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Abstract

The Distribution of completed lifetimes (DCL) is a new estimator defined and derived by

Dixon (2012) in the context of the general Taylor price model (GTE). If we have panel data,

the DCL is an estimator of the cross-sectional distribution of completed lifetimes. It is a

new statistic to describe the data alongside the more familiar survival function and hazard

function. Chapter 1 focuses on the cross-sectional distribution in relation to survival analysis.

The delta method is applied to derive the variance of the of three distribution functions: the

distribution of the duration, the cross-sectional distribution of age and the distribution of

completed lifetimes. The Monte Carlo method is applied to evaluate the performances of

those formulas. The simulation results show that the asymptotic variance formula of the

DCL, age distribution and distribution of durations perform well when the sample size is

above 50. With larger sample sizes, the bias of the variance is reduced.

In chapter 2, the pairs bootstrap method is applied to calculate the variance of the age

distribution and the distribution of completed lifetimes (DCL). These results are compared

with the asymptotic expansion of the variance. The Monte Carlo simulation is applied to

investigate and evaluate the properties. In addition, the traditional Fieller’s method and

the delta method are applied to construct the confidence intervals for the DCL. The pairs

bootstrap is applied to calculate the bootstrapped version of the variance of DCL and the

construct the percentile confidence interval. In addition, the bootstrapped Fieller’s method

and delta method are also shown in this chapter. The numerical methods show that all

methods provide the accurate confidence intervals for the DCL when the sample size above



vi

200. But Fieller’s method and the delta method are superior to the remaining methods when

the sample size is below 50.

In chapter 3, we look at the CPI micro data. The CPI micro data are dealt by with different

methods. We calculate the frequency and size of the price change. In addition, both the

parametric and non-parametric methods are applied. We focus on comparing the survival

function and the hazard function to determine whether they follow the same distribution.

The null hypothesis is that both the survival function and the hazard function follow the

same distribution between different groups. We show that there exist significant differences

between the hazard functions and the survival functions before and after the financial crisis.

The Cox model and the accelerated failure time model show that the frequency of price

change after financial crisis is higher than the frequency of price change before financial

crisis.
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General Introduction

Recently, there has been a growing interest in CPI micro data to investigate the existence

of price stickiness. There exist two well-known models in monetary policy: the Taylor

contract model and the Calvo contract model. Dixon (2012) derived a general Taylor contract

model based on the Taylor contract model. The general Taylor contract model allows for the

existence of many sectors, each with a traditional Taylor contract of a particular length. Each

sector has a weight reflecting its size, with the sum of weights across all sectors summing

to one. The weights represent the cross-sectional distribution of completed lifetimes (DCL).

These coefficients can be estimated from the survival function and hazard function. It is useful

to analyze the properties of the DCL estimates such as their variance and the corresponding

confidence intervals. An individual price-spell is a sequence of periods during which the

price set by a particular seller for a particular good (service) remains the same. Survival

analysis can be applied to the duration of price-spells in the dataset. In terms of this, the

Kaplan-Meier (KM) estimator can be applied to calculate the survival ratios of the price spell,

giving the probability it will survive more than i periods. In addition, the marginal hazard

function can be used to calculate the probability of price change in the i-th period conditional

on lasting at least i periods. The DCL itself can be estimated using the KM estimator and the

marginal hazard function.

Greenwood (1926) derived the variance of the KM estimator by applying the delta method.

This method can also be applied to derive the variance of the DCL estimates. A potential

problem is that the variance may not exist if the DCL follows a chi-square distribution.
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However, there still exist some value of the mean and the variance which can be named as

"pseudo" value. Even the mean and the variance do not exist, the "pseudo" value can be

assumed to be the estimator of the mean and the variance since the mean and variance is

converge to an area rather than a point.

After obtaining the variance formula of the DCL in chapter 1, chapter 2 use the delta

method and Fieller’s theorem to derive the confidence interval. Fieller (1940, 1954) intro-

duced a transformation method to calculate the confidence interval for the ratio value. Since

DCL is a ratio estimator, Fieller’s theorem can be applied to derive the confidence interval for

the DCL. In addition, the delta method is also applied to derive the confidence for the DCL.

In chapter 2, the variance of the DCL and some inference obtained from chapter 1 are applied.

The bootstrap method is also introduced to chapter 2. Bootstrap is a powerful method when

there is no information for the data. The bootstrap method is introduced by Efron (1979).

Efron (1981) also introduced the pairs bootstrap method to the case of censored data. By

combining Fieller’s theorem and Efron’s bootstrap method, we showed the bootstrapped

Fieller’s method which can be derived the confidence interval for DCL. The bootstrapped

Fieller’s method is quite similar to the bootstrapped t statistics. Generally, the original critical

value of the t table may not accurate, Therefore, we bootstrapped the test statistics of Fieller’s

method and create a new 5% and 95% critical value. The new critical values can be applied

to construct the confidence interval. The bootstrap method is also powerful at calculating

the variance. The bootstrapped variance of the DCL is also given and compared with the

asymptotic formula derived in chapter 1.

In chapter 3, the CPI micro data is introduced. The CPI micro data is collected from the

Office for National Statistics (ONS) website. The CPI micro data of UK consists of millions

of monthly price-quote observations over the period 1999 to 2016. In the first part of chapter

3, all the data from 1999 to 2016 are included. All the properties including the frequency,

size, and duration of the price change are calculated. The Cox model and the accelerated
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failure time model are applied to investigate the heterogeneity effect and the seasonality

effect of the price change. In the second part of chapter 3, the data is divided into two groups:

the group before the financial crisis and the group after the financial crisis. The log-rank

family tests are applied to evaluate the hazard function between the two groups. We find

that there exist the significant differences of the hazard function and the survival function

between the periods before the financial crisis and after the financial crisis.



Chapter 1

The Cross-sectional Distribution of

Completed Lifetimes: Some New

Inferences on the Survival Analysis

1.1 Introduction

Survival analysis has a wide range of applications across several disciplines including

engineering, medicine and economics. In this chapter, we focus on three related distributions

arising from survival analysis: the distribution of durations, the cross-sectional distributions

of ages and completed lifetimes (DCL). Dixon (2012) introduces a unified framework for

modelling the distributions, each of the three distributions can be written in terms of the

survival function and the hazard function. In this chapter, we are going to derive the variance

of estimates of the three distributions using the Delta method of Greenwood (1926).

Suppose we divide time into discrete periods: days, weeks, months and so on. In economic

applications, this will often be driven by the data we have. The survival function gives

the probability that an event will last for more than i periods, Si. Clearly, Si ∈ [0,1] and

Si ≥ Si+m for m > 0. The corresponding hazard function hi gives the conditional probability
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that having survived i periods, the event ends (death or failure). There are two classic

methods of estimating this process. The Kaplan-Meier estimator (KM) estimates the survival

function, whilst the Nelson-Aalen estimator (NA) estimates the cumulative hazard function

(Kaplan and Meier (1958), Nelson (1972) and Aalen (1978)). The properties of both of these

estimators have been well studied and in particular their asymptotic variances (see Breslow

and Crowley (1974)). Whilst both KM and NA are general non-parametric estimators, they

can also be estimated in parametric forms, such as the Cox proportional hazard model.

Starting from the KM and NA estimators, we are able to construct estimators of the

three distributions (duration, ages and completed lifetimes) and to derive their asymptotic

variances using both the Taylor expansion and delta methods. Theorem 1 derives the

asymptotic variance of the distribution of durations. Theorem 2 and its corollary derive

the asymptotic variances for the two cross-sectional distributions. In the simulation part,

the Monte Carlo method was applied to explore the performance of the estimators and their

sensitivity to the right-censored observations. We find that whilst there can be small bias for

samples as small as 25, for samples 50 or over there is almost no bias and the results are not

sensitive to the right-censored observations for sample sizes of 50 or over.

The three distributions we estimate we believe may have many useful applications. In

economics, the estimated cross-sectional distribution of completed durations can be used

to calibrate the Generalized Taylor Model of heterogeneous price and/or wage setting in a

macroeconomic setting(See Coenen et al. (2008); Dixon and Bihan (2012a); Taylor (1980)).

In this setting, the cross-sectional distribution gives the proportion of price or wage setters

in the economy who set prices or wages for a particular period of time. However, in

demographics, it also gives the distribution of completed lifetimes for those living at a point

in time. Dixon and Siciliani (2009) estimate the distribution to obtain the completed waiting

times of people on hospital waiting lists. Whilst it is common to calculate the life-expectancy

from life tables, our estimates enable the complete distribution of lifetimes to be estimated.
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Also, if we are looking at the stock of something at a point in time (unemployed workers,

people living in an area, or machines), we can generate the distribution of completed durations

(when the unemployed find a job, when people move from an area, when machines will

fail). The estimation method can be non-parametric or parametric. The distribution of

durations is useful when we want to look at the population over an extended period of time:

the distribution of spells of unemployment, the distribution of price spells, the distribution of

periods before machines have their first fault and so on.

In section 2 we briefly review the literature on the Kaplan-Meier estimator and Nelson-

Aalen estimators of the survival and hazard functions. In section 3 we show how the

estimators of the survival and hazard functions are related to estimators of the distribution of

duration, the age distribution and the DCL. In section 4, the variance of the three distributions

are derived in Theorems 1 and 2. In section 5, we use the Monte Carlo method to investigate

the accuracy of the analytic formulas of the variance in finite sample sizes. Section 6

concludes.

1.2 Literature Review

The best known non-parametric estimator of the survival function was derived by Kaplan

and Meier (1958). As Gillesple and Fisher (1979) explained, the Kaplan-Meier estimator is

the limitation of the life table method to calculate the survival function with the increasing

of the time intervals thereby tending to be zero. Kaplan and Meier (1958) assumed that

lifetime time (the existence of the events or the age of death) was independent with the

failure time (hazard rate) and derived the product limit estimator. They derived the variance

of the survival function from an alternative way and obtained the same result as Greenwood

(1926)’s formula. They also showed the variance formula of the survival function in the large

sample size. In addition, the product limit estimators were the consistent estimators. On the

other hand, Nelson (1972) applied a graphical method to investigate the failure ratio (hazard
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rate) rather than the survival ratio. This graphical method was named as "hazard plotting". It

plotted the hazard rate and the cumulative hazard rate depending on the distribution of the

hazard function. After that, Aalen (1978) investigated the hazard function and the cumulative

hazard function from the theoretical part. The counting process theory was applied to derive

the cumulative hazard function. Since both Nelson and Aalen derived the cumulative hazard

function, there existed the new estimator named as the Nelson-Aalen estimator. The Nelson-

Aalen estimator was the cumulative hazard function. For the asymptotic properties of KM

and NA estimators, see Andersen et al. (1993), Fleming and Harrington (1991), Kalbfleisch

and Prentice (2002), Fleming and Harrington (1991), Bohoris (1994) and Colosimo et al.

(2002). With respect to the parametric method for estimating the survival function and the

hazard function, see Cox (1972). In terms of comparing the KM estimators in different

groups, see Mantel (1966).

Breslow and Crowley (1974) investigated the life table and the Greenwood formula under

the large sample conditions. They also derived the asymptotic normality for the standard

life estimators. The estimators were assigned into the vector form which converged to

the multivariate normal distribution. The covariance formula for the survival function and

cumulative hazard function were derived under large sample conditions. The confidence

interval of the KM estimator was introduced by Gillesple and Fisher (1979), Nair (1981),

Nair (1984) and Kalbfleisch and Prentice (2002). Kalbfleisch and Prentice (2002) provided a

method called the log-log transformation method to guarantee the positive lower bound of

the confidence interval of the KM estimator.

Both parametric and non-parametric methods of estimation have been well studied and

we know the variances of estimators and related statistical properties. In this chapter, we want

to derive the variances of the three related distributions, two of which are cross-sectional.

The age distribution, which gives the proportion of observations at a point in time which

have particular ages; the cross-sectional distribution of completed lifetimes which gives
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the proportion of observations at a point in time which will have a completed lifetime of a

particular duration; the distribution of duration, the proportion of observations over the whole

period which has completed lifetimes of a particular duration. Our analysis is applicable to a

panel of observations, where we observe many agents (people, households, firms, machines)

repeatedly over time and also to situations where we observe just a few or even one agent

over time. Our framework is one of discrete time, although the analysis easily carries over

to continuous time representations.

1.3 Survival Function and Hazard Function

Kaplan and Meier (1958) provided an estimator for the survival function, the Kaplan-Meier

estimators Si ∈ [0,1], i = 0,1,2, ......,F , where F is the maximum duration (this can be

arbitrarily large, or may have an obvious empirical value such as the length of the dataset).

We can imagine that there is a panel of agents. A spell of time is a period when the agent

remains in the same state (remains alive, remains ill, sets the same price). Failure occurs

when that state changes (death, recovery from illness, price changes). When the state

changes, this can either be seen as the same agent continuing in the different states (the firm

continues but sets the different price) or a new agent replaces the old (the machine fails and

is replaced with a new machine).

If we look across the entire data set, we can count the number of spells that last at least k

periods as Nk, and the number of failures in the k− th period is Dk. N0=N which is the total

number of price spells in the sample. The Kaplan-Meier estimator Ŝi of the survival function

Si can be written as:

Ŝi =
i

∏
k=1

Nk −Dk

Nk
(1.1)

Ŝi can be defined as the proportion of spells remaining at i− th period. This formula is also

known as the product limited estimator for the survival function. The cumulative hazard
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function can be named as the Nelson-Aalen estimator. The formula is:

Ĥi =
i

∑
k=1

Dk

Nk
(1.2)

The cumulative hazard function Hi is the summation of the hazard rate in each period until i

period. The (marginal) hazard function can be defined as the proportion of failures amongst

spells that have lasted i periods :

ĥi =
Di

Ni
(1.3)

By convention, we set Ŝ0 = 1 and D0 = ĥ0 = 0 are equal to zero since all spells last at

least 0 periods. Since F is the longest spell, ĥF = 1 and ŜF = 0 under the uncensored case.

The hazard function can be transformed to the survival function:

Ŝi =
i

∏
k=1

(1− ĥk) (1.4)

Likewise, the survival function can be transformed into the hazard function:

ĥi =
Ŝi−1 − Ŝi

Ŝi−1

Before deriving our three distributions, we need to define an additional variable h̄:

h̄ =
1

∑F
k=0 Ŝk

=
1
Ŝ

(1.5)

We define Ŝ = ∑F
k=0 Ŝk. Note that h̄ is the reciprocal of the sum of survival probabilities.

Intuitively, in a balanced panel, h̄ is the proportion of agents that fail every period. To

see this, consider some simple examples. First, failures occur in the first period for all

spells. In this case, Ŝ0 = 1 and Ŝi = 01 for all i > 0. All spells last for one period, and

1It should be mention that ŜF equal to zero in the uncensored case; but ŜF may not equal to zero when the
right-censored problem is considered
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h̄ = 1.Second the example where all spells last for two periods and then fail. In this case

we have Ŝ0 = Ŝ1 = 1, Ŝi = 0 for i ≥ 2. In this case h̄ = 1/2 : 50% of spells fail per period.

Hence, with a balanced panel, we can think of h̄ as being the proportion of failures each

period.

However, if we just have one cohort, we can think of h̄ as being the weighted average

hazard over i = 0,1, ......,F , where the weights are the proportions surviving to period i

divided by the sum of survival probabilities (to ensure the weights add up to 1).

Proposition 1. h̄ =
∑F−1

k=0 Ŝkĥk+1

∑F
k=0 Ŝk

= 1
∑F

k=0 Ŝk
= 1

Ŝ

All proofs are in the appendix.

1.3.1 The Distribution of Durations

The distribution of durations gives the proportion of spells that survive at least i−1 periods

and change (or "die") in the i− th period. This is sometimes called the unconditional hazard

function. The proportion of spells lasting exactly i periods can be defined as:

âd
i = Ŝi−1ĥi (1.6)

Clearly, âd
i > 0 and for F > 1, 1 > âd

i . Note also that

F

∑
i=1

âd
i = 1

Since:
F

∑
i=1

Ŝi−1ĥi =
F

∑
i=1

(
Ŝi−1 − Ŝi

)
= Ŝ0 = 1

The distribution of durations can be treated as applying a particular cohort starting within a

specific time frame (as with life tables), or as the distribution of all spells over a possibly

long period (as in a balanced panel).
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1.3.2 The Age Distribution

The age distribution can be explained as the ratio between the survival function of the price

at the time i as:

âA
i =

Ŝi−1

∑F
k=0 Ŝk

=
Ŝi−1

Ŝ
= Ŝi−1h̄ (1.7)

Since the survival function is non-increasing, the age distribution is also non-increasing:

âA
i ≥ âA

i+1. In addition, it is clear that the summation of the age distribution is equal to 1.

In the case of a balanced panel, we can think of the age distribution as being the cross-

sectional distribution of ages across agents at a point in time. However, for a particular

cohort, we can also think of it as the proportions of spells from that cohort lasting at least

a particular length. This differs from the survival function because the proportions add up

to unity (being the survival function pre-multiplied by h̄). The survival function does not

add up to unity because the events captured are not mutually exclusive. The sum of survival

probabilities will exceed one unless all spells last just one period.

The estimates of the cross-sectional age distribution and the distribution of durations are

related by the simple equality:

âA
i = âd

i
h̄
hi

In the case of a constant hazard rate with F =∞, hi = h̄ for all i= 1, ......,∞, the two estimated

distributions are identical âA
i = âd

i .
2

1.3.3 The Distribution of Completed Lifetimes

Next, we introduce the less familiar cross-sectional distribution of the complete lifetimes

(DCL) across agents. The new distribution is derived by Dixon (2012). The DCL can be

2The cross-section is length biased, so that the probability of observing a spell is proportional to length. The
age distribution has an interruption bias, since the spells are incomplete. With a constant hazard, the two biases
exactly cancel out.
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written as:

âi = ih̄Ŝi−1ĥi (1.8)

Alternatively, the DCL can be written as:

âi = i
Ŝi−1ĥi(

∑F
k=0 Ŝk

) = i
Ŝi−1ĥi

Ŝ
(1.9)

Clearly, for i = 1..F, 1 > âi > 0. For F = 1, â1 = 1. Furthermore, the sum of these

estimators is always unity:

Proposition 2. ∑F
i=1 âi = 1. 3

If we have a balanced panel, we can think of this as the cross-sectional distribution of

completed lifetimes. In the case of a single cohort, we can think of DCL as being the

distribution of completed lifetimes where we take an observation over each of the F periods.

In the first period, we have all of the spells. In the second period, the one-period spells drop

out and we have the spells with a duration of 2 and above and so on. Hence the i period

contracts will be counted i times. Thus the DCL for the cohort is given ai = h̄iâd
i . In effect,

we can think of the DCL as weighting the spells by their length, which as was suggested by

Baharad and Eden (2004).

1.3.4 The Three Distributions

The survival function, hazard function, and the three distributions are different ways of

describing the same data. They are all linked by identities: for any and all unique survival

functions there exists a unique hazard function and the unique functions of the three distri-

butions. These identities hold for the estimators as well. If we take a particular survival

function, then we can express the hazard function and the three distributions in terms of

3Proportion 2 requires that all the observations are uncensored
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Table 1.1 Relationships Among Different Functions and Distributions

Ŝi ĥi âd
i âA

i âi

Ŝi I ∏i
j=1

(
1− ĥ j

)
for i = 1,2, ...,F. 1−∑i

j=1 âd
j

âA
i+1
âA

1
1− 1

∑F
k=1

âk
k

∑i
j=1

â j
j

ĥi
Ŝi−1−Ŝi

Ŝi−1
I ∏i−1

j=1
(
1− ĥ j

) âA
i −âA

i+1
âA

i

âi
i

[
∑F

i=1
âi
i

]−1

âd
i Ŝi−1 − Ŝi ĥi ∏i−1

j=0
(
1− ĥ j

)
I âA

i −âA
i+1

âA
1

âi

i∑F
j=1

â j
j

âA
i

[
∑F

i=0 Ŝi
]−1

Ŝi−1

[
∑F

i=1 ∏i−1
j=0

(
1− ĥ j

)]−1
∏i−1

j=0
(
1− ĥ j

) 1−∑i−1
j=1 âd

j

∑F
i=1 iâd

i
I ∑F

k=1
âk
k −∑i

j=1
â j
j

âi i
[
∑F

i=0 Si
]−1 (Ŝi−1 − Ŝi

)
i∏i−1

j=1
(
1− ĥ j

)
ĥi

[
∑F

i=1 ∏i−1
j=0

(
1− ĥ j

)]−1 âd
i

i.∑F
j=1 jâd

j
i.
(
âA

i − âA
i+1

)
I

the survival function. Likewise, if we pick a particular hazard function, we can express the

survival function and all three distributions in terms of the particular hazard function. We

can also use one of the three distributions to describe the others and the survival function.

The full set of relationships is given in table(1.1). Each column represents the basic

function or distribution:
{

Ŝi, ĥi, âd
i , â

A
i , âi

}
; each row shows how the element can be written

in terms of the element of that column. Thus the first row has the different ways of writing

the survival probability Ŝi in terms of itself (the indicator I), the hazard function ĥi, and then

the three distributions âd
i , âA

i and âi. The second row shows how we can write the survival

function, the hazard (by itself) and the three distributions in terms of hazard function ĥi. The

last row expresses the key statistic h̄ in terms of all the elements. Note that these identities

apply to any and all possible functions. The identities also apply to the estimators if they are

unbiased: the estimated values must belong to the set of possible values.

1.4 Asymptotic Variances of the New Statistics

There are two equivalent ways to derive the variance formulas for the three distributions.

One is the (multivariate) delta method. Another one is the counting process theory. We will

use the delta method since it fits more easily with the discrete time framework. This method

is also introduced by Greenwood (1926) to derive the variance of the survival function. Also,
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the delta method gives more information with the higher order terms and converges to the

true value more quickly than the counting process.

Assume the survival function Ŝi converges to the mean value Si. It can be expressed as:

√
Ni[Ŝi −Si]

a.s.∼ N(0,Var(Ŝi))

By Taylor expansion we have:

g(Ŝi) = g(Si)+g′(Si)(Ŝi −Si)+Op((Ŝi −Si)
2)

where Op(.) is the asymptotic or Bachmann-Landau notation. From Slutsky’s theorem4,

there exist the relationship:

√
Ni[g(Ŝi)−g(Si)]

a.s.∼ N(0, [g′(Si)]
2Var(Ŝi))

1.4.1 Asymptotic Variance for Durations.

We begin with the distribution function of durations. We will then extend this result to cover

the distributions of age and DCL. Recall the distribution of durations which can be written

as:

âd
i = Ŝi−1ĥi

with variance:

Var(âd
i ) =Var(Ŝi−1ĥi)

4Slutsky’s theorem states that if there exist two random variables or vectors Xi and Yi, and those variables or
vectors satisfy Xi

d.−→ X and Yi
p.−→ c, then there exist the relationship:

f (Xi,Yi)
d.−→ f (X ,c)

Where Xi
d.−→ X means that Xi converges to the fixed value X in distribution; Yi

p.−→ c means that Yi converges to
the constant point c in probability.
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Theorem 1: Assume that we have the estimates of the hazard function ĥ ∈ [0,1]F and

the survival function Ŝ ∈ [0,1]F where the notation ĥ = (h0,h1,h2, ...hF) and Ŝ =

(Ŝ0, Ŝ1, ...ŜF−1, ŜF). The variance of the estimators âd
i of the distribution of durations

are given by:

V̂ar(âd
i ) = (Ŝi−1ĥi)

2[
i−1

∑
k=1

Dk

Nk(Nk −Dk)
+

Ni −Di

NiDi
] (1.10)

To derive the variance of DCL, some additional formulae need to be derived. In equation

(1.9), it can be seen that it is the product of the constant value i, and three random variables

Ŝi, ĥi and h̄. As Breslow and Crowley (1974) showed that the survival function and the hazard

function followed the normal distribution asymptotically. The diagonal variance-covariance

matrix of the hazard function is the variance formula for the hazard function while the

off-diagonal terms are all equal to zero. It means that the hazard function is independent in

different periods. On the other hand, they show the covariance for the survival function did

not equal to zero.

We adopt a different method to derive the covariance of Ŝi and Ŝ j for i < j. Recall the

Taylor expansion for Ŝi and Ŝ j:

exp(lnŜi) = exp(lnSi)+(lnŜi − lnSi)exp(lnSi)+Op((lnŜi − lnSi)
2) (1.11)

exp(lnŜ j) = exp(lnS j)+(lnŜ j − lnS j)exp(lnS j)+Op((lnŜ j − lnS j)
2) (1.12)

Rearranging equation (1.11) and (1.12) two equations:

Ŝi −Si = Si(lnŜi − lnSi)+Op((lnŜi − lnSi)
2) (1.13)

Ŝ j −S j = S j(lnŜ j − lnS j)+Op((lnŜ j − lnS j)
2) (1.14)
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If we multiply equation (1.13) with (1.14) and take the expectation:

Cov(Ŝi, Ŝ j) = E[Ŝi −Si)(Ŝ j −S j)]

≈ SiS jE[(lnŜi − lnS j)(lnŜ j − lnS j)]

= SiS jCov(lnŜi, lnŜ j)

= SiS jCov(
i

∑
k=1

ln(1− ĥk),
j

∑
k=1

ln(1− ĥ j))

= SiS jVar(
i

∑
k=1

ln(1− ĥk) (1.15)

The delta method is applied to derive the covariance of the KM estimators in equation

(1.15). Since the hazard function ĥk is assumed to follow the binomial distribution and it

is independent in each period, the Cov(ĥm, ĥn) = 0 for m �= n. Therefore, Cov(∑i
k=1 ln(1−

ĥk),∑
j
k=1 ln(1− ĥ j)) = Var(∑i

k=1 ln(1− ĥk)) when i < j. We have Var[∑i
k=1 ln(1− ĥk)] =

∑i
k=1

Dk
Nk(Nk−Dk)

which is shown in the proof of theorem 1. Applying the large sample

properties of the maximum likelihood estimator, the estimator of the covariance between Ŝi

and Ŝ j can be written as:

Ĉov(Ŝi, Ŝ j) = ŜiŜ j[
i

∑
k=1

Dk

Nk(Nk −Dk)
] f or i < j (1.16)

After deriving the covariance, we can use the delta method of ratio variable to derive the

formula of the DCL. At this point, the delta method has been applied twice. The first, the

delta method is applied to derive the variance of the distribution of durations. In the second

step, we treat the ai as the ratio distribution x̂i/ŷ with x̂i = iŜi−1ĥi and ŷ = ∑F
k=0 Ŝk. Followed

by this, we can apply the delta method for the ratio estimator x̂i/ŷ to approximate x̂i and ŷ at

the mean value xi and y:

x̂i

ŷ
≈ xi

y
+

x̂i − xi

y
− xi

y2 (ŷ− y)



1.4 Asymptotic Variances of the New Statistics 14

Take the expectation on both sides, it can be seen that:

E[
x̂i

ŷ
]≈ xi

y
(1.17)

Therefore, the variance of the ratio estimator âi = x̂i/ŷ is:

Var(
x̂i

ŷ
)≈ Var(x̂i)

y2 +
x2

i
y4Var(ŷ)−2

xi

y3Cov(x̂i, ŷ) (1.18)

Apply the large sample properties of the maximum likelihood estimator, replace xi by x̂i and

y by ŷ where x̂i = iŜi−1ĥi and ŷ = Ŝ.5 First, note that the variance of Ŝ is:

Var(Ŝ) =Var(
F

∑
i=0

Ŝi) =
F

∑
i=0

Var(Ŝi)+2 ∑
i�= j

Cov(Ŝi, Ŝ j) (1.19)

In addition, the covariance of iSihi and S j can be derived as:

Cov(iŜi−1ĥi, Ŝ j) = iCov(Ŝi−1 − Ŝi, Ŝ j) = i[Cov(Ŝi−1, Ŝ j)−Cov(Ŝi, Ŝ j)]

In other words, the Cov(iŜi−1ĥi, Ŝ j) can be transformed to the covariance of Cov(iŜi−1ĥi, Ŝ):

Cov(iŜi−1ĥi,
F

∑
k=1

Ŝk) = i[Cov(Ŝi−1,
F

∑
k=1

Ŝk)−Cov(Ŝi,
F

∑
k=1

Ŝk)]

= i[
F

∑
k=1

Cov(Ŝi−1, Ŝk)−
F

∑
k=1

Cov(Ŝi, Ŝk)] (1.20)

Substituting the equation (1.10), (1.15), (1.19) and (1.20) into equation (1.18), we have:

Theorem 2 The variance of the DCL can be defined as:

V̂ar(âi) = i2
̂Var(Ŝi−1ĥi)

Ŝ2
+ i2

Ŝ2
i−1ĥ2

i V̂ar(Ŝ)

Ŝ4
−2i2

Ŝi−1ĥiĈov(Ŝi−1ĥi, Ŝ)
Ŝ3

(1.21)

5The maximum likelihood estimator Ŝi is close to the mean value of Si in large sample size. the Si can be
replaced by Ŝi in Greenwood formula. At this point, we replace xi by x̂i and y by ŷ
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For i = 1,2, ......F.

Since the variance of the DCL has been derived, the variance formula of the age distribu-

tion can be given.

Corollary 1 The variance of the age distribution is given by:

V̂ar(âA
i ) =

̂Var(Ŝi−1)

Ŝ2
+

Ŝ2
i−1V̂ar(Ŝ)

Ŝ4
−2

Ŝi−1Ĉov(Ŝi−1, Ŝ)
Ŝ3

(1.22)

For i = 1,2, ......,F.

1.4.2 Right-Censored Problem and the Non-parametric Maximum Like-

lihood Estimation

The KM estimators can be derived from the non-parametric maximum likelihood estimators

(NPMLE). The NPMLE gives the same results as the product limited estimator (PL). NPMLE

is the numerical method to solve out the hazard function. The maximum likelihood function

for the survival function can be written as:

L =
F

∏
i=1

[Ŝi−1 − Ŝi]
DiŜNi−Di

i (1.23)

Since S0 = 1, this maximum likelihood formula can be applied to estimate the survival

function for F periods. This function can be modified if we replace the survival function by

the hazard function:

Ŝi =
i

∏
k=0

(1− ĥk)
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Define the value Ni to be the total number of the observations at the risk in the period i. Then

the NPMLE function can be rewritten as:

L =
F

∏
i=1

(1− ĥi)
Ni−Diĥ(Di)

i (1.24)

Take the first order derivatives with respect to hi:

∂ lnL
∂ ĥi

=−Ni −Di

1− ĥi
+

Di

ĥi
= 0

ĥi =
Di

Ni

Since the NPMLE provides the estimator of the hazard function, the survival function

can be calculated as Ŝi = ∑i
k=1(1− ĥk). The age distribution, distribution of duration and

DCL can be calculated and expressed as functions of Ŝi and ĥi.

Now we introduce the concept of the censored spells. The left-censored spells occur

when the starting point cannot be observed, being outside the period of observation, also

known as the sample period. However, the endpoint is included in the sample period. The

right-censored spells are where the endpoint cannot be observed but the start can be. The KM

estimator is usually only applied after excluding left-censored spells, so we just consider the

implications of right-censored data. The maximum length of a spell is F periods. Define the

Tj as the true lifetime of a spell j ∈ (1,2, ......N). N is the total number of the observations in

the sample size. The observed lifetime ti can be defined as:

t j = min(Tj,Cj) and ω j = I(Tj ≤Cj) j = 1,2, ......Nj.

Where the Cj means the censored time of the observation for the j-th observation; Tj is the

survival time of the j-th observation; The observed lifetime t j is the minimum of Cj and Tj.
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ω j is the uncensored dummy coefficient. If the observation t j is right-censored, ω j is equal

to 0. If he observation t j is uncensored, ω j is equal to 1. If the censored time is less than the

survival time, the observation is right-censored:

Cj < Tj, t j =Cj (right censored) and ω j = 0

Otherwise, if the observation is uncensored:

Tj ≤ Cj, t j = Tj (uncensored) and ω j = 1

1.5 Monte Carlo Simulation

The variance formulas of the DCL, age distribution and distribution of duration have been

derived by the delta method. In this section, we are going to investigate the properties of

those formulas. Depending on the simulation, the bias of the analytic variances can be

evaluated. The data is generated from the continuous time exponential distribution function.

The sample sizes are N = 25, N = 50, N = 100 and N = 200. Both the cases of uncensored

and right-censored observations are considered in the simulations. We assume that the data

is collected in discrete time. We collect the raw continuous time data and transfer them into

intervals defined as (0,r1],(r1,r2], ...(rk−1,rk], ...(rF−1,rF ].6 For t j ∈ (0,r1] we set duration

t j = r1. For t j ∈ (rk−1,rk] we set t j = rk and so on. After that, we can count the number

of the observations locating in each interval. The number of the observations locating in

k-th interval can be defined as Dk when all the observations are uncensored. Therefore, the

KM estimators and the hazard functions can be calculated for each interval. The simulation

process is:

6Now the interval (0,r1] can be defined as the "first" period. Following by this rule, (rk−1,rk] means the
k− th period.
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Step 1: assume the observed duration is t j = min(Tj,Cj). The sample sizes are N = 25,

N = 50, N = 100 and N = 200. The results are reported separately. Both the lifetime

time Tj and the censored time Cj follow the exponential distribution. The censored

time and the lifetime have the probability density functions (PDF):

p(Cj) = 0.5exp(−0.5Cj) p(Tj) = 2exp(−2Tj) (1.25)

Therefore, they have the survival function for each rk-th period:

p(Cj > rk) = exp(−0.5rk) p(Tj > rk) = exp(−2rk) (1.26)

j is the j− th observation where j ∈ (1,2, ......,N). N is the total sample size. There

exists the 2
2+0.5

7 uncensored proportion of the total observations depending on the

PDF. For the uncensored problems, we can just generate the survival time t j = Tj

and assume they are all uncensored with the right-censored coefficient ω j = 1 for all

the j. In other words, the observations can be written as (Tj,1) for all the j. For the

right-censored problem, we also need to generate the censored time Cj. If Tj < Cj,

the j− th observation is uncensored and we assign a parameter ω j = 1 to the j− th

observation and define it as (Tj,ω j). If Cj < Tj, it means the observation is right-

censored. Therefore, we written it as (Cj,ω j) with ω j = 0. After that, the survival

data are allocated into F categories. In other words, different survival periods are

transformed into some fixed period groups. In the first case, F is chose to be 5. We

divide the observations into five regions: (0,0.1], (0.1,0.2], (0.2,0.3], (0.3,0.5], and

(0.5,∞). This can be known as case 1. In case 2, another five regions are generated:

(0,0.2], (0.2,0.4], (0.4,0.6], (0.6,0.8], and (0.8,∞).

7Since the parameter of the exponential distribution of Censored time and observed time are 0.5 and 2,
separately. The right-censored proportion of the total sample can be known as 0.5

2+0.5 . The algebra is shown by
Efron (1981).
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Step 2: The formula (2.3), (1.22) and (2.14) are applied to calculate the variance of the DCL,

age distribution and duration of distribution for each period.

Step 3: Repeat step 1 and step 2 by M times. M is chosen to be 10000. One important

thing is that there may exist zero observations in one of the 5 intervals in the simulated

samples. If there exists such a zero, this sample is eliminated and another sample is

re-simulated again until we have 10000 samples in which all 5 intervals are non-empty.

Following Kiviet and Phillips (2014)’s method, The real value of the variance of DCL

can be calculated by:

Var(âi)true =
M

∑
m=1

(âi,m − ∑M
m=1 âi,m

M
)2/(M−1) (1.27)

The true value of the variance of age distribution8 can be calculated by:

Var(âA
i )true =

M

∑
m=1

(âA
i,m − ∑M

m=1 âA
i

M
)2/(M−1) (1.28)

The true value of the variance of duration distribution can be calculated by:

Var(âd
i )true =

M

∑
m=1

(âd
i,m −

∑M
m=1 âd

i,m

M
)2/(M−1) (1.29)

Where the subscript m in ai,m, ad
i,m and aA

i,m means the m-th Monte Carlo simulation. In other

words, we collect M estimators of ai,m,aA
i,m and ad

i,m and calculate the variance of them9.

Equation (1.27), (1.28) and (1.29) can be known as the real variance of the three distributions

depending on the properties of the Monte Carlo simulations. The benchmark real variances

are applied to compare with the analytic variance derived by delta method whether the

approximation results are close to the real value. Since the formula Ŝi−1ĥi = Ŝi−1 − Ŝi is

8The age distribution is the special case of the DCL, so we only provide the empirical results of DCL.
9In the simulation result, the coefficient i of equation (1.27) is ignored in the simulation process. The reason

is that i is a constant parameter for each ai
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replaced in the variance formula to calculate the true value of the variance of the distribution

of duration, so the first period of the variance of DCL can be known as the variance of the

age distribution. In addition, the final period variance of DCL is also a special case of the

variance of the age distribution when all the observations are uncensored.

Table (1.2) reports the simulation results for the uncensored data for case 1. Those data

are divided into (0,0.1], (0.1,0.2], (0.2,0.3], (0.3,0.5], and (0.5,∞). In table (1.2), all the

right-censored parameters ω j are all equal to 1, which means that the observations are all

uncensored. As we can see from table (1.2), when the sample size is equal to 25, there exists

a slight bias for the variance. When the sample size is increased to 50, the approximation

formula of the variance performs very well for all the regions. When the sample size is

increased to either N=100 or N=200, the gap between the benchmark value and the analytic

value of the variance are reduced. With the increase of the sample size, the approximation

value is closer to the true value when the observations are uncensored.

Table 1.2 The Variance of the Duration of Case 1 when All the Observations Are Uncensored.
All the Results Are Multiplied by 103

.

True Value
N Var(ad

0.1) Var(ad
0.2) Var(ad

0.3) Var(ad
0.5) Var(ad

∞)
25 5.6497 4.6783 3.7561 5.6901 9.1525
50 2.9913 2.5801 2.1244 2.9637 4.6877
100 1.4844 1.2554 1.0757 1.4705 2.2919
200 0.7451 0.6293 0.5404 0.7406 1.1594

Approximation Value

N E[ ̂Var(ad
0.1)] E[ ̂Var(ad

0.2)] E[ ̂Var(ad
0.3)] E[ ̂Var(ad

0.5)] E[ ̂Var(ad
∞)]

25 5.6880 4.9125 4.2650 5.6862 8.8820
50 2.8987 2.4790 2.0904 2.9041 4.5610
100 1.4677 1.2533 1.0613 1.4640 2.3022
200 0.7367 0.6293 0.5318 0.7355 1.1578

Note: Var(ad
i ) is the benchmark value calculated from formula (1.28); E[ ̂Var(ad

i )] is the variance
calculated from formula (2.14).

In table (1.3), the data are simulated by the same process. There still exists a slight

bias for the variance of the DCL when the sample size is N = 25. When the sample size is
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Table 1.3 The Variance of the DCL of Case 1 when All the Observations Are Uncensored.
All the Results Are Multiplied by 103

True Value
N Var(a0.1) Var(a0.2) Var(a0.3) Var(a0.5) Var(a∞)
25 0.7378 0.51417 0.3606 0.4858 0.46588
50 0.36525 0.27085 0.19608 0.24835 0.2327
100 0.1777 0.1299 0.0986 0.1228 0.1137
200 0.0879 0.0646 0.0494 0.0616 0.0575

Approximation Value

N E[ ̂Var(ad
0.1)] E[ ̂Var(ad

0.2)] E[ ̂Var(ad
0.3)] E[ ̂Var(ad

0.5)] E[ ̂Var(ad
∞)]

25 0.7719 0.5478 0.4084 0.4752 0.4460
50 0.3644 0.2638 0.1951 0.2418 0.2256
100 0.1782 0.1305 0.0982 0.1221 0.1140
200 0.0877 0.0647 0.0489 0.0613 0.0572

Note: Var(ai) is the benchmark value calculated from formula (1.27); E[ ̂Var(ai)] is the variance
calculated from formula (2.3).

increased to 50, all the approximated results are improved and they are all close to the true

value. With respect to N=100 and N=200, the approximation of the variance tends to be

closer to the real variance. However, it can be found that the approximation of the variances

do not always overestimate the true value. Sometimes it underestimates the true variance of

the DCL. In conclusion, the analytic variance formula of DCL is reduced with the increase

of the sample size.

Next, the right-censored observations are considered. Table (1.4) shows the the variance

of the distribution of duration. Compared with the benchmark value, there exists a slight

bias in the variance calculated from the analytic formula when the sample size N=25. When

sample size is increased to 50, the analytic variance performs well. When the sample size

tends to be a larger (N=100 and N=200), the empirical results show that the approximations

of the variances are nearly the same as the true values. In conclusion, the analytic formula

of the variance can capture the true value even when the sample size is small(N=25). The

asymptotic variance may overestimate or underestimate the true value.
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Table 1.4 The Variance of the Duration of Case 1 when the Right-Censored Observations
Exist in the Samples. All the Results Are Multiplied by 103

True Value
N Var(ad

0.1) Var(ad
0.2) Var(ad

0.3) Var(ad
0.5) Var(ad

∞)
25 5.4770 4.7128 4.0016 6.1382 9.5321
50 2.8680 2.5773 2.2555 3.4038 5.0703
100 1.4566 1.3187 1.1746 1.7109 2.5091
200 0.7497 0.6525 0.5807 0.8130 1.2539

Approximation Value

N E[ ̂Var(ad
0.1)] E[ ̂Var(ad

0.2)] E[ ̂Var(ad
0.3)] E[ ̂Var(ad

0.5)] E[ ̂Var(ad
∞)]

25 5.6045 5.0796 4.7601 6.4884 9.4990
50 2.8519 2.5617 2.2987 3.3076 4.9242
100 1.4442 1.3024 1.1618 1.6589 2.4841
200 0.7248 0.6537 0.5837 0.8349 1.2496

Note: Var(ad
i ) is the benchmark value calculated from formula (1.28); E[ ̂Var(ad

i )] is the variance
calculated from formula (2.14).

Table 1.5 The Variance of the DCL of Case 1 when the Right-Censored Observations Exist
in the Samples. All the Results Are Multiplied by 103

True Value
N Var(a0.1) Var(a0.2) Var(a0.3) Var(a0.5) Var(a∞)
25 0.6767 0.4910 0.3696 0.5094 0.6005
50 0.3311 0.2565 0.2006 0.2770 0.3102
100 0.1645 0.1290 0.1032 0.1381 0.1545
200 0.0832 0.0631 0.0506 0.0656 0.0772

Approximation Value

N E[ ̂Var(ad
0.1)] E[ ̂Var(ad

0.2)] E[ ̂Var(ad
0.3)] E[ ̂Var(ad

0.5)] E[ ̂Var(ad
∞)]

25 0.6798 0.5162 0.4174 0.5094 0.5824
50 0.3345 0.2557 0.2032 0.2660 0.2992235
100 0.1648 0.1285 0.1025 0.1345 0.1513
200 0.0811 0.0636 0.0511 0.0676 0.0763

Note: Var(ai) is the benchmark value calculated from formula (1.27); E[ ̂Var(ai)] is the variance
calculated from formula (2.3).

Table (1.5) shows the simulation results of the DCL variance. When the sample size is

extremely small (N=25), the approximations of the variances are still quite accurate. When

the sample size is increased to 50, all the analytic variances are improved. They are all close

to the true value. When the sample size is large (N=100 and N=200), the analytic variances
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are very close to the true value. Therefore, the analytic formula of the variance of the DCL

works well when the right-censored observations exist.

Table (1.6) to (1.9) present the variance of the distribution of durations and DCL under

the alternative assumption case 2 where all the data are assigned into the five regions: (0,0.2],

(0.2,0.4], (0.4,0.6], (0.6,0.8], and (0.8,∞). In terms of the uncensored case, all the right-

censored coefficients ω j = 1. When the right-censored observations are considered, the

p(Cj) = 0.5exp(−0.5Cj) and p(Tj) = 2exp(−2Tj) are generated. This process is the same

as the case 1. In table (1.6) and (1.7), the analytic formula of the variance can give an accurate

approximation for the true value even in the extremely small sample size (N=25). Both

the variance of the DCL and duration are either overestimated or underestimated without

a unique conclusion. When the sample size tends to be a large number, they are nearly

unbiased from the true value.

When there exist the right-censored observations in the samples, the same results can be

concluded in table (1.8) and table (1.9).

Table 1.6 The Variance of the Duration of Case 2 when All the Observations Are Uncensored.
All the Results Are Multiplied by 103

True Value
N Var(ad

0.2) Var(ad
0.4) Var(ad

0.6) Var(ad
0.8) Var(ad

∞)
25 8.511 6.4731 4.6370 2.9440 6.0651
50 4.4362 3.4353 2.5537 1.7365 3.2366
100 2.1816 1.6982 1.2514 0.8812 1.5987
200 1.1384 0.8610 0.6392 0.4491 0.8074

Approximation Value

N E[ ̂Var(ad
0.2)] E[ ̂Var(ad

0.4)] E[ ̂Var(ad
0.6)] E[ ̂Var(ad

0.8)] E[ ̂Var(ad
∞)]

25 8.4295 6.5750 4.9049 3.6899 6.1695
50 4.3413 3.3608 2.4783 1.7592 3.1459
100 2.1879 1.7030 1.2538 0.8834 1.5953
200 1.0990 0.8550 0.6298 0.4459 0.8012

Note: Var(ad
i ) is the benchmark value calculated from formula (1.28); E[ ̂Var(ad

i )] is the variance
calculated from formula (2.14).
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Table 1.7 The Variance of the DCL of Case 2 when All the Observations Are Uncensored.
All the Results Are Multiplied by 103

True Value
N Var(a0.2) Var(a0.4) Var(a0.6) Var(a0.8) Var(a∞)
25 2.3456 1.1895 0.6760 0.3829 0.5396
50 1.2091 0.6276 0.3794 0.2329 0.2956
100 0.5764 0.3054 0.1860 0.1176 0.1462
200 0.2987 0.1535 0.0938 0.0602 0.0731

Approximation Value

N E[ ̂Var(ad
0.2)] E[ ̂Var(ad

0.4)] E[ ̂Var(ad
0.6)] E[ ̂Var(ad

0.8)] E[ ̂Var(ad
∞)]

25 2.4358 1.2334 0.7190 0.4755 0.5430
50 1.2085 0.6222 0.3667 0.2325 0.2828
100 0.5841 0.3095 0.1845 0.1174 0.1440
200 0.2884 0.1540 0.0925 0.0594 0.0727

Note: Var(ai) is the benchmark value calculated from formula (1.27); E[ ̂Var(ai)] is the variance
calculated from formula (2.3).

Table 1.8 The Variance of the Duration of Case 2 when the Right-Censored Observations
Exist in the Samples. All the Results Are Multiplied by 103

True Value
N Var(ad

0.2) Var(ad
0.4) Var(ad

0.6) Var(ad
0.8) Var(ad

∞)
25 7.9283 6.9220 5.1855 3.6686 6.3243
50 4.2300 3.7601 3.0929 2.3271 3.9246
100 2.1853 1.8781 1.5767 1.2560 1.9910
200 1.0669 0.9379 0.7799 0.6350 0.9996

Approximation Value

N E[ ̂Var(ad
0.2)] E[ ̂Var(ad

0.4)] E[ ̂Var(ad
0.6)] E[ ̂Var(ad

0.8)] E[ ̂Var(ad
∞)]

25 8.1582 7.0511 6.0630 5.5234 7.5641
50 4.2223 3.6962 3.0363 2.4997 3.8673
100 2.1348 1.8690 1.5411 1.2321 1.9587
200 1.0734 0.9371 0.7749 0.6247 0.9865

Note: Var(ad
i ) is the benchmark value calculated from formula (1.28); E[ ̂Var(ad

i )] is the variance
calculated from formula (2.14).
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Table 1.9 The Variance of the DCL of Case 2 when the Right-Censored Observations Exist
in the Samples. All the Results Are Multiplied by 103

True Value
N Var(a0.2) Var(a0.4) Var(a0.6) Var(a0.8) Var(a∞)
25 1.9352 1.1768 0.7175 0.4503 0.5984
50 1.0521 0.6580 0.4406 0.2989 0.3947401
100 0.5269 0.3224 0.2233 0.1618 0.2025
200 0.2539 0.1603 0.1108 0.0813 0.1017

Approximation Value

N E[ ̂Var(ad
0.2)] E[ ̂Var(ad

0.4)] E[ ̂Var(ad
0.6)] E[ ̂Var(ad

0.8)] E[ ̂Var(ad
∞)]

25 1.8620 1.1101 0.7612 0.5964 0.6855
50 1.0220 0.6266 0.4140 0.3027 0.3806
100 0.5159 0.3197 0.2164 0.1557 0.1970
200 0.2561 0.1594 0.1091 0.0798 0.1000

Note: Var(ai) is the benchmark value calculated from formula (1.27); E[ ̂Var(ai)] is the variance
calculated from formula (2.3).

1.6 Conclusion

In this chapter, we use the delta method to derive the variance of the distributions of durations,

ages and completed lifetimes (DCL). The DCL and age distributions are cross-sectional,

although they can be applied to the case of a single cohort of data rather than a panel.

Depending on the asymptotic approximation of the variance, we provide the analytic formula

to calculate the variance of the three distributions. The asymptotic variance derived from

delta method is straightforward since it is the same derivation as the Greenwood formula.

In addition, the covariance between different survival lengths is derived in a clearer way

compared with Breslow and Crowley (1974).

The data is simulated to investigate the accuracy of the asymptotic variances of the three

distributions. There are two cases of simulation considered in this chapter. The observations

are assumed to follow the exponential distribution. Depending on the Monte Carlo results,

the analytic formulas of the variance of the DCL, age distribution and the distribution of the
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durations give more accurate results as the sample size increases. In other words, the bias

between the approximations and the true values are reduced as increase of the sample size.

For the further study, it will be useful to see if the bootstrap corrected variance can provide

a better result compared with the asymptotic formula in the small sample size. Another

extension is to derive the confidence interval for the DCL.
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1.7 Appendix.

1.7.1 Proof of Proposition 1

To see why, note that

h̄ =
1

∑F
i=0 Ŝi

F−1

∑
i=0

Ŝiĥi+1

=
1

∑F
i=0 Ŝi

(
Ŝ0 − Ŝ1

Ŝ0
+ Ŝ1

(
Ŝ1 − Ŝ2

Ŝ1

)
+ ...ŜF−1

)

=
1

∑F
i=0 Ŝi

(
1− Ŝ1 +

(
Ŝ1 − Ŝ2

)
+
(
Ŝ2 − Ŝ3

)
+ ..(ŜF−2 − ŜF−1)+ ŜF−1

)

=
1

∑F
i=0 Ŝi

Proof of Proposition 2

In proportion 2, it requires that all the observations are uncensored. To see why Proposition

2 holds, note that

∑F
i=1 âi = h̄∑F

i=1 iŜi−1ĥi

= h̄∑F
i=1 i

(
Ŝi−1 − Ŝi

)

= h̄
[
∑F

i=1

(
Ŝi−1 − Ŝi

)
+∑F

i=2

(
Ŝi−1 − Ŝi

)
+ ..∑F

i= j

(
Ŝi−1 − Ŝi

)
+ ŜF−1

]

= h̄
[
Ŝ0 + Ŝ1 + Ŝ2..+ ŜF

]

= 1
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1.7.2 Proof of Theorem 1

The first-order Taylor expansion can be applied to derive the variance of the distribution of

duration. Recall the distribution of duration formula âd
i = Ŝi−1ĥi, the Taylor series for âd

i at

Ŝi−1=Si−1 and ĥi=hi is10:

Ŝi−1ĥi ≈ Si−1hi +hi(Ŝi−1 −Si−1)+Si−1(ĥi −hi)

Recall the equation 1.11 and 1.12, we can use the same method get the equations as

below:

Ŝi−1 −Si−1 = Si(lnŜi−1 − lnSi−1)+Op((lnŜi−1 − lnSi−1)
2) (1.30)

ĥi −hi = hi(lnĥi − lnhi)+Op((lnĥi − lnhi)
2) (1.31)

Depending on the equation (1.30) and (1.31), equation (1.30) can be expressed as:

Ŝi−1ĥi −Si−1hi ≈ Si−1hi[(lnŜi−1 − lnSi−1)+(lnĥi − lnhi)]

Hence the variance Var(ad
i ) can be rewritten as:

Var(âd
i ) =Var(Ŝi−1ĥi)∼= (Si−1hi)

2[Var(ln Ŝi−1)+Var(ln ĥi)]

Depending on the large sample property of the maximum likelihood estimator, the KM

estimator Ŝi−1 converges to the true value Si−1 and the marginal hazard function ĥi converges

to the true value hi. Therefore, Var(âd
i ) can be written as:

Var(âd
i )

∼= (Ŝi−1ĥi)
2[Var(lnŜi−1)+Var(lnĥi)]

10The hazard function can be estimated by the maximum likelihood method, and the KM estimator consists
of the hazard function. Depending on the properties of the maximum likelihood estimator, it can be known that
the KM estimator Ŝi−1 converges to the true value Si−1 and the marginal hazard function ĥi converges to the
true value hi. At this point, we show that those result can be derived from the delta method
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This approximation assumes that Ŝi−1 is independent with ĥi, the covariance between the

ln Ŝi−1 and ln ĥi is zero.

The logarithm version of the survival function can be written as:

ln Ŝi−1 =
i−1

∑
k=1

ln(1− ĥk)

Assume the Di follows the binomial distribution with parameters Ni and ĥi. Therefore,

Var(Di) =Niĥi(1− ĥi). It can be shown that Var(ĥi) =Var(Di
Ni
) = ĥi(1− ĥi)/Ni. By applying

the first-order Taylor expansion:

ln(ĥi) = lnhi +(ĥi −hi)
1
hi
+Op((ĥi −hi)

2)

ln(1− ĥi) = ln(1−hi)+(ĥi −hi)
1

1−hi
+Op((ĥi −hi)

2)

To rearrange the formula:

ln(ĥi)− lnhi ∼= (ĥi −hi)
1
hi

ln(1− ĥi)− ln(1−hi)∼= (ĥi −hi)
1

1−hi

It can be assumed that the observations are independent Bernoulli distribution and they

are independent with each other. Then the variance of ĥi can be written as:



1.7 Appendix. 30

Var(ĥi) =Var(1− ĥi) =
ĥi(1− ĥi)

Ni

Apply the large sample properties of the maximum likelihood estimator:

Var(ln(ĥi))∼=
1
ĥ2

i

ĥi(1− ĥi)

Ni

∼=
Ni −Di

NiDi

Var(ln(1− ĥi))∼=
1

(1− ĥi)2

ĥi(1− ĥi)

Ni

∼=
Di

Ni(Ni −Di)

We have a formula for the exponential function:

Var(Ŝi−1ĥi) = (Ŝi−1ĥi)
2[Var(lnŜi−1)+(lnĥi)]

Therefore:

̂Var(Ŝi−1ĥi) = (Ŝi−1ĥi)
2[

i−1

∑
k=1

Dk

Nk(Nk −Dk)
+

Ni −Di

NiDi
] (1.32)



Chapter 2

The Confidence Interval of

Cross-Sectional Distribution of

Completed Lifetimes and the Pairs

Bootstrap

2.1 Introduction and Literature Review

2.1.1 Introduction

Dixon (2012) and Dixon and Bihan (2012b) introduce the general Taylor model into the

monetary economics. In the general Taylor model, there exists a cross-sectional distribution

named as the distribution of the completed lifetimes (DCL). Since the DCL is a new distribu-

tion, there is no method to investigate the confidence interval for it. The confidence interval

of DCL is very important since the confidence interval can be applied to check whether

the estimator of the DCL is rejected or not. In this chapter, we introduce the numerical

method-Fieller’s method to construct the confidence interval of the DCL. We also introduce
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the delta method to derive the confidence interval of the DCL. In addition, the bootstrap

Fieller’s method and bootstrap delta method are also introduced and applied to construct the

confidence interval of the DCL. Monte Carlo simulation is applied to compare the accuracy of

those methods. Another contribution of this chapter is to investigate whether those confidence

intervals of the DCL obtained from different methods are valid or not.

2.1.2 Literature Review

The confidence interval of the DCL and age distribution can be calculated by Fieller (1954)’s

method and delta method. In chapter 1, the variance of the distribution of duration, age

distribution and the DCL have been derived. In chapter 2, the variance formulas are applied

in constructing the confidence interval of DCL. In Fieller’s method, the ratio variable is

transformed to a linear function. The confidence interval of the ratio variable can be obtained

by solving out the linear function. Fieller (1932) investigated and derived the general

cumulative distribution formula for the ratio distribution w = x
y . Both x and y followed the

normal distribution and correlated with each other. The skulls of those ratio distributions

were plotted. Fieller (1954) focused on the distribution of the ratio w = x
y where x and y were

independent with each other. Since DCL is a ratio distribution, it is worth to introduce the

Fieller’s method to construct the confidence interval of it. With respect to the delta method,

it is a robust method even the distribution of the ratio variable is unknown.

Alternatively, the probably density function of the DCL can be derived directly. Marsaglia

(1965) studied the density function of the ratio variable. The ratio variable can be written

as m = c+x
d+y . Both x and y were random variables following the normal distribution; c and d

were constant variables. Cedilnik et al. (2004) derived the probability density of the ratio

variable w = x/y when x and y followed the bivariate normal distributions. They focused

on the shape of the density of the distribution w. They defined the shape estimator and

investigated it under three conditions: (a) the sign of shape estimator was positive; (b) the
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sign of shape estimator was negative; (c) shape estimator was equal to zero. They gave the

density function when x and y were perfectly correlated with each other (the correlation

coefficient is equal to 1 or -1). In terms of the existence of the moment of the ratio Variable,

see Cedilnik et al. (2006). However, it is hard to derive the density function of the DCL since

the expression of the DCL is complicated. Therefore, we focus on the confidence interval

rather than the density function of DCL.

Comparing with the traditional numerical method, the bootstrap method introduced by

Efron (1979) is used widely in the statistical inference. This method was applied by Efron

(1981) in the survival analysis when right-censored observations could exist. The bootstrap

sample was applied to calculate the variance of Kaplan-Meier (KM) estimator. Those results

were compared with the Greenwood formula which was the analytic variance formula of

the KM estimator. Efron (1981) showed that the bootstrap variance of the KM estimator

calculated from the bootstrap sample was close to the value of the Greenwood formula.

Therefore, we also introduce bootstrap method to investigate the confidence interval of DCL.

Hwang (1995) introduced the bootstrap method into the ratio variable. The bootstrap

method could be applied to derive the confidence interval of the ratio variable. The numerator

and denominator could follow any distributions. Both the parametric and non-parametric

bootstrap method were applied to construct the confidence interval. In addition, the empirical

sizes were evaluated between the Fieller’s method and the bootstrap method. Both methods

provided the accurate empirical sizes. When the variables in the ratio formula do not follow

the normal distributions, the bootstrap method can be applied to improve it.

There are some studies which focus on the comparison of the Fieller’s method with

any other numerical methods. As Polsky et al. (1997) and Briggs et al. (1999) showed, the

Fieller’s method and the parametric bootstrap method were suitable for constructing the

confidence interval of the ratio variable. Fan and Zhou (2007) suggested that the Fieller’s

method, the standard bootstrap method and the bootstrap percentile method provided quite
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accurate confidence intervals of the ratio variables when the numerator and denominator

followed the different distributions. Depending on the simulation work of Wang and Zhao

(2008), they suggested that the bootstrap Fieller’s method provided more accurate confidence

interval of the ratio variable. In Bebu et al. (2016)’s simulation studies, the Fieller’s method

provided a more accurate confidence interval of the ratio variable than the remaining methods.

Also see Cox (1990) and Gardiner et al. (2001). In this chapter, those methods are applied to

investigate the confidence interval of the DCL.

2.2 The Properties of Age Distribution and DCL

Breslow and Crowley (1974) showed that the survival function Ŝi with i = 0,1,2, ......,F

followed the normal distribution, the vector V = (Ŝ0, Ŝ1, ....., ŜF) follows the asymptotic

multivariate normal distribution: V a.s.∼ MN(E(V ),Σ). Where Σ is the variance-covariance

matrix for the vector V , and the vector E(V ) is the mean value of each element in vector

V . With respect to the age distribution, it can be written as âA
i = Ŝi

∑F
k=0 Ŝk

. We define a new

variable Ŝ = ∑F
k=0 Ŝk. Ŝ follows the asymptotic normal distribution Ŝ a.s.∼ N(µŜ,σ

2
Ŝ
). Now µŜ

is E(Ŝ) and σ2
Ŝ

is the variance of Ŝ. The age distribution is a ratio distribution âA
i = Ŝi

Ŝ
. There

exists the relationship that Ŝi and Ŝ follow the asymptotic multivariate normal distribution:




Ŝi

Ŝ


 a.s.∼ MN

(


µŜi

µŜ


 ,




σ2
Ŝi

σŜi,Ŝ

σŜi,Ŝ σ2
Ŝi



)

Where µŜi
is the mean value of the Ŝi; µŜ = µŜ1

+µŜ2
+ ......+µŜF

; the variance of Var(Ŝi) =

σ2
Ŝi

; the variance of Ŝ is Var(Ŝ) = σ2
Ŝ

; Var(Ŝ) = σ2 = ∑F
k=1 σ2

Ŝk
+ 2∑F

k=1 ∑F
j=1 σ2

Ŝk,Ŝ j
and

k �= j; σŜi,Ŝ is the covariance of Ŝi and Ŝ; Cov(Ŝi, Ŝ) = σŜi,Ŝ = ∑F
k=1Cov(Ŝi, Ŝk). The variance

and the covariance formula of the survival function are found from equation (2.1) and (2.2).
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The survival function can be known as the Kaplan-Meier estimator (KM estimator).The

variance of the KM estimator was derived by Greenwood (1926). The Greenwood formula

of the KM estimator can be written as:

V̂ar(Ŝi) = Ŝ2
i [

i

∑
k=1

Dk

Nk(Nk −Dk)
] (2.1)

It is crucial to investigate the covariance among the survival functions. It is clear that

the survival function Ŝi is correlated with Ŝ j. Breslow and Crowley (1974) investigated the

large sample properties of the hazard function and the survival function. They found that the

off-diagonal variance-covariance matrix of the hazard functions are all equal to zero. If the

hazard function ĥi with i = 1,2, ......,F are collected by the vector ĥ, the joint distribution

of the vector h follows the Gaussian distribution asymptotically. They also show that the

vector of survival function V = (Ŝ0, ......ŜF) converge weakly to the Gaussian process. They

derived the asymptotic covariance of the survival functions between different periods. Tsai

et al. (1987) wrote a literature review to discuss the covariance properties of KM estimators.

In chapter 1, the Taylor expansion method have been applied to derive the covariance of the

KM estimators in another way:

Ĉov(Ŝi, Ŝ j) = ŜiŜ j[
i

∑
k=1

Dk

Nk(Nk −Dk)
] f or i < j (2.2)

Define the estimator of the DCL as âi =
iŜi−1ĥi

∑F
k=0 Ŝk

. The distribution of duration can be

defined as âd
i = Ŝi−1ĥi. Since Ŝi−1ĥi = Ŝi−1 − Ŝi, both Ŝi and the summation of the survival

function Ŝ = ∑F
k=0 Ŝk follow the asymptotic normal distribution.In addition, Ŝi−1 − Ŝi and Ŝ

follow the multivariate normal distribution asymptotically:




Ŝi−1ĥi

Ŝ


 a.s.∼ MN

(


µŜi−1ĥi

µŜ


 ,




σ2
Ŝi−1ĥi

σŜi−1hi,Ŝ

σŜi−1ĥi,Ŝ
σ2

Ŝ



)
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Where σ2
Ŝi−1ĥi

=Var(Ŝi−1ĥi); σŜi−1ĥi,Ŝ
is the covariance between Ŝi−1ĥi and Ŝ; Cov(iŜi−1ĥi, Ŝ)=

iσŜi−1ĥi,Ŝ
= i[∑F

k=1Cov(Ŝi−1, Ŝk)−∑F
k=1Cov(Ŝi, Ŝk)].

The covariance between iŜi−1ĥi and Ŝ j can be derived as:

Cov(iŜi−1ĥi, Ŝ j) = iCov(Ŝi−1 − Ŝi, Ŝ j) = i[Cov(Ŝi−1, Ŝ j)−Cov(Ŝi, Ŝ j)]

In other words, the Cov(iŜi−1ĥi, Ŝ j) can be transformed to the covariance of Cov(iŜi−1ĥi, Ŝ):

Cov(iŜi−1ĥi,
F

∑
k=1

Ŝk) = i[Cov(Ŝi−1,
F

∑
k=1

Ŝk)−Cov(Ŝi,
F

∑
k=1

Ŝk)]

= i[
F

∑
k=1

Cov(Ŝi−1, Ŝk)−
F

∑
k=1

Cov(Ŝi, Ŝk)]

Note that Cov(Ŝi, Ŝ) = σŜi,Ŝ = ∑F
k=1Cov(Ŝi, Ŝk) where Ŝ = (S0,S1, ......SF). Using equation

(2.2), we can calculate Cov(Ŝi, Ŝ).

The variance of DCL is derived in chapter 1 which can be written as:

V̂ar(âi) = i2
̂Var(Ŝi−1ĥi)

Ŝ2
+ i2

Ŝ2
i−1ĥ2

i V̂ar(Ŝ)

Ŝ4
−2i2

Ŝi−1ĥiĈov(Ŝi−1ĥi, Ŝ)
Ŝ3

(2.3)

After holding those properties, Fieller’s method can be applied to construct the confidence

interval.

2.3 Confidence Interval for the DCL

2.3.1 The Fieller’s Method

In this section, the confidence interval (CI) of DCL is given. The DCL can be written as

ai =
iSi−1hi

∑F
k=0 Sk

which is known as a ratio distribution. Define the numerator iSi−1hi = xi and the

denominator ∑F
k=0 Sk = y, the DCL can be written as ai = xi/y at for the i-th period.
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In the DCL formula, the denominator is always above zero. Normally, the mean value of

the summation of survival function should be a positive value. If the denominator is close to

zero, the CI for xi/y is not accurate.

Fieller (1940, 1954) gave a method to derive the confidence interval of the ratio of two

random variables. In Fieller’s method, it requires that the numerator and the denominator

follow the bivariate normal distribution asymptotically. Franz (2007) gave a guidance to use

the Fieller’s method. In the DCL formula, there exist the relationships between x̂i and ŷ:




x̂i

ŷ


 a.s.∼ MN

(


xi

y


 ,




σ2
x̂i

σx̂iŷ

σx̂iŷ σ2
ŷ



)

Therefore, the ai = xi/y satisified the requirement of Fieller’s theorem. The DCL ai = xi/y

can be modified as:

xi = aiy

As Fieller had explained, the bivariate distribution function v = f (xi,y) with a given value ai

existed in the linear function xi = aiy. It can be rewritten as:

xi −aiy = 0

Replace the xi and y by the estimator x̂i and ŷ 1,separately. Now there exists the new

relationship:

x̂i −aiŷ
a.s.∼ N(0,Var(x̂i −aiŷ))

Thus a new statistic can be written as:

H(ai) =
x̂i −aiŷ

(a2
i σ2

ŷ −2aiσx̂iŷ +σ2
x̂i
)

1
2

(2.4)

1The estimator x̂i = iŜi−1ĥi, and the estimator ŷ = ∑F
k=0 Ŝk
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Where H(ai) follows the student-t distribution with the degree of freedom d. If both x̂i and ŷ

are approximated as the normal distribution asymptotically, the degree of freedom d can be

assumed as infinite. As Buonaccorsi (2005) showed, there exists a relationship:

P[H(ai)< t1−α/2(d)] = 1−α/2

Where α is the type I error; t1−α/2(d) is the critical value in the student-t table; d is the

degree of freedom. There exists the relationship:

P[L(ai)< 0] = 1−α/2

The function L(ai) can be defined as:

L(ai) = (x̂i −aiŷ)2 − t1−α/2(d)
2(a2

i σ2
ŷ +2aiσx̂iŷ +σ2

x̂i
) (2.5)

Open the bracket, equation(2.5) can be written as:

L(ai) = F1 −2F2ai +F3a2
i (2.6)

As can be seen from the formula (2.6), the function L(ai) is a quadratic form of ai.

Where F1 = x̂2
i − t1−α/2(d)2σ2

x̂i
; F2 = x̂iŷ − t1−α/2(d)2σx̂iŷ; F3 = ŷ2 − t1−α/2(d)2σ2

ŷ . To

find out the confidence interval of ai, some notations need to be defined: B = F2
2 −F1F3;

B1 = (F2 −B1/2)/F3; B2 = (F2 +B1/2)/F3. As Buonaccorsi (2005) showed, the confidence

interval of ai can be written as [B1,B2] when both F2 and B are not less than zero. If B is not

less than zero while F2 > 0, the confidence interval is (−∞,B2] and [B1,∞). If both B and F2

are less than zero, the confidence interval of ai is (−∞,∞). The confidence interval of ai can

be written as:

B1,2 = (F2 ± (F2
2 −F1F3)

1/2)/F3 (2.7)
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By replacing x̂i = iŜi−1ĥi and ŷ = ∑F
k=0 Ŝk into F1, F2 and F3, we can get:

F1 = (iŜi−1ĥi)
2 − t1−α/2(d)

2i2Var(Ŝi−1ĥi)

F2 = iŜi−1ĥi(
F

∑
k=0

Ŝk)− t1−α/2(d)
2iCov(Ŝi−1ĥi,

F

∑
k=0

Ŝk)

F3 = (
F

∑
k=0

Ŝk)
2 − t1−α/2(d)

2Var(
F

∑
k=0

Ŝk)

In the statistical area, researchers prefer the bounded confidence interval to the unbounded

confidence interval. See Guiard (1989) for the unbounded confidence interval of the ratio

variable.

2.3.2 Delta Method

Delta method can be also known as the Taylor expansion method. The KM estimator Ŝi

follows the asymptotic normal distribution:

√
Ni[Ŝi −Si]

a.s.∼ N(0,σ2
Ŝi
)

Where Ni is the sample size at i-th period; σ2
Ŝi

is the Greenwood formula of the KM estimator.

Depending on the Taylor expansion:

√
Ni[g(Ŝi)−g(Si)]

a.s.∼ N(0, [g′(Si)]
2σ2

Ŝi
)

g′(Si) can be replaced by g′(Ŝi) since [g′(Si)]
2σ2

Ŝi
is an estimator of Var[g(Ŝi)]. At this point,

the KM estimator is defined as Ŝi = exp(−∑i
k=1 ĥi). The Taylor series of g(Ŝi) can be written
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as:

g(Ŝi) = g(Si)+g′(Si)(Ŝi −Si)+Op((Ŝi −Si)
2)

Delta method is also available for the ratio distribution âi = x̂i/ŷ. The first-order Taylor

expansion of âi = x̂i/ŷ approximated at the x̂i = xi and ŷ = y is:

x̂i

ŷ
≈ xi

y
+

x̂i − xi

y
− xi

y2 (ŷ− y)

In terms of the variance:

Var(
x̂i

ŷ
)≈ 1

y2 σ2
x̂i
+

xi
2

y4 σŷ2 −2
xi

y3 σx̂iŷ

This variance formula can be rewritten as:

Var(
x̂i

ŷ
)≈ (

xi

y
)2(

σ2
x̂i

x2 +
σ2

ŷ

y2 −2
σx̂iŷ

xiy
)

The 1-α/2-th point-wise CI of ai obtained from delta method can be defined as:

B1,2 = âi ± t1−α/2(d)

√
Var(

x̂i

ŷ
) (2.8)

Where Var( x̂i
ŷ ) = Var(âi) can be calculated from equation (2.3). Even when the x̂i/ŷ may

not follow the normal distribution, it is worth to investigate the CI derived by delta method

since delta method is robust. Depending on the estimator âi, the σxi and σy are replaced by

σx̂i and σŷ in equation (2.8). In addition, xi and y are replaced by x̂i and ŷ, respectively. If the

denominator is close to zero, the delta method is not available.
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2.4 Bootstrap

The bootstrap method is a resampling method given by Efron (1979). The pairs bootstrap for

the survival analysis is introduced by Efron (1981).

2.4.1 Pairs Bootstrap and Right-Censored Data

According to Efron (1981)’s paper, there exist the variable Xn obtained from the unknown

population distribution D with n=1,2, ......N. The sample X = (X1,X2, ......,XN) follow the

sample distribution D̂. The parameter θ(D) can be estimated by θ̂(D̂). In other words,

θ̂(D̂) can be any estimators such as OLS, maximum likelihood, KM estimator or DCL. The

bootstrap standard deviation of θ̂ can be defined as σ̂∗. The detail of the non-parametric

bootstrap process is: Step 1. Assign the equivalent probability 1/N to each Xn. Then the boot-

strap sample X∗ = (X∗
1 ,X

∗
2 , ......,X

∗
N) can be drawn from the sample X = (X1,X2, ......,XN)

independently. More specially, the bootstrap sample X∗ = (X∗
1 ,X

∗
2 , ......,X

∗
N) is resampled

from the original sample X = (X1,X2, ......,XN) with X∗
n = Xj; j = 1,2, .....N.. After that, the

bootstrap empirical distribution D̂∗ can be generated. Step 2. Depending on the bootstrap

sample X∗ and distribution D̂∗, we can get the bootstrap estimator θ̂ ∗. To repeat the bootstrap

process of the pairs observations for B times, there exist the number of B estimators θ̂ ∗
b for

b = 1,2, ......,B. The bootstrap standard deviation can be calculated as below:

σbootstrap =

√√√√ B

∑
b=1

(θ̂ ∗
b −∑B

b=1 θ̂ ∗
b /B)2

B−1
(2.9)

The non-parametric bootstrap method can be available for the pairs observations. Assume

there exist the observation sample of pairs (X ,Y ) = ((X1,Y1),(X2,Y2), ......,(XN ,YN)). In

other words, a unique Xn corresponds to a unique Yn. To bootstrap those pairs observations,

the bootstrap sample (X∗,Y ∗) can be directly resampled from the sample (X ,Y ). More

specially, the observation of the pair (Xn,Yn) in the sample (X ,Y ) is assigned by the equivalent
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probability 1/N and resampled to obtain the bootstrap sample (X∗,Y ∗). The bootstrap sample

can be written as (X∗,Y ∗) = ((X∗
1 ,Y

∗
1 ),(X

∗
2 ,Y

∗
2 ), ......,(X

∗
N ,Y

∗
N)) with (X∗

n ,Y
∗
n )=(Xj,Yj); j =

1,2, .....N. This method can be known as the pairs bootstrap method. The bootstrap empirical

distribution D̂∗ can be generated by the bootstrap pairs sample (X∗,Y ∗). The KM estimators

and the DCL can be calculated from the bootstrapped sample. The formulas are given in the

next section.

With respect to the survival observations, the maximum length of the events is assumed

to last F periods. Nk means the total observations survived at the k− th period with k =

0,1, ......,F .2 Define the Tn as the lifetime of the n-th event while n = 1,2, ......N. The

observed lifetime can be defined as:

tn = min(Tn,Cn) and ωn = I(Tn ≤Cn) n = 1,2, ......N.

Where the Cn is the censored time; ωn is the right-censored coefficient. If the n-th observation

is uncensored, ωn is equal to 1. Otherwise, it is equal to zero.

Tn ≤ Cn, tn = Tn (uncensored) ωn = 1

Otherwise,

Cn ≤ Tn, tn =Cn (right censored) ωn = 0

Now the bootstrap method can be linked to the survival analysis. We assume that

the survival time follow the rule t1 < t2 < ...... < tN . Therefore, the survival data can be

rewritten as ((t1,ω1),(t2,ω2), ......,(tN ,ωN)). If the right-censored observations are not con-

sidered, there exist the relationships ωn = 1 and the tn = Tn with n = 1,2, ......N. The sample

((T1,1),(T2,1), ......,(TN ,1)) can be written as (T1,T2, ......,TN). The bootstrap sample can

2Note that N0 = N which is the total number of observations in the sample.
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be written as T ∗
1 ,T

∗
2 , ......,T

∗
N . After that, repeat this process for B times, the bootstrap sample

can be applied to calculate the KM estimator.

When the right-censored observations exist, some ωn may not equal to 1. To bootstrap

(tn,ωn): Step 1. The bootstrap sample can be written as (T ∗
1 ,ω

∗
1 ),(T

∗
2 ,ω

∗
2 ), ......,(T

∗
N ,ω∗

N). It

means that the bootstrap sample is drawn independently from the original sample. It assigns

the 1/N probability for each pair (tn,ωn); Step 2. The bootstrap sample is applied to calculate

KM and DCL estimators. More details can be found in section 2.4.2; Step 3. Repeat the step

1 and 2 for B times to get the bootstrap KM and DCL estimators; Step 4. The bootstrap KM

and DCL estimators are applied to calculate the bootstrap standard deviations and variances.

2.4.2 Bootstrap the Variance of the DCL

In this section, the bootstrap method is applied to derive the variance of DCL and compared

with the benchmark value and the analytic results derived in chapter 1. Since the survival time

is not exactly the same for each Monte Carlo simulation, the survival data can be rearranged

and divided into special F-categories. In other words, the data can be assigned into some

intervals such as (0,r1],(r1,r2], ....(rk−1,rk], .....(rF−1,rF ]. The value of rk is depending on

the value of the observation. After this, a new sample can be generated. Define the Dk to

be the number of the observations in the k-th interval with k = 1,2, ......,F . More specially,

we can count how many observations are located in (rk−1,rk] and define the number of

them as Dk. Nk is the total number of the observations from interval (rk−1,rk] to interval

(rF−1,rF ]. If all the observations are uncensored, we also have the relationships Ni = ∑F
k=i Dk.

Depending on this rule, we can bootstrap the sample and get the bootstrap value N∗
k and D∗

k .

The bootstrap value N∗
k and D∗

k can be applied to calculate the bootstrap KM estimator and

the Nelson-Aalen (NA) estimator. The bootstrap KM estimator can be written as:

Ŝ∗i =
i

∏
k=1

N∗
k −D∗

k
N∗

k
(2.10)
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There exist the relationships D∗
k = N∗

k −N∗
k+1 under the uncensored situation. The bootstrap

NA estimator can be written as:

Ĥ∗
i =

i

∑
k=1

D∗
k

N∗
k

(2.11)

The Ĥ∗
i is the bootstrap NA estimator which is also known as the cumulative hazard function.

With respect to the bootstrap version of the marginal hazard rate ĥ∗i , it can be written as:

ĥ∗i =
D∗

i
N∗

i
(2.12)

Since we have both the bootstrap KM and NA estimators, they can be applied to calculate

the distribution of duration, the age distributions and the DCL. The distribution of duration

can be written as:

âd
i = Ŝi−1ĥi

It can be explained as the proportion of observations survive for (i−1) periods and die at the

i-th period. Therefore, the bootstrap version of the distribution of the duration can be written

as:

âd∗
i = Ŝ∗i−1ĥ∗i (2.13)

The variance of the âd
i is derived in chapter 1, it can be written as:

V̂ar(âd
i ) = (Ŝi−1ĥi)

2[
i−1

∑
k=1

Dk

Nk(Nk −Dk)
+

Ni −Di

NiDi
] (2.14)

While for the bootstrap variance of the ad∗
i , it can be written as:

Var(âd∗
i ) =

B

∑
b=1

[âd∗
i,b −

∑B
b=1 âd∗

i,b

B
]2/(B−1) (2.15)
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Where âd
i,b is the distribution of duration in the b-th bootstrap re-sample process. B is the

total number of the bootstrap resample process. The age distribution can be written as:

âA
i =

Ŝi

∑F
k=0 Ŝk

(2.16)

The bootstrap age distribution can be written as:

âA∗
i =

Ŝ∗i
∑F

k=0 Ŝ∗k
(2.17)

With respect to the DCL:

âi =
iŜi−1ĥi

∑F
k=0 Ŝk

(2.18)

The bootstrap DCL can be written as:

â∗i =
iŜ∗i−1ĥ∗i
∑F

k=0 Ŝ∗k
(2.19)

To calculate the bootstrap variance of the DCL, the formula is:

Var(â∗i ) =
B

∑
b=1

[â∗i,b −
∑B

b=1 â∗i,b
B

]2/(B−1) (2.20)

It means that the bootstrap variance of the DCL a∗i can be calculated from each bootstrap

sample for b = 1,2, ......,B. Define Ŝ∗b = S∗0,b +S∗1,b, ......+S∗F,b, the variance formula of of

the KM estimator in bootstrapped version can be written as:

Var(S∗i ) =
B

∑
b=1

[Ŝ∗i,b −
∑B

b=1 Ŝ∗i,b
B

]2/(B−1) (2.21)

Therefore:

Var(Ŝ∗) =
B

∑
b=1

[Ŝ∗b −
∑B

b=1 Ŝ∗b
B

]2/(B−1) (2.22)
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The covariance formula of the bootstrap version can be written as:

Cov(Ŝ∗i−1ĥ∗i ,
F

∑
k=1

Ŝ∗k) =Cov(Ŝ∗i−1,
F

∑
k=1

Ŝ∗k)−Cov(Ŝ∗i ,
F

∑
k=1

Ŝ∗k)

=
F

∑
k=1

Cov(Ŝ∗i−1, Ŝ
∗
k)−

F

∑
k=1

Cov(Ŝ∗i , Ŝ
∗
k)

We have the bootstrap covariance formula:

Cov(Ŝ∗i−1, Ŝ
∗
k) =

B

∑
b=1

[Ŝ∗i−1,b −
∑B

b=1 Ŝ∗i−1,b

B
][Ŝ∗k,b −

∑B
b=1 Ŝ∗k,b

B
]/(B−1) (2.23)

2.4.3 The Bootstrap CI of the Ratio Variables

The bootstrap Fieller’s method means that the bootstrap sample can be applied to construct

the confidence interval of Fieller’s method. The bootstrap Fieller’s method was applied by

Hwang (1995) and Wang and Zhao (2008). The bootstrap estimators of the Ŝ∗i−1 and ĥ∗i are

applied. Define the x̂∗i = iŜ∗i−1ĥ∗i and ŷ∗ = Ŝ∗ = ∑F
k=0 Ŝ∗k . Following Fieller’s theorem, the

bootstrap formula of the H(ai)
∗ can be written as:

H(ai)
∗ =

x̂∗i − âiŷ∗

(â2
i σ2

ŷ∗ +2âiσx̂∗i ŷ∗ +σ2
x̂∗i
)

1
2

(2.24)

H(ai)
∗ can be known as the bootstrap version of the H(ai). The bootstrap Fieller’s method is

applied to find out the α/2-th and (1-α /2)-th smallest value of H(ai)
∗ in the bootstrap sample.

Assume the original sample has been bootstrapped B times. The H(ai)
α/2∗ and H(ai)

1−α/2∗

are the α/2-th and (1-α/2)-th smallest value of the bootstrap statistic H(ai)
∗, respectively.

"α/2∗" means the α/2’s smallest value in the bootstrap sample. It should be mention that

there exists the relationship t1−α/2(d) =−tα/2(d). In other words, the ratio statistic satisfied

H(ai)
1−α/2 =−H(ai)

α/2. However, it may not exactly follow the symmetric rule when the

sample size is not big enough. At this point, H(ai)
1−α/2∗ is replaced by−H(ai)

α/2∗ when
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the upper bound of the confidence interval of ai is calculated. There exists the relationship:

P[−H(ai)< H(ai)
α/2∗] = α/2 (2.25)

Alternatively, it can be expressed as:

P[H(ai)> H(ai)
1−α/2∗] = α/2 (2.26)

Solving out the quadratic formula by applying the same method in section 2.3.1, the bootstrap

confidence interval of âi can be constructed. The two sided bootstrapped confidence intervals

from Fieller’s method can be written as:

(B∗
1,B

∗
2)

The lower bound B∗
1 of the confidence interval âi is:

B∗
1 = (M2 − (M2

2 −M1M3)
1/2)/M3 (2.27)

M1 = (iŜi−1ĥi)
2 − (H(ai)

1−α/2∗)i2Var(Ŝi−1ĥi)

M2 = iŜi−1ĥi(
F

∑
k=0

Ŝk)− (H(ai)
1−α/2∗)2iCov(Ŝi−1ĥi,

F

∑
k=0

Ŝk)

M3 = (
F

∑
k=0

Ŝk)
2 − (H(ai)

1−α/2∗)2Var(
F

∑
k=0

Ŝk)

The upper bound B∗
2 of the confidence interval âi is:
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B∗
2 = (M5 +(M2

5 −M4M6)
1/2)/M5 (2.28)

M4 = (iŜi−1ĥi)
2 − (H(ai)

α/2∗)i2Var(Ŝi−1ĥi)

M5 = iŜi−1ĥi(
F

∑
k=0

Ŝk)− (H(ai)
α/2∗)2iCov(Ŝi−1ĥi,

F

∑
k=0

Ŝk)

M6 = (
F

∑
k=0

Ŝk)
2 − (H(ai)

α/2∗)2Var(
F

∑
k=0

Ŝk)

In the equation (2.27) ,the critical value of the t statistic t1−α/2(d) is replaced by the

bootstrap value H(ai)
1−α/2∗. In terms of the equation (2.28), the tα/2(d) is replaced by the

bootstrap value H(ai)
α/2∗. It should be mention that H(ai)

α/2∗ applied to calculate the upper

bound B∗
2 due to the bootstrap properties. The bootstrapped-t value may not be the symmetric

case. In other words, it is exactly different from the t distribution when the sample size

is small. Therefore, both the H(ai)
α/2∗ and H(ai)

1−α/2∗ must be applied to construct the

confidence intervals for the ratio ai.

With respect to the delta method, the bootstrap-t confidence interval is also available. The

ratio statistic derived from the delta method can be treated as:

H(ai)
∗
delta =

â∗i − âi√
Var(â∗i )

(2.29)

There exists the relationship:

P[H(ai)delta < t1−α/2(d)] = 1−α/2
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By applying the bootstrap-t percentile method, it can be rewritten as:

P[−H(ai)delta < H(ai)
α/2∗
d ] = α/2

Alternatively, it can be expressed as:

P[H(ai)delta > H(ai)
1−α/2∗
delta ] = α/2

Where H(ai)
α/2∗
delta and H(ai)

1−α/2∗
delta are the α/2-th and (1-α/2)-th smallest value in the

bootstrap sample. The two sided confidence intervals are:

(B∗
1,delta,B

∗
2,delta)

Where the formula for the B∗
1,delta is:

B∗
1,delta = âi −H(ai)

1−α/2∗
delta

√
Var(

x̂i

ŷ
) (2.30)

Where the formula for the B∗
2,delta is:

B∗
2,delta = âi −H(ai)

α/2∗
delta

√
Var(

x̂i

ŷ
) (2.31)

Var( x̂i
ŷ ) is the variance of DCL which can be calculated from equation (2.3). B∗

1,delta is the

lower bound; B∗
2,delta is the upper bound; Since the bootstrap-t critical value may not be

the exactly symmetric relationship, the bootstrap-t critical value H(ai)
1−α/2∗
delta and H(ai)

α/2∗
delta

need to be aoolied in the equation (2.30) and (2.31), respectively.
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2.5 Monte Carlo and Pairs Bootstrap Simulation

2.5.1 The Pairs Bootstrap of the Variance

In this part, the Monte Carlo simulation and pairs bootstrap are applied generate and resample

the sample. Those samples are applied to evaluate the analytic results of the variance, the

bootstrapped variance and the benchmark value. The benchmark value of variance means

the variance is calculated from the Monte Carlo simulation directly. In other words, the

benchmark value of the variance of DCL can be treated as the true value of the variance.

Following Kiviet and Phillips (2014)’s method, the true value of the variances for DCL can

be defined as:

Var(âi)true =
M

∑
m=1

(âi,m − ∑M
m=1 âi,m

M
)2/(M−1) (2.32)

Where the âi,m means the estimator of the DCL from the m-th simulation sample with

m = 1,2, ......,M. The true value of the variance of age distribution can be calculated by:

Var(âA
i )true =

M

∑
m=1

(âA
i,m − ∑M

m=1 âA
i

M
)2/(M−1) (2.33)

Where the âA
i,m means the estimator of the age distribution from the m-th simulation sample

with m = 1,2, ......,M. The true value of the variance of the distribution of duration can be

calculated by:

Var(âd
i )true =

M

∑
m=1

(âd
i,m −

∑M
m=1 âd

i,m

M
)2/(M−1) (2.34)

Where the âd
i,m means the estimator of the distribution of duration from the m-th simulation

sample with m = 1,2, ......,M. To generate the survival data, we follow the steps as below:

Step 1: The observations are assumed to follow the exponential distribution functions. The

probability density function of lifetime of the n-th observation can be written as:

p(Tn) = 2exp(−2Tn) (2.35)
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The probability density function of the n-th censoring time can be written as:

p(Cn) = 0.5exp(−0.5Cn) (2.36)

The survival function for each rk-th period can be defined as:

p(Cn > rk) = exp(−0.5rk) p(Tn > rk) = exp(−2rk) (2.37)

Where n = 1,2, .....,N and k = 1,2, ......,F . N is the total number of the observations in the

sample and F is the maximum length of the period. If the uncensored observations exist,

the survival time of observations Tk is applied to draw the sample directly. Otherwise, the

Tk is compared with the Ck when the right-censored observations exist. In addition, those

observations are assigned into five categories: (0,0.1], (0.1,0.2], (0.2,0.3], (0.3,0.5] and

(0.5,∞). This can be known as case 1. In case 2, the observations are allocated in another

five categories: (0,0.2], (0.2,0.4], (0.4,0.6], (0.6,0.8] and (0.8,∞). Therefore, the variance

of the duration and the DCL can be calculated by the asymptotic formulas.

Step 2: The pairs bootstrap is applied to resample the original sample.

Step 3: Repeat the step 2 by B = 1000 times. After bootstrap B = 1000 times, the

bootstrapped variance can be calculated directly from the bootstrap sample by applying the

equation (2.15) and (2.20).

Step 4: Repeat step1, step 2 and step 3 for M = 5000 times. The true value of the variance

can be calculated directly by by applying the equation (2.32) and (2.34).

It means that there are 5000 original samples. Each sample is bootstrapped by 1000 times.

Therefore, there are 5000 bootstrap variances of the duration and the DCL.3 The mean value

of the bootstrap variance is calculated and compared with the true value and the analytic

formula.
3The parameter i is ignored when the DCL is calculated since i is a constant.
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Table 2.1 The Variance of the Distribution of Duration for Case 1 When the Uncensored
Observations Exist in the Samples. All the Results Are Multiplied by 103 and the Sample
Size N=50

True Value
N Var(ad

0.1) Var(ad
0.2) Var(ad

0.3) Var(ad
0.5) Var(ad

∞)
50 3.0323 2.5584 2.1298 2.9756 4.6111

Asymptotic Approximation Value

N E[ ̂Var(ad
0.1)] E[ ̂Var(ad

0.2)] E[ ̂Var(ad
0.3)] E[ ̂Var(ad

0.5)] E[ ̂Var(ad
∞)]

50 2.9014 2.4764 2.0986 2.9100 4.5568
Pairs Bootstrap Value

N E[ ̂Var(ad∗
0.1)] E[ ̂Var(ad∗

0.2)] E[ ̂Var(ad∗
0.3)] E[ ̂Var(ad∗

0.5)] E[ ̂Var(ad∗
∞ )]

50 2.8839 2.4491 2.0544 2.8913 4.5362

Note: Var(ad
i ) is the benchmark value calculated from formula (2.34); E[ ̂Var(ad

i )] is the variance

of the distribution of duration calculated from formula (2.14); E[ ̂Var(ad∗
i )] is the bootstrap

variance of the distribution of duration calculated from formula (2.15).

Table 2.1 is the result for the variance of the duration. The sample size is chosen to be

N = 50. The variances calculated from the analytic formula and the bootstrap variance of the

distribution of duration is close to the benchmark true value.

Table 2.2 The Variance of the DCL for Case 1 When the Uncensored Observations Exist in
the Samples. All the Results Are Multiplied by 103 and the Sample Size N=50

True Value
N Var(a0.1) Var(a0.2) Var(a0.3) Var(a0.5) Var(a∞)
50 0.3703 0.2660 0.1970 0.2488 0.2308

Asymptotic Approximation Value

N E[ ̂Var(a0.1)] E[ ̂Var(a0.2)] E[ ̂Var(a0.3)] E[ ̂Var(a0.5)] E[ ̂Var(ad
∞)]

50 0.3654 0.2634 0.1961 0.2424 0.2260
Pairs Bootstrap Value

N E[ ̂Var(a∗0.1)] E[ ̂Var(a∗0.2)] E[ ̂Var(a∗0.3)] E[ ̂Var(a∗0.5)] E[ ̂Var(ad∗
∞ )]

50 0.3819 0.2688 0.1954 0.2419 0.2270

Note: Var(ai) is the benchmark value calculated from formula (2.32); E[V̂ar(ai] is the variance of
the DCL calculated from formula (2.3); E[ ̂Var(a∗i )] is the bootstrap variance of DCL calculated
from formula (2.20).

With respect to the table 2.2, it is the empirical results of variance of the DCL. The asymp-

totic approximation variance provides an accurate result which is close to the benchmark



2.5 Monte Carlo and Pairs Bootstrap Simulation 53

variance. The bootstrap variance still shows a good performance and provided an accurate

result.

Table 2.3 The Variance of the Distribution of Duration for Case 2 When the Uncensored
Observations Exist in the Samples. All the Results Are Multiplied by 103 and the Sample
Size N=50

True Value
N Var(ad

0.2) Var(ad
0.4) Var(ad

0.6) Var(ad
0.8) Var(ad

∞)
50 4.4982 3.4382 2.4551 1.7393 3.2032

Asymptotic Approximation Value

N E[ ̂Var(ad
0.2)] E[ ̂Var(ad

0.4)] E[ ̂Var(ad
0.6)] E[ ̂Var(ad

0.8)] E[ ̂Var(ad
∞)]

50 4.3283 3.3684 2.4803 1.7644 3.1552
Pairs Bootstrap Value

N E[ ̂Var(ad∗
0.2)] E[ ̂Var(ad∗

0.4)] E[ ̂Var(ad∗
0.6)] E[ ̂Var(ad∗

0.8)] E[ ̂Var(ad∗
∞ )]

50 4.3015 3.3551 2.4518 1.6998 3.1360

Note: Var(ad
i ) is the benchmark value calculated from formula (2.34); E[ ̂Var(ad

i )] is the variance

of the distribution of duration calculated from formula (2.14); E[ ̂Var(ad∗
i )] is the bootstrap

variance of the distribution of duration calculated from formula (2.15).

Table 2.4 The Variance of the DCL for Case 2 When the Uncensored Observations Exist in
the Samples. All the Results Are Multiplied by 103 and the Sample Size N=50

True Value
N Var(a0.2) Var(a0.4) Var(a0.6) Var(a0.8) Var(a∞)
50 1.2222 0.6283 0.3640 0.2299 0.2903

Asymptotic Approximation Value

N E[ ̂Var(a0.2)] E[ ̂Var(a0.4)] E[ ̂Var(a0.6)] E[ ̂Var(a0.8)] E[ ̂Var(a∞)]
50 1.1981 0.6220 0.3659 0.2323 0.2827

Pairs Bootstrap Value

N E[ ̂Var(a∗0.2)] E[ ̂Var(a∗0.4)] E[ ̂Var(a∗0.6)] E[ ̂Var(a∗0.8)] E[ ̂Var(a∞)]
50 1.2458 0.6313 0.3635 0.2220 0.2804

Note: Var(ai) is the benchmark value calculated from formula (2.32); E[V̂ar(ai] is the variance of
the DCL calculated from formula (2.3); E[ ̂Var(a∗i )] is the bootstrap variance of DCL calculated
from formula (2.20).

Tale (2.3) and (2.4) are the empirical results for case 2. It can be seen that the approxi-

mation variance calculated from the analytic formula and the bootstrap method are nearly

the same as the true variance. In addition, both the bootstrap method and the asymptotic
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expansion method provide the accurate results of the variance. Table (2.5), (2.6), (2.7) and

(2.8) show the empirical results of the variance when the right-censored observations exist.

Depending on the empirical results, both the bootstrap variance and the variance calculated

from the analytic formula are close to the benchmark variance. Therefore, both the bootstrap

method and the delta method can be applied to calculate the variance of the distribution of

duration and DCL.

Table 2.5 The Variance of the Distribution of Duration for Case 1 When the Right-Censored
Observations Exist in the Samples. All the Results Are Multiplied by 103 and the Sample
Size N=50

True Value
N Var(ad

0.1) Var(ad
0.2) Var(ad

0.3) Var(ad
0.5) Var(ad

∞)
50 2.9092 2.6885 2.2432 3.3141 4.9893

Asymptotic Approximation Value

N E[ ̂Var(ad
0.1)] E[ ̂Var(ad

0.2)] E[ ̂Var(ad
0.3)] E[ ̂Var(ad

0.5)] E[ ̂Var(ad
∞)]

50 2.8537 2.5708 2.2852 3.2736 4.9094
Pairs Bootstrap Value

N E[ ̂Var(ad∗
0.1)] E[ ̂Var(ad∗

0.2)] E[ ̂Var(ad∗
0.3)] E[ ̂Var(ad∗

0.5)] E[ ̂Var(ad∗
∞ )]

50 2.8130 2.5166 2.2020 3.2107 4.8270

Note: Var(ad
i ) is the benchmark value calculated from formula (2.34); E[ ̂Var(ad

i )] is the variance

of the distribution of duration calculated from formula (2.14); E[ ̂Var(ad∗
i )] is the bootstrap

variance of the distribution of duration calculated from formula (2.15).

2.5.2 The Confidence Interval of DCL

In this section, the CI of the Fieller’s method, Delta method, bootstrapped Fieller’s method,

bootstrapped delta method and percentile bootstrap CI have been investigated. The data

generating process is the same as that of section 2.5.1:

Step 1: In this section, we focus on the CI rather than the variance. The data generating

method of the section 2.5.1 is applied to generate the data. The sample sizes are N = 25,

N = 50, N = 200 and N = 400. The Fieller’s statistic H(ai) and the delta statistic H(ai)delta



2.5 Monte Carlo and Pairs Bootstrap Simulation 55

Table 2.6 The Variance of the DCL for Case 1 When the Right-Censored Observations Exist
in the Samples. All the Results Are Multiplied by 103 and the Sample Size N=50

True Value
N Var(a0.1) Var(a0.2) Var(a0.3) Var(a0.5) Var(a∞)
50 0.3333 0.2651 0.1957 0.2686 0.2978

Asymptotic Approximation Value

N E[ ̂Var(a0.1)] E[ ̂Var(a0.2)] E[ ̂Var(a0.3)] E[ ̂Var(a0.5)] E[ ̂Var(ad
∞)]

50 0.3311 0.2590 0.2030 0.2649 0.2991
Pairs Bootstrap Value

N E[ ̂Var(a∗0.1)] E[ ̂Var(a∗0.2)] E[ ̂Var(a∗0.3)] E[ ̂Var(a∗0.5)] E[ ̂Var(ad∗
∞ )]

50 0.3438 0.2592 0.1976 0.2583 0.2892

Note: Var(ai) is the benchmark value calculated from formula (2.32); E[V̂ar(ai] is the variance
of the DCL calculated from formula (2.3); E[ ̂Var(a∗i )] is the bootstrapped variance of the DCL
calculated from formula (2.20).

Table 2.7 The Variance of the Distribution of Duration for Case 2 When the Right-Censored
Observations Exist in the Samples. All the Results Are Multiplied by 103 and the Sample
Size N=50

True Value
N Var(ad

0.2) Var(ad
0.4) Var(ad

0.6) Var(ad
0.8) Var(ad

∞)
50 4.2584 3.6246 2.9629 2.2189 3.9568

Asymptotic Approximation Value

N E[ ̂Var(ad
0.2)] E[ ̂Var(ad

0.4)] E[ ̂Var(ad
0.6)] E[ ̂Var(ad

0.8)] E[ ̂Var(ad
∞)]

50 4.2027 3.6509 2.9927 2.4578 3.8309
Pairs Bootstrap Value

N E[ ̂Var(ad∗
0.2)] E[ ̂Var(ad∗

0.4)] E[ ̂Var(ad∗
0.6)] E[ ̂Var(ad∗

0.8)] E[ ̂Var(ad∗
∞ )]

50 4.1015 3.5506 2.8382 2.1796 3.5195

Note: Var(ad
i ) is the benchmark value calculated from formula (2.34); E[ ̂Var(ad

i )] is the variance

of the distribution of duration calculated from formula (2.14); E[ ̂Var(ad∗
i )] is the bootstrap

variance of the distribution of duration calculated from formula (2.15).
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Table 2.8 The Variance of the DCL for Case 2 When the Right-Censored Observations Exist
in the Samples. All the Results Are Multiplied by 103 and the Sample Size N=50

True Value
N Var(a0.2) Var(a0.4) Var(a0.6) Var(a0.8) Var(a∞)
50 0.9954 0.5977 0.4060 0.2753 0.3829

Asymptotic Approximation Value

N E[ ̂Var(a0.2)] E[ ̂Var(a0.4)] E[ ̂Var(a0.6)] E[ ̂Var(a0.8)] E[ ̂Var(a∞)]
50 1.0010 0.6215 0.4148 0.3040 0.3801

Pairs Bootstrap Value

N E[ ̂Var(a0.2)] E[ ̂Var(a0.4)] E[ ̂Var(a0.6)] E[ ̂Var(a0.8)] E[ ̂Var(a∞)]
50 0.9851 0.5876 0.3793 0.2563 0.3255

Note: Var(ai) is the benchmark value calculated from formula (2.32); E[V̂ar(ai] is the variance of
the DCL calculated from formula (2.3); E[ ̂Var(a∗i )] is the bootstrap variance of the DCL calculated
from formula (2.20).

are calculated for each Monte Carlo simulation. The significant level α is chosen to be 10

percent.

Step 2: The pairs bootstrap is applied to get the bootstrap value from the Fieller’s formula

H(ai)
∗ and delta method H(ai)

∗
delta. The confidence interval of the bootstrap Fieller’s method

and delta method can be calculated by the bootstrap sample.

Step 3: Repeat the step 2 by B = 1000 times. Therefore, there exist 1000 H(ai)
∗.

Rearrange the H(ai)
∗ from the smallest value to the largest value, and find out the (α

2 B+1)-

th and ((1− α
2 )B+1)-th smallest value of H(ai)

∗. Since the significant level α is 10 percent,

(α
2 B+1)-th smallest value of H(ai)

∗ is applied to be the lower bound and the ((1− α
2 )B+1)-

th smallest value of H(ai)
∗ is applied to the upper bound of the confidence interval of DCL.

The ((1− α
2 )B+1)-th smallest value of H(ai)

∗ can be known as H(ai)
1−α/2∗. The (α

2 B+1)-

th smallest value of H(ai)
∗ can be known as H(ai)

α/2∗. In terms of the delta method, the

bootstrapped version of the critical value H(ai)
1−α/2∗
delta and H(ai)

α/2∗
delta are calculated.

Step 4: Repeat step 1-3 by M = 5000 times when sample size N = 25 and 50. Repeat

step 1-3 by M = 1000 when the sample size N = 200 and 400. Each Monte Carlo simulation

is followed by the 1000 bootstrap simulations. After that, the simulation result can be applied
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to calculate the average value of the lower bound and upper bound. The benchmark value of

the CI can be calculated depending on the Monte Carlo method. The Monte Carlo results of

ai can be arranged from the smallest value to the largest value. After that, the α/2-th and

1−α/2-th smallest value are chosen to be the benchmark value of lower bound and upper

bound of the CI, separately.

Table (2.9), (2.10), (2.11) and (2.12) list the different confidence intervals of the DCL in

different sample sizes. Table (2.9) shows the CI of the DCL when N = 25. The first column is

the benchmark CI which is simulated from the Monte Carlo method. There are five methods

to calculate the confidence interval of the DCL. Those confidence intervals are compared

with the benchmark CI. Fieller’s method always provides the accurate results for the upper

bound of the confidence interval while there exist the bias in the lower bound. In the first

three periods, Fieller’s method is superior to the delta method while both methods perform

well in the last two periods. In terms of the bootstrap method, they give the significant bias

for the confidence interval of the DCL. It should be mention that there exists the negative

value of the lower bound in case 2 when the right-censored observations exist in the samples.

The negative value is due to the extremely small sample size in that category. Kalbfleisch and

Prentice (2002) provided a log-log transformation method to derive the confidence interval

of the KM estimator. Since the DCL is between 0 and 1, the log-log transferred confidence

interval provided by Kalbfleisch and Prentice (2002) can be considered for DCL when the

negative value of the confidence interval exists.

In table (2.10), the Fieller’s method provides a quite accurate confidence interval over

the five categories when the sample size is 50. The delta method does not work very well

compared with the Fieller’s method in the first three periods while both of them give the quite

accurate results in the last two periods. In terms of the bootstrap method, the confidence

intervals provided by bootstrap Fieller’s and delta method are not accurate when the sample



Table 2.9 The 90% Confidence Interval of DCL with Sample Size N=25

Case 1 with Sample Size N=25. All the Observations Are Uncensored.
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.1 [0.02062,0.10667] [0.01646,0.10584] [0.01169,0.09924] [0.01804,0.10485] [0.01980,0.10125] [0.02402,0.10724]
a0.2 [0.01149,0.08642] [0.01047,0.08541] [0.00801,0.08185] [0.01521,0.09703] [0.01568,0.09454] [0.01829,0.08632]
a0.3 [0.01124,0.07317] [0.00637,0.07166] [0.00551,0.07001] [0.01111,0.07711] [0.01123,0.07629] [0.01778,0.07293]
a0.5 [0.02105,0.09091] [0.01722,0.08849] [0.01757,0.08804] [0.02040,0.10063] [0.01913,0.09911] [0.02388,0.08955]
a∞ [0.06849,0.13953] [0.06773,0.13807] [0.07140,0.14067] [0.07362,0.14051] [0.07430,0.14208] [0.06716,0.13465]

Case 1 with Sample Size N=25. The Right-Censored Observations Exist in the Samples.
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile bootstrap
a0.1 [0.01107,0.09598] [0.01381,0.09569] [0.00965,0.08980] [0.01253,0.10774] [0.01529,0.10336] [0.01746,0.09254]
a0.2 [0.01122,0.08136] [0.00865,0.08201] [0.00604,0.07816] [0.01502,0.09456] [0.01554,0.09174] [0.01761,0.07792]
a0.3 [0.01157,0.06855] [0.00386,0.06949] [0.00272,0.06745] [0.01013,0.07323] [0.01039,0.07230] [0.01808,0.06546]
a0.5 [0.01414,0.08784] [0.01234,0.08584] [0.01221,0.08479] [0.01954,0.09457] [0.01953,0.09448] [0.02143,0.08235]
a∞ [0.04076,0.11813] [0.03875,0.11882] [0.04102,0.12001] [0.04947,0.12869] [0.04938,0.12980] [0.04111,0.10716]

Case 2 with Sample Size N=25. All the Observations Are Uncensored.
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.2 [0.05714,0.21429] [0.05971,0.22160] [0.04882,0.20544] [0.06357,0.23158] [0.06549,0.22440] [0.05835,0.21162]
a0.4 [0.03125,0.14754] [0.03192,0.14697] [0.02808,0.14064] [0.03889,0.16783] [0.03921,0.16468] [0.03547,0.14265]
a0.6 [0.01613,0.10448] [0.01413,0.10203] [0.01392,0.10025] [0.02122,0.11206] [0.02113,0.11164] [0.02495,0.10081]
a0.8 [0.01429,0.07692] [0.00339,0.07491] [0.00499,0.07522] [0.00949,0.07555] [0.00831,0.07500] [0.02223,0.07458]
a∞ [0.03448,0.11268] [0.03078,0.10907] [0.03632,0.11267] [0.04023,0.11550] [0.04077,0.11843] [0.03742,0.10768]

Case 2 with Sample Size N=25. The Right-Censored Observations Exist in the Samples
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.2 [0.04773,0.17778] [0.04679,0.18681] [0.03760,0.17264] [0.05635,0.21014] [0.05810,0.20098] [0.04691,0.15944]
a0.4 [0.02620,0.12713] [0.02213,0.13103] [0.01772,0.12372] [0.03480,0.15870] [0.03531,0.15360] [0.02915,0.11220]
a0.6 [0.01593,0.09521] [0.00719,0.09678] [0.00593,0.09357] [0.01884,0.10451] [0.01908,0.10344] [0.02379,0.08378]
a0.8 [0.01623,0.07427] [−0.00153,0.07848] [−0.00081,0.07755] [0.00938,0.07230] [0.00939,0.07250] [0.02411,0.06578]
a∞ [0.02154,0.09413] [0.00964,0.09728] [0.01315,0.09883] [0.02512,0.09997] [0.02505,0.10143] [0.02940,0.08132]



Table 2.10 The 90% Confidence Interval of DCL with Sample Size N=50

Case 1 with Sample Size N=50. All the Observations Are Uncensored.
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.1 [0.02632,0.08861] [0.02579,0.08775] [0.02338,0.08474] [0.02602,0.08828] [0.02685,0.08708] [0.02691,0.09022]
a0.2 [0.02051,0.07333] [0.01925,0.07190] [0.01796,0.07024] [0.02195,0.08082] [0.02217,0.07994] [0.02112,0.07392]
a0.3 [0.01563,0.06061] [0.01391,0.05936] [0.01343,0.05861] [0.01674,0.06731] [0.01681,0.06692] [0.01652,0.06080]
a0.5 [0.02874,0.08046] [0.02775,0.07890] [0.02784,0.07870] [0.02905,0.08681] [0.02840,0.08601] [0.02873,0.08056]
a∞ [0.08219,0.13158] [0.08090,0.13065] [0.08263,0.13202] [0.08301,0.13013] [0.08344,0.13073] [0.08139,0.13083]

Case 1 with Sample Size N=50. The Right-Censored Observations Exist in the Samples.
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.1 [0.02520,0.08429] [0.02419,0.08320] [0.02195,0.08035] [0.02357,0.08645] [0.02459,0.08528] [0.02566,0.08500]
a0.2 [0.01735,0.07021] [0.01745,0.06957] [0.01608,0.06777] [0.02059,0.07923] [0.02084,0.07825] [0.01824,0.07006]
a0.3 [0.01244,0.05913] [0.01174,0.05787] [0.01113,0.05695] [0.01501,0.06631] [0.01513,0.06583] [0.01436,0.05868]
a0.5 [0.02416,0.07832] [0.02320,0.07651] [0.02308,0.07606] [0.02636,0.08439] [0.02635,0.08434] [0.02460,0.07713]
a∞ [0.05650,0.11335] [0.05595,0.11315] [0.05714,0.11394] [0.05853,0.11685] [0.05841,0.11715] [0.05559,0.11052]

Case 2 with Sample Size N=50. All the Observations Are Uncensored.
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.2 [0.07639,0.19130] [0.07786,0.19163] [0.07207,0.18399] [0.07793,0.19344] [0.07883,0.19143] [0.07757,0.19380]
a0.4 [0.04698,0.12931] [0.04660,0.12854] [0.04446,0.12549] [0.04915,0.13682] [0.04930,0.13599] [0.04770,0.12973]
a0.6 [0.02778,0.09023] [0.02597,0.08875] [0.02572,0.08793] [0.02938,0.09790] [0.02933,0.09770] [0.02847,0.09013]
a0.8 [0.01481,0.06429] [0.01259,0.06244] [0.01324,0.06264] [0.01581,0.07108] [0.01521,0.07062] [0.01700,0.06409]
a∞ [0.04762,0.10345] [0.04561,0.10158] [0.04832,0.10359] [0.04966,0.10524] [0.04992,0.10634] [0.04702,0.10206]

Case 2 with Sample Size N=50. The Right-Censored Observations Exist in the Samples.
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.2 [0.06702,0.17022] [0.06812,0.17220] [0.06283,0.16506] [0.06924,0.18168] [0.07041,0.17961] [0.06678,0.16610]
a0.4 [0.04002,0.12051] [0.03935,0.12119] [0.03680,0.11754] [0.04456,0.13374] [0.04484,0.13248] [0.03969,0.11654]
a0.6 [0.02069,0.08728] [0.02010,0.08667] [0.01937,0.08521] [0.02564,0.09881] [0.02573,0.09835] [0.02290,0.08377]
a0.8 [0.01117,0.06658] [0.00804,0.06483] [0.00839,0.06458] [0.01359,0.07051] [0.01355,0.07072] [0.01690,0.06352]
a∞ [0.02770,0.09321] [0.02670,0.09127] [0.02874,0.09254] [0.03409,0.09916] [0.03398,0.10017] [0.02919,0.08701]



Table 2.11 The 90% Confidence Interval of DCL with Sample Size N=200 and 400. All the Observations Are Uncensored.

Case 1 with Sample Size N=200
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.1 [0.03927,0.07176] [0.03894,0.06977] [0.03831,0.06907] [0.03949,0.06906] [0.03957,0.06891] [0.03949,0.07218]
a0.2 [0.03125,0.05714] [0.03092,0.05731] [0.03058,0.05692] [0.03175,0.05882] [0.03179,0.05875] [0.03154,0.05739]
a0.3 [0.02479,0.04741] [0.02437,0.04728] [0.02423,0.04711] [0.02526,0.04884] [0.02527,0.04881] [0.02493,0.04773]
a0.5 [0.04067,0.06676] [0.04019,0.06597] [0.04018,0.06593] [0.04027,0.06776] [0.04010,0.06758] [0.04067,0.06691]
a∞ [0.09568,0.12045] [0.09506,0.11999] [0.09547,0.12036] [0.09610,0.11919] [0.09622,0.11932] [0.09559,0.12032]

Case 1 with Sample Size N=400
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.1 [0.04313,0.06405] [0.04283,0.06455] [0.04251,0.06421] [0.04280,0.06454] [0.04285,0.06449] [0.04326,0.06432]
a0.2 [0.03486,0.05342] [0.03447,0.05311] [0.03430,0.05292] [0.03492,0.05376] [0.03493,0.05374] [0.03495,0.05352]
a0.3 [0.02802,0.04367] [0.02775,0.04401] [0.02768,0.04392] [0.02822,0.04470] [0.02822,0.04469] [0.02807,0.04374]
a0.5 [0.04425,0.06172] [0.04392,0.06217] [0.04391,0.06215] [0.04427,0.06264] [0.04427,0.06264] [0.04436,0.06174]
a∞ [0.09948,0.11674] [0.09897,0.11660] [0.09917,0.11679] [0.09901,0.11670] [0.09901,0.11671] [0.09939,0.11670]

Case 2 with Sample Size N=200
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.2 [0.10124,0.15619] [0.09999,0.15586] [0.09847,0.15411] [0.10015,0.15564] [0.10028,0.15542] [0.10167,0.15711]
a0.4 [0.06471,0.10669] [0.06478,0.10565] [0.06418,0.10494] [0.06550,0.10696] [0.06553,0.10690] [0.06485,0.10741]
a0.6 [0.04035,0.07214] [0.04048,0.07194] [0.04038,0.07176] [0.04147,0.07352] [0.04147,0.07351] [0.04070,0.07232]
a0.8 [0.02549,0.05047] [0.02501,0.05030] [0.02513,0.05037] [0.02617,0.05224] [0.02616,0.05226] [0.02553,0.05045]
a∞ [0.06301,0.09108] [0.06241,0.09055] [0.06305,0.09110] [0.06312,0.09148] [0.06310,0.09151] [0.06277,0.09097]

Case 2 with Sample Size N=400
DCL True CI Fieller Delta bootstrapFieller bootstrap Delta Percentile Bootstrap
a0.2 [0.10623,0.14644] [0.10709,0.14646] [0.10631,0.14561] [0.10709,0.14641] [0.10714,0.14634] [0.10644,0.14701]
a0.4 [0.07038,0.09821] [0.07045,0.09936] [0.07014,0.09901] [0.07083,0.09997] [0.07085,0.09994] [0.07049,0.09829]
a0.6 [0.04550,0.06753] [0.04519,0.06750] [0.04513,0.06741] [0.04571,0.06817] [0.04571,0.06816] [0.04566,0.06762]
a0.8 [0.02903,0.04730] [0.02877,0.04670] [0.02883,0.04759] [0.02936,0.04754] [0.02936,0.04755] [0.02899,0.04731]
a∞ [0.06725,0.08676] [0.06674,0.08664] [0.06705,0.08693] [0.06712,0.08708] [0.06711,0.08709] [0.06711,0.08666]



Table 2.12 The 90% Confidence Interval of DCL with Sample Size N=200 and 400. There Exist the Right-Censored Observations in
the Samples

Case 1 with Sample Size N=200
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.1 [0.03572,0.06771] [0.03668,0.06604] [0.03609,0.06538] [0.03750,0.06502] [0.03756,0.06486] [0.03580,0.06801]
a0.2 [0.02912,0.05522] [0.02920,0.05545] [0.02883,0.05503] [0.03007,0.05699] [0.03011,0.05692] [0.02939,0.05544]
a0.3 [0.02350,0.04634] [0.02265,0.04610] [0.02248,0.04589] [0.02361,0.04781] [0.02362,0.04777] [0.02365,0.04664]
a0.5 [0.03589,0.06461] [0.03640,0.06342] [0.03635,0.06332] [0.03720,0.06474] [0.03720,0.06474] [0.03602,0.06466]
a∞ [0.07095,0.10152] [0.07190,0.10066] [0.07218,0.10089] [0.07204,0.10109] [0.07201,0.10112] [0.07104,0.10143]

Case 1 with Sample Size N=400
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.1 [0.04032,0.06153] [0.04030,0.06095] [0.04000,0.06063] [0.04012,0.06110] [0.04017,0.06105] [0.04053,0.06181]
a0.2 [0.03283,0.05140] [0.03269,0.05121] [0.03250,0.05100] [0.03316,0.05191] [0.03317,0.05189] [0.03289,0.05149]
a0.3 [0.02648,0.04223] [0.02583,0.04238] [0.02574,0.04228] [0.02634,0.04314] [0.02634,0.04313] [0.02646,0.04232]
a0.5 [0.03979,0.05987] [0.04026,0.05937] [0.04023,0.05932] [0.04067,0.05996] [0.04067,0.05996] [0.03983,0.05995]
a∞ [0.07671,0.09738] [0.07673,0.09709] [0.07686,0.09721] [0.07678,0.09721] [0.07677,0.09722] [0.07679,0.09737]

Case 2 with Sample Size N=200
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.2 [0.08999,0.14353] [0.09109,0.14336] [0.08966,0.14170] [0.09083,0.14412] [0.09100,0.14392] [0.08978,0.14383]
a0.4 [0.05901,0.10155] [0.05912,0.10069] [0.05841,0.09984] [0.06002,0.10232] [0.06007,0.10223] [0.05927,0.10175]
a0.6 [0.03824,0.07233] [0.03704,0.07139] [0.03681,0.07107] [0.03823,0.07354] [0.03824,0.07351] [0.03828,0.07180]
a0.8 [0.02213,0.05196] [0.02208,0.05133] [0.02213,0.05132] [0.02352,0.05423] [0.02351,0.05425] [0.02375,0.05188]
a∞ [0.04750,0.08045] [0.04718,0.08024] [0.04771,0.08067] [0.04810,0.08171] [0.04441,0.04778] [0.04732,0.07984]

Case 2 with Sample Size N=400
DCL True CI Fieller Delta bootstrap Fieller bootstrap Delta Percentile Bootstrap
a0.2 [0.09631,0.13555] [0.09771,0.13453] [0.09698,0.13372] [0.09758,0.13470] [0.09763,0.13462] [0.09642,0.13580]
a0.4 [0.06540,0.09423] [0.06459,0.09392] [0.06423,0.09351] [0.06505,0.09459] [0.06507,0.09456] [0.06545,0.09410]
a0.6 [0.04273,0.06625] [0.04184,0.06608] [0.04172,0.06592] [0.04244,0.06698] [0.04245,0.06697] [0.04261,0.06647]
a0.8 [0.02732,0.04760] [0.02663,0.04745] [0.02666,0.04744] [0.02735,0.04861] [0.02735,0.04862] [0.02734,0.04751]
a∞ [0.05261,0.07566] [0.05247,0.07584] [0.05273,0.07606] [0.05286,0.07641] [0.05284,0.07643] [0.05246,0.07557]
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size is small. Table (2.11) and (2.12) show the results when the sample size is 200 and 400.

In the large sample size, all the five methods provide very similar results.

2.6 Conclusion

In this chapter, the Filler’s method, the delta method, bootstrapped Fieller’s method, boot-

strapped delta method and the bootstrap percentile method are applied to derive the CI of

the DCL. In addition, the pairs bootstrap method is applied to derive the variances of the

distribution of the duration and the DCL. Since the DCL is a new inference in the survival

analysis, the variance derived by the asymptotic expansion in chapter 1 is compared with

the bootstrap variance. The simulation studies show that the pairs bootstrap can provide the

accurate results for the variances of the distribution of duration and the DCL. The empirical

results show the both the bootstrap variance and the variance derived in chapter 1 are close to

the benchmark value.

In terms of the confidence interval of the DCL, the empirical results show that the CI of

DCL derived by Fieller’s method is superior to the remaining methods when the sample size

is below 50. The bootstrap Fieller’s method, the bootstrap delta method and the bootstrap

percentile method do not work well when the sample size is below 50. However, all the five

methods provide the accurate confidence intervals of the DCL when the sample size is above

200. In addition, the bootstrap variance of duration and DCL are close to the benchmark

values even when the sample size is 50.



Chapter 3

Price Change before the Financial Crisis

and after the Financial Crisis: Some

Evidence from the CPI Micro Data in the

UK

3.1 Introduction and Literature Review

In the past decade, many economists focused on the price rigidity and stickiness which is an

important transmission mechanism in the macroeconomic models. Accordingly, the different

types of models have been developed to study the sticky price. There are two types of models

named as the Calvo family model and the Taylor family model which can capture the effect

of the price stickiness. The proportion of the price change, a parameter in the Calvo family

model, is calculated by the Kaplan-Meier estimator (survival function) and the Nelson-Aalen

estimator (hazard function). In other words, the survival analysis has been applied in the CPI

micro data study. In this chapter, we are going to focus on three topics: firstly, we are going
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to describe the UK CPI micro data. All the properties are given including the frequency of

the price change, the size of the price change in each division; the data cover the period from

1999 to 2016. Secondly, the non-parametric test is introduced to investigate the two-sample

problem. The CPI micro data are divided into two groups: before financial crisis (before

2008, named as the BF group) and after the financial crisis (after 2008, named as the AF

group). The log-rank family tests are applied in order to compare the hazard function and

survival function between the two groups. The null hypothesis is that the hazard function

and the survival function of the two groups come from the same distribution; the last, the

Cox model and the accelerated failure time model are applied to evaluate the heterogeneity

and seasonality effect of the price changes.

3.1.1 The CPI Micro Data

A far-researching study of CPI micro-data is given by Bils and Klenow (2004). They applied

the unpublished data, obtaining from US Bureau of Labor Statistics, to calculate the duration

of the price changes from 1995 to 1997. The data included hundreds of the categories of the

goods and the services. Depending on this study, the average duration of the price changes

was around 3.3 months, and the median duration was 4.3 months including sales. Excluding

sales, the median duration was about 5.5 months. After that, Nakamura and Steinsson (2008)

used the US Bureau of Labor Statistics CPI micro data to evaluate the properties of the price

adjustment. They found that the median frequency of the price adjustment was around 20

percent each month including sales. The median frequency of the price change without sales

was only around 12 percent each month. The truncation and censored problems had been

considered.

Bunn and Ellis (2009) applied the survival analysis to investigate the duration of the price

adjustments in the United Kingdom. These CPI micro data were obtained from the Office for

National Statistics (ONS). The data included 11 million price quotes from 1996 to 2006.The
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frequency of the price changes was 19 percent each month. In other words, the mean duration

of the price adjustments was around 5 months. They also found that the duration of the price

adjustments varied over time.

Carroll et al. (2011) applied the instrumental variables and the Kalman filter methods to

capture the degree of the price stickiness in the total consumption growth among different

countries. They used an auto-regressive moving average (ARMA) model to study the

aggregate consumption data. It was a state-dependent model using the quarterly data of

the non-durable goods and services. Kumar and Owen (2013) used the same methods to

investigate how the financial crisis affected the consumption. However, they got some

different results by adding the data including the financial crisis period. Therefore, it is worth

to investigate how hazard function changed before 2008 and after 2008.

Cavallo (2016) applied the scraped data to investigate the price adjustments. These

scraped data were the daily data collected from the Internet. Compared with previous results,

this study showed that there existed the longer duration of the price change in the scraped

data. In addition, they found that the time average effect and the imputations of the missing

data were the important reasons which caused the bias of the duration and the size of the

price adjustments.

However, most of the scholars investigated the CPI micro data before the financial crisis.

In our research, the UK CPI micro data cover the period from 1999 to 2016. In this chapter,

we are going to evaluate and compare the hazard function between the AF group and the BF

group. We want to find out how the difference in the duration of price adjustment between the

two groups (periods). In this chapter. the basic statistics are applied to evaluate the frequency,

duration and the implied duration of price adjustments. In addition, the Cox model and

accelerated failure time model are applied to investigate the effects of heterogeneity and the

seasonality in the data. The non-parametric methods were introduced to study the difference

in the hazard function between the groups.
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3.1.2 Non-Parametric Test for Two-Sample Comparison

There are many non-parametric methods, which can be applied to make the comparison

between two samples or groups. Welch (1938) derived a new method and applied it to

investigate the properties between two groups. This method was named as the Welch’s

t test. Especially, the mean value of the two groups can be compared even there existed

the different variances and sample sizes. In Welch’s t test, the two groups might have the

different population mean and sample size. However, the two groups must follow the normal

distribution. In terms of the two-sample t test, there existed the same variances in the two

groups. The null hypothesis was that whether the mean µ1 from group 1 was equal to the

mean µ2 from group 2. Since then, many papers had been published to improve those

methods.

Satterthwaite (1946) derived a reasonable formula for the chi-square test and gave an

approximation for the degree of freedom. This approximate can be directly applied to

calculate the degree of freedom in Welch’s t test. The requirement of this method was that

different groups had the different variances. Otherwise, the degree of freedom should be

n1 + n2 − 2. This approximation method could give a valid degree of freedom for both

chi-square and Welch’s t test.

Welch (1947) focused on the application of student-t test with unequal sample size and

variance. He also gave the series approximation for the inverse degree of freedoms. This

approximation of the degree of freedom was the same as Satterthwaite (1946)’s result. The

properties of Welch’s t test when the sample size was small was investigated by Welch (1951).

Wang (1971) investigated the type I error of the Welch’s t test. Depending on the

simulation, the empirical size of the test was close to the nominal significance level. Therefore,

it can be concluded that student t table can be directly applied in the Welch’s t test. To compare

the Welch’s t test and any other two-sample tests, see Yuen (1974) and Zimmerman and

Zumbo (1993). In the Welch’s t test, the assumption that the data followed the normal
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distributions could be ignored when the sample size is large enough. In the small sample size

situation, it may cause the bias problem.

Alekseyenko (2016) developed a multivariate Welch’s t test. This multivariate Welch’s

t test could be applied in the two-sample problem with unbalanced sample size and het-

eroscedasticity effect. This new Welch’s t test was derived from the pairwise distance

matrix.

Wilcoxon (1945) derived a Wilcoxon sign-rank test. It was a non-parametric test. It

can be applied to investigate whether the pairs were draw from the same population. In the

Wilcoxon sign-rank test, the data were not required to follow the normal distribution.

Mann and Whitney (1947) derived the Mann-Whitney U test which was known as

the Wilcoxon rank sum test. The Mann-Whitney U test was different from the sign-rank

test. The former can be applied in the independent obervations while the later can be

applied in the dependent observations. Even the Mann-Whitney U test did not require the

normality assumption for the observations, it could be approximated as the asymptotic normal

distribution. The Mann-Whitney U test could be applied when the data did not include the

censored observations.

However, the point tests are not suitable for survival analysis. The reason is that the point

tests cannot capture the effects of right censored observations. To capture the effects of right

censored observations, the log-rank test should be considered. The log-rank test was derived

by Mantel and Haenszel (1959). The log-rank test can be applied to evaluate whether hazard

function and KM estimator followed the same distribution over the whole periods. The null

hypothesis of the log-rank test is that the hazard functions are the same between among the

groups. Even the log-rank test and its family tests are designed to apply in the censored data,

they are still available in the uncensored data. It should be mention that the CPI micro data is

interval censored. Since the prices of goods and services are collected once per month, the

exact date of price changes cannot be known. For the interval censored data, the log-rank
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test may provide a bias result. The weighted log-rank test is also considered since it is more

robust than the log-rank test.

Mantel and Haenszel (1959) used the 2× 2 contingency table to explain the log-rank

test. After that, Peto and Peto (1972) derived several rank tests to study the properties of

the different groups. Those tests could be applied when there existed the right censored

observations in the data. They found that the log-rank test was suitable for the lifetime

table. The local power of the log-rank test was greater than any other rank test when the

data included the right censored observations.Peto and Peto (1972) derived a type of the

weighted log-rank test named as Peto and Peto’s log-rank test. It gave more weight to the

early observations. Prentice (1978) extended Peto and Peto’s log-rank test by modifying the

weighted coefficient. Finkelstein (1986) provided a method to fit the data in the proportional

hazard model.

In terms of choosing the variance for the log-rank test, see Morton (1978) and Brown

(1984). In terms of the comparison of the different log-rank family tests with equal or unequal

sample size, see Latta (1981), Heinze et al. (2003),

Gehan (1965) derived a generalized Wilcoxon test to study the differences between differ-

ent groups when the right censored observations existed. Breslow (1970) extended Gehan’s

generalize Wilcoxon test to evaluate the differences in the survival functions. Martinez and

Naranjo (2010) compared the survival cures by applying the generalized Wilcoxon test and

the log-rank test. They found that the power of those tests were related to the proportional

hazard assumptions and the lateness of the separation of the survival curves between the two

groups.

Tarone and Ware (1977) indicated that the only difference between the log-rank test and

the modified Wilcoxon test was the weighted coefficient. The log-rank test can be thought as

a special case of the weighted log-rank test with the weighted coefficient equal to 1. Fleming

et al. (1980) derived a modified Kolmogorov-Smirnov (KS) test which can be applied in the
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uncensored data. Fleming et al. (1987) derived the supremum version of the log-rank test

which was related with the log-rank test and Wilcoxon test.

3.2 Properties of the CPI Micro Data

In this chapter, we use the CPI micro data obtained from the UK Office for National Statistics

(ONS) Virtual Micro-data Laboratory (VML). The ONS is the UK government’s statistics

department. The VML is a facility of the ONS. ONS provides different economic data for the

researchers. The data includes over 30 million observations from January 1999 to December

2016. These monthly price quotes are collected "locally" by the ONS officers. The data can

be known as the interval censored data. More generally, the price quotes can be changed

each day or each week while they are collected once per month by the ONS.

3.2.1 Introduction for the UK CPI Micro Data

In terms of the UK CPI micro data, the observations are divided into 13 sections which are

associated with the COICOP4 and the COICOP5 codes. The COICOP4 codes including

5-6 digit numbers are applied to classify the goods and the services. After 2015, ONS also

reports the COICOP5 codes which give more details for observations. There exist 13 sections

in the UK CPI data corresponding to the COICOP4 code. There exist multi-observations for

the same items since the prices are collected from different shops and regions. There exist

12 regions to collect the price including London, Scotland, Wales and Northern Ireland etc.

There also exist the shop codes for the different brands of shops such as Tesco and Sainsbury.

There exist the weighted coefficients for the shop, the region, the item and the COICOP4

division (COICOP weight). The weighted coefficients can be applied to calculate the

weighted price (aggregate price). Therefore, the different levels of the indices can be
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generated. The weighted coefficients of different regions are named as stratum weight in the

data.

There exist some indicators for the price quotes. An indicator "S" gives the information

that the observation is on "sale". In addition, if the price quote of observation is missing,

an indicator factor "M" is assigned to the observation. An indicator "T" is assigned to the

observation when the observation is temporary out of the stock.

There exist the records of the start date and end date for each observation. This is a very

useful information when the censored and truncation problems are considered. Currently,

some observations are still tracked and included in the CPI framework so that the end date

is 999999. Since ONS may change the CPI framework each year, some goods and services

may not be included in the CPI framework. In such cases, the old observations are replaced

by the new observations.

For each observation, both the price and log price are given in the data. Those values can

be applied to calculate the frequency and the size of the price changes.

3.2.2 Censored and Truncated Data

In this section, we use the whole period of the data as an example to explain the censored

and truncated problems. In terms of the CPI micro data, the price quotes start from January

1999 and end in December 2016. This period can be defined as the observed window. In

terms of each observation, it has a quote date which is the recorded date of the price quote.

However, each observation also has the "start date" and the "end date". The "start date" of

the price quotes means the earliest recorded date of the price quotes. The "start date" can be

earlier than the observed window. With respect to the "end date" of each price quote, it can

be excluded or included in the observed window. If the "end date" exceeds the December

2016, the final state whether the price adjustments happen cannot be observed. In the survival

analysis, there exist the truncation and censored observations.
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The left truncation means that the start date of the observation lies within the observed

window. However, its state is not recorded since it does not satisfy the requirements. In

the data, the price quote must satisfy three requirements then it can be defined as the left

truncation. The first, the beginning date of the last state of the price quote is recorded in the

observed window; the second, the last record of the price quote is earlier than its end date

and included in the observed window; finally, this last record of the price quote is earlier than

its end date. Under these conditions, it can be defined as the left truncation price spell.

The right truncation means that the observation must be observed in the observed window.

If the end date exceed the observed window, those observations are excluded. More specially,

the last record of the price quote is the same as its end date. According to the CPI micro data,

if all the price changes are assumed to be observed in the observed window, it can be known

as the right-truncation data.

The left-censored observation means that the end date of the observations is included in

the observed window, while the start date is outside the observed window. In other words,

the start date is unknown while the failure date is known. In the CPI micro data, some start

dates of the price quotes are earlier than the January 1999 while the end dates are included

in the observed window. Under these conditions, those price quotes can be defined as the

left-censored observations since the exact length of the price spell is unknown.

The right-censored observation means that the start date of the price quote can be observed

in the observed window while the end date exceeds the observed window. In other words,

the price adjustment does not happen in the observed window, and it may happen outside the

observed window. This can be known as the right-censored observation.

3.2.3 Missing Data and the Imputation of the Substitution Effect

In terms of the missing data, it means that the price quotes of the observation are missing

in some period and exist later. The missing indicator is "M" in the CPI micro data. Some
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goods are temporal missing in the CPI micro data which are assigned by the indicator "T".

For instance, the cheery are out of the market in the winter. In addition, the color of goods

may be changed such as the clothes. Depending on this, the price may be missing for several

months. There are many methods to deal with this problem. The missing price can be solved

by the imputed price. In the US, the of Labor Statistics (2015) used the mean value of the

price changes obtained from the related categories as the missing value of the price quote.

This can be known as the cell-related imputation method. There exists another method to

deal with the missing price. If the price quote is missing in a special period, the price can

be assumed as the same as the its last record until the price quote exists again. As Cavallo

(2016) showed that this method replacing its missing price by its last price gives a quite

similar result as Nakamura and Steinsson (2008)’s method. Therefore, we directly use its last

record to be the missing price quote.

In addition, there also exists the indicator "S" in the data. The indicator "S" means the

observations are on sales. Many works show that the data including sales may affect the

accuracy of the duration and frequency, so we replace the sale price by its previous record

(the same method to deal with missing price). Another point is that some price quotes may

be increased by 200 percent or 300 percent in one month. In reality, it is unreasonable to see

a huge increase in the price of goods and services. If the prices are increased more than 130

percent, They are deleted from the data. Furthermore, If the prices are decreased more than

75 percent, they are also deleted from the data.

3.2.4 The Duration, the Size and the Frequency of the Price Change

The duration of the price spell means that how long the price spell lasts. More specially, it

means how long the price does not change. There exist the 13 divisions in UK CPI framework.

In addition, the CPI micro data include the financial crisis period. Therefore, the duration for

each division before the financial crisis (before January 2008) and after the financial crisis
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(after January 2008) are reported, separately. In other words, the original data is divided

into AF group (from January 2008 to December 2016) and BF group (from January 1999 to

December 2007).

To calculate the frequency of the price changes, we need to define some variables as

Veronese et al. (2005) did. The frequency for item j in division m at time t can be defined

as fm, j,t where m = 1,2, ......,M, j = 1,2, .....,Jm and t = 1,2, ......,T ; Jm is the number of

items in m-th division. Define the price for item j in division m at time t as pm, j,t . We also

define some indicators as below:

Km, j,t=





1 I f both pricem, j,t and pricem, j,t−1 exist

0 I f pricem, j,t exists but pricem, j,t−1 does not exist

Im, j,t=





1 pm, j,t �= pm, j,t−1

0 pm, j,t = pm, j,t−1

Therefore, the frequency for item j at division m can be written as:

fm, j =
∑T

t=2 Im, j,t

∑T
t=2 Km, j,t

1 (3.1)

The frequency for division m can be written as:

fm =
∑Jm

j=1 ∑T
t=2 Im, j,t

∑Jm
j=1 ∑T

t=2 Km, j,t
(3.2)

1It should be noted that the first record of each product is ignored since it is just an indicator to calculate the
duration. Therefore, t starts from 2 rather than 1
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the overall frequency can be written as:

f =
∑M

m=1 ∑Jm
j=1 ∑T

t=2 Im, j,t

∑M
m=1 ∑Jm

j=1 ∑T
t=2 Km, j,t

(3.3)

The frequency of the price increases can be calculated as:

f increase =
∑M

m=1 ∑Jm
j=1 ∑T

t=2 Iins
m, j,t

∑M
m=1 ∑Jm

j=1 ∑T
t=2 Km, j,t

(3.4)

where:

Iins
m, j,t=





1 pricem, j,t > pricem, j,t−1

0 pricem, j,t ≤ pricem, j,t−1

The frequency of the price decreases can be calculated as:

f decrease =
∑M

m=1 ∑Jm
j=1 ∑T

t=2 Ides
m, j,t

∑M
m=1 ∑Jm

j=1 ∑T
t=2 Km, j,t

(3.5)

where:

Ides
m, j,t=





1 pricem, j,t < pricem, j,t−1

0 pricem, j,t ≥ pricem, j,t−1

The size of price changes is another important theorem. The size of price increases can

be known as the average price increases. The size of price increases can be calculated as:

sizeincrease =
∑M

m=1 ∑Jm
j=1 ∑T

t=2 Iins
m, j,t(lnpm, j,t − lnpm, j,t−1)

∑M
m=1 ∑Jm

j=1 ∑T
t=2 Km, j,t

(3.6)

The size of price decreases can be calculated as:

sizedecrease =
∑M

m=1 ∑Jm
j=1 ∑T

t=2 Ides
m, j,t(lnpm, j,t − lnpm, j,t−1)

∑M
m=1 ∑Jm

j=1 ∑T
t=2 Km, j,t

(3.7)
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We also calculate the absolute size of price changes:

sizeabs. =
∑M

m=1 ∑Jm
j=1 ∑T

t=2 Im, j,t(|lnpm, j,t − lnpm, j,t−1|)

∑M
m=1 ∑Jm

j=1 ∑T
t=2 Km, j,t

(3.8)

The duration of item j belonging to the division m can be defined as:

dm, j =
1

fm, j
(3.9)

Since the scraped data has been widely applied in CPI micro data study, the duration can

be calculated in the continuous time formula. The relationship between the duration and the

frequency of price changes can be defined as:

d′
m, j =− 1

ln(1− fm, j)
(3.10)

Equation (3.10) can be known as the implied duration. The median implied duration can be

calculated as:

d′median
m, j =

ln(0.5)
ln(1− fm, j)

(3.11)

In table (3.1)2, the durations of price changes are reported. Before 2008, the overall

duration is 5.75 month. The shortest duration is 4.54 in division 1 (food and soft drink).

The longest duration is 9.05 in division 6 (health). After 2008, the overall duration is 5.47.

Compared with the BF group (before 2008), the durations of divisions 1, 7 , 8 and 99 are

increased while the remaining durations of the divisions are decreased in AF group (after

2008).

In table (3.2), the mean and the median of the implied duration are reported. The mean

of implied duration are lower than the duration in discrete time. The overall median of the

2In this research, we do not include division 10 since we only have the records of division 10 before 2008.
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Table 3.1 The Mean Duration for each Division in Discrete Time Version

Before the Financial Crisis(2008)
Division mean duration COICOP weight
01 Food and so f t drink 4.54 0.103
02 Alcohol and tobacco 4.62 0.042
03 Clothing and f ootwear 6.09 0.071
04 Energy 7.37 0.120
05 Householdequipment 6.78 0.09
06 Health 9.05 0.028
07 Transport 7.1 0.153
08 Communication 5.05 0.032
09 Recreation and culture 5.4 0.148
11 Restaurants and hotels 7.07 0.123
12 Miscellaneous goods 7.26 0.096
99 Unallocated goods 7.51 0.05
Overall 5.75 0.975

After the Financial Crisis(2008)
Division mean duration COICOP weight
01 Food and so f t drink 4.8 0.103
02 Alcohol and tobacco 4.19 0.042
03 Clothing and f ootwear 5.41 0.071
04 Energy 6.71 0.120
05 Household equipment 6.04 0.09
06 Health 8.2 0.028
07 Transport 7.38 0.153
08 Communication 5.26 0.032
09 Recreation and culture 4.82 0.148
11 Restaurants and hotels 6.49 0.123
12 Miscellaneous goods 6.83 0.096
99 Unallocated goods 8.76 0.05
Overall 5.47 0.975

Note: There exist 13 divisions in the UK CPI micro data. The results of division 10 are excluded
since there are no records for division 10 after 2008. The first column shows the divisions. The
second column reports the mean duration for each division. The third column reports the COICOP
weight for each division.

implied duration is 5.23 before 2008 while the overall median duration decreases to 4.95

after 2008.

In table (3.3), the size of the price changes is reported. The 4-th column reports the

absolute size of price changes. Before 2008, the overall price increase is 1.87%. It can be
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Table 3.2 Implied Duration: The Mean and Median Duration for each Division in Continuous
Time Version.

Before the Financial Crisis(2008)
Division mean duration(continuous time) median duration(continuous time)
01 Food and so f t drink 4.01 2.79
02 Alcohol and tobacco 4.1 2.84
03 Clothing and f ootwear 5.58 3.86
04 Energy 6.86 4.75
05 Household equipment 6.27 4.34
06 Health 8.54 5.92
07 Transport 6.59 4.57
08 Communication 4.53 3.14
09 Recreation and culture 4.88 3.38
11 Restaurants and hotels 6.56 4.55
12 Miscellaneous goods 6.75 4.68
99 Unallocated goods 7 4.85
Overall 5.23 3.63

After the Financial Crisis(2008)
Division mean duration median duration
01 Food and so f t drink 4.28 2.97
02 Alcohol and tobacco 3.67 2.54
03 Clothing and f ootwear 4.89 3.39
04 Energy 6.2 4.3
05 Household equipment 5.52 3.82
06 Health 7.69 5.33
07 Transport 6.87 4.76
08 Communication 4.74 3.29
09 Recreation and culture 4.3 2.98
11 Restaurants and hotels 5.98 4.14
12 Miscellaneous goods 6.32 4.38
99 Unallocated goods 8.25 5.72
Overall 4.95 3.43

Note: The first column shows the divisions. The second column reports the mean duration
(continuous time) for each division. The mean duration (continuous time) can be known as
the implied duration. The third column reports the median duration (continuous time) for each
division.

seen that the highest price increase is 2.29% in division 1 (food and soft drink) and 3(clothing

and footwear). The lowest price increase is 0.86% in division 2 (alcohol and tobacco). The

overall price decrease is 1.35%. In terms of the empirical results, The overall size of the price

increases is higher than the overall size of the price decreases in the UK CPI data before

2008.
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After 2008, the overall size of price increases is 2.03% while the overall size of price

decreases is 1.42%. The highest price increase is 2.82% in division 3 (clothing and footwear).

The overall size of the price increases is higher than the overall size of the price decreases

after 2008. There exist the highest absolute size of price changes in division 3 in both AF

and BF groups.

In table (3.4), the frequency of the price changes, the frequency of price increases and

the frequency of price decreases are reported. Before 2008, the overall frequency of price

changes is 17.39%. The overall frequency of price increases is 8.68% while the overall

frequency of price decreases is 7.16%. The highest frequency of price changes is 22.03% in

division 1 while the lowest frequency of price changes is 11.05% in division 6. In addition,

the frequency of price increases is higher than the price decreases in most divisions except

the division 3, 8 and 9. Depending on the result, the frequency of price changes is dominated

by the price increases.

After 2008, the overall frequency of the price change is 18.28%. Compared with the BF

group, both the frequencies of the price increases and decreases are increased. The frequency

of price changes is still dominated by the price increases. Another point is that the price

changed more frequently after 2008.
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Table 3.3 The Size of the Price Change

Before the Financial Crisis(2008)
Division size o f increase size o f decrease size o f abs. change
01 Food and so f t drink 0.0229 0.0155 0.0384
02 Alcohol and tobacco 0.0086 0.0053 0.0139
03 Clothing and f ootwear 0.0229 0.0189 0.0418
04 Energy 0.017 0.0109 0.0279
05 Household equipment 0.0168 0.0127 0.0295
06 Health 0.0106 0.0072 0.0178
07 Transport 0.0138 0.008 0.0218
08 Communication 0.0173 0.0197 0.037
09 Recreation and culture 0.0204 0.0172 0.0376
11 Restaurants and hotels 0.0115 0.0065 0.018
12 Miscellaneous goods 0.015 0.0099 0.0249
99 Unallocated goods 0.0124 0.0051 0.0175
Overall 0.0187 0.0135 0.0322

After the Financial Crisis(2008)
Division size(increase) size(decrease) size o f abs. change
01 Food and so f t drink 0.0212 0.0147 0.0359
02 Alcohol and tobacco 0.0141 0.0084 0.0225
03 Clothing and f ootwear 0.0282 0.0213 0.0495
04 Energy 0.0156 0.0102 0.0258
05 Household equipment 0.0191 0.013 0.0321
06 Health 0.0119 0.0075 0.0194
07 Transport 0.0125 0.0081 0.0206
08 Communication 0.0264 0.0185 0.0449
09 Recreation and culture 0.0236 0.018 0.0416
11 Restaurants and hotels 0.0122 0.0068 0.019
12 Miscellaneous goods 0.018 0.0116 0.0296
99 Unallocated goods 0.008 0.0048 0.0128
Overall 0.0203 0.0142 0.0345

Note: This table reports the size of the price adjustments in different divisions. The first column
shows the divisions. The second column reports the size of price increases. The third column
reports the size of price decreases. The last column reports the absolute size of price changes.
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Table 3.4 The Frequency of the Price Change

Before the Financial Crisis(2008)
Division f requency Frequency(increase) Frequency(decrease)
01 Food and so f t drink 0.2203 0.1121 0.0953
02 Alcohol and tobacco 0.2165 0.1397 0.06
03 Clothing and f ootwear 0.1642 0.0728 0.0757
04 Energy 0.1357 0.0712 0.0493
05 household equipment 0.1475 0.0675 0.0647
06 Health 0.1105 0.0576 0.0373
07 Transport 0.1408 0.0758 0.0464
08 Communication 0.1980 0.0675 0.1084
09 Recreation and culture 0.1851 0.0802 0.0872
11 Restaurants and hotels 0.1414 0.0827 0.0408
12 Miscellaneous goods 0.1377 0.0687 0.0519
99 Unallocated goods 0.1332 0.0803 0.0364
Overall 0.1739 0.0868 0.0716

After the Financial Crisis(2008)
Division f requency Frequency(increase) Frequency(decrease)
01 Food and so f t drink 0.2083 0.1089 0.0921
02 Alcohol and tobacco 0.2387 0.154 0.0791
03 Clothing and f ootwear 0.1848 0.0919 0.0862
04 Energy 0.1490 0.0872 0.0558
05 Household equipment 0.1656 0.0.0899 0.0696
06 Health 0.122 0.0641 0.0484
07 Transport 0.1355 0.0766 0.0507
08 Communication 0.1901 0.0879 0.0886
09 Recreation and culture 0.2075 0.1021 0.0987
11 Restaurants and hotels 0.1541 0.1027 0.0444
12 Miscellaneous goods 0.1464 0.0801 0.0585
99 Unallocated goods 0.1142 0.0643 0.0414
Overall 0.1828 0.099 0.077

Note: This table reports the frequency of price changes in different divisions between the BF and
the AF groups. The first column shows the divisions. The second column reports the frequency of
the price changes. The third column reports the frequency of the price increases. The last column
reports the frequency of the price decreases.
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3.2.5 Heterogeneity and Seasonality effect for the CPI Micro Data

In this part, the Cox model is applied to regress the CPI micro data in the UK. The data has

been divided into two groups: before 2008 (1999-2007, BF group) and after 2008 (2008-2016,

AF group). We use the dummy variable dm fn to distinguish the two groups: dm fn = 0 for

BF group and dm fn = 1 for AF group; Where the subscript n is the n-th observations with

n = 1,2, ......,N; N is the sample size. The Cox model can be defined as:

h(t) = h0(t)exp(
12

∑
i=1

αidmsi,n +
11

∑
j=1

β jdmm j,n +δdm fn) (3.12)

Where h0(t) is the baseline hazard function; the dmsi,n is the division dummy with

i = 1,2, ......13 and n = 1,2, ......,N. There exist 12 divisions3 in the UK CPI framework.

Define dms1,n is division 1 (food and non-alcoholic beverages); dms2,n is division 2 (alcohol

and tobacco); dms3,n is division 3 ( clothing and footwear ); dms4,n is division 4 (energy);

dms5,n is division 5 (household equipment); dms6,n is division 6 (health ); dms7,n is division

7 (transport); dms8,n is division 8 (communication); dms9,n is division 9 (recreation and

culture ); dms11,n is division 11 (restaurants and hotels); dms12,n is division 12 (miscellaneous

goods). dms13,n is division 99 (Unallocated goods). In UK CPI micro data, the division 10 is

excluded since there are no records of division 10 in BF group. In addition, the division 99

dms13,n is chosen as the reference group.

The dmm j,n is the monthly dummy variable of price changes with j = 1,2, ......12 and

n = 1,2, ......,N. In particular, the monthly dummy variables can be defined as:dmm1,n

for January; dmm2,n for February;dmm3,n for March; dmm4,n for April; dmm5,n for May;

dmm6,n for June; dmm7,n for July; dmm8,n for August; dmm9,n for September; dmm10,n for

October; dmm11,n for November; dmm12,n for December. December dmm12,n is chosen as

the reference group.

3Actually, there exist 13 divisions including the division 99. But we do not use the division 10 since there
are no record for division 10 after 2008
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The results of Cox model are shown in table (3.5). The significant coefficient of the

dm fn means that there exist the different hazard ratios between the BF and AF group. The

coefficient of dm fn=0.0195 means that the hazard ratio of AF group is higher than the

BF group. In other words, the duration of price spells is shorter and the frequency of

price changes is higher in AF group. The coefficients of divisions are significant expect

the coefficient of division 4 dms4,n. Therefore, there exist the heterogeneity effects of

price adjustments across different divisions. In terms of the seasonal dummy variables, the

coefficient of dmm2,n is insignificant while the remaining seasonal dummy variables are all

significant. Therefore, there also exist the seasonality effects of price changes across different

months.

However, the proportional hazard test shows that the proportional hazard assumption is

violated by the Cox regression model. The proportional hazard test is introduced by Grambsch

and Therneau (1994). The null hypothesis is that the proportional hazard assumption holds.

In table (3.6), the results of proportional hazard tests are reported. It can be seen that

the null hypothesis is rejected depending on the p-value. In other words, the proportional

hazard assumption is violated. Therefore, we also apply the accelerated failure time model

(AFT model) to regress the data. The AFT model does not require the proportional hazard

assumption. The AFT model can be written as:

S(t) = S0(exp(
12

∑
i=1

θidmsi,n +
11

∑
j=1

η jdmm j,n + γdm fn)t) (3.13)

Where the dmsi,n is the division dummy variable with i= 1,2, ......,12; dmm j,n is the seasonal

dummy variable with j = 1,2, ......,11; the subscript n means the n-th observations with

n = 1,2, ......,N. S0(.) can be defined as the baseline survival function. Alternatively, log-

linear AFT model can be expressed as:

log(Tn) = ω +
12

∑
i=1

θidmsi,n +
11

∑
j=1

η jdmm j,n + γdm fn +σen (3.14)
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Where log(Tn) is the log transformed lifetime; ω is the intercept; σ is the scale parameter;

en is the random error term. In the AFT model, the Tn must be assumed to follow some

distribution such as log-logistic, Weibull and log normal distribution. To selecting the most

suitable AFT model, the log likelihood value can be applied to evaluate the performances of

different distributions. At this point, Tn is assumed to follow either the log-logistic or Weibull

distributions.

The empirical result of the AFT model with log-logistic distribution is shown in table

(3.7). The empirical result of the AFT model with Weibull distribution is shown in table (3.8).

It can be seen that all the coefficients of the divisions and the monthly dummy variables are

significant. It means that there exist the cross-sectional effects across the different divisions

and the months. In AFT model, the negative coefficient of dm fn indicates that the frequency

of the price adjustments in AF group is higher than the price adjustments in BF group. The

log likelihood value of the log-logistic distribution is higher than the log likelihood value

of the Weibull distribution. Therefore, the AFT model with log-logistic distribution is more

suitable for the data.
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Table 3.5 Cox Regression for the CPI Micro Data in the UK

dummies coe f f icients exp(coe f f icients) std. p− value
dm fn 0.0195 1.0197 0.00115 0
dms1,n 0.4970 1.6437 0.0105 0
dms2,n 0.4927 1.6368 0.0107 0
dms3,n 0.2899 1.3363 0.0105 0
dms4,n 0.1786 1.1956 0.0111 0
dms5,n 0.2249 1.2522 0.0106 0
dms6,n −0.0002 0.9998 0.0118 0.986
dms7,n 0.1157 1.1227 0.0111 0
dms8,n 0.3620 1.4362 0.0148 0
dms9,n 0.4188 1.5202 0.0106 0
dms11,n 0.2031 1.2251 0.0106 0
dms12,n 0.1480 1.1595 0.0107 0
dmm1,n 0.2002 1.2216 0.0024 0
dmm2,n −0.0019 0.9981 0.0024 0.436
dmm3,n 0.3576 1.4299 0.0026 0
dmm4,n 0.3097 1.3631 0.0025 0
dmm5,n 0.4045 1.4986 0.0026 0
dmm6,n 0.4068 1.5020 0.0026 0
dmm7,n 0.3570 1.4291 0.0026 0
dmm8,n 0.2994 1.3490 0.0026 0
dmm9,n 0.2560 1.2917 0.0025 0
dmm10,n 0.2669 1.3059 0.0026 0
dmm11,n 0.2550 1.2905 0.0026 0

Note: This is the empirical result from the Cox model. dm fn is the dummy variable which is
applied to distinguish the BF and the AF groups. We define dm fn = 1 for the AF group and
dm fn = 0 for the BF group. dmsi,n is the division dummy variable for division i; dmm j,n is
the monthly dummy for j-th month. We choose division 99 as reference division dummy and
December as reference monthly dummy. dms10 is not included since there are no records of
division 10 in the CPI micro data after 2008.
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Table 3.6 Proportional Hazard Assumption

dummies correlation coe f f icient p− value
dm fn 0.0193 0
dms1,n −0.0195 0
dms2,n −0.0074 0
dms3,n −0.0054 0
dms4,n −0.0111 0
dms5,n −0.0099 0
dms6,n −0.0082 0
dms7,n −0.0039 0
dms8,n −0.0041 0
dms9,n −0.0150 0
dms11,n −0.0139 0
dms12,n −0.0087 0
dmm1,n 0.0263 0
dmm2,n −0.0282 0
dmm3,n −0.0113 0
dmm4,n 0.0118 0
dmm5,n 0.0012 0
dmm6,n −0.0075 0
dmm7,n 0.0096 0
dmm8,n 0.0209 0
dmm9,n 0.0281 0
dmm10,n 0.0209 0
dmm11,n 0.0192 0
Global NA 0

Note: This is the proportional hazard test introduced by Grambsch and Therneau (1994). The last
row "Global" means whether there exists the proportional hazard assumption for the whole model
including all the dummy variables. The last column reports the p value of the Chi-square test.
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Table 3.7 AFT Regression for the CPI Micro Data in the UK with the Log-logistic Distribution

dummies coe f f icients std. p− value
intercept 1.8252 0.0107 0
dm fn −0.0096 0.0011 0
dms1,n −0.7122 0.0106 0
dms2,n −0.5778 0.0108 0
dms3,n −0.3768 0.0107 0
dms4,n −0.3189 0.0112 0
dms5,n −0.3523 0.0107 0
dms6,n −0.0895 0.0121 0
dms7,n −0.1743 0.0112 0
dms8,n −0.4431 0.0148 0
dms9,n −0.5939 0.0107 0
dms11,n −0.3640 0.0107 0
dms12,n −0.2558 0.0108 0
dmm1,n −0.1246 0.0024 0
dmm2,n −0.0773 0.0026 0
dmm3,n −0.3721 0.0027 0
dmm4,n −0.2752 0.0026 0
dmm5,n −0.3844 0.0026 0
dmm6,n −0.4057 0.0026 0
dmm7,n −0.3155 0.0026 0
dmm8,n −0.2309 0.0026 0
dmm9,n −0.1678 0.0026 0
dmm10,n −0.1983 0.0026 0
dmm11,n −0.1980 0.0026 0
log(scale) −0.5541 0.0004 0
log-likelihood=-8945459

Note: This is regression result of the AFT model with log-logistic distribution. ω is the intercept
in the linear AFT model.
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Table 3.8 AFT Regression for the CPI Micro Data in the UK with the Weibull Distribution

dummies coe f f icients std. p− value
intercept 2.4157 0.0109 0
dm fn −0.0320 0.0011 0
dms1,n −0.5366 0.0108 0
dms2,n −0.5845 0.0111 0
dms3,n −0.3390 0.0108 0
dms4,n −0.1701 0.0114 0
dms5,n −0.2431 0.0109 0
dms6,n −0.0417 0.0122 0
dms7,n −0.1244 0.0114 0
dms8,n −0.4412 0.0152 0
dms9,n −0.4619 0.0109 0
dms11,n −0.2024 0.0109 0
dms12,n −0.1505 0.0110 0
dmm1,n −0.3242 0.0025 0
dmm2,n −0.0130 0.0025 0
dmm3,n −0.4787 0.0027 0
dmm4,n −0.4423 0.0026 0
dmm5,n −0.5418 0.0026 0
dmm6,n −0.5361 0.0026 0
dmm7,n −0.4929 0.0027 0
dmm8,n −0.4347 0.0026 0
dmm9,n −0.3897 0.0026 0
dmm10,n −0.3979 0.0027 0
dmm11,n −0.3812 0.0027 0
log(scale) 0.0328 0.0004 0
log-likelihood=-9304401

Note: This is regression result of the AFT model with Weibull distribution. The intercept is ω in
the linear AFT model. The log(scale) value is the log value of the scale variable σ .
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3.3 Survival Analysis

In this section, the statistical techniques of survival analysis are reviewed. In addition, the

log-rank family tests are introduced. The estimator of the survival function can be known as

the Kaplan-Meier (KM) estimator. It can be assumed that there exist Ni price spells at the

i-th period with i = 1,2, ......F , and the maximum length of the price spell lasts F period.

The number of price spells disappearing at the i-th period can be defined as Di. Therefore,

the KM estimator for i-th period can be defined as:

Ŝi =
i

∏
k=1

Nk −Dk

Nk
(3.15)

The hazard function can be estimated by the Nelson-Aalen (NA) estimator. It can be

defined as:

Ĥi =
i

∑
k=1

Dk

Nk
(3.16)

For the marginal hazard function, it can be written as:

ĥi =
Di

Ni
(3.17)

The KM estimator and hazard function are the coefficients of sectors existing in the Calvo

model.

3.3.1 Log-Rank Test

The log-rank family test can be applied to investigate whether the marginal hazard functions

follow the same distribution between different groups. The log-rank test is the joint test

which is designed for the survival analysis. The log-rank test can be derived from the 2×2

contingency table. However, the log-rank test can be derived related to Fieller’s method.

In this section, the Fieller’s method is applied to derive the log-rank test. In addition, the
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weighted log-rank tests are introduced for the two-sample comparison. One advantage of the

log-rank family test is that they do not require the proportional hazard assumption. Another

advantage of the log-rank test is that it is quite robust. Moreover, the weighted log-rank test

is more robust than the log-rank test.

Assume that there exist two groups: group 1 and 2. Group 1 includes the price spells

before the financial crisis. Group 2 includes the price spells after the financial crisis. The

maximum period is F months in each group. In the i-th month, the number of price spells can

be defined as Ni,g with g = 1,2 and i = 1,2, ......,F . In other words, Ni is the number of the

price spells surviving at i-th month. The Di,g is the number of the price spells disappear in i-th

month for group g. The hazard function of group 1 and 2 can be defined as ĥi,1 = Di,1/Ni,1

and ĥi,2 = Di,2/Ni,2, respectively. The group 1 and group 2 can be combined and create an

overall sample. In this overall sample, the price spells survive at i-th period is Ni = Ni,1+Ni,2

and the number of the price spells disappearing at the i-th period is Di = Di,1 +Di,2 with

i = 1,2, ......,F . The hazard function of the overall sample can be defined as ĥi = Di/Ni. If

the observations of the two groups are drawn from the same distribution, they should have

the same distribution of the observations in the overall sample. To compare ĥi,1 with ĥi,2, it

is equivalent to test whether the ĥi,g and ĥi follow the same distribution.

The null hypothesis is H0 : ĥi,1 = ĥi,2. However, the null hypothesis can be also written as

H0 : ĥi,1 = ĥi or H0 : ĥi,2 = ĥi with i = 1,2, ......,F . These null hypotheses are the same. To

see this, the null hypothesis H0 : ĥi,1 = ĥi can be used as an example. It can be rewritten as:

Di,1/Ni,1 = Di/Ni (3.18)

Substituting Di = Di,1 +Di,2 and Ni = Ni,1 +Ni,2 into the equation (3.18):

Di,1

Ni,1
=

Di,1 +Di,2

Ni,1 +Ni,2
(3.19)
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To simplify this function by deleting the denominator:

Di,1(Ni,1 +Ni,2) = Ni,1(Di,1 +Di,2) (3.20)

Delete the same variable:

Di,1Ni,2 = Di,2Ni,1 (3.21)

When Ni,1 and Ni,2 are not equal to zero:

Di,1/Ni,1 = Di,2/Ni,2 (3.22)

This is the null hypothesis of the log-rank test. Therefore, the modified null hypothesis is the

same as the original null hypothesis. The equation (3.18) can be rewritten as H0 : Di,1 =
Di
Ni

Ni,1.

On the right-hand side, Di
Ni

Ni,1 can be known as the mean value of the hypergeometric distri-

bution. Therefore, the Di,1 can be assumed to follow the hypergeometric distribution with

mean Ei,1 =
Di
Ni

Ni,1 and variance Var(Di,1) =
Di(Ni,1/Ni)(1−Ni,1/Ni)(Ni−Di)

Ni−1 with i = 1,2,3, ...F .

To simplify the formula, the variance Vi,1 =Var(Di,1) can be defined with i = 1,2, ......,F .

The log-rank test for the i-th period can be written as:

log− rank statistic =
(Di,1 − Di

Ni
Ni,1)

2

Var(Di,1)
(3.23)

Mantel and Haenszel (1959) showed that the log-rank test can be compared with the

chi-square critical value with 1 degree of freedom4. In addition, the log-rank test can be

written as:

log− rank statistic =
(Di,1 − Di

Ni
Ni,1)√

Var(Di,1)
(3.24)

4The degree of freedom is the number of groups minus one in log-rank test
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Now the log-rank statistic follows the standard normal distribution asymptotically. As Mantel

and Haenszel (1959) argued that the log-rank test should include all the periods rather than

the single period since the some period may be rejected. The overall test is to test whether

∑F
i=1(Di,1 − Di

Ni
Ni,1) is less than the critical value or not. The overall test is stronger than the

single period test. Depending on this, the log-rank test can be rewritten as:

log− rank statistic =
[∑F

i=1(Di,1 − Di
Ni

Ni,1)]
2

∑F
i=1Var(Di,1)

(3.25)

Equation(3.25) can be compared with chi-square critical value with (F − 1) degrees of

freedom. It can be rewritten as:

log− rank statistic =
∑F

i=1(Di,1 − Di
Ni

Ni,1)

∑F
i=1

√
Var(Di,1)

(3.26)

Equation(3.26) follows the standard normal distribution asymptotically. The null hypothesis

is that the Di,1/Ni,1 =Di,2/Ni,2 with i= 1,2, ......,F . The null hypothesis can be also rewritten

as Ŝi,1 = Ŝi,2 with i = 1,2, ......,F . The log-rank test can be simplified as:

log− rank statistic =
∑F

i=1(Di,1 −Ei,1)

∑F
i=1

√
Vi,1

(3.27)

One important thing is that the log-rank test can be viewed as the score test came from

the partial likelihood function of the Cox model. If the sample includes right-truncated

observations, the Cox model can be applied to regress it and provides the score test result.

3.3.2 Weighted Log-Rank Test

The weighted log-rank family tests including the generalized Wilcoxon test are more robust

than the log-rank test. Generally, the log-rank test can be thought as the special case of

the weighted log-rank test when the weighted coefficient is equal to 1 for each period. The



3.3 Survival Analysis 92

general form of the weighted log-rank test can be written as:

weighed log− rank statistic =
∑F

i=1Wi(Di,1 −Ei,1)

∑F
i=1

√
Var(Wi(Di,1 −Ei,1))

(3.28)

Where Wi is the weighted coefficient. When the weighted coefficient Wi = 1, the weighted

log-rank test is the same as the log-rank test. The advantage of the weighted log-rank test is

that it can assign more weight to the important period (or group) depending on the different

data. Marsaglia (1965) and Breslow (1970) derived the generalized Wilcoxon test belonging

to the weighted log-rank test. They assumed that there existed the weighted coefficient

Wi = Ni. In other words, Gehan and Breslow’s weighted coefficient pays more attention to

the early period since the number of observations Ni go down with the increasing of i. Tarone

and Ware (1977) also provided a weighted coefficient Wi =
√Ni. Tarone and Ware’s weighted

coefficient also pay more attention to the early period while this effect is weaker than Gehan

and Breslow’s method. Peto and Peto (1972) also provided a weighted coefficient for the

log-rank test. They applied the KM estimator to be the weighted coefficient and defined it

as Wi = ∏i
k=1(1−

Di
Ni+1). The Peto-Peto’s weighted coefficient also pays more attention to

the early periods. Peto-Peto’s weighted log-rank test is more robust than any other weighted

log-rank test when there exist many censored observations. Fleming et al. (1987) provided a

weighted coefficient Wi = Sr
i−1(1−Si−1)

q. The r and q can be any values. If r = 1 and q = 0,

it is the Peto-Peto weighted coefficient; if r = 0 and q = 0, it is the regular log-rank test;

When r > q, the test pays more attention to the early difference. Since the micro data has few

price spells in the later period, so it should pay more attention to the early difference between

the AF and BF groups. The Peto-Peto and Fleming-Harrington’s weighed coefficient are

applied in the CPI micro data.

In addition, the Mann-Whitney U test is also known as the Wilcoxon rank sum test. If

all the observations are uncensored, the Mann-Whitney U test can be applied to evaluate
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the difference between the two groups. The details of the U test can be found at Mann and

Whitney (1947).

3.3.3 Empirical Results

There are different ways to deal with the CPI micro data compared with section (3.2). In

this section, all the price spells are included even the price increased more than 130% or

decreased more than 75%. But all the sales are still excluded.

In case 1, the price quotes of the CPI micro data are applied. This data is divided into

two groups: the BF group includes the uncensored price spells starting from February 2003

to December 2016. This group can be assumed as the treatment group. It means that both

the quote date and the start date of the price spells are February 2003. The second group

includes the uncensored price spells starting from February 2008 to December 2016. The AF

group can be known as the control group including the financial crisis period (AF group). In

the AF group, both the quote date and the start date of the price spells are February 2008. All

the price spells start from February so that they have the same seasonality effect. In other

words, the seasonality effect does not affect the results. The motivation is that most of the

price spells start from February each year in the UK CPI micro data.

In the BF control group, there exist 18327 price spells. The mean duration of the price

spells is around 6.5 months. In the AF control group, the total number of the price spells is

23295. The mean duration of the price adjustment is 5 months in the AF group. 5

Table (3.9) show the different two-sample tests for the two groups. The p value of U test

which is known as the Wilcoxon rank sum test is close to 0. Therefore, the AF and the BF

groups do not have the same median. Depending on the regular log-rank test, the chi-square

value is equal to 473 and p value is close to zero. With respect to the Peto-Peto log-rank

test, the test statistic is 240 and p value is close to zero. Modified the Fleming’s weighed

5The results may be different from section(3.2) since we do not delete the unreasonable price increases and
decreases.
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Table 3.9 Non-Parametric Tests for the Hazard Function in Case 1

Test − value P− value
Wilcoxon Rank Test 232004912 0
Log− rank Test 473 0
Peto−Peto log− rank test(r = 1) 240 0
Weighted Log− rank test(r = 0.5) 390 0

coefficient with r = 0.5, the null hypothesis is still rejected. Therefore, the null hypothesis

of the log-rank family tests is rejected. In other words, the hazard functions of AF and BF

groups follow the different distributions.

In case 2, the 16 years UK CPI micro data is applied. The data are still divided into two

groups: the first group includes the observations from January 1999 to December 2007. The

first group is named BF group including 1697620 price spells. The Second group includes

the observations from January 2008 to December 2016. The second group is named as AF

group which including 2335756 price spells. The right-censored data are considered in case

2. However, as Dixon (2012) showed, if the right-censored data is dealt with the traditional

way, the KM estimator does not fit the real situation of the UK’s economy. Therefore, the

right-censored data are treated as the uncensored data. In table (3.10), the p value of U

Table 3.10 Non-Parametric Tests for the Hazard Function in Case 2

Test − value P− value
Wilcoxon Rank Test 2.035349∗1012 0
Log− rank Test 1256 0
Peto−Peto log− rank test(r = 1) 2252 0
Weighted Log− rank test(r = 0.5) 2320 0

statistic is 0. The regular log-rank test statistic is equal to 1256 and the p value is equal to

zero. The p value of the Peto-Peto weighted statistic is still close to 0. Therefore, there exist

the different hazard functions between the BF and AF groups.
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3.4 Conclusion

In this chapter, we calculate the frequency and the size of price changes by using the UK CPI

micro data. The log-rank family tests are introduced. Depending on the empirical results, the

AF and the BF groups have the different hazard functions and survival functions when the

seasonality effect is deleted or included. In addition, the Cox model and AFT model applied

to regress the data from January 1999 to December 2016 in section (3.2). The empirical

results show that the price changed more frequently after the financial crisis. In section

(3.3), the CPI micro data is evaluated by the non-parametric method. The CPI micro data is

dealt with two ways: one is the cohort study; the other is the data without deleting any price

spells. The log-rank family tests show that the hazard functions and survival functions follow

different distributions between the AF and the BF groups.
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