAT Methods in Unbounded Symbolic Model
Checking, in: Proceedings of the 14th International Conference on Computer
Aided Verification, Springer, Berlin, Heidelberg, 2002, pp. 250-264.

URL http://link.springer.com/10.1007/3-540-45657-0{_}19

J. Brauer, A. King, J. Kriener, Existential Quantification As Incremental
SAT, in: Proceedings of the 23rd International Conference on Computer
Aided Verification, CAV’11, Springer-Verlag, Berlin, Heidelberg, 2011, pp.
191-207.

M. Caminada, D. M. Gabbay, A logical account of formal argumentation,
Studia Logica (Special issue: new ideas in argumentation theory) 93 (2-3)
(2009) 109-145.

W. Dvordk, M. Jarvisalo, J. P. Wallner, S. Woltran, Complexity-sensitive
decision procedures for abstract argumentation, in: Proceedings of KR 2012,
AAAT Press, 2012, pp. 54-64.

W. Dvorédk, M. Jarvisalo, J. P. Wallner, S. Woltran, Complexity-sensitive
decision procedures for abstract argumentation, Artificial Intelligence 206
(2014) 53-78.

URL http://www.sciencedirect.com/science/article/pii/
S0004370213001069

M. Vallati, L. Chrpa, M. Grzes, T. L. McCluskey, M. Roberts, S. Sanner,
The 2014 international planning competition: Progress and trends, Al
Magazine 36 (3) (2015) 90-98.

URL http://www.aaai.org/ojs/index.php/aimagazine/article/
view/2571

M. Vallati, L. Chrpa, T. L. McCluskey, What you always wanted to know
about the deterministic part of the international planning competition (IPC)
2014 (but were too afraid to ask), Knowledge Eng. Review 33 (2018) e3.

N. Eén, N. Sorensson, An Extensible SAT-solver, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 502-518.
URL http://dx.doi.org/10.1007/978-3-540-24605-3{_}37

o7

[37]

G. Audemard, L. Simon, Lazy clause exchange policy for parallel sat solvers,
in: Theory and Applications of Satisfiability Testing—SAT 2014, 2014, pp.
197-205.

M. R. Krom, The decision problem for a class of first-order formulas in
which all disjunctions are binary, Mathematical Logic Quarterly 13 (1-2)
(1967) 15-20. do0i:10.1002/malq.19670130104.

URL http://dx.doi.org/10.1002/malq. 19670130104

N. Eén, A. Biere, Effective preprocessing in SAT through variable and
clause elimination, in: Theory and Applications of Satisfiability Testing, 8th
International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings, 2005, pp. 61-75.

A. Biere, M. Heule, H. van Maaren, T. Walsh, Conflict-driven clause learning
sat solvers, Handbook of Satisfiability, Frontiers in Artificial Intelligence
and Applications (2009) 131-153.

S. Holldobler, N. Manthey, A. Saptawijaya, Improving resource-unaware sat
solvers, in: International Conference on Logic for Programming Artificial
Intelligence and Reasoning, Springer, 2010, pp. 519-534.

O. Fourdrinoy, E. Grégoire, B. Mazure, L. Sais, Eliminating redundant
clauses in sat instances, in: Integration of AT and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, 2007, pp.
71-83.

P. Besnard, S. Doutre, Checking the acceptability of a set of arguments, in:
Proceedings of 10th International Workshop on Non-Monotonic Reasoning
(NMR 2004), 2004, pp. 59-64.

B. Fazzinga, S. Flesca, F. Parisi, On efficiently estimating the prob-
ability of extensions in abstract argumentation frameworks, Inter-
national Journal of Approximate Reasoning 69 (2016) 106 — 132.
doi:https://doi.org/10.1016/j.ijar.2015.11.009.

URL http://www.sciencedirect.com/science/article/pii/
S0888613X15001760

D. S. Johnson, C. H. Papadimitriou, M. Yannakakis, On generating all
maximal independent sets, Information Processing Letters 27 (3) (1988)
119-123.

F. Cerutti, M. Vallati, M. Giacomin, Where are we now? state of the art
and future trends of solvers for hard argumentation problems, in: P. Baroni,
T. Gordon, T. Scheffler (Eds.), Proceedings of 6th International Conference
on Computational Models of Argument, COMMA 2016, Vol. 287 of Frontiers
in Artificial Intelligence and Applications, IOS Press, 2016, pp. 207-218.
d0i:10.3233/978-1-61499-686-6-207.

98

[47]

[55]

M. Vallati, F. Cerutti, M. Giacomin, On the combination of argumenta-
tion solvers into parallel portfolios, in: AI 2017: Advances in Artificial
Intelligence - 30th Australasian Joint Conference, 2017, pp. 315-327.

B. Hurley, L. Kotthoff, Y. Malitsky, D. Mehta, B. O’Sullivan, Advanced
portfolio techniques, in: Data Mining and Constraint Programming - Foun-
dations of a Cross-Disciplinary Approach, 2016, pp. 191-225.

F. Hutter, L. Xu, H. H. Hoos, K. Leyton-Brown, Algorithm runtime predic-
tion: Methods & evaluation, Artif. Intell. 206 (2014) 79-111.

M. Lindauer, H. H. Hoos, K. Leyton-Brown, T. Schaub, Automatic con-
struction of parallel portfolios via algorithm configuration, Artif. Intell. 244
(2017) 272-290.

T. Balyo, C. Sinz, Parallel satisfiability, in: Handbook of Parallel Constraint
Reasoning., 2018, pp. 3-29.

F. Cerutti, P. E. Dunne, M. Giacomin, M. Vallati, Computing preferred
extensions in abstract argumentation: A sat-based approach, in: E. Black,
S. Modgil, N. Oren (Eds.), Theory and Applications of Formal Argumen-
tation, Vol. 8306 LNAI, Springer Verlag, Berlin, Heidelberg, 2014, pp.
176-193.

M. Thimm, S. Villata, The first international competition on computational
models of argumentation: Results and analysis, Artificial Intelligence 252
(2017) 267-294.

G. Charwat, W. Dvordk, S. A. Gaggl, J. P. Wallner, S. Woltran,
Methods for solving reasoning problems in abstract argumen-
tation: A survey, Artificial Intelligence 220 (2015) 28 - 63.
doi:https://doi.org/10.1016/j.artint.2014.11.008.

URL http://www.sciencedirect.com/science/article/pii/
S0004370214001404

F. Cerutti, S. A. Gaggl, M. Thimm, J. P. Wallner, Foundations of implemen-
tations for formal argumentation, in: P. Baroni, D. Gabbay, M. Giacomin,
L. van der Torre (Eds.), Handbook of Formal Argumentation, College
Publications, 2018, Ch. 15.

F. Cerutti, S. A. Gaggl, M. Thimm, J. P. Wallner, Foundations of imple-
mentations for formal argumentation, IfCoLog Journal of Logics and their
Applications 4 (8) (2017) 2623-2706.

W. Dvorak, R. Pichler, S. Woltran, Towards fixed-parameter tractable
algorithms for abstract argumentation, Artificial Intelligence 186 (2012) 1 —
37. doi:https://doi.org/10.1016/j.artint.2012.03.005.

URL http://www.sciencedirect.com/science/article/pii/
S0004370212000264

99

[58]

[59]

[63]

Ap

P. Baroni, M. Giacomin, G. Guida, SCC-recursiveness: a general schema for
argumentation semantics, Artificial Intelligence 168 (1-2) (2005) 165-210.

S. Greco, F. Parisi, Efficient computation of deterministic extensions for dy-
namic abstract argumentation frameworks, in: ECAI 2016 - 22nd European
Conference on Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applications of Artificial
Intelligence (PAIS 2016), 2016, pp. 1668-1669. doi:10.3233/978-1-61499-
672-9-1668.

URL https://doi.org/10.3233/978-1-61499-672-9-1668

S. Greco, F. Parisi, Incremental computation of deterministic extensions for
dynamic argumentation frameworks, in: Logics in Artificial Intelligence -
15th European Conference, JELIA 2016, Larnaca, Cyprus, November 9-11,
2016, Proceedings, 2016, pp. 288-304.

G. Alfano, S. Greco, F. Parisi, Efficient computation of extensions for
dynamic abstract argumentation frameworks: An incremental approach, in:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, 2017, pp. 49-55. doi:10.24963 /ijcai.2017/8.

URL https://doi.org/10.24963/ijcai.2017/8

D. Niu, L. Liu, S. Lii, A new stochastic local search approach for computing
preferred extensions of abstract argumentation, in: ECAI 2016 - 22nd
European Conference on Artificial Intelligence, 29 August-2 September
2016, The Hague, The Netherlands - Including Prestigious Applications of
Artificial Intelligence (PAIS 2016), 2016, pp. 1652-1653. doi:10.3233/978-1-
61499-672-9-1652.

URL https://doi.org/10.3233/978-1-61499-672-9-1652

J. Wallner, G. Weissenbacher, S. Woltran, Advanced sat techniques for
abstract argumentation, in: Proceedings of CLIMA2013, 2013, pp. 138-154.

pendix A. Proofs

Theorem 2. Given an AF ' =({A,R) and a € A:

e {in(Lab) | Labe EL-PR(I"))} = Epr(T") (Algorithm 5);

{in(Lab) | Labe EL-PR-withST(T"))} = Epr(T") (Algorithm 6);

DC-PR(T',a) = (3S € &pr(T),a € S) (Algorithm 7);
e DS-PR-straightforward(T',a) = (VS € &pr(T'),a € S) (Algorithm 8);

DS-PR(T',a) = (VS € &r(T),a € S) (Algorithm 9).

60

Proof. Considering Algorithm 5, we have to show that EL-PR(T) = £pr(T)
(the desired result then follows by Proposition 4). Let us first focus on the inner
loop (lines 3-5) and let us indicate as Lab® the complete labelling assigned to
the variable Lab in line 2 before the inner loop execution. According to the
definition of FindCLZ, the labellings assigned to the variable Lab (line 4) at
each iteration of the inner loop satisfy the conditions £ab® = Lab' = ..., where
each Lab® is a complete labelling. By transitivity and anti-symmetry of =, all
labellings Lab® are distinct, and taking into account that T is finite (and so is the
number of its possible labellings) this entails that the corresponding sequence is
finite as well and the inner loop terminates. In particular, the loop terminates
when FindCL=(T', Lab) = L, which by the definition of FindCL* entails that the
labelling in Lab is maximal w.r.t. &, i.e. a preferred labelling on the basis of
Proposition 3. Summing up, the execution of lines 3-6 starts from a complete
labelling £ab and includes in £, (line 6) a preferred labelling Lab’ such that
Lab = Lab'. Let us now consider the outer loop (lines 2-7). First, the loop
terminates, since as shown below the labelling Lab added to £, in line 6 does not
belong to £,: taking into account that I is finite, £, cannot grow indefinitely.
To see that Lab ¢ L, before the execution of line 6, note that FindCL* (", L)
returns in line 6 a complete labelling which is not less committed than any of the
labellings in £, thus by transitivity of = the labelling Lab added to L, in line 6
does not belong to £,. Now, according to the considerations above, line 6 adds
to £, a preferred labelling, thus in line 2 it always holds that £, < £pr(T"). Since
the loop terminates when FindCLEE(F, L,) returns L in line 2, by the definition
of FindCL¥ it holds that (£pr(I)\Lp) € &, i.e. Ler(T) S L,. As a consequence,
L, = Lpr(T) in line 8, as desired.

Turning to Algorithm 6, its correctness follows from that of Algorithm 5
taking into account that £s1(I") € Lpr(T).

To show the correctness of Algorithm 7, we distinguish two cases. If a is
credulously accepted then there is a preferred labelling where a is in, and since
a preferred labelling is by definition a complete labelling FindCL, (T, in) is able
to return a labelling in line 1, and the algorithm correctly returns T. In the case
where a is not credulously accepted, there is no complete labelling where a is
in, since according to Proposition 3 this would entail the presence of a preferred
labelling where a is in. As a consequence, the algorithm correctly returns L.

The correctness of Algorithm 8 follows from the above proof concerning
Algorithm 5. In particular, we know that the algorithm terminates and that
during the execution of the loop of lines 2-10 the variable Lab in lines 6-9 iterates
over the set of preferred labellings. Thus, if a is not skeptically accepted then
there is an iteration of the loop such that the algorithm returns L in line 7,
otherwise all preferred labellings assign to a the label in and the loop terminates,
thus the algorithm correctly returns T in line 11.

Let us finally turn to Algorithm 9. It is easy to see that if the algorithm
terminates then it either returns T or L. We thus show that the algorithm
always terminates and whenever it returns a value, this is correct.

As to termination, there are two nested loops in the algorithm. Focusing first

61

on the inner loop (lines 6-8) and denoting as Lab® the labelling in the variable Lab
before the execution of the loop, by the definition of FindCLZ the values in variable
Lab at line 6 identify a sequence of labellings Lab® = Lab' = As in the proof
concerning Algorithm 5, transitivity and anti-symmetry of = guarantee that
the sequence includes distinct elements, and since the argumentation framework
is finite then the sequence is finite as well. As a consequence, after a finite
number of iterations the inner loop terminates with a labelling in Lab such that
Lab® © Lab and Lab € L,,, (i.e. Lab is a maximal complete labelling such that
Lab(a) = undec). As to the loop of lines 5-13, we prove that at each iteration
line 12 increases the cardinality of the set in L., and again, since I' is finite, this
entails termination of the loop. To prove that Lab before the execution of line 12
does not belong to L., let us consider the case where FindCLUX (T, £.) in line 5
returns a labelling Lab® (i.e. different than 1) which is assigned to the variable
Lab. By the definition of FindCLUZ, it holds that VLab' € L., Lab® & Lal/, i.e.
Lab® is not less or equally committed w.r.t. a labelling of £.. As shown above,
the inner loop obtains a labelling Lab such that Lab® = Lab, thus it can not be
the case that Labe L.

We now show that the value returned by the algorithm is always correct.
Focusing first on lines 1-3, according to the definition of FindCL line 2 is executed
if there is no complete labelling where a is in or there is a complete labelling
where a is out. It is easy to see that in both cases a is not skeptically justified,
thus the returned value 1 is correct. In particular, since preferred labellings are
also complete labellings, in the first case there is no preferred labelling where a
is in, and taking into account that a preferred labelling always exists (see e.g.
[2]) this entails that a is not skeptically justified. In the second case, according
to Proposition 3 there is a preferred labelling where a is out, and again a is not
skeptically justified.

Let us now consider the case where the algorithm enters line 4. Note that
by the considerations above there is no preferred labelling where a is out.
Focusing on lines 9-10, let us show that if line 10 is executed then a is not
skeptically justified. According to the definition of FindCLZ', this happens if
there is no complete labelling Lab’ such that Lab/(a) = in and Lab = Lab'.
Since Lab € L,,, and there are no preferred labellings where a is out, in this case
Lab is a maximal complete labelling, i.e. a preferred labelling by Proposition 3.
As a consequence, there is a preferred labelling where a is undec entailing that
it is not skeptically justified.

To complete the proof, we first show that, in line 5, £, S L,,, and L. N
Lpr(I") = . This is obviously true before the first iteration of the outer
loop, since L. = . It is also true after each iteration of the loop, since
we have shown above that the labelling Lab added to L. in line 12 belongs
to Ly, and taking into account lines 9-11 there is a complete labelling Lab’
such that Lab © Lab/, i.e. Lab is not maximal w.r.t. © and thus it is not a
preferred labelling. Now, the algorithm enters line 14 only if FindCLUE(F7 Le)
in line 5 returns L. According to the definition of FindCLUEa , this entails that
{Labl € Lpr(T) | Lab'(a) = undec} < L., where L. n £pr(I') = . Then
{Lal € Lpr(T) | Lab'(a) = undec} is empty, and taking into account that there

62

are no preferred labellings where a is out, we conclude that a is skeptically
justified, and the value returned in line 14 is correct. O

Proposition 5. Let (A, R) be an argumentation framework. A total function
Lab : A — {in,out,undec} is a complete labelling iff it satisfies any of the
following conjunctive constraints for any a € A:

Q
5
[l
Q
3
>
Q
3

CE =C3 A Caec
Cj%i (7g;£ A (7undec
OE): = C;: A Cout A C(undec
CE = Cii A Coue A Cinaec

Proof. We prove that each of the 5 conjunctive constraints is equivalent to
C8 =C5 AC A Citaecs 1-€. the constraint expressed in Definition 7. All of
them are obviously entailed by C'8, thus we have to prove that each of them
entails C'8.

As to C8, CZ and C%, the result derives from the fact that Lab is a function.
In particular, let us consider an argument a which satisfies C3. Let us first
prove Ciyec- If Vb € a=Lab(b) # in A 3c € a~ : Lab(c) = undec, then
Lab(a) # in because of C;;, and Lab(a) # out because of C_ ., thus the only
possibility is that Lab(a) = undec. As to Cy,., if Lab(a) = undec then by Csy,
Vb € a~ Lab(b) # in, thus by C5, 3c € a~ : Lab(c) = undec. Overall, Cy.. is
satisfied, entailing C8. The proofs for CS and C'& are analogous.

As to C3, with respect to C'8 this constraint does not include the terms C;

in>
Cs and Coyo.. Here we prove that C5, (and, similarly, C%,, and Ci,..) is

o undec
indeed satisfied. Let us consider an argument a such that Vb € a~ Lab(b) = out,

and let us reason by contradiction by assuming that Lab(a) # in. Since Lab
is a function, if Lab(a) # in then either Lab(a) = out or Lab(a) = undec. If
Lab(a) = out, from C;}, b € a~ : Lab(b) = in # out. If Lab(a) = undec,

out

from C ;.. Ib € a : Lab(b) = undec # out. The proof for C5,, and C 4. is

undec undec
similar.

As to CE, the proof follows the same line. We prove that C;? (and, similarly,
Cooe and Coy..) is indeed satisfied. Given an argument a such that Lab(a) = in,

out undec

assume by contradiction that 3b € a~ : Lab(b) # out. Since Lab is a function,
either Lab(b) = in or Lab(b) = undec. In the first case, C5, entails that

out

Lab(a) = out # in. In the second case, either Cgy or Coi.. applies, i.e.

Lab(a) € {out,undec} thus Lab(a) # in. Following the same reasoning line, we
can prove that also C 2. and C .. hold. O

out undec

63

DROAC S oS ONs

AF, AF, AF4

Figure A.26: Identifying some weak encodings.

Proposition 6. The following 6 encodings are weak:

— — «—

CS = undec A C A C’out
<« <« —

03 - C’undec A C A Cout
—> > — «—

Cﬁ = Cout A C A CYundec
<« <«

Cﬁ, = out A C A Cundec
<« >

O‘:) - C A C out N C’undec
<> «>

CS = C A C’out A Cundec

Proof. For each encoding, we identify an argumentation framework and a non-
complete labelling which satisfies the relevant constraint. In particular, re-
ferring to Figure A.26: for C'8, see the labelling {(a,out)} of AF;; for C3,
see the labelling {(a,in)} of AF5; for C'8, see the labelling {(a,undec)} of
AFy; for C8, see the labelling {(a,undec), (b, in), (c,out)} of AF5; for C3, see
the labelling {(a, in), (b, undec), (c,undec)} of AFy; for C§, see the labelling
{(a,undec), (b, out), (c,in)} of AFj. O

Theorem 3. All the encodings of cardinality 0, 1, and 2 are weak. Among the
encodings of cardinality 3, C3 = C AC 3 AC 0. and CE = C ACS ACrindec
are correct and non-redundant, the other 18 encodings are weak. Among
the encodings of cardinality 4, C8 = C3 A C5., CZ2 = C5p A Cipgec and
Cg = C’;;c A C’undeC are correct and non—redundant the 6 encodings CS =
O::_) A O undec7 Oﬁ OH A CH undec7 Cﬁ C‘) A C;:t A C(1.111dec’
C(_ - CH A C;t A undecﬂ O - CH A C out A undec? CE - CH A C:):t A undec
are correct and redundant, the other 6 encodings are weak. All the encodings of
cardinality 5 and 6 are correct and redundant.

Proof. As to the first claim, it is easy to see that any encoding having cardinality
0, 1 and 2 is a strict subset of at least one (weak) encoding introduced in
Proposition 6, thus it is obviously weak too. As to the encodings having
cardinality 3, (Cy A Cogi A Csec) and (Cip A Cige A Cingec) are correct by
Proposition 5, and they are non-redundant since any strict subset has a cardinality
strictly lower than 3 (thus it is weak as shown above). The remaining 18 encodings
of cardinality 3 can take one of the following two forms: (i) 12 encodings include
Cia, Cioe or Ciryee and another single term; (ii) 6 encodings include two “left”
and one “right” terms, or vice versa. In both cases, it is easy to check that any
of these encodings is a strict subset of one of the weak encodings of Proposition

6. As to the encodings of cardinality 4, (Ciy A Ci)s (Con A Citgee) and

out

64

(C52 A Cilyec) are correct by Proposition 5, and they are non-redundant since

they do not contain (C; A C2p A Cpyee) nor (Crp A O A Clngec), thus any
subset is weak according to the considerations above concerning the encodings
of cardinality 3. Moreover, the 6 encodings C3, C3, C3, CE, C& and C§
are supersets of (Ciy A Coop A Cpgee) OF (Cip A Clge A Cringec)s and thus correct
and redundant, while the other 6 encodings are the weak ones identified in
Proposition 6. Finally, all encodings of cardinality 5 and 6 contain at least one of

the correct encodings of Proposition 5, thus they are correct and redundant. [

Lemma 1. Let I' = (A4, R) be an argumentation framework and Lab, Labs €
£(T") complete labellings. Ja € A such that Lab;(a) = out and Labs(a) # out
iff 3b € A such that Lab;(b) = in and Laby(b) # in.

Proof. As to the first direction of the proof, assume that Lab;(a) = out and
Labs(a) # out. According to Definition 7, 3b € a= such that Lab;(b) = in.
Since Laby(a) # out, according to Definition 7 #c € a= : Laby(c) = in, thus it
must be the case that Laby(b) # in.

As to the other direction of the proof, assume that Lab;(b) = in and Labs(b) #
in. We consider two possible cases for Labs(b). If Labs(b) = out, according to
Definition 7 Ja € b~ such that Labz(a) = in. Since Lab;(b) = in, according
to Definition 7 Vc € b™, Labi(c) = out, and this also holds for a. If, in the
other case, Laby(b) = undec, according to Definition 7 Ja € b~ such that
Labs(a) = undec, and again it must also hold that Lab;(a) = out. O

Proposition 7. Let I' = (A4, R) be an argumentation framework and Lab, Lab’ €
£(T) stable labellings. All of the following statements are equivalent to Lab #
Lab':

1. 3be A: Lab'(b) = out A Lab(b) = in
2. 3ce A: Lab'(c) = in A Lab(c) = out

3.3b e A: Lab'(b) = out A Lab(b) = in and Ic € A : Lab'(c) = in A
Lab(c) = out

Proof. Taking into account that stable labellings do not assign the label undec
to any argument, the condition Lab # Lab' is equivalent to Ib € out(Lab’) :
Lab(b) = in or Jc € in(Lab') : Lab(c) = out. According to Lemma 1, this
entails all of the three conditions. The fact that each of the three conditions
entails Lab # Lab' is obvious. O

Proposition 8. Let I' = (A4, R) be an argumentation framework and Lab’ €
Lpr(T) a preferred labelling. Then, VLab € £co(T), all of the following state-
ments are equivalent to Lab & Lab':

1. 3be A: LaV' (b) = out A Lab(b) = in
2. 3ce A: Lab'(c) = in A Lab(c) = out

65

3.3b e A: Lab/'(b) = out A Lab(b) = in and Ic € A : Lab'(c) = in A
Lab(c) = out

Proof. Each of the three conditions obviously entails Lab t£ Lal’, therefore we
can focus on the other direction of the proof.

Let us first prove that if Lab & Lab’ then the first condition holds.

Letting S = in(Lab)\in(Lab'), it is easy to see that S # ¢J. Indeed, S = &
would entail in(Lab) € in(Lab’) and according to Definition 7 we would also
have out(Lab) € out(Lab'), i.e. Lab = Lab'.

We now prove that S n out(Lab') # &, i.e. Ib € out(Lab’) such that
b € S € in(Lab), entailing the first condition as desired.

For the sake of contradiction, let us assume S n out(Lab’) = &J. We prove
that in(Lab’) U S is admissible. Let us note that, by Proposition 4, in(Lab) is a
complete extension and in(Lab’) is a preferred extension, i.e. maximal admissible.
First, we prove that in(Lab’) U S is conflict-free. Indeed, if S — in(Lab’) then
in(Lab’) — S, since in(Lab’) is admissible. If in(Lab’) — S then according to
Definition 7 we would have S n out(Lab’) # &, but this is not the case. Second,
we show that in(Lab’) U S defends all of its arguments. In particular, Va € A
with a — in(Lab') U S we distinguish two cases:

1. if a — in(Lab’), then in(Lab’) — a since in(Lab’) is admissible.

2. if a —» S then a — in(Lab), since S = in(Lab)\in(Lab'). This entails
that in(Lab) — a, since in(Labd) is a complete extension and thus admis-
sible. Now, if Lab’'(a) = out then by definition in(Lab’) — a, otherwise
in(Lab)\in(Lab') — a, i.e. S — a.

Summing up, Va € A with a — (in(Lab') U S), (in(Lab’) U S) — a holds,
ie. (in(Lab') U S) is admissible. However, since S # ¢ and by definition
S nin(Lab') = &, it holds that in(Lab’) < (in(Lab') U S). Quod est absurdum
because in(Lab’) U S is admissible contradicting the fact that in(Lab’) is a
preferred extension.

Turning to the second condition, we know from the first one that 3b € A such
that Lab'(b) = out A Lab(b) = in. According to Definition 7, Lab'(b) = out
entails that 3¢ € A (with ¢ — b) such that Lab'(c) = in, and Lab(b) = in
entails that Lab(c) = out.

The third condition obviously follows from the first two conditions. O

Proposition 9. Let I' = (4, R) be an argumentation framework and Lab, Lal’ €
Lco(T). All of the following statements are equivalent to Lab' & Lab:

1. in(Lab’) € in(Lab) Arout(Lad’) S out(Lab) Adb € undec(Lab’) : Lab(b) =
out

2. in(Lab’) < in(Lab) nout(Lab’) € out(Lab) Adc € undec(Lal’) : Lab(c) =
in

3. in(Lab’) < in(Lab) rout(Lad’) € out(Lab)ATb € undec(Lad’) : Lab(b) =
out A 3c € undec(Lab') : Lab(c) = in

66

Proof. Each of the three conditions obviously entails Lab’ = Lab. Let us then
assume that Lab' & Lab, i.e. in(Lab’) < in(Lab) A out(Lab’) < out(Lab) Adb €
undec(Lal’) : Lab(b) € {out, in}. We distinguish two cases for Lab(b).

If Lab(b) = out, then the first condition holds. Moreover, by Lemma 1 (with
Laby = Lab and Laby = Lab’) there is an argument c¢ such that Lab(c) = in
and Lab'(c) # in. Since Lab' = Lab, it cannot be the case that Lab/(c) = out,
thus Lab'(c) = undec, entailing the second and third conditions.

In the other case, Lab(b) = in and the second condition holds. Similarly to the
previous case, by Lemma 1 there is an argument ¢ such that Lab(c) = out and
Lab'(c) # out. Taking into account that Lab’ = Lab, it must be the case that
Lab'(c) = undec, entailing the first and third conditions. O

Proposition 10. Let I' = (4, R) be an argumentation framework, a an argu-
ment in A4 and Lab' € £(T') a maximal complete labelling such that Lab'(a) =
undec, i.e. 3Lab* € £(T') such that Lab*(a) = undec and Lab’ = Lab*. Then,
VLab € L£pr(T") such that Lab(a) = undec, all of the following statements are
equivalent to Lab # Lab':

1. 3be A: Lab'(b) = out A Lab(b) = in
2. 3ce A: Lab'(c) = in A Lab(c) = out

3.3b e A: Lab/'(b) = out A Lab(b) = in and Ic € A : Lab'(c) = in A
Lab(c) = out

Proof. Each of the three conditions obviously entails Lab # Lab’, therefore we
can focus on the other direction of the proof.

Let us first prove that if Lab # Lab’ then the first condition holds.

Since Lab is a preferred labelling, it must be the case that Lab & Lab’
(otherwise we would have Lab & Lab’ contradicting maximality w.r.t. =). This
in turn entails that in(Lab) & in(Lal’). Indeed, according to Definition 7,
in(Lab) < in(Lab') would entail out(Lab) < out(Labd’), i.e. LabE Lab’, which
is not the case.

Let us now consider the set in(Lab’) U in(Lab). Since in(Lab) & in(Lab'),
it must be the case that in(Lad’) < (in(Lab’) U in(Lab)). Moreover, since
Lab'(a) = undec and Lab(a) = undec, a ¢ (in(Lab’) uin(Lab)) and it is not the
case that (in(Lab’) uin(Lab)) — a (otherwise either Lab'(a) = out or Lab(a) =
out). We reason by contradiction, by proving that if ib € A : Lab'(b) = out A
Lab(b) = in then (in(Lab’) U in(Lab)) is a complete extension. This leads to a
contradiction, since by Proposition 4 the labelling Lab* = Ext2Lab(in(Lab') U
in(Lab)) would be a complete labelling and, by the conditions above, Lab' &
Lab* and Lab*(a) = undec, contradicting the maximality of Lab'.

Let us then prove that (in(Lab’) U in(Lab)) is a complete extension. Let us
note that, by Proposition 4, in(Lab) is a preferred extension and in(Lad’) is a
complete extension.

First, (in(Lab’) U in(Lab)) is conflict-free. Indeed, if in(Lab) — in(Lab’)
then in(Lab') — in(Lab), since in(Lab’) is admissible. If in(Lab") — in(Lab)

67

then according to Definition 7 there would be an argument b such that Lab(b) =
in and Lab'(a) = out, but this has been excluded by assumption.

Second, we show that (in(Lab’) U in(Lab)) defends all of its arguments.
For all b € A with b — (in(Lab’) U in(Lab)), it holds that b — in(Lab’) or
b — in(Lab). Since both in(Lab’) and in(Lab) are admissible, there must be
an argument ¢ € (in(Lab’) U in(Lab)) such that ¢ — b.

Finally, to show that (in(Lab') U in(Lab)) is complete we take into account
that in(Lab) is a preferred extension. Since in(Lab) € (in(Lab’) U in(Lab))
and (in(Lab’) U in(Lab)) has been proved to be admissible, it must then be the
case that in(Lab) = (in(Lab’) U in(Lab)). Since any preferred extension is a
complete extension, the conclusion follows.

Turning to the second condition, as in the proof of Proposition 8 we know from
the first one that 3b € A such that Lab'(b) = out A Lab(b) = in. According
to Definition 7, Lab'(b) = out entails that 3¢ € A (with ¢ — b) such that
Lab'(c) = in, and Lab(b) = in entails that Lab(c) = out.

The third condition obviously follows from the first two conditions. O

Appendix B. Summary of parameters used in algorithms

Parameter Domain Algorithm Comment
Cx ¢ ={C3, All The set of all the correct
Cg, C3, encodings as identified by
C3, Cs, Theorem 3
Cc&, C3,
cg, C8,
Ccs, 08,
csg, Csg,
c3, C8g,
c8, C8,
ca)
3 {T,1} Alg. 10, 13, Parameter enabling using a
,,,,,,,,,,,,,,,,,,,,,, 15________ AllSATsolver = ________
77,5\”;0 {T,1} Alg. 10, 13, When using a AIISAT
15 solver, this parameter

forces, for each found
labelling, the creation of a
blocking clause based on
arguments labelled in,
requiring one of them to be
labelled out

Tl {T,1} Alg. 10,13, When using a AIISAT
15 solver, this parameter
forces, for each found
labelling, the creation of a
blocking clause based on
arguments labelled out,

requiring one of them to be
labelled in

™ {T, 1} Alg. 10, 13, When not using a AIISAT

15 solver, this parameter
forces, for each found
labelling, the creation of a
blocking clause based on
arguments labelled in,
requiring one of them to be
labelled out

e {T,1} Alg. 10, 13, When not using a AIISAT

15 solver, this parameter
forces, for each found
labelling, the creation of a
blocking clause based on
arguments labelled out,
requiring one of them to be
labelled in

e {T,1} Alg. 13, 15 Selector between
Algorithms 5 and 6 which
exploits the knowledge that
stable extensions are also

77777777777777777777777777777777 preferred
T {T,1} Alg. 13, 15, Further to Proposition 9,
16 to identify a complete

labelling which is strictly
more committed w.r.t. a
previously found complete
labelling, an argument
labelled undec should then
become out

69

it {T,1} Alg. 13, 15, Further to Proposition 9,
16 to identify a complete

labelling which is strictly
more committed w.r.t. a
previously found complete
labelling, an argument
labelled undec should then
become in

™ {T,L1} Alg. 13, 15, Further to Proposition 8,
16 to identify a non-empty

complete labelling that is
not less committed w.r.t.
any found preferred
labelling, an argument
labelled in should then
become labelled out

o {T,1} Alg. 13, 15, Further to Proposition 8,
16 to identify a non-empty

complete labelling that is
not less committed w.r.t.
any found preferred
labelling, an argument
labelled out should then
become labelled in

Table B.5: Table summarising the parameters used in algorithms presented in Section 5.

Appendix C. Pilot study: performance comparison with minimal
number of propositional variables

For stable semantics, the CNFs identified in Proposition 11 can be modified
as presented in Proposition 12, by taking into consideration the constraint
Naca ~Ua (cf. Algorithm 10 for instance). In Proposition 12, we use one
propositional variable I, for argument a € A, implicitly defining two labels: if
I, is assigned T, a is in, otherwise it is out. Proof of Proposition 12 is omitted
as it follows from straightforward manipulations.

Proposition 12. Given an AF I' = (A, R):

Ca= N\ (v V b

{acA} {b | b—a}

Ch = /\ /\ —Iy v =1y

{acA} \{b | b—a}

70

Mean runtime (s) Median runtime (s) Wilcoxon

Prop. 12 Prop. 11 Prop. 12 Prop. 11

st_small 2791 75.93 7.97 6.02 Yes
Z =-1.126
p = 0.260
st_medium 19.33 19.46 13.38 13.85 No
7 = -2.057
p = 0.040

Table C.6: Statistics for the pilot study comparing computing EE-ST using three variables per
argument (cf. Prop. 11) and using one variable per argument (cf. Prop. 12. The Wilcoxon
column refers to Wilcoxon signed-rank tests aimed at assessing whether there is a statistical
significant change in the execution time.

Coa= N\ AN A

{acA} \{b | b—a}

out = /\ Iy v \/ Iy,

{ac A} {b | b—a}

In this pilot study, we considered a portion of the ICCMA-15 benchmark,
namely the groups st_small and st_medium, which consist of graphs which
feature many complete/preferred /stable extensions.'® st_small features AFs
with up to 300 arguments, while st_medium features AF's with 400 arguments.

We ran Algorithm 10 using C;; A C5; A Co A Coy with the CNF's specified
in Proposition 11, and we compared that against the same algorithm using
Cp A Ciy A Oyl A Cle with the CNFs specified in Proposition 12.17 We used
a 6 core machine Intel(R) Core(TM) i7-5820K CPU @3.30GHz with 8GB RAM.

Table C.6 summarises the statistics for this study. First of all, according to
a Wilcoxon signed-rank test, there is a significant change in the execution time
for AF's in st_small, but there is no significant change for the larger AF's in
st_medium. Moreover, considering the AF's in st_small, the average runtime for
the version using the CNF's of Proposition 11 is higher than for the version using
the CNF's of Proposition 12, but this is reversed when considering median values.
Indeed, the median runtime of the implementation running on the CNF's specified
by Proposition 11 is smaller than the median runtime of the implementation

running on the minimal CNF's specified by Proposition 12.

16http://argumentationcompetition.org/2015/results.html
17Tn this case, references to U, in Algorithm 10 must be ignored.

71

Therefore, this pilot study seems to suggest that performance does not neces-
sary improve when considering fewer propositional variables when transforming
the constraints imposed by (stable) semantics into CNF's.

72

