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Abstract
A few level-set topology optimization (LSTO) methods have been proposed to address complex fluid-structure interaction.
Most of them did not explore benchmark fluid pressure loading problems and some of their solutions are inconsistent with
those obtained via density-based and binary topology optimization methods. This paper presents a LSTO strategy for design-
dependent pressure. It employs a fluid field governed by Laplace’s equation to compute hydrostatic fluid pressure fields
that are loading linear elastic structures. Compliance minimization of these structures is carried out considering the design-
dependency of the pressure load with moving boundaries. The Ersatz material approach with fixed grid is applied together
with work equivalent load integration. Shape sensitivities are used. Numerical results show smooth convergence and good
agreement with the solutions obtained by other topology optimization methods.

Keywords Topology optimization · Level-set method · Design-dependent load · Fluid pressure · Hydrostatics

1 Introduction

The applications of topology optimization are very broad,
i.e., multifunctional materials (Guest and Prévost 2006),
aeroelasticity (Townsend et al. 2018), biomedical design
(Sutradhar et al. 2010), heat transfer (Alexandersen et al.
2016), and acoustics (Azevedo et al. 2018), and others
(Bendsøe 1995; Chakraborty et al. 2019). Deaton and
Grandhi (2014) identified design-dependent physics as
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one of the eight challenges yet to be addressed within
the structural and multidisciplinary optimization field.
This class of problems considers different physics (i.e.,
fluids, heat transfer, electromagnetism, etc.) interacting
with structural boundaries and volume changing during
optimization.

Design-dependent physics problems can be classified
by the type of loads considered, for instance, volumetric
or surface loads. The first refers to problems where the
loads depend on the volume the body occupies in the
medium, e.g., thermal expansion, self-weight loads (Deaton
and Grandhi 2016; Huang and Xie 2011). The second
type of design-dependent loads acts on the boundaries
or surfaces of the body. These can include distributed
pressure loads, convective heat transfer, acoustics, and fluid-
structure interaction. The main challenge is how to identify,
track, and model the multiphysics interface changes during
optimization. This paper is focused on problems with
design-dependent hydrostatic pressure loads. Such loads are
manifested in pump housings, pressure containers, dams,
underwater structures, wind loaded structures, and others.

Hammer and Olhoff (2000) pioneered topology opti-
mization for design-dependent pressure loads by developing
the parameterization of a load carrying surface within the
grayscale density distribution of the solid isotropic material
with penalization (SIMP) method. Different parameteriza-
tion schemes have been proposed over the years (Du and
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Olhoff 2004; Zhang et al. 2008; Lee and Martins 2012;
Wang et al. 2016). Another way of tracking pressure load
surfaces within the SIMP framework uses fluids or multi-
physics models. Chen and Kikuchi (2001) and Bourdin and
Chambolle (2003) applied a “fluid flooding” technique to
systematically identify the pressure surfaces. Sigmund and
Clausen (2007) proposed a mixed displacement-pressure
finite element (FE) formulation where an overlapping pres-
sure variable is used to define the void phase as a hydrostatic
incompressible fluid. Yoon et al. (2007), Yoon (2010), and
Lundgaard et al. (2018) extended the idea of using mixed
FEs to minimize the dynamic response of acoustic and fluid-
structure systems, the latest with the aid of black and white
filters (Sigmund 2007).

Motivated by the numerical instabilities that overlapping
domains and mixed FE can induce (Brezzi and Fortin
1991), modeling of design-dependent physics with separate
domains and classic FE governing equations became
another paradigm. The sequence by Picelli et al. (2015a, b,
2017a, b) Vicente et al. (2015) extended the bi-directional
evolutionary structural optimization (BESO) method to
address design-dependent hydrostatic pressure, acoustic-,
and fluid-structure interaction problems with binary {0, 1}
design variables by completely switching fluid and solid
elements. Recently, Sivapuram and Picelli (2018) created
the topology optimization of binary structures (TOBS)
method that benefits from {0, 1} variables and formal
mathematical programming, including the solution for a
design-dependent fluid pressure problem. While the SIMP
method lacks of explicit fluid-structure interfaces, the
BESO and TOBS methods have jaggered boundaries.

The level-set topology optimization (LSTO) method
offers well-defined structural boundaries. This is potentially
advantageous when handling problems where multiphysics
interactions happen at the surface. Shu et al. (2014), Isakari
et al. (2017), and Noguchi et al. (2017) proposed different
coupling conditions modeling for acoustic-structure prob-
lems with the LSTO. In a fluid-structure problem, Jenkins
and Maute (2016) combined a level-set method with the
extended finite element method (XFEM) to track the defor-
mation of the fluid-structure interfaces and their change
during optimization. While a few methodologies have been
proposed for design-dependent physics with level set func-
tions in the recent years, the most effective way of modeling
pressure loads is still uncertain. It is also not clear how
many of these methods would apply to a purely hydrostatic
loading problem.

This paper applies a fixed grid FE mesh with the Ersatz
material interpolation and, to the best of the authors’
knowledge, it is the first one to explore purely hydrostatic
pressure loading problems using a discretized fluid domain.
The identification of the pressure surfaces is directly
obtained via solid-fluid interfaces and their tracking during

optimization is done with fluid flooding. Pressure loads are
applied on the structure with work equivalent integrals. The
work equivalent loads were first used in a level-set method
with the Ersatz material interpolation by Emmendoerfer
et al. (2018) and they are employed here due to its
simplicity. Emmendoerfer et al. (2018) also used fluid
flooding, but no actual fluid pressure is solved in their work.
The addition of a fluid pressure field governed by Poisson’s
equation and the use of shape sensitivities are explored
in this paper, as well as the application of the LSTO
method previously used to address stress-based problems
Picelli et al. (2018a, b). We apply the LSTO method to the
challenging pressure chamber example originally proposed
by Hammer and Olhoff (2000), which, to the authors’
best knowledge, has not been attempted with LSTO in the
literature.

The remainder of the paper is organized as follows.
Section 2 describes the governing equations, finite element
method, and the formulation for tracking the fluid-structure
interface by fluid flooding. In Section 3, the level-
set topology optimization method is outlined. Section 4
presents and discusses numerical results, and Section 5
concludes the paper.

2 Governing equations and finite element
model

We apply the static analysis of elastic structures in contact
with incompressible hydrostatic fluids. The solid domain
is considered to be under small strain condition and the
fluid domain is inviscid and irrotational. This is a partially
coupled problem and, in this work, both domains are solved
separately. First, the fluid pressure field is obtained. With
the fluid solution and the identification of the fluid-structure
interface, the structural analysis is carried out assembling
the distributed pressure loads. The bilinear elements and
isoparametric mapping are used for both domains.

2.1 Fluid analysis

Consider a hydrostatic fluid domain �f illustrated in Fig. 1
governed by Laplace’s equation

∇2Pf = 0 in �f , (1)

where Pf is the fluid pressure and ∇2 is the Laplacian
differential operator. Boundary conditions include an
imposed pressure P0 on a portion �p of the fluid boundary
as

Pf = P0 on �p, (2)
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and the hard wall condition

n · ∇Pf = 0 on �w, (3)

where n is the outward unit normal vector to the fluid and ∇
is the gradient vector operator, imposed on the portion �w of
the total fluid boundary �f = �f ∪ �w. The discretization
of (1) via the finite element method (FEM) yields

KfPf = ff , (4)

where Pf is the vector of pressures and ff is the equivalent
load to enforce the Dirichlet boundary condition from (2)
computed, for instance, using a penalty method (Bathe
2006). The global fluid stiffness matrix Kf is computed as

(5)

where nef is the total number of fluid elements and Nf is
the vector with shape functions of the fluid element �f e.
The solution of (4) provides the pressure field used in the
following structural analysis.

2.2 Structural analysis

The considered structural domain �s shown in Fig. 1
bounded by �s = �d ∪ �n ∪ �h is governed by the linear
elasticity equation expressed, disregarding body loads, as

∇ · σ s (us) = fs on �s , (6)

where σ s (us) is the Cauchy stress tensor and us is the
structural displacement field. The right-hand side of (6)
includes the loads fs applied on the structure. Dirichlet
boundary conditions are applied on the portion �d of the
structural boundary as

us = u0 on �d , (7)

where u0 is the vector of constrained displacements.
Neumann boundary conditions are applied by assembling fp
on the boundary portion �n of the structure. The boundary
�h is the portion with no boundary conditions and only the
subset �n ∪ �h is subjected to optimization. A void domain

Fig. 1 Representation of a structure under hydrostatic loads

�v represents holes inside the design region. In the FEM
discretization, (6) becomes

Ks ũs = fp, (8)

where ũs is the vector of structural displacements and Ks is
the structural stiffness matrix computed as

(9)

with B being the strain-displacement matrix, D the
constitutive matrix, nes the total number of finite structural
elements in the mesh, and �se indicates the element
domain. In this work, the applied loads are only in the
form of distributed pressure loads, represented by fp. These
governing equations are general and describe the fluid and
structural analyses for 2D and 3D.

In the fixed grid level-set method, the structural
boundaries intersect the elements and the pressure load fp
cannot be directly applied at those boundaries. As illustrated
in 2D in Fig. 2, work equivalent nodal forces fe can be
computed by integrating along the cutting boundary the
matrix product of the element shape functions Ns and the
distributed pressure loading acting on the element as

(10)

with ns being the total number pressure load segments and

fk =
∫

Lk

NT
s fpkdLk on �n, (11)

whereLk is the kth segment defined by the cutting boundary
�n and fpk is the pressure loading acting on that element
(Cook et al. 2002).

The integral from (11) can be computed via Gaussian
quadrature; therefore, it can then be rewritten as

fk =
1∫

−1

Ns (gmod)
T fpkdξ , (12)

where the integral interval over the line Lk is changed to
[−1,1] and the Gaussian points are modified to reflect the
element local coordinates, herein represented by gmod. We
have implemented the quadrature using one Gauss point,
i.e., the midpoint of the line L. For this, the modified Gauss
point coordinates are

gmod =
{ (

xg − xc

)
/a(

yg − yc

)
/b

}
, (13)

where
{
xg, yg

}
and

{
xc, yc

}
are the global coordinates of the

Gauss point and the element centroid, respectively. The terms
a and b are, respectively, half of length and height of
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Fig. 2 Work equivalent nodal
loads computed with an integral
over the segment Lk

the element (see Fig. 11). Considering that the distributed
pressure is expressed by

fpk = Pf n, (14)

Equation (12) is rewritten as

fk = PfNs (gmod)
T nwJ , (15)

where,

Ns (gmod) =
[

N1 (gmod) 0 ... N4 (gmod) 0
0 N1 (gmod) ... 0 N4 (gmod)

]
,

(16)

w = 2 being the weight of the Gaussian quadrature for one
point and J the Jacobian given, in this case, as half of the
length of Lk . This classic FE procedure is a much simpler
alternative to XFEM and mixed models.

2.3 Interface tracking

Fluid flooding as first called by Chen and Kikuchi (2001)
is used to track the fluid-structure interfaces. The process
consists in defining an initial fixed fluid region that is
propagated to the adjacent neighbor elements or nodes until
it finds a structural boundary. In the FEM framework, this
can be done by creating a list of element types, verifying

the neighboring elements of each fluid and applying the
following update rules while looping through the elements:

– If a void element is neighbor of a fluid one, the void will
be switched to fluid.

– If an element cut by the structural boundary is neighbor
of a fluid one, the cut element is defined as a fluid
and an overlapping structural element with intermediate
area fraction.

– If a completely solid element is neighbor of a fluid one,
nothing is done.

These rules should be repeated until there is no
more change in the status of each element type. Once
this procedure is finished, the pressure segments can be
identified as the ones located between fluids and completely
solid elements and in cut elements with fluid status. The
interface tracking procedure is illustrated in Fig. 3.

3 Level-set topology optimization

3.1 Level-set method

Using the level-set method, the boundary of a structure can
be described by an implicit (signed distance) function φ (x)

(d)(c)(b)(a)

Fig. 3 Interface tracking procedure via fluid flooding. a Fluid-structure design with pressure load assembly. b New fluid-structure design. c Fluid
flooding process. d New pressure load assembly
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defined as
⎧⎨
⎩

φ (x) ≥ 0, x ∈ �s ,
φ (x) = 0, x ∈ �s ,
φ (x) < 0, x /∈ �s ,

(17)

where x is any point inside the design region �d that
contains the structural domain �s . The boundary of the
structure can be changed implicitly through φ (x). This way
of representing the structure allows its boundary to morph
by solving the following Hamilton-Jacobi equation,

dφ (x, t)

dt
+ |∇φ (x)| Vn (x) = 0, (18)

where Vn is the normal velocity and t is a pseudo time
domain in which the level set evolves.

Equation (18) is discretized and solved numerically as

φi (t + �t) = φi (t) − �t |∇φi (t)| V i
n (t) , (19)

where i is a discrete point in the domain and |∇φi (t)|
is computed using the Hamilton-Jacobi WENO (weighted
essentially non-oscillatory) scheme (Osher and Fedkiw
2003). The update of (19) it is conveniently restricted
to nodes within a narrow band close to the boundary.
Periodically, the level-set function φi is reinitialized to a
signed distance function in order to maintain the stability of
the method. The reinitialization and velocity extension are
done via the fast-marching method (Sethian 1996).

3.2 Linearized sub-problem

The velocity function required to change the implicit
function φj in (19) can be obtained by solving the following
linearized problem,

minimize
Vn

f = f0 +
∫

�s

∂f

∂xj

V
j
n �t�s ,

subject togm = gm
0 +

∫

�s

∂gm

∂xj

V
j
n �t�s ≤ ḡm,

∣∣∣V j
n �t

∣∣∣ ≤ dcfl, (20)

where f is the objective function, gm is the mth constraint
with constrained value ḡm, V

j
n �t = �xj , and dcfl is the

maximum distance the boundary point can move along the
normal direction inside the design region, i.e., the Courant-
Friedrichs-Lewy (CFL) stability condition.

The integrals in (20) can be estimated as,

∫

�s

∂f

∂xj

V
j
n �t�s ≈

nb∑
j=1

lj
∂f

∂xj

V
j
n �t = Sf · Vn�t , (21)

and,
∫

�s

∂gm

∂xj

V
j
n �t�s ≈

nb∑
j=1

lj
∂gm

∂xj

V
j
n �t = Sg · Vn�t , (22)

where lj is the discrete length of the boundary around the
boundary point j , Sf and Sg are vectors containing the
product of boundary lengths and sensitivities, and Vn is the
vector of normal velocities. With (21) and (22), Vn can be
found in order to minimize the objective function, given any
constraints. This provides a numerical implementation of
the steepest-descent of the objective function for the set of
Vn. However, we switch the problem to a variable time step
that is optimized according to the values of the sensitivities
as

Vn�t = −λf Sf + λg1Sg1 + λg2Sg2 + ... + λgmSgm , (23)

where λf and λg1 + λg2 + ... + λgm are the optimization
variables to be determined. We then reformulate (20) as

minimize
λf ,λg

Sf · Vn(λf , λgm)�t ,

subject to Sg · Vn(λf , λgm)�t ≤ �ḡ,

|Vn�t | ≤ dcfl, (24)

where dcfl includes the CFL condition and any other
possible bounds for the movement of each boundary point,
e.g., to restrict a point from moving out of the design
domain. The term �ḡ is the allowed change of each
constraint function at every iteration.

In summary, the optimization problem from (24) is
solved for λf and λgm , therefore considerably reducing
the number of optimization variables from the number
of boundary points to the number of objective and
constraint functions. For instance, when doing compliance
minimization subject to volume constraints, the amount of
optimization variables is only two, independently of the
boundary size. This procedure enforces the velocity field
to be a linear combination of the sensitivity fields, leading
to a smooth propagation of the structural boundaries. This
is also advantageous when handling a high number of
constraints, as shown in Dunning et al. (2016). More details
of this optimization formulation can be found in Picelli et al.
(2018a) and Hedges et al. (2017).

3.3 Optimization problem and shape sensitivities

Compliance minimization of structures under design-
dependent pressure loads subject to a volume constraint is
considered. This optimization problem, P1, can be written
as

P1

minimize fTp ũs ,

subject to Ks ũs = fp,
Vs ≤ V̄ ,

(25)
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Fig. 4 Flowchart of the optimization procedure

where Vs is the volume fraction that the structure occupies
regarding the design domain and V̄ is the maximum allowed
volume fraction.

For the LSTO method, regularization techniques (e.g.,
length scale and perimeter control) have been often used to
reduce the number of local minima and make the problem
well-posed. We acknowledge that the use of perimeter
control, for instance, mitigates the dependency on the
mesh size and on the initial level-set function of the
problem, i.e., the initial hole configuration. We, therefore,
also formulate the following optimization problem, P2,
including a perimeter term in the objective. The needs and
effects of the perimeter regularization term will further be
discussed in Section 4.

P2

minimize fTp ũs + μχs ,

subject to Ks ũs = fp,
Vs ≤ V̄ ,

(26)

1
0
0

312

8

0fP P=

Fig. 5 Piston problem scheme considered for optimization

where μ is a fixed positive parameter and χs is the perimeter
of the structure given by

χs =
∫

�s

d�s . (27)

This work applies shape sensitivities to morph the struc-
tural boundaries towards an optimal solution. Shape sen-
sitivities for a structural compliance function consider-
ing design-dependent pressure loads have been studied in
Allaire et al. (2004) and Xia et al. (2015). Including the
perimeter parameter, the shape sensitivity can be written as,

∂f

∂x
=

∫

�s

[2div (p0u) − Dε (u) · ε (u) + μκ]Vnd�s , (28)

where p0 is the pressure load, u is the displacement, Dε (u)

is the stress tensor, ε (u) is the strain tensor, and κ is the
curvature of the boundary.

Equation (28) represents the shape sensitivity in the
continuum space for the objective in P2. One advantage
of employing shape sensitivities is that it allows the use

Fig. 6 Piston design solution
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Fig. 7 Snapshots of the piston
design via LSTO

of any analysis method (FEM or others) to compute the
terms in sensitivity function, possibly allowing it to be
directly associated with black-box commercial packages. In
this case, (28) indicates that the sensitivity of a boundary
point depends on the divergence of the pressure times
displacement, stress times strain, and lastly, the curvature of
the boundary. In this work, the FEM is employed to compute
(28) as

∂f

∂xj

= [
2

(
PfBũs · {1, 1, 0} + ũs · ∇Nf Pf

) − DBũs · Bũs + μκ
]j .
(29)

In the fixed grid LSTO, the stiffness of the elements cut by
the structural boundaries is weighted by the area fraction
of those elements. This is popularly known as the Ersatz
material interpolation. Another advantage of the present
LSTO method is that a least-squares interpolation is used
to recover the continuity of the structural response at the
boundary points. This allows a fixed grid to be used with
desired accuracy and showed to produce smooth topologies
in our stress-based optimization work (Picelli et al. 2018a).
This procedure is used here. First, the terms in (29) that
depend on displacements are computed at the Gauss points
of the elements, where the FEM gives high accuracy when
the element is not distorted (Zienkiewicz and Taylor 2005).
Each term is then interpolated via least squares at the
boundary point xj . For the free boundaries �h, the terms
depending on Pf in (28) and (29) are null. For P1, in which
no perimeter function is considered, the term μκ is zero. For
P2, this term is computed via the finite difference method.
One can efficiently compute the perimeter sensitivities by
the local difference in the length of each point segment

with a small perturbation of each boundary point coordinate
in the normal direction. The least squares and perimeter
sensitivities can be computed using our open source code
available at http://m2do.ucsd.edu/software/.

3.4 Method summary

Figure 4 provides the flowchart of the present optimization
procedure. The list of steps is as follows:

1. Define the region where the structure occupies, a
structural design domain and a fixed fluid region.

2. Choose material properties and optimization parame-
ters.

3. Instantiate the finite element mesh and the level-set
grid. One finite element mesh is able to cover both
fluid and solid domains.

4. Initialize the level-set function φi for an initial
structural design, e.g., including initial holes.

1
0

0

100

6

0fP P�

Fig. 8 Design example considered for optimization to obtain an arch
structure solution
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Fig. 9 Arch structure solutions
for a P1 with final compliance
7.74×104 and b P2 with final
compliance 7.39×104

(b)(a)

Fig. 10 Snapshots of the arch
structure design via LSTO

Fig. 11 a Pressurized chamber
example considered for
optimization and b initial guess
design

3
0

55

44

5510

1
6

7
4 40 x 6

infP P�

outfP P�

(b)(a)
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Fig. 12 Chambers solutions for
different Pin’s

5. Discretize the level-set boundaries into a set of
boundary points and segments.

6. Compute the area fractions for each element.
7. Propagate the fluid element status according to the

procedure described in Section 2.3 and identify the
segments carrying pressure loads.

8. Assemble and solve the finite element model from (4)
to obtain the fluid pressure field.

9. Compute and assemble the pressure loads for the
structural analysis with (10).

10. Assemble the stiffness matrix and solve (8) to obtain
the displacements field ũs .

11. Compute the discretized shape sensitivity function
from (29) at all boundary points via least-squares
interpolation.

12. Solve the optimization sub-problem from (24) for
optimal λf and λgm .

13. Compute the velocities at boundary points using (23).
14. Compute the level-set gradients

∣∣∇φj

∣∣ at boundary
points.

15. Update level-set function φi at the grid nodes around
the boundaries using (19).

16. Reinitialize level-set function if necessary/desired.
17. Check convergence, e.g., the change in the objective

function during the last five iterations.
18. If not converged, return to step 5 and iterate.

4 Numerical results

This section explores and discusses the benchmark exam-
ples for design-dependent pressure loading problems in
topology optimization. A solid material with Young’s mod-

ulus of 1.0 and Poisson’s ratio 0.3 is used in the structural
analysis for all examples. Plane stress condition is assumed.
The convergence is reached if the change in the structural
compliance function during five consecutive iterations is
less than 0.001.

4.1 Piston design

The schematic piston design problem from Fig. 5 is
considered for optimization. To the best of the authors’
knowledge, this problem was first explored by Bourdin and
Chambolle (2003) and later used by several other works for
a range of different methods (Sigmund and Clausen 2007;
Lee and Martins 2012; Picelli et al. 2015b; Emmendoerfer
et al. 2018). This schematic problem is explored here
to verify the topology solution offered by our proposed
method.

The left half of the model in Fig. 5 is solved here with
156 × 104 (156 × 100 for the structure) quadrilateral finite
elements in a regular fixed mesh. The problem P1 from (25)
without a regularization is solved for final volume fraction
V̄ = 30%. Boundary conditions include the symmetry at the
center line and an imposed fluid pressure P0 = 1.0 per unit
length at the top edge of the fluid domain. Figure 6 presents
the mirrored solution of the piston design problem with the
proposed LSTO method.

The topology solution from Fig. 6 agrees well with the
existing solutions, e.g., by Lee and Martins (2012) and
Wang et al. (2016) using the SIMP method and Picelli et al.
(2015b) using the BESO method. They have the central
holes converging to the bottom center support, convex
shapes of the top structural members (resembling seashells),
and the curved shapes of the structures touching the lateral
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Fig. 13 Snapshots of the
pressurized chamber design via
LSTO for Pin = 10.0

walls. They mainly differ between each other in the amount
of internal structural members. The piston design by Sigmund
and Clausen (2007) is less similar to the seashell shapes and
the solutions are dependent on the control of the fluid volume.
Regarding other level-set methods, the solutions presented in
the literature like in Emmendoerfer et al. (2018) and Xia
et al. (2015) are noticeably different. The overall looks of
the piston design from Emmendoerfer et al. (2018) and
this work are similar, but the shapes and position of the
central and top structural members in Emmendoerfer et al.
(2018) are somehow altered. The solution obtained by Xia
et al. (2015) is evidently less similar than Emmendoerfer
et al. (2018) and this work, presenting different shapes
and holes configuration. Bourdin and Chambolle (2003)
applied a phase field to represent the fluid-solid-void of the
piston design. Their solution is similar to the ones obtained
by the other methods only when a perimeter penalization
is high enough. When such penalization is lowered, a
different set of central structural members are obtained.
Figure 7 presents snapshots of our LSTO solution. The
initial solution chosen is similar to the one presented by Xia
et al. (2015).

4.2 Arch structure

The piston design problem demonstrated that the solution
of the proposed LSTO method converges to the ones
in the literature without regularization. This following
example explores the perimeter integral in the objective
function and compares problems P1 and P2 from (25) and
(26), respectively. Herein, the model depicted in Fig. 8
is considered for optimization. A fixed grid with 104 ×
104 quadrilateral finite elements is used, with the structural
design domain of 100 × 100. Both problems P1 and P2

are solved for comparison, with the volume constraint V̄ =
30% and μ = 1.0. The fluid pressure P0 = 1.0 per unit
length is applied. The solutions are shown in Fig. 9.

Figure 9 a presents the solution without the perimeter
regularization, and the solution has small holes in the
arch structure. A close investigation of the strain energy
and sensitivities revealed that their distributions are near
uniform and the volume constraint is satisfied. This means
that small holes have little effects in the compliance
function. A similar effect was observed in Picelli et al.
(2017a). In such cases, these holes remain in the final
solution when solving P1. Solving problem P2 penalizes
the perimeter and the small holes do not remain in the
final solution as shown in Fig. 9 b. The difference in the
compliance function values between these two solutions
is 4.6%. Figure 9 a shows the convergence history of
the structural compliance function when solving P1. Sharp
changes are observed due to the fact that several holes
are merging and structural members are breaking during

Fig. 14 Objective function history for the chamber design problem
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Fig. 15 Sensitivity function
values when a Pin = 1.0 and b
Pin = 10.0
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optimization. Also, due to the reinitialization of the level
set, tiny holes are formed in the solution as it can be noticed
in the converged structural topology. Figure 9 b, however,
presents smooth convergence with less structural members
breaking during optimization, as indicated by the snapshots
of the solution (see Fig. 10).

4.3 Pressurized chamber

The pressurized chamber design problem was solved in the
pioneering works by Hammer and Olhoff (2000) and Chen
and Kikuchi (2001). Besides these two, only Zhang et al.
(2008) and Picelli et al. (2015b) solved this problem using
the SIMP and the BESO methods, respectively. Therefore,
this example is explored less in the literature and to the best
of the authors’ knowledge, it has not been solved with the
LSTO method.

Herein, the schematic problem from Fig. 11 a is solved
with 120 × 76 quadrilateral elements. The initial fluid
region is kept fixed during the optimization and used in the
fluid flooding process. Two 40 × 6 parts of the structure are
considered as non-design domain, as depicted in Fig. 11 a.
An inlet pressure Pf = Pin is imposed at the right edge of
the initial fluid domain and an outlet pressure Pout = 1.0
per unit length is imposed at the entire bottom edge of the
pressurized chamber. The initial solution from Fig. 11 b

is considered for optimization. Problem P2 is solved with
μ = 50.0. Figure 12 presents the final solutions for different
values of P0.

The chamber topologies from Fig. 12 resemble the ones
obtained by the SIMP and the BESO methods (Zhang
et al. 2008; Picelli et al. 2015b). One advantage of using
the present LSTO technique is to obtain smooth and very
well-defined structural boundaries with a relative small
grid. For instance, Picelli et al. (2015b) obtained a crisp
chamber topology visually similar to the present LSTO
solution when using 57000 finite elements, while here we
use 9120. Although there is not any other LSTO solution
in the literature for this problem, we can point out that the
pressure modeling via work equivalent integrals represents
a quite simple alternative to other techniques, e.g., XFEM
and mixed models. Figure 13 shows the snapshots of the
chamber optimization iterations with P0 = 10.0 per unit
length, converged to the final compliance of 9.09×105 as
seen in Fig. 14.

When deriving the compliance function, a term that
accounts for the changes in the load due to a change in
the design variable should appear in the sensitivity function
when considering the design-dependency of the load. For a
pressure loading problem, the change in the compliance due
to a change in the pressure distribution is represented by the
term 2div (p0u) in (28) (Allaire et al. 2004).

Fig. 16 Pressurized chamber
design via LSTO with a
complete sensitivity function
evaluation and b sensitivities
computed without the pressure
term. Difference in structural
compliance of 1.64%

(a) (b)
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Fig. 17 Beam support design problem

For a full solid pressure chamber, Fig. 15 presents the
magnitude of the sensitivity function values for all boundary
points separated by its different terms when Pin = 1.0
and Pin = 10.0 per unit length. In this case, these values
were computed with the sensitivity function discretized
by FEM and expressed in (29). Figure 15 shows that
the pressure term 2

(
PfBũs · {1, 1, 0} + ũs · ∇Nf Pf

)
from

(29) is generally much lower when compared with the stress
× strain term DBũs · Bũs . Pressure Pf is only non-zero
for boundary points located at the fluid-structure interface
and when the pressure values are the same at all points,
the gradient term ∇Nf Pf is null. This study shows that the
sensitivity of the pressure change in this design optimization
problem has a negligible effect. Figure 16 presents the final
design solutions when evaluating the completed sensitivity
function and when computing sensitivities without the
pressure term.

4.4 Beam support

The last example considers the beam support design inside
a fluid flow channel. The works by Jenkins and Maute
(2016), Yoon (2010), Picelli et al. (2017b), and Lundgaard
et al. (2018) describe the interaction between the fluid flow
governed by the incompressible steady-state Navier-Stokes

equations with the linear elastic structures. As proposed by
Zhao et al. (2018), an approximate linear model can be used
to simplify the flow based on a Darcy potential flow model.
Borrowing this idea, herein we rewrite (1) in the form of
Poisson’s equation as

∇2Pf = vf in �f , (30)

where vf is the fluid velocity. The pressure boundary
condition is applied as (2) and a velocity profile is imposed
as

vf = v0, (31)

with v0 being the velocity on a portion of the boundary �f .
The design problem in Fig. 17 is considered for

optimization. A distributed inlet velocity profile v0 = 1.0
is applied at the left edge of the fluid domain. An outlet
pressure P0 = 0.0 is imposed at the right edge. Problem P2

is solved with μ = 1.0. The 10 × 100 beam in the black
region in Fig. 17 is specified as the non-design domain. The
mesh of solid finite elements including the design and non-
design domains is 60× 100. For a compliance minimization
problem with volume constraint V̄ ≤ 30%, Fig. 18 presents
the initial and the structural topology solution.

The final solution follows the tendency of obtaining
curved structural members similarly to the previous
examples of this work. This is expected for a hydrostatic
fluid pressure field as arch-like structures are known to bear
pressure loads well. The pressure drop in the channel is
relatively smooth. If the Navier-Stokes equations were used,
the pressure drop would be possibly higher specially for
higher Reynolds number, which can significantly change the
solution patterns. For future works, this methodology can be
extended to different types of fluid-structure interaction.

Fig. 18 Beam support design
problem. a Initial guess design
and b solution via LSTO

(a)

(b)
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5 Conclusions

This paper presented a LSTO method for compliance
minimization of structures under design-dependent fluid
pressure loads. Laplace’s equation was used to solve
the fluid pressure field. Using our LSTO method and
the classic FE computation of work equivalent loads,
pressure loading problems with moving boundaries are
addressed. The effects of a perimeter-based regularization
were demonstrated. It was shown that smooth boundaries
and good convergence are achieved. The topology results
agree well with the benchmarking solutions in literature
obtained by the other methods available, particularly with
SIMP and BESO. The interaction between an elastic
structure and fluids happens at the interfaces; therefore, the
clear definition of the structural boundaries plays a crucial
role in such problems, making the present LSTO method
advantageous. Furthermore, the use of classic FE load
integration turns the modeling of the pressure surface much
simpler than XFEM or mixed models. Another advantage
is the application of shape sensitivities. In this context, any
fluid-structure discretization can be used as the sensitivities
are in the continuum space. The method herein can be
used as starting point for more complex design-dependent
physics problems.

6 Replication of results

The data from these numerical investigations are available
by contacting the authors.
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