
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's
ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/12 4 7 6 6/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for
p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Tafr e s hi, S a e e d e h  S a r a b a d a ni, Mos hfeg h,  Alireza  Z.Xake r  a n d  De Lee uw, N o r a  2 0 1 9.
M ec h a nis m  of p ho toc a t alytic  r e d uc tion  of CO2 by Ag3PO4(111)/g-C3 N 4

n a noco m posi t e:  A fir s t  p rinciples  s t u dy. Jou r n al  of P hysical Ch e mis t ry C 1 2 3  (36) ,
p p.  2 2 1 9 1-2 2 2 0 1.  1 0.1 02 1/acs.jpcc.9b 0 4 4 9 3  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.10 2 1/acs.jpcc.9b 0 4 4 9 3  

Ple a s e  no t e:  
Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting
a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of
t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  
h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 
 
 
 

 

 

 
 
 

 

Mechanism of Photocatalytic Reduction of CO2 by Ag3PO4(111)/g-C3N4 

Nanocomposite: A First Principles Study 

 

Saeedeh S.Tafreshi,
a,b

 Alireza Z. Moshfegh,
b,c,*

 Nora H. de Leeuw 
d,* 

 
aDepartment of Chemistry, Amirkabir University of Technology, Tehran,15875-4413, 

Iran bDepartment of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran 

cInstitute for Nanoscience and Nanotechnology,Sharif University of Technology, Tehran, 14588-8969, 

Iran dSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK 
 
Address correspondence to moshfegh@sharif.edu, deleeuwn@cardiff.ac.uk 
 

Abstract 
 
Density functional Theory (DFT) calculations have been performed to investigate the electronic 

structure and photocatalytic activity of a hybrid Ag3PO4(111)/g-C3N4 structure. Due to Ag(d) and 

O(p) states forming the upper part of the valence band and C(p), N(p) and Ag(s) the lower part of the 

conduction band, the band gap of the hybrid material is reduced from 2.75 eV for Ag3PO4(111) and 

3.13 eV for monolayer of g-C3N4 to about 2.52 eV, enhancing the photocatalytic activity of the 

Ag3PO4(111) surface and g-C3N4 sheet in the visible region. We have also investigated possible 

reaction pathways for photocatalytic CO2 reduction on the Ag3PO4(111)/g-C3N4 nanocomposite to 

determine the most favored adsorption geometries of reaction intermediates and the related reaction 

energies. For CO2 reduction, our findings demonstrate that the Ag3PO4(111)/g-C3N4 heterostructure 

thermodynamically exhibits a higher selectivity towards CH4 production than that of CH3OH. The 

CO2 reduction process takes place through either HCOOH* or HOCOH* as an intermediate species, 

where the highest exothermic reaction energy of -2.826 eV belongs to the hydrogenation of t-COOH* 

to HCOOH* and the lowest reaction energy of -0.182 eV for hydrogenations of CH2O* to CH2OH* 

and HCO* to c-HCOH*. Our results from charge density difference calculations of the 

Ag3PO4(111)/Ag/g-C3N4 revealed that the charge transfer between the Ag3PO4(111) slab and g-

C3N4 monolayer occurs through mediation of atomic Ag, thus 
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proposing a Z-scheme mechanism. Moreover, a smaller band gap energy of 0.73 eV is calculated 

for this ternary nanocomposite due to the mid-gap states of the atomic Ag at the interface. These 

results provide in depth understanding of the reaction mechanism in the reduction and 

conversion of CO2 to useful chemicals via an Ag3PO4 and g-C3N4-based nanocomposite 

photocatalyst under visible light. 
 

1. Introduction 
 
Population growth and industrial development are among major factors limiting availability of 

dwindling fossil fuel resources. In addition, as a result of their combustion, CO2 emissions into 

the environment and the resulting greenhouse effect have led to significant concerns about 

climate change.1 Therefore, conversion of CO2 to valued products is an important issue in both 

energy and environmental global concerns. These questions have led to extensive research in 

CO2 conversion into useful alternative hydrocarbon products, including methanol (CH3OH), 

methane (CH4), formic acid (HCOOH), and formaldehyde (CH2O). A number of strategies are 

considered to address this issue such as photocatalytic reduction of CO2 using appropriate 

composite semiconductor photocatalysts.2-3 

 

Several photocatalysts have been examined for their potential to catalyze CO2 conversion reactions, 

through decreasing their charge carrier recombination rate or via better visible-light harvesting, 

leading to improved photocatalytic efficiency. Due to the efficient separation of photo-excited 

electrons and holes, silver orthophosphate (Ag3PO4) possesses excellent photocatalytic properties. 

Recent studies have shown high photo-oxidative capabilities for O2 evolution from water splitting,4 

as well as decolorization of organic dyes5 over Ag3PO4. The major problem for practical 

applications of Ag3PO4 is its low structural stability. Several studies have been carried out to 

improve the stability and thus the photocatalytic activity of Ag3PO4 by coupling it with other 
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semiconductors, such as TiO2
6, ZnO7, Bi2WO6

8, BiOI9, oxidized graphene10, reduced graphite 

oxide11, and carbon quantum dots12. Moreover, plasmonic effects induced by Ag nanoparticles 

generated by Ag3PO4, during its coupling with other semiconductor under visible light 

irradiation, leads to improved charge separation, resulting in a high photocatalytic activity. A 

comprehensive review on coupling of several 2D materials with a number of semiconductor 

oxides and the role of interfaces in photocatalytic reactions has been published recently13. 
 

Graphitic carbon nitride (g-C3N4) has been reported as a novel, metal-free layered semiconductor 

and visible-light-driven photocatalyst for the degradation of organic pollutants14 and hydrogen 

evolution from water splitting,15 as well as CO2 reduction16. Due to its medium band gap energy 

(~2.7 eV), low specific surface area and fast charge recombination rate, it is widely accepted that g-

C3N4 must be coupled with other photocatalysts to enhance its photocatalytic activity, including 

TiO2
17, CdS18, SiO2

19, Al2O3
20 or Ag3VO4

21. In addition, the photocatalytic activity of g-C3N4 

can be also improved by doping it with other elements, e.g. B/P 22, Na23, K23 or Au24. 
 

A few studies have focused on combining Ag3PO4 with g-C3N4 to enhance the photocatalytic 

activity. For example, a higher photocatalytic activity in water oxidation and oxygen production for 

the Ag3PO4/g-C3N4 nanocomposite was found with a Z-scheme charge transfer mechanism, where 

Ag atoms generated by Ag3PO4 act as a cross-linking bridge the interface of the Ag3PO4 and g-

C3N4.25-26 Other studies have also demonstrated enhanced photocatalytic performance of the 

Ag3PO4/g-C3N4 system towards decomposition of Methyl Orange27, phenol28, bisphenol A28, 

Rhodamine B29, ciprofloxacin30, and the oxidation of ethylene31 under visible light. A higher 

photocatalytic performance of combined Ag3PO4 and g-C3N4 towards degradation of methylene 

blue 30, 32-33 and removal of NO33 was also studied, where the enhancement was ascribed to the 

efficient separation of electron-hole pairs through a Z-scheme charge transfer mechanism of the 
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Ag3PO4/Ag/g-C3N4. Zhang et al.34 have reported improvement of the stability and light absorption 

ability of the Ag3PO4/g-C3N4 compared to pure Ag3PO4, where they measured enhancement in 

photodegradation of diclofenac for the hybrid system. In another study, the Ag3PO4/g-C3N4 

nanocomposite was synthesized by Zhou et al.35 They showed a higher photocatalytic activity 

towards the degradation of sulfamethoxazole through a Z-scheme charge transfer mechanism. 

Yiming He et al.36 have synthesized the Ag3PO4/g-C3N4 heterojunction using a simple in situ 

deposition method, observing enhanced photocatalytic CO2 reduction, where atomic Ag acted as the 

recombination center for electrons and holes by a Z-scheme charge carrier pathway. 
 
However, despite these promising studies, to the best of our knowledge, no computational study 

has as yet been carried out on the Ag3PO4/g-C3N4 hybrid system. In this investigation, 

geometrical and electronic properties of the Ag3PO4(111)/g-C3N4 heterojunction photocatalyst 

for CO2 photo-reduction have been studied using density functional theory (DFT) calculations, 

to gain understanding of the charge transfer mechanism at the interface. 

As shown in theoretical and experimental studies, control of surface structure is an important 

requirement for the improvement of the photocatalytic activity, where it is widely accepted that a 

high surface energy – indicating a less stable and more reactive surface - is beneficial to improve the 

photocatalytic efficiency of the facets33, 37-39. It is well known that {111} facet of the Ag3PO4 is the 

least stable and most reactive facet with its higher surface energy among the {111}, {110} and {100} 

facets33, 37-38. The literature also indicates that the exposed {111} facets show the highest 

photocatalytic activity under visible light irradiation among the lowest-index {111}, {110} and 

{100} facets, due to the larger band gap of the Ag3PO4 {111} surface which suppresses the 

recombination of electron–hole pairs, in addition to the photo-generation of electrons with higher 
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energy and activity in the conduction band of {111} surfaces than those on the other low-index 

surfaces.33 

 

Furthermore, a hybrid g-C3N4/Ag3PO4 material with reactive {111} facets is expected to display 

excellent photocatalytic performance under visible light irradiation, as confirmed by 

experiment.33, 38. Thus in this study, the Ag3PO4(111) was chosen to be coupled with a 

monolayer of g-C3N4, where a DFT approach was used to define the effect of metallic Ag as a 

recombination center on the electronic properties of the hybrid Ag3PO4(111)/g-C3N4 

photocatalyst in the CO2 reduction process. 

 

2. Computational Details 
 

 
We have performed electronic structure calculations using DFT as implemented in the Vienna Ab 

initio Simulation Package (VASP)40-41. The total energy calculations have been performed using the 

Perdew-Burke-Ernzerhof (PBE)42 form of the generalized gradient approximation (GGA) with the 

projector augmented wave (PAW) method43-45. As has been shown in other studies45, inclusion of 

the long-range Van der Waals (vdW) forces improves the energy description of each system, and we 

have therefore employed the DFT-D3, method of Grimme as implemented in VASP46. 
 
In this study, the Ag3PO4(111)/g-C3N4 nanocomposite was created by adding a monolayer of g-

C3N4 on top of a Ag3PO4(111) slab. Since experiment has shown that Ag+ generated by Ag3PO4 is 

reduced to Ag atom and the composite consists of Ag3PO4, Ag and g-C3N4, we investigated the 

effect of atomic Ag in the composite on the photocatalytic activity of the Ag3PO4(111)/g-C3N4 

hetero-structure. To create the Ag3PO4(111)/Ag/g-C3N4 composite, we first added an Ag ad-atom to 

the g-C3N4 and allowed this structure to relax. We next positioned this material with the Ag side on 

top of the Ag3PO4(111) slab and optimized the entire slab. The hybrid photocatalyst structure 
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has a hexagonal super cell with dimension of 8.287Å and a lattice mismatch of nearly 6% (see 

Figure 1). 

The electron wave functions were expanded using plane waves with a cutoff energy of 600 eV for g-

C3N4 bulk and monolayer and 450 eV for Ag3PO4 bulk, Ag3PO4(111), Ag3PO4(111)/g-C3N4 and 

Ag3PO4(111)/Ag/g-C3N4 structures, which high values ensured that no Pulay stresses occurred 

within the cells during relaxation. The convergence criteria for the residual force and energy on each 

atom during structure relaxations were set to 0.01 eV/Å and 10-5 eV, respectively. A vacuum space 

was set more than 20 Å that is introduced to avoid interactions between periodic images. 
 
Hybrid DFT, which is obtained by mixing in a fixed amount of Hartree–Fock exchange, was used to 

get exact electronic properties.47 PBE048 and Heyd-Scuseria-Ernzerhof (HSE0)49 formalisms were 

applied for Ag3PO4(111) and g-C3N4, respectively to obtain the correct band gap in line with 

 
the literature. In addition, PBE0 used for the hybrid Ag3PO4(111)/g-C3N4 and ternary 

 

Ag3PO4(111)/Ag/g-C3N4 nanocomposites, because this hybrid functional leads to band gaps in the 
visible light irradiation area that matches other studies.25-36 A 6×6×1 gamma grid54 of k-points was 
used to sample the Brillouin zone for monolayer g-C3N4 and a 4×4×1 grid for the Ag3PO4(111) slab, 
Ag3PO4(111)/g-C3N4 and Ag3PO4(111)/Ag/g-C3N4 hybrid structures. The g-C3N4 monolayer 
modeled by a (  3 ×  3)  30° supercell, which is equivalent to a 3 × 3 supercell containing 21  
 
atoms and three primitive unit cells as has been used in the study by Algara et al.55 sits on a 1 × 1 Ag3PO4(111) surface slab containing 80 atoms and six 
4―3 units, including four bottom 4―3 units fixed at bulk position. 

 

3. Results and Discussion 
 

3.1. Geometrical Structure 
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We have investigated the Ag3PO4 bulk, Ag3PO4(111) surface, g-C3N4 bulk and g-C3N4 monolayer. 
The optimized cell parameters were = = = 6.012 Å for Ag3PO4 bulk and = = 4.746 Å 

 

for a monolayer of g-C3N4, which are both in good agreement with measured experimental values 
(6.004 Å56 for Ag3PO4 bulk and 4.742 Å 57 for g-C3N4 monolayer) and previous theoretical values 
(6.010 Å58  for Ag3PO4 bulk and 4.774 Å 50 for g-C3N4 monolayer).  

The thermodynamic stability of the Ag3PO4(111)/g-C3N4 nanocomposites can be described by 

the interface adhesion energy using the following equation: 

= 3 4(111)   ― 3 4― 3 4(111)― ― 3 4 

where 3 4(111)   ―  3  4
, 3 4(111)  and ―  3  4 

represent  the  total  energy  of  the 
 

Ag3PO4(111)/g-C3N4  hybrid structure, the Ag3PO4(111) surface, and the g-C3N4  monolayer, 
respectively. The is calculated at about -1.90 eV for the 3 4(111) . The negative  ―  3  4 

 
denotes that the hybrid structure is stable thermodynamically with respect to the individual 

component materials and that strong interactions exists between the g-C3N4 monolayer and 

Ag3PO4(111) surface. 

The top and side views of the Ag3PO4(111)/g-C3N4 and Ag3PO4(111)/Ag/g-C3N4 interface 

models used in our calculations, after geometry optimization, are shown in Fig. 1, indicating 

more interaction at the interface of the ternary composite. There is a shorter distance between g-

C3N4 layer and Ag3PO4(111) surface in the Ag3PO4/Ag/g-C3N4 and a more distorted g-C3N4 

structure (Fig. 1b), due to the presence of atomic Ag at the interface.. 

To investigate the charge transfer mechanism between g-C3N4 and the Ag3PO4(111) surface, the 

differential charge densities are calculated and plotted in Fig. 2. It can be seen that more charge 

transfer occurs between the Ag atom and the g-C3N4 monolayer, leading to more interaction at the 

 
 

 



 
 

 
1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60 

 

 
 
 
 
 
interface; experiment has already confirmed that Ag acts as a recombination center at the 

interface, leading to improvement in the photocatalytic activity36. 

 
3.2. Band Structure and Density of States 

 

To understand the nature of the interaction between g-C3N4 monolayer and Ag3PO4(111) 

surface, band structure calculations of the g-C3N4 monolayer, Ag3PO4(111) surface, and 

Ag3PO4(111)/g-C3N4 hybrid structure, as well as the g-C3N4 and Ag3PO4 bulk, were carried 

out and the results are shown in Figure 3. The calculated results with PBE0 hybrid functional 

show that Ag3PO4 bulk has an indirect band gap of 2.47 eV, with the valence band maximum 

(VBM) located at M point and the conduction band minimum (CBM) placed at the Γ point (Fig. 

3a), which agrees well with other experimental5 and theoretical studies51. The Ag3PO4(111) 

surface has a direct band gap of 2.75 eV, shown in Fig. 3b, which matches the theoretical result 

reported by Zheng et al.12. In addition, the direct band gaps for g-C3N4 bulk and its monolayer, 

calculated with the HSE0 hybrid functional, are 2.75 and 3.13 eV at X and Y high symmetry 

points, (Fig. 3c and 3d), respectively. These results are also consistent with recent experimental 

and calculated findings 50, 52-53. The calculated band structure of the hybrid Ag3PO4(111)/g-

C3N4 system, with an indirect band gap as large as 2.52 eV, is illustrated in Fig. 3e. It should be 

noted that the obtained smaller band gap of the hybrid structure can dramatically enhance the 

photocatalytic performance of g-C3N4 monolayers under visible irradiation. 

 

To further understand the electronic structure at the interface of the Ag3PO4(111)/g-C3N4 hybrid 

system, the total DOS (TDOS) and its projected DOS (PDOS) were also calculated and the results 

are shown in Figure 4. According to Fig. 4a, while the CBM of the Ag3PO4(111)/g-C3N4 hetero-

structure mainly originates from the atomic orbitals of the g-C3N4 sheet, the VBM is dominated by 

the Ag3PO4(111) states. The VBM of the hetero-structure is mainly occupied by the O(p) and 
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Ag(d) orbitals of the Ag3PO4(111), where they are higher than those of g-C3N4 (Fig. 4b). 

Moreover, Fig. 4c indicates that the CBM of the Ag3PO4(111)/g-C3N4 is composed of the C(p) 

and N(p) orbitals of g-C3N4 monolayer, with the Ag(s) and O(p) orbitals of the Ag3PO4(111) 

also occupying some states of CBM. 
 
To examine the effect of atomic Ag on the electronic properties of the interface, we have further 

investigated the total density of states and band structure of the Ag3PO4/Ag/g-C3N4 composite, 

as shown in Fig. 5. The presence of atomic Ag at the interface between the Ag3PO4(111) surface 

and g-C3N4 monolayer is confirmed by the states in the mid-gap of the Ag3PO4/Ag/g-C3N4 

hybrid structure near the VBM, where they act as a recombination charge center (Fig. 5a). These 

states has decreased the band gap to 0.73 eV where the VBM is located at the T point, and CBM 

appears at the Γ point, resulting in an indirect band gap semiconductor (Fig. 5b). To gain better 

understanding of the mid-gap states, we investigated the PDOS of the Ag3PO4/Ag/g-C3N4 

structure, as shown in Fig. 6. Our calculations reveal that the main contributors to the mid-gap 

states are the atomic Ag at the interface, as well as the O atoms in the top layer of Ag3PO4 and 

the closest N and C atoms of the g-C3N4 sheet. These results confirm that the Ag atoms are 

generated via the reduction of ionic Ag of the Ag3PO4(111)/g-C3N4 composite; their presence 

has recently been confirmed by experiment.36 The above findings indicate that the 

Ag3PO4(111)/g-C3N4 system is a Z-scheme type photo-catalyst, which has already been 

reported by experiment36, 59. It is worth noting that the formation of Ag atoms in the composite, 

acting as charge carrier recombination centers, thus promotes the separation efficiency of 

electron-hole pairs, leading to higher photo-activity of Ag3PO4/g-C3N4
60-61. 

 
In general, The VBM and CBM edge positions of a semiconductor can be calculated according 

to the following equations; 
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= ― +0.5 
= ―  

where χ is the absolute electronegativity of the semiconductor, which for g-C3N4 and Ag3PO4 are 4.73 and 5.96 eV, respectively. 
represents the energy of free electrons in the normal hydrogen 
 
electrode (NHE) (about 4.5 eV), is the band gap energy of the semiconductor. The calculated 
 

band gaps for the g-C3N4 monolayer, Ag3PO4 (111) surface and Ag3PO4/g-C3N4 hybrid composite 

are 3.13, 2.75 and 2.52 eV, respectively. According to the above equations, the positions of the CB 

and VB of g-C3N4 are then -1.34 and 1.80 eV versus NHE, as shown in Fig. 7, which the obtained 

values are consistent with other studies50. As displayed in Fig. 7, the calculated CB and VB for the 

Ag3PO4(111) surface are 0.09 and 2.84 eV, versus NHE, respectively. 
 

Ag3PO4 (111) with a band gap of 2.75 eV can absorb visible light, but its CB edge is located at 

0.09 V, which is lower than the potential required for reduction of CO2 to hydrocarbon products 

like CH3OH, CH4, HCOOH and CH2O, (see Fig. 7). In contrast, the CB of g-C3N4 is above the 

CO2 reduction reaction potentials and the photo-generated electrons can thus easily reduce CO2 

to these products (Fig. 7). As such, the hybrid Ag3PO4(111)/g-C3N4 system can catalyze the 

CO2 reduction only if it follows the Z-scheme mechanism, which could happen through the 

presence of atomic Ag as the recombination center for the photo-generated electrons in the CB of 

Ag3PO4(111) and holes in the VB of the g-C3N4 sheet, as displayed in Fig. 7. Considering such 

a mechanism, the photo-excited electrons in the CB of g-C3N4 can reduce CO2, leading to 

excellent photo-catalytic activity of the Ag3PO4(111)/g-C3N4 hetero-structure in CO2 photo-

reduction processes. These results are also supported by experimental findings36. The 

mechanisms of CO2 reduction are discussed in further details in the following section. 

 

3.3. Mechanisms of CO2 Reduction 
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Upon photo-irradiation of the photo-catalyst, photo-generated electrons ( ― ) will be transferred 
 

to the conduction band of g-C3N4 and Ag3PO4(111), leaving holes (ℎ + ) in the valence band of these semiconductors to catalyze the water oxidation to form the 
hydrogen source ( + ) required for the CO2 reduction, according to the following reactions: ―  3  4+ℎ  →  ―( )+ ℎ+(    ) 

3 4+ℎ  →  ―( )+ ℎ+( ) 

2 2 +4ℎ+→  2+4 + 

 

The overall reactions of CO2 reduction to form HCOOH, CH2O, CH3OH and CH4 using 2, 4, 6 

and 8 electrons in the presence of hydrogen are expressed as follows: 

2 + 2 + + 2  ― →           
2+4 + +4 ―→    2  +  2 
2+6 + +6 ―→    3 + 2 

2+8 + +8 ―→    4+2 2 

 

The overall reactions above include several elementary hydrogenation steps, which are 

determined by the most stable product at each step, as shown in Fig.8; where reaction energies of 

all elementary steps are listed in Table 1. 

The most favorable adsorption geometries of all intermediates are shown in Fig. 9. The initial step of 

CO2 hydrogenation is the formation of the formate (HCOO*) or the carboxyl species (trans-COOH* 

and/or cis-COOH*)62. The formate species prefer to adsorb perpendicularly, with two O atoms 

pointing towards the surface, with short O N distances of 2.879 and 3.012 Å, as shown in 

 

Fig. 9. The calculated reaction energy of hydrogenation of CO2 to HCOO ( 2∗ + + ∗ →         ∗ ) is -1.565 eV, i.e. an exothermic reaction, see Table 1. The adsorbed CO2 could also be 
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hydrogenated to a carboxyl group with two cis and trans conformers (Fig. 9) 2∗ + + ∗ + ― →  , ― ∗ , which reactions are also exothermic with energies of -1.983 eV and -1.014 eV 

 

for the cis and trans conformer, respectively. As the cis conformer is more stable on the 
 

Ag3PO4(111)/g-C3N4 hetero-structure, it could possibly be the most abundant intermediate after 

the first step of CO2 hydrogenation. While cis-COOH adsorbs through its carbon atom at a 

distance of 1.589 Å from the carbon atom of the g-C3N4 monolayer, trans-COOH points 

perpendicularly towards the surface through its oxygen atom, as shown in Fig. 9. 
 

Subsequent hydrogenation products of formate and carboxyl species are formic acid (HCOOH*) and dihydroxycarbene (cis-cis, 

cis-trans and trans-trans HOCOH*). Dihydroxycarbene adsorbs in different configurations due to cis and trans structures on 

either side of the C O bond, as shown in Fig. 9. The corresponding elementary reactions of this step are ∗ + + ∗ + ― →         ∗ ,   , ― ∗ +  + ∗ and   , ― ∗ +  + ∗ 

 →    ,     ,     ― ∗ . As shown in Table. 1, the hydrogenation step of formate to formic acid is significantly 

exothermic on the Ag3PO4(111)/g-C3N4 with a reaction energy of -2.275 eV. Formation of formic acid 
through hydrogenation of the trans carboxyl group is even more exothermic with a reaction energy of -
2.826 eV. The calculated reaction energies of hydrogenation of trans and cis carboxyl leading to the 

production of different conformers of HOCOH* show that the tt-HOCOH* conformer is most likely to be 
formed. As shown in Table. 1, transformation of cc-

via reactions of ― ∗ →     HOCOH and ct-HOCOH to tt-HOCOH ― ∗ and ― ∗ →     ― ∗ are exothermic by -0.484 eV and -0.026 eV, respectively. As Fig. 9 shows, formic 

acid points towards the N atom of the g-C3N4 surface through the H atom of its OH group with an H N 

bond length of 1.865 Å. While the t,t isomer of HOCOH* bonds to C atom of the surface through its 
carbon atom with bond length of 1.558 Å, the two other conformers, 
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c, t and c,c HOCOH*, point toward the surface with their hydrogen atom at distances of 1.657 

and 1.846 Å, respectively. As to the produced intermediates, four possible paths leading to 

CH3OH and CH4 formation through either HCOOH* or HOCOH* were studied in detail, as 

shown in Figure 10. 

 

3.3.1.  The reaction pathways of CO2 to CH3OH or CH4 through HCOOH
* 

 

The reaction energy profiles of the different potential pathways are shown in Fig. 10. Produced HCOOH* is less likely to desorb 
from the surface as this process would be endothermic requiring an energy of 4.532 eV. Subsequent hydrogenation of the 
produced HCOOH* intermediate can result in the formation of either hydroxymethoxy (H2COOH*) via ∗ + + ∗ 

 

 ∗ , an endothermic reaction (1.898 eV), or a dissociation reaction into formyl (HCO*) and 
OH* via ∗ →       ∗ + ∗ with an exothermic reaction energy of -1.250 eV. Therefore, 
formation of H2COOH* is less likely to happen due to its high reaction energy, but if 
formed it points to an N atom of the surface via one of its H atoms at a distance of 1.852 Å, (see Fig. 
9). The most likely path after the formation of HCOOH* involves its dissociation to HCO*, where 
the carbon atom of HCO* binds closely to the N atom of the surface with a bond length of 1.409 Å, 
(Fig. 9). 
 

Further hydrogenation of HCO* can lead to the formation of either formaldehyde (CH2O*), via ∗ + + ∗ + ― →    2 ∗ with an exothermic reaction energy of -
0.930 eV, or cis-HCOH* and trans-HCOH*, via ∗ + + ∗ + ― →   ― ∗ and ∗ + + ∗ + ― →   ― ∗ 

 

with reaction energies of -0.182 and -0.884 eV, respectively. While the latter species adsorbs 

perpendicularly on the surface, it prefers to bridge two N atoms of g-C3N4 through its C atom with C 

N bond lengths of 1.465 and 1.524 Å. The carbon atom of cis-HCOH also prefers to bridge C and N 

atoms of the g-C3N4 layer with bond lengths of 1.570 and 1.599 Å. Transformation of c- 
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HCOH* to t-HCOH* is favorable energetically, with an exothermic reaction energy of -0.702 eV. Therefore, further hydrogenation can be 

continued from t-HCOH* to CH2OH* by the reaction of ― ∗ + ∗ + + ― →    2 ∗ releasing an energy of 0.228 eV. The produced CH2O* 

 

from HCO* hydrogenation prefers to lie almost parallel on the surface with the closest distance 

of 3.492 Å between its carbon atom and the nitrogen of the g-C3N4 monolayer. A large distance 

between molecule and hybrid structure, in addition to the unchanged geometry after adsorption, 

shows that formaldehyde adsorbs physically on the hybrid Ag3PO4/g-C3N4 system (Fig. 9). 
 
Further hydrogenation of CH2O* results in the formation of hydroxymethyl (CH2OH*) or a methoxy species (CH3O*), with exothermic energies 
of -0.182 and -1.216 eV via reactions of 2 ∗ + + ∗ +  ― →    2 ∗ and 2 ∗ +  + ∗ +  ― →    3   ∗ , respectively. As Fig. 9 shows,  

both the CH2OH* and CH3O* intermediates bond to the carbon of the g-C3N4 monolayer of the 

hybrid structure, with a C C distance of 1.580 Å and C O distance of 1.397 Å, respectively. 
 
CH3O* and CH2OH* can also hydrogenate to form methanol CH3OH* via 3 ∗ + + ∗ + ― →    3 ∗ and 2 ∗ + + ∗ + ― →    3 ∗ where both reactions are exothermic with 

 
reaction energies of -0.419 and -1.453 eV, respectively. The methanol molecule points to the 

surface by its OH group, where the distance between its H atom and the closest nitrogen atom of 

the surface is 3.007 Å, (Fig. 9). Thus, methanol production from CO2 reduction via HCOOH on 

the Ag3PO4
*(111)/g-C3N4 involves a sequence of elementary steps, as shown below: 

 

2∗ →         ∗ ,   ,   ― ∗ →           ∗ →       ∗ →  ,   ― ∗ , 2 ∗ →    2 ∗ , 3 ∗ →    3 ∗ 

 
It should be noted that the largest exothermic reaction energy of -2.826 eV occurs during the 

hydrogenation of t-COOH* to HCOOH* and the smallest reaction energy of -0.182 eV occurs in 

the hydrogenations of CH2O* to CH2OH* and HCO* to c-HCOH*. 
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Dissociation of CH2OH* to CH2
* ( 2 ∗ →    2∗ + ∗ ) with an exothermic reaction energy 

 
of -2.510 eV is another likely reaction, which leads to methane (CH4) production via subsequent hydrogenations of CH2

* and CH3
*, through 2∗ + + ∗ + ― →    3∗ and 3∗ + + ∗ + ― →   

4∗ reactions, respectively. These reactions are both likely to happen as they are highly exothermic  

with reaction energies of -1.141 and -1.508 eV. While the carbon of CH2
* prefers to bond to the 

nitrogen of g-C3N4 with a bond length of 1.326 Å, CH3
* adsorbs on top of the carbon atom of g-

C3N4 layer with C C bond length of 1.594 Å, and CH4
* interacts through one of its H atoms at a 

distance of 2.929 Å from the N atom of g-C3N4. Similarly, the sequence of elementary steps for 

CH4 production through HCOOH species is as follow: 
 

2∗ →         ∗ ,   ,   ― ∗ →           ∗ →       ∗ →  ,   ― ∗ , 2 ∗ →    2 ∗ →    2∗ →    3∗ →    4∗ 

 
In this sequence, the largest exothermic reaction energy of -2.826 eV occurs in the hydrogenation 

of t-COOH* to HCOOH* and the smallest reaction energy of -0.182 eV corresponds to CH2OH* 

and c-HCOH* production from CH2O* and HCO*, respectively. 
 

3.3.2.  The reaction pathways of CO2 to CH3OH or CH4 through HOCOH 

 

The reaction energy profiles of the pathways are shown in Fig. 10. As discussed before, tt-
HOCOH is the most favored conformer of HOCOH whose dissociation leads to formation of 

COH* via ― ∗ →       ∗ + ∗ which is an exothermic reaction by -2.097 eV. COH* binds through its 

carbon atom to three nitrogen atoms of g-C3N4 with C N bond lengths of 1.439, 1.460 and 1.487 

Å. Further hydrogenation of COH* to HCOH* is also exothermic for both cis-HCOH* and trans-

HCOH* by -1.114 and -1.816 eV, respectively. Similar to the mechanism through HCOOH* 

(discussed in section 3.3.1), further hydrogenation of HCOH* results in production of CH2OH* 

and CH3OH*. Produced CH2
* from the dissociation of CH2OH* leads to final products of 
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CH3
* and CH4

*. In summary, the following paths are involved in the production of CH3OH* 

and CH4
* via HOCOH*, respectively; 

2∗ →   ,   ― ∗ →     ― ∗ →       ∗ →   ― ∗ →    2 ∗ →    3 ∗ 

2∗ →   ,   ― ∗ →     ― ∗ →       ∗ →   ― ∗ →    2 ∗ →    2∗ →    3∗ →    4∗ 

 

While the smallest reaction energy for both paths through HOCOH* relates to the hydrogenation 

reaction of t- HCOH* to CH2OH* (-0.228 eV), the largest reaction energies for methanol and 

methane production pathways correspond to the dissociation reactions of tt-HOCOH* and 

CH2OH*, with energies of -2.097 and -2.511 eV, respectively. 
 

Desorption of produced CH3OH*, HCOOH*, CH2O* and CH4
* needs more energy due to their 

highly endothermic desorption energies of 4.544, 4.532, 4.235 and 4.213 eV, respectively. 

Surface coverage of these species; surface hydration; surface reconstruction; and/or increasing 

the temperature could all reduce the desorption energies to add desorption of the product species 

63. Temperature Programmed Desorption (TPD) could provide further insight into the 

temperature-dependence of desorption and show the temperatures at which desorption of the 

relevant species would occur, which could then feed back into mechanistic pathway calculations. 
 

Considering the mechanisms described above and shown in Fig. 10, since CH4 formation is an 

exothermic reaction releasing as much as 2.43 eV compared to 1.18 eV for the production of 

CH3OH, CH4 formation is likely to be the most favored pathway on the hybrid Ag3PO4(111)/g-

C3N4, via either HCOOH* or HOCOH* intermediates, which are both likely to happen 

thermodynamically. We have also calculated the energetics of a few reactions on the 

Ag3PO4(111)/Ag/g-C3N4 to see if the presence of the Ag affects the energetics of the reactions 

and/or the adsorption geometries and energies. However, we did not find any significant changes in 

the reaction energetics results when the composite includes Ag. A kinetic study determining the 
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reaction barriers could provide further insight into the reaction pathways of CO2 reduction on the 

Ag3PO4(111)/g-C3N4 hetero-structure. 

 

 

4. Conclusions 
 
 

DFT calculations have been employed to study the hybrid Ag3PO4(111)/g-C3N4 system as a 

potential (photo-)catalyst in the reduction of CO2. The band gap of the hybrid structure is reduced to 

2.52 eV, improving the photocatalytic capability of the Ag3PO4(111) surface and g-C3N4 monolayer 

under visible light. We have further investigated the mechanism of CO2 reduction to possible 

hydrocarbons, catalyzed by the hybrid system, where our calculated reaction energies revealed that 

the production of CH4 is the dominant pathway through either HCOOH* or HOCOH* as 

intermediates. It was found that the largest exothermic reaction energy of -2.826 eV produced during 

the hydrogenation of t-COOH* to HCOOH* and the smallest reaction energy of -0.182 eV for the 

hydrogenations of CH2O* to CH2OH* and HCO* to c-HCOH*. 

 

Our electronic structure calculations of the ternary Ag3PO4(111)/Ag/g-C3N4 nanocomposite 

revealed that the Ag atom at the interface of Ag3PO4(111) and g-C3N4 act as a charge 

recombination center where the charge transfer occurs, promoting the electron-hole separation in 

the hybrid Ag3PO4(111)/g-C3N4 system through a Z-scheme mechanism, leading to a highly 

efficient photo-catalyst, as has been seen in experiment. The band structure calculation of the 

ternary composite confirms the presence of mid-gap states of the atomic Ag at the interface, 

leading to a smaller band gap and more efficient Z-scheme photo-catalyst. 

 
This study has investigated the fundamental electronic properties of a highly efficient visible light-

active photo-catalysts and its activity towards CO2 reduction from a thermodynamic point of view. 
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A further kinetic study will provide better understanding of the mechanism of CO2 reduction on 

the Ag3PO4(111)/g-C3N4 hybrid structure. Furthermore, doped g-C3N4 coupled with 

Ag3PO4(111) has also been suggested experimentally and theoretical studies may help to 

identify the effects of different dopants on the photo-catalytic activity of the hybrid structure. 

Finally, other low-index surfaces of Ag3PO4 such as {100} could also be investigated as 

interfaces to be coupled with g-C3N4 to see if and how this would affect the photo-catalytic 

activity of the reaction under similar conditions. 
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Fig. 1. Top and side geometries of a) Ag3PO4/g-C3N4 and b) Ag3PO4/Ag/g-C3N4 interface, after  
optimization. Colors of Ag, P, O, N and C atoms are silver, purple, red, blue and brown, respectively. All 

values are in Angestrom.  
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Fig. 2. Charge density difference of nanocompositions of (a) Ag3PO4(111)/g-C3N4, (b) 
Ag3PO4(111)/Ag/g-C3N4 by an iso-surface of ± 0.001 e/Å3 , where yellow and blue colors denote lost and  

gain of electron density. 
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Fig. 3. The calculated band structure of (a) bulk Ag3PO4, (b) Ag3PO4(111), (c) bulk g-C3N4, (d) g-C3N4  
monolayer and (e) hybrid structure Ag3PO4(111)/g-C3N4. 
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Fig. 4. (a) The calculated TDOS and PDOS of the hybrid Ag3PO4(111)/g-C3N4 . (b) PDOS of  
Ag3PO4(111) in the hybrid Ag3PO4(111)/g-C3N4. (c) PDOS of g-C3N4 in the hybrid Ag3PO4(111)/g-C3N4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The calculated (a) TDOS, and (b) band structure of the hybrid Ag3PO4(111)/Ag/g-C3N4. 

Energy=0 eV corresponds to the Fermi level. 
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Fig. 6. (a) The calculated TDOS, (b-f) PDOS of the hybrid Ag3PO4(111)/Ag/g-C3N4. Energy=0 eV  
corresponds to the Fermi level.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. The calculated Z-scheme charge transfer mechanism of the Ag3PO4(111)/Ag/g-C3N4 hybrid  
composite under photoirradiation 
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Fig. 8. Possible reaction pathways for CO2 hydrogenation to form CH3OH, CH2O, HCOOH, and 
CH4 products. 
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Fig. 9. All possible adsorption geometries of reaction intermediates on the Ag3PO4(111)/g-C3N4 

(All distances are in Å). 
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Fig. 10. Reaction profiles for CO2 and subsequent hydrogenation of intermediates to a) CH3OH, and b) CH4 
via HOCOH and HCOOH on the Ag3PO4(111)/g-C3N4 nanocomposite relative to the summation of the total 
free energy of the photocatalyst, CO2 and a) three and b) four H2 in the gas phase. The total energies 
of + ( ) +  ― and 12  2(  ) are considered equal.  
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Table. 1. Possible reactions in the hydrogenation of intermediates to form CH3OH, CH2O, HCOOH, CH4 
products. The calculated reaction energies are reported, where ΔE values of the adsorption and desorption 
processes are the corresponding Eads and Edes values relative to their gas phase, respectively. 
 

Elementary reactions ΔE (eV) 

2(  )→    2∗ -0.860 

2∗ +  + ∗ +  ― →         ∗ -1.565 

2∗ +  +∗ +  ―→  ―∗ -1.014 

2∗ +  +∗ +  ―→  ―∗ -1.983 

∗ +  + ∗ +  ― →           ∗ -2.275 

―∗ +  + ∗ +  ― →           ∗ -1.857 

―∗ +  + ∗ +  ― →           ∗ -2.826 

―∗ +  +∗ +  ―→    ―∗ -1.046 

―∗ +  +∗ +  ―→    ―∗ -0.050 

―∗ +  +∗ +  ―→    ―∗ -1.020 

―∗ +  +∗ + ―→    ―∗ 0.408 

―∗→    ―∗ -0.484 

―∗→    ―∗ -0.026 

∗+  +∗+ ―→  2∗ 1.898 

∗ →       ∗ +    ∗ -1.248 

∗+  +∗+ ―→  ―∗ -0.884 

∗+  +∗+ ―→  ―∗ -0.182 

∗ +  +∗ +  ―→    2  ∗ -0.930 

―∗→  ―∗ -0.702 

2  ∗ +  +∗ +  ―→    3 -1.216 

2  ∗ +  +∗ +  ―→    2    ∗ -0.182 

―∗ +  ∗+ +  ―→    2    ∗ -0.228 

3  ∗ +  +∗ +  ―→    3    ∗ -0.419 

2    ∗ +  +∗ +  ―→    3    ∗ -1.453 

2    ∗ →    2∗ +    ∗ -2.511 

2∗ +  + ∗ +  ― →    3∗ -1.141 

3∗ +  + ∗ +  ― →    4∗ -1.508 

―∗ →       ∗ +    ∗ -2.097 

∗+  +∗+ ―→  ―∗ -1.816 

∗+  +∗+ ―→  ―∗ -1.114 

∗ →          (   ) 4.532 

2   ∗ →    2  (  ) 4.235 

4∗ →    4(  ) 4.213 

3    ∗ →    3    (  ) 4.544 

2   ∗ →  2  (  ) 4.465 
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