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ABSTRACT 

This paper reviews the recent development of Digital Twin technologies in manufacturing 
systems and processes, to analyze the connotation, application scenarios, and research issues 
of Digital Twin-driven smart manufacturing in the context of Industry 4.0. To understand Digital 
Twin and its future potential in manufacturing, we summarized the definition and state-of-the-
art development outcomes of Digital Twin. Existing technologies for developing a Digital Twin 
for smart manufacturing are reviewed under a Digital Twin reference model to systematize the 
development methodology for Digital Twin. Representative applications are reviewed with a 
focus on the alignment with the proposed reference model. Outstanding research issues of 
developing Digital Twins for smart manufacturing are identified at the end of the paper. 

Keywords: Smart Manufacturing; Digital Twin; Industry 4.0; Cyber-physical System; Big Data; 
Standard; Industrial Communication 
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1 Introduction 

Digital Twin has gained significant impetus as a breakthrough technological development that 
has the potential to transform the landscape of manufacturing today and tomorrow [1]. Digital 
Twin [2], acting as a mirror of the real world, provides a means of simulating, predicting and 
optimizing physical manufacturing systems and processes. Using Digital Twin, together with
intelligent algorithms, organizations can achieve data-driven operation monitoring and 
optimization [3], develop innovative product and services [4], and diversify value creation and 
business models [5].  

Though studies have reported the potential application scenarios of Digital Twin in
manufacturing, we identified that current approaches to the implementation of Digital Twin in 
manufacturing lack a thorough understanding of Digital Twin concept, framework, and 
development methods, which impedes the development of genuine Digital Twin applications 
for smart manufacturing. In this study, we discussed the connotations of Digital Twin-driven 
smart manufacturing in the context of Industry 4.0. The objectives and the contributions of 
this paper are to provide comprehensive discussions on the impact, reference model, 
application scenarios and research issues of Digital Twin for achieving smart manufacturing.  

The remainder of the paper starts with tracing the vision of Digital Twin and the development 
to date based on studies from the literature (see Section 2). This is followed by an in-depth 
discussion on the connotation of Digital Twin-driven smart manufacturing in Section 3, 
highlighting how Digital Twin will transform the future manufacturing landscape. Section 4 
details a Digital Twin reference model and enabling technologies for developing a Digital Twin-
driven smart manufacturing solution. An overview of existing Digital Twin applications and some 
typical application scenarios are presented in Section 5. Section 6 discusses the critical research 
issues for future research. Section 7 concludes the research work. 

2 Digital Twin overview 

This section traces the history of the Digital Twin concept, clarifies its relations with several 
other tropical concepts in the manufacturing domain, summarizes its research and development 
progress, and highlights the research gaps. 

2.1 Definition 

Digital Twin was conceived in [6] as a method to predict the structural behavior of an aircraft 
by analyzing and simulating the aircraft’s behavior on its digital model in 2011. A year later, 
NASA defined Digital Twin as “an integrated multi-physics, multi-scale, probabilistic simulation 
of a vehicle or system that uses the best available physical models, sensor updates, fleet 
history, and so forth, to mirror the life of its flying twin [2].” There was limited exploration 
since then, until 2015, the explosion of machine learning, wireless communication and cloud 
computing boosted the research activities on Digital Twin. Several definitions of Digital Twin 
came out afterwards. For instance, Digital Twin was seen as the next generation of simulation 
[7]. Tao and Zhang believed that Digital Twin is a method of achieving the convergence between 
physical and virtual spaces [8].

Now, Digital Twin has evolved into a broader concept that refers to a virtual representation of 
manufacturing elements such as personnel, products, assets and process definitions, a living 
model that continuously updates and changes as the physical counterpart changes to represent 
status, working conditions, product geometries and resource states in a synchronous manner 
[9]. The digital representation provides both the elements and the dynamics of how a physical 
‘thing’ operates and lives throughout its life cycle. 

2.2 Concept clarification 

There exist diverse viewpoints on the relationships between Digital Twin and other concepts, 
such as simulation, Cyber-physical Systems (CPSs) and Internet of Things (IoT). Though these 
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concepts are closely related, they, by their nature, are different on the concept, core 
elements, and application. 

Digital Twin and Simulation 

A Digital Twin is a digital replica of a real-world ‘thing.’ While this looks close to simulation, 
Digital Twin is much more. A Digital Twin is a high-fidelity representation of the operational 
dynamics of its physical counterpart, enabled by near real-time synchronization between the 
cyberspace and physical space [10]. The operational dynamics are critical elements of a Digital 
Twin because a twin’s behavior is based on near real-time data coming from the actual physical 
counterpart. Simulation focuses on what could happen in the real world (what-if scenario), but 
not what is currently happening. In the manufacturing context, a Digital Twin can be used for 
monitoring, control, diagnostics, and prediction, other than just simulation [10]. 

Digital Twin, CPS, and IoT 

Though Digital Twin, CPS, and IoT all use networking and sensors, Digital Twin is a different 
but interrelated concept with CPS or IoT, as shown in Fig. 1. 

Fig. 1: The relationship between Digital Twin, CPS and IoT (adapted from [11]) 

A CPS is characterized by a physical asset and its Digital Twin. In contrast, a Digital Twin is 
limited to the digital model, not the twinning physical asset, though a Digital Twin cannot live 
without its twining asset in the physical space. In other words, Digital Twin represents the 
prerequisite for the development of a CPS [12]. 

IoT refers to connections between a network of physical assets through which data can flow 
between themselves. The connections are made possible by the secure implementation of 
computer networks, the Internet, and communication protocols. However, despite the 
connectivity, IoT does not include the idea of digital models in the cyberspace. The IoT is the 
infrastructure in the physical space for connecting physical assets [11]. 

2.3 Research activities 

The research activities on Digital Twin have gained hyper growth during the past three years 
driven by the strategic implementation of Industry 4.0 from world-leading research 
organizations and tech giants. 

2.3.1 Academic research outcomes 

Digital Twin related engineering research is in its infancy with significant growth during the 
past three years as shown in Fig. 2(a). The number of publications on this topic in 2018 tripled 
that in 2017. A large percentage of the research outcomes come from the US, Germany, and 

Physical World Physical Assets

Cyber World Digital Twins

CPS
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China, who are leading the race to Industry 4.0. A small number of researchers and research 
organizations contributed nearly 40% of the total number of articles on this topic. 

Fig. 2: Statistics from Scopus database (TITLE-ABS-KEY (“digital twin”) AND (LIMIT-TO 
(SUBJAERA, “ENGI”)), Date: 2 July 2019). (a) Document per year; (b) Documents by 

author; (c) Documents by country/territory; (d) Documents by affiliation 

2.3.2 Industry research outcomes 

Digital Twin has attracted strong interests from industry practitioners too. The Digital Twin 
market is forecasted to reach $15.66 billion by 2023 at an annual growth rate of 37.87% 
according to a market research in 2017 [13]. GE developed a Digital Twin platform – PREDIX 
that can better understand and predict asset performance [14]. SIEMENS’s focus covers smart 
operations during the complete process of product design, production and operation [15]. ABB 
emphasizes on enabling data-driven decision makings [16]. Microsoft also geared up its Digital 
Twin product portfolio, providing a ubiquitous IoT platform for modeling and analyzing the 
interactions between people, spaces, and devices [17]. Initiatives from these tech leaders have 
significantly pushed the boundary of Digital Twin for engineering applications. 

2.4 Research challenges 

Though some early adopters have demonstrated some applications of Digital Twin for 
manufacturing, current implementation limitations are (1) inadequate understanding of the 
connotation of Digital Twin-driven smart manufacturing, with the current focus mostly on 
product operation and maintenance, (2) the lack of reference models for Digital Twin, and (3) 
superficial knowledge of the research questions and challenges of Digital Twin, with current 
research outcomes mostly showing preliminary application examples.  

The sustainable development of Digital Twin-driven smart manufacturing needs critical analysis 
on the above aspects based on the development trend of smart manufacturing, which the 
research in this paper aims to address.  

3 Digital Twin-driven smart manufacturing 

Manufacturing is becoming smart at all levels from the physical device, through factory 
management, to production networks, gaining abilities to learn, configure and execute with 
cognitive intelligence. This section outlines the trend of smart manufacturing and discusses the 
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connotation of Digital Twin-driven smart manufacturing, highlighting the impact that Digital 
Twin may have for future manufacturing.

3.1 Smart manufacturing 

Smart manufacturing is coined by several agencies, such as the Department of Energy (DoE) 
and the National Institute of Standards and Technology (NIST) in the United States. According 
to Davis et al., smart manufacturing is the dramatically intensified application of 
‘manufacturing intelligence’ throughout the manufacturing and supply chain enterprise [18]. It 
comprises the real-time understanding, reasoning, planning and management of all aspects of 
manufacturing processes, facilitated by the pervasive use of advanced sensor-based data 
analytics, modeling, and simulation. NIST defines smart manufacturing systems as “fully-
integrated, collaborative manufacturing systems that respond in real time to meet changing 
demands and conditions in the factory, in the supply network, and customer needs. [19]”

In smart manufacturing, a physical ‘thing’ in a factory is connected to the Industrial Internet 
via standard cyber gateways and abstracted as a Digital Twin in the cyberspace. Each Digital 
Twin in the cyberspace is an abstraction of its counterpart in the physical world by reflecting 
its physical status. The cyberspace stores and processes the streamed data from connected 
physical objects. These data are used to model, simulate and predict the status of each physical 
thing under dynamic working conditions. The pervasive use of smart technologies, such as Big 
Data Processing and Artificial Intelligence enables the extraction of manufacturing intelligence 
at every single moment of manufacturing activities. The collective intelligence in locally 
connected factories and the cyberspace paves the way for some dramatic changes from the 
aspects of intra-business operation, inter-business collaboration and production model, as 
shown in Fig. 3. 

Fig. 3: Smart manufacturing vision 

• Smart Production: Manufacturing systems augmented with cognitive intelligence [20] can 
take over more and more production jobs. Connected and self-organizing manufacturing 
systems will tackle new manufacturing tasks with high efficiency and flexibility. The 
relationship between humans and machines will also change; one direction is a factory will 
become fully-immersed human-machine collaboration space [21]. 
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• Smart Production Network: Connected cyber-physical production systems will form a 
global production network that can respond in almost real-time to dynamic changes in local 
production systems and external supply chain [22]. A production network of adaptive and 
self-optimizing production systems can enable autonomous configuration and planning of 
production activities for production jobs at changing scales to achieve sound economic, 
environmental and social impacts.  

• Mass Personalization: Production model will move from a push-type mass production model 
to pull-type mass personalization [23]. Smart factories that are fully responsive to changes 
and demands from the factory, supply chain, and customer side can achieve batch-size-of-
1 production with high efficiency and flexibility. The ubiquitous manufacturing intelligence 
in distributed factories and production systems can sense, configure and collaborate by 
themselves based on near real-time production status and demands, which therefore 
provides the required agility for producing highly personalized products. 

3.2 Digital Twin for smart manufacturing 

Digital Twin plays a pivot role in the vision of smart manufacturing. It enables the shift from 
analyzing the past to predicting the future. The live representation of reality via Digital Twins 
allows us to evolve from ex-post data gathering and analytics towards real-time and ex-ante 
business practices. Mirroring the vision of smart manufacturing in Fig. 3, Digital Twin can 
influence future manufacturing from the following aspects. 

• Digital Twin for manufacturing assets: A manufacturing asset can be connected and 
abstracted to the cyberspace via its Digital Twin. Manufacturers can gain a clearer picture 
of real-world performance and operating conditions of a manufacturing asset via near real-
time data captured from the asset and make proactive optimal operation decisions. With 
truthful information flowing from a manufacturing asset, manufacturers can improve their 
situational awareness and enhance operation resilience and flexibility, especially in the 
context of mass personalization. 

• Digital Twin for people: Digital Twins can also connect workers at the shop floor. The 
representation of a person, including personal data like weight, health data, activity data, 
and emotional status can help to establish models to understand personal wellbeing and 
working conditions of humans in a factory. The understanding of human state at workforce 
can help design human-centered human-machine collaboration strategies to increase the 
physical and psychological health of workers, as well as achieving best production 
performance. Workers can also upskill themselves via ultra-realistic training programs which 
blend physical factory setups with virtual what-if scenarios. The ability to set up 
personalized virtual training programs based on Digital Twins of workers and factories can 
lead to tremendous resource optimization and operational efficiency. 

• Digital Twin for factories: Digital Twins can also work for factories, making a replica of a 
live factory environment. Digital Twin and data-driven production operations can allow the
establishment of a self-organizing factory environment with complete operational visibility 
and flexibility. Connectivity and data tracking throughout the complete manufacturing 
process enable factory operations to be transformed into data-driven evidence-based
practices, offering the capabilities of tracing product fault sources, analyzing production 
efficient bottlenecks and predicting future resource requirements. 

• Digital Twin for production networks: By connecting manufacturing assets, people and 
service via Digital Twin, every aspect of business can be virtually represented. Connecting 
distributed Digital Twins between companies will allow companies to build virtually 
connected production networks. Leveraging Big Data capabilities, this strategy provides 
unprecedented visibility into operation performance and creates the possibility of 
predicting future needs in a network of Digital Twins.

4 Digital Twin reference model 
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Digital Twin reflects the two-way dynamic mapping between a physical object and its virtual 
model in the cyberspace [24]. A Digital Twin presents a middleware architecture that abstracts 
its physical counterpart for high-level engineering management systems to make near real-time 
decisions [25]. Fig. 4 shows a Digital Twin reference model. At the technical core, the 
development of Digital Twin needs three components: (1) an information model that abstracts 
the specifications of a physical object, (2) a communication mechanism that transfers bi-
directional data between a Digital Twin and its physical counterpart, and (3) a data processing 
module that can extract information from heterogeneous multi-source data to construct the 
live representation of a physical object. These three components must work together for
constructing a Digital Twin. Without an information model to abstract the features of a physical
entity, data transmitted to the cyberspace will lose its meaning and context. Without a data 
synchronization mechanism between a physical model and its information model, the 
connection and reflection between these two ends will disconnect, and the information model
becomes a one-off snapshot of its physical counterpart. High-performance data processing is 
the key to bridge the gap between the heterogeneous data stream and the Digital Twin
information model. 

Physical Object

Digital Twin

Communication

Information Model Data Processing

Fig .4: A Digital Twin reference model 

4.1 Information model 

A physical object is abstracted with a pre-defined information model that represents its 
specifications of concern. Standard plays a critical role in providing the information model for
describing various physical objects in the manufacturing domain. Fig. 5 lists well-recognized 
standards that provide standard information models for describing physical objects in the 
manufacturing domain. These information models are classified into two subtypes: information 
models for product Digital Twin and information models for production Digital Twin. 
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Fig. 5: Timeline-based depiction of standards for Digital Twin in the manufacturing 
domain (Enriched from [26]) 

4.1.1 Information models for product Digital Twin 

The most predominant standards for developing product Digital Twin are ISO 10303 [27] and 
ISO 14649 [28] standards. ISO 10303 [27], known as STEP, provides a neutral data structure for 
exchanging product data between CAD systems. Its latest development of AP242 [29] for 
‘Managed Model Based 3D Engineering’ by merging AP203 and AP204, with a focus on the 
representation of 3D model data, geometric tolerance and PMI (Product Manufacturing 
Information), provides a sound technological base for global design and manufacturing 
collaboration. Geometric tolerance and PMI information can now be read by machines directly 
from product design files in STEP AP242 model without the need of interpreting 3D drawings. 
This change closes the communication gaps between various stages of the product lifecycle, 
resulting in autonomous process planning, manufacturing, inspection, and so forth. 

ISO 14649 [28] and ISO 10303-238 [30] (also known as STEP-NC) are proposed to replace the 
RS274D (ISO 6983) M and G code via a modern associative language that directly connects the 
CAD design data used to determine the machining requirements for operation with the 
downstream fabrication processes. STEP-NC allows manufacturing organizations to share 
machining information between machines seamlessly via the exchange of semantic-enriched 
‘what-to-do’ information. It relies on intelligent machine tools to interpret ‘how-to-do’ 
instructions adaptive to the local machining conditions. The shift of interpreting local 
machining instructions into the machine controller level maximizes the interoperability 
between distributed machine tools.  

4.1.2 Information models for production Digital Twin 

ISO 13399 [31] is an international standard by ISO for the computer-interpretable 
representation and exchange of industrial product data about cutting tools and tool holders. It 
provides a neutral mechanism capable of describing product data regarding cutting tools. This 
information model has been used for CAD/CAM/CNC integration, tool management, product 
data management and manufacturing resource planning. Similarly, ISO 14649-201 [32] defines 
a model for specifying machine tool data required for cutting processes. 
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Targeting at describing machine tools, MTConnect standard offers a semantic vocabulary for 
manufacturing equipment to provide structured, contextualized data with no proprietary 
format [33]. It is developed to translate manufacturing data into a common, internet-based 
language interpretable by software applications. MTConnect defines a hierarchical information 
model for machine tools. The information model represents the logical structure of a machine 
tool, including the components, the available data and the relationships between them.  

OPC Unified Architecture (OPC UA) [34] is another open standard that specifies information 
exchange for industrial communication on devices within machines, between machines and 
from machines to systems. A widely-recognized OPC-UA information model is MTConnect-OPC-
UA companion specification, aiming at improving the interoperability between these two 
standards. MTConnect-OPC UA companion specification ensures interoperability and 
consistency between MTConnect specifications and the OPC UA specifications, as well as the 
manufacturing technology equipment, devices, software, or other products that implement 
those standards. 

It is common that the information model from a single standard cannot meet the application 
requirements because of the breadth of the potential application of Digital Twin. Past studies 
suggest a systematic information model development process to ensure maximum standard 
conformance and usability [35]. MTConnect and OPC-UA community also recommend a bottom-
up approach to expanding existing information models to suit new application needs, especially 
when now IT disruptions outpace the manufacturing standard development. 

4.2 Industrial communication – twinning tools 

A communication network is another critical factor for enabling the establishment of Digital 
Twins. State synchronization between a Digital Twin and its counterpart in the physical space 
relies on bi-directional and real-time data communication. State changes to a physical object 
are detected by sensors and transmitted to its Digital Twin in the cyberspace. In this regard, 
industrial communication protocols can help collect data from physical devices. 

Table 1 presents a list of industrial communication protocols used for industrial process 
monitoring and control. These protocols are mapped to the ISO Open Systems Interconnection 
(OSI) model but very often modified (or simplified) to satisfy the real-time and reliability 
requirements of industrial processes. Existing industrial systems are typically implemented with 
heterogeneous networks. These industrial networks can be classified into three different 
categories. The first category consists of the earliest development of industrial networks, or 
the so-called Fieldbus, which represents the common legacy networks in existing industrial 
automation systems. The second category is the next generation of industrial networks, which 
are typically Ethernet-based protocols but with modifications to satisfy the real-time and 
reliability requirements. The third category is the recent development following the trend of 
the Internet of Things that typically makes use of wireless network technologies. 
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Table 1: Popular industrial communication protocols mapped to the OSI model

Protocol Physical Data link Network Transport Session Presentation Application Data Rate No. of Devices 

ControlN
et [36] 

RG-6 coaxial cables, 
5Mbps 

ControlNet CTDMA ControlNet, 99 nodes ControlNet CIP protocol family <5Mbps 99 

DeviceNe
t [37] 

CANbus with twisted 
pair cables, 1Mbps 

CAN bus CSMA/NBA DeviceNet, 64 nodes DeviceNet CIP protocol family <0.5Mbps 64 

Modbus-
RTU or 

ASCII [38] 

Serial cable, ex: RS-
232, RS-485 

Modbus 
Modbus Map, 247 

nodes 
Modbus 

Modbus client or 
server + interface 

19.2kbps 
(default) 

<247 

PROFIBUS 
[39] 

RS-485 cables, fiber 
optic cable or MBP 

PROFIBUS Fieldbus 
data link 

32 nodes, 126 with 
fiber optic cable Not used Not used Not used PROFIBUS DP <12Mbps <126 

PROFINET 
[40] 

Ethernet 

10/100/1000 Mbps 
Ethernet CSMA/CD IP TCP/UDP Not used Not used PROFINET <1000Mbps >1000 

Modbus-
TCP/IP 

[41] 

Ethernet 10/100/1000 
Mbps 

EtherNet IP, 254 nodes/module TCP port 502 Modbus TCP 
Modbus client or 
server + interface 

<1000Mbps >1000 

EtherNet
/IP [42] 

Ethernet 10/100/1000 
Mbps 

Ethernet CSMA/CD IP TCP/UDP CIP protocol family <1000Mbps >1000 

EtherCAT 
[42] 

Ethernet 10/100/1000 
Mbps 

EtherNet w/EtherCAT 
slave&controller chip 

IP with timing layer, 
up to 65535 nodes TCP/UDP EtherCAT <1000Mbps >1000 

HART 
(Wired) 

[43] 

Simultaneous hybrid 
analog & digital 

signaling, 4-20mA 
copper wiring 

Mechanical/electrical 
connection transmits 

raw bitstream Auto segmented 
transfer of large 

data sets, reliable 
stream transport, 

negotiated segment 
sizes 

Not used Not used 

Command oriented, 
predefined data 

types and application 
procedures 

1.2kbps 62 

HART 
(Wireless) 

[44] 

2.4GHz wireless, 
IEEE802.15.4 based 

radios, 10dbm 
transmission power 

Secure and reliable, 
time synched 
TDMA/CSMA, 

frequency agile with 
ARQ 

Power-optimized, 
redundant path, self-
healing wireless mesh 

network 

Not used Not used <250kbps <30000 
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4.2.1 Fieldbus networks  

In the late 1970s to late 1980s, several dedicated industrial networks (or Fieldbus), such as 
PROFIBUS [39] and Modbus [38], were developed to support the machine to machine 
communications and the remote terminal control of programmable logic controllers, for process 
and peripheral control/automation. As shown in Table 1, many Fieldbus protocols were 
designed to operate on different physical media and have widely incompatible communication 
stacks across different layers of the OSI model. This has thus lead to closed-loop silos which 
prevents data exchange and communication between standards. The current trend is moving 
towards adopting Ethernet-based standard, such as Modbus/TCP [41], in order to facilitate 
inter-communication at a higher level (e.g., the Internet or the enterprise control system).  

Table 1 also provides a high-level comparison between different types of industrial networks in 
terms of their communication data rate and the number of supported devices on a single 
network. While the performance varies significantly among the three categories, it should be 
noted that the data rate and the number of supported devices in a specific network are heavily 
influenced by the selected physical medium, operation mode (and hence communication 
overhead), network topology, and the length of the physical medium (e.g., cable length). While 
Fieldbus networks seem to offer a slower data rate and fewer devices, their key advantage is 
usually the deterministic communication time for safety-critical operations.  

4.2.2 Ethernet-based industrial networks 

An increasing number of manufacturers are using Industrial Ethernet-based solutions to connect 
systems. This is driven by the need of high-performance integration between factory 
installations and the Industrial Internet of Things [45]. The advantages of Industrial Ethernet 
over traditional Fieldbus systems are its homogenous network infrastructure, ease of 
integration with the Internet, greater bandwidth to transmit safety-critical data, and the ability 
to communicate over longer distances. Even with the adoption of a common Ethernet standard, 
devices that support different Industrial Ethernet standards are not compatible or interoperable 
with each other because of the unique protocol stacks in different Industrial Ethernet 
standards. The future Ethernet IEEE 802.1 TSN (Time Sensitive Networks) standard could 
eventually make time-critical and deterministic network communication via standard Ethernet 
components possible, thus facilitating wider adoption and better interoperability. 

4.2.3 Industrial wireless networks 

One of the key driving features in Digital Twin and throughout the automation and 
manufacturing industries is the need for data/information exchange. This is evident from the 
early development of the Fieldbus systems. Since 2000, the concept of IoT and Wireless Sensor 
Networks (WSN) are also impacting the industrial network field. Most of modern approaches 
are adopting existing standards such as IEEE 802.11 [46] (e.g., WiFi-based), IEEE802.15.1 (e.g., 
Bluetooth-based), and IEEE 802.15.4 [47] (e.g., Zigbee-based). While wireless networks have 
the intrinsic benefit of ease of installation due to no wiring and low cost, existing approaches 
are still limited due to the lack of reliability and potentially long latency for safety-critical and 
real-time data.  

4.3 Big data processing 

The data gathered from various sources to construct a Digital Twin will be Big Data [48], if not 
now. Efficient processing of Big Data gathered from the physical space is the third pillar of 
developing a Digital Twin.  

Data processing methods that use statistical analysis and prediction models while ignoring noise 
and conflicts between single data records do not apply to Digital Twin development by default. 
The following unique features need to be considered for Big Data analysis solutions targeting 
Digital Twin industrial applications. 
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• Hidden Meaning – Feature extraction in industrial Big Data analysis needs to analyze 
the meaning of a feature and the relations between features in the real world, in 
addition to statistical analysis of feature relations. 

• Timeliness – Industrial data analysis requires low-latency data processing to enable 
time-sensitive applications, such as cloud-based industrial control [49].  

• High Quality – Data quality is sometimes more important than its volume. Industrial Big 
Data applications need high-quality data that covers the full spectrum of the 
system/process to be analyzed. Noise and data conflicts can directly break data analysis 
and result in unusable results. 

Therefore, there exists a demand for a low-latency data processing system that can integrate 
domain knowledge verification for data processing. To this end, we propose the following 
general data processing framework for constructing Digital Twins as shown in Fig. 6. 

Fig. 6: Data processing for industrial big data 

4.3.1 Data acquisition and cleansing 

Real-world data collection comes with noise and missing data. It is essential to clean low-
quality raw data into ordered, meaningful and simplified forms. 

A missing value is a datum that has not been stored or gathered due to a faulty sampling 
process, cost restrictions or limitations in the acquisition process. Inappropriate handling of the 
missing values will easily lead to poor knowledge extraction and wrong conclusions [19]. One 
option is to discard the instances that may contain a missing value. However, this approach is 
rarely beneficial, as eliminating instances may produce a bias in the data processing process, 
and a Digital Twin can miss some critical snapshots. Another method is to use a statistical 
method to ‘guess’ an approximate value to fill the missing values. This method can be a good 
choice if integrated with domain knowledge reasoning. There are physical models behind 
activities occurring in the manufacturing environment. The domain knowledge can be used as 
the base rules for making a reasonable prediction of the missing value. 

Conflicting or redundant data records can introduce bias in the data analysis results. Two main 
approaches can be used to solve the problem. The first one is to correct the noise by using data 
polishing [50], primarily when the data affects the annotation of a physical-related status. The
second method is to use noise filters [51], which identifies and removes the noisy instances in
the data while maintaining the representation of the physical state of the object to be modeled. 
Both methods require extensive use of domain knowledge to drive the polishing and filtering
decisions to ensure corrective actions can be taken so that the nature of the data set is not 
changed. 

4.3.2 Data storage 

There is a multitude amount of data storage options tailored to different kinds of data formats 
and application requirements, which are classified as relational databases and non-relational
databases (as shown in Table 2). Relational databases are good choices for applications that 
involve the management of complex database transactions and heavy data analysis, because of 
referential integrity. 

Table 2: Representative data storage options 
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Type Database Description Application Example 

Non-
relational 
database 

Key-value 
database 

A data model that pairs a unique 
key and its associated value in 

storing data elements 

Used for storing clickstream data 
and log files, such as CPS log files 

Aerospike, DynamoDB, 
Redis, Riak 

Document 
database 

Stores data in document-like 
structures that encode information 

in formats such as JSON 

Content management and 
monitoring web and mobile 

applications 

Couchbase Server, 
CouchDB, MarkLogic, 

MongoDB 

Graph 
Database 

Emphasizes connections between 
data elements, storing related 
‘nodes’ in graphs to accelerate 

querying 

Recommendation engines and 
knowledge base 

AllegroGraph, IBM, 
Neo4j 

Column 
stores 

Stores data across labels that can 
have a huge number of columns 

Internet search and other large-
scale Web applications 

Accumulo, Cassandra, 
HBase, Hybertable, 

SimpleDB 

Relational 
database 

SQL 
database 

Stores information in structured 
tables with rows and columns 

Complicated query, database 
transactions, and data analysis 

MySQL, PostgreSQL, 
Microsoft SQL Server, 

Non-relational databases are geared towards managing large sets of varied and frequently 
updated data, often in distributed systems. They avoid the rigid schemas associated with 
relational databases. The architectures vary and are separated into four primary classifications, 
each of which is suitable for different application scenarios as listed in Table 2. 

In the context of smart manufacturing, key-value databases can be used for storing software 
log files from connected CPSs. Similarly, documents can be stored in document databases to 
ensure high flexibility and durability. Engineering knowledge can reside in graph databases to 
accelerate querying and reasoning. Column stores allow for fast querying and processing and it 
is heavily used for big-data analysis where speed is critical. In practice, these databases will 
need to complement each other to ensure low latency. 

4.3.3 Time-sensitive data processing 

Digital Twin applications, such as real-time monitoring, prediction, and control impose a 
stringent latency requirement for the data processing architecture [52]. A ‘designed for 
latency’ data processing architecture becomes a critical criterion.  

Parallel computing technologies can ensure low-latency data processing. The essence of data 
parallelism paradigm is to divide a computational task into a cluster of similar sub-tasks that 
can be processed independently and whose results are combined afterwards, upon completion. 
MapReduce is one such technology that has been widely used. Recognizing its limitation for 
stream analytics [53], some competitors emerged as an alternative, capable of performing 
stream analysis. Apache Spark is a large-scale data processing engine for both batch and stream 
processing. Apache Flink later emerged as a better option because of its built-in streaming 
processing, instead of using micro batching to handle stream processing. Apache Storm is an 
open-source distributed real-time processing platform. Besides, some other streaming engines 
can be used where appropriate, such as Kafka Streams and Google Dataflow. 

Though the above technologies provide the foundation for Big Data processing, high-
performance processing of time-series data is the key to the successful implementation of a 
Digital Twin. This is due to two reasons: (1) data gathered from the physical world are mostly 
discrete time data, and (2) there is timeliness requirement for a Digital Twin, regardless of the 
latency requirement between a Digital Twin and its physical counterpart. The effective 
handling of time-series data to construct a Digital Twin can ensure a required latency between 
a Digital Twin and its physical counterpart. 

5 Application Scenarios 
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Although Digital Twin is a relatively new concept, some practical applications of Digital Twin 
have already been developed and reported in the literature. This section briefs the current 
status of Digital Twin applications. First, an overview of existing Digital Twin applications is 
provided, and the current status of Digital Twin applications is discussed. Second, three 
representative Digital Twin applications are introduced to demonstrate the advantages and 
potential of Digital Twin. 

5.1 Overview of existing Digital Twin applications 

Existing Digital Twin applications reported in the literature have been reviewed and 
summarized in Table 3. The details of each Digital Twin application are also briefly mentioned, 
including (1) the type of the Digital Twin, i.e., manufacturing asset, human, factory or 
production network), (2) the physical object of the Digital Twin, (3) the information model of 
the Digital Twin, (4) data communication standard used in the application, and (5) the 
benefit(s) or purpose(s) of the Digital Twin application.
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Table 3: Overview of existing Digital Twin applications 

Source Digital Twin 
type 

Physical object Information model Data communication 
standard 

Benefit(s)/Purpose(s) 

[54] Manufacturing 
asset 

Grinding wheel Numerical models Universal Asynchronous 
Receiver Transmitter (UART) 

Improve energy and resource efficiency of grinding process 

[55] Satellite assembly 
system 

CAD model + Behavior model + Rule 
model 

- Smart production management and control 

[56] Manufacturing cell  - - Comprehensive simulation-based system engineering 

[57] 3D printer MTConnect MTConnect Digital Twin-enabled cyber-physical cloud manufacturing 

[58] 3D printer Proprietary ontology HTTP Cloud-based bidirectional communication between machine and Digital Twin 

[59] Welding production line CAD model + OPC-UA OPC-UA Digital Twin for product life cycle management 

[60] Engine parts - - Digital Twin-based smart process planning 

[61] Core making machine CAD model + Kinematic model OPC-UA Digital Twin for machine reconditioning (significant 
reduction of the commissioning time) 

[62] Hot rolling production 
line  

- - Optimization of hot rolling production line scheduling 

[63] Drilling system and 
crane 

- - Monitor machine conditions and operator performance at a low cost 

[64] Production system - - Tutoring service, augmented assistance, in-line diagnostics, and condition monitoring 
service 

[65] Factory - - Digital Twin to improve factory design 

[66] Rotating machinery Finite element model - Digital Twin for rotating machinery fault diagnosis 

[67] Waste electrical and 
electronic equipment 

Extended ISO 10303 standard - Digital Twin-based system for the WEEE recovery to support the manufacturing/ 
remanufacturing operations throughout the product’s life cycle 

[68] Machine tool MTConnect MTConnect Comprehensive machine tool and machining process monitoring, decision-making 
support for humans 

[69] Machine tool - - Machine tool operation monitoring, surface roughness prediction 
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[70] Automotive production 
cell 

- - Digital Twin for monitoring energy consumption 

[71] Multi-robot systems - - Digital Twin for just-in-time planning of intelligent multi-robot systems with improved 
execution time 

[72] Machine tool FDI (factory design and improvement) 
model 

- Machine tool status monitoring 

[24] 3D printer - - Digital Twin of 3D printers for rebuilding digital part and data visualization 

[73] Industrial valve - PLCopen Exchange data between Digital Twin and other systems 

[74] Robots Multibody dynamics model - Digital Twin enabled VR testbed, robot control, and manual guidance  

[75] Part STEP/ G code MTConnect Linking as-planned to as-fabricated product data 

[76] Factory Production line Proprietary 3D model Ethernet + OPC Digital Twin to support decision-making over the system design and solution 
evaluation 

[77] Warehouse Proprietary 3D model - Digital Twin enabled VR testing environment 

[8] Shop floor - - Digital Twin of shop floor to support smart operations in the manufacturing process 

[78]  Industrial work cell Unified Robot Description Format( 
URDF) + Simulation Description File 
(SDF) 

Modbus TCP/IP + Ethernet IP A simulator based on Digital Twin for a flexible framework of work cell 

[79] People  Employee - - Digital Twin of employees to support Intelligent control of an assembly station  
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It can be seen that compared to the total number of publications on Digital Twin, most of the 
existing research on Digital Twin is conceptual work, development of practical Digital Twin 
applications is still at an early stage. Key findings are as follows: 

• Digital Twin type: 85% of Digital Twin applications are developed for manufacturing 
assets; 11% are developed for factories; only one Digital Twin application for people has 
been identified, and there is no Digital Twin application for production networks. This 
shows that prior Digital Twin research mainly focused on manufacturing devices; the 
importance of the involvement of human in the Digital Twin environment has been 
overlooked. Besides, the lack of applications for production networks indicates that 
research on communication/interactions between Digital Twins has not attracted much 
attention. 

• Information model: For the Digital Twin for manufacturing assets, information models 
that describe the data structure and semantics are mostly used, including different 
types of data models (MTConnect, OPC-UA, AutomationML and so forth) and databases. 
However, the information model for a factory Digital Twin has not been explored to 
depth. Whether this should be an integration of existing information models for 
manufacturing assets or should be a standard that governs all still needs to be 
addressed. 

• Data communication standard: Only a few applications have used unified data 
communication standards for modeling a Digital Twin. This issue can severely limit the 
interoperability and accessibility of a Digital Twin. It may also be the main reason why 
no Digital Twin application for production networks has been developed so far. 

• Purpose/benefit: Most applications are developed to provide monitoring functions 
(status monitoring, process visualization, fault diagnosis, and so forth) and prediction 
functions (fault prognosis, product lifecycle management, process optimization, and so 
forth). Most applications can be seen as decision-making support applications for 
humans; while very few of them have included direct/autonomous feedback control 
from Digital Twin to a physical object. 

5.2 Representative applications 

Though the development of Digital Twin applications is still at a very early stage, several full-
fledged Digital Twin applications have emerged. Here, we discuss some of the important 
application scenarios. 

5.2.1 Digital Twin Machining 

STEP Tools Inc. developed a Digital Twin Machining application [80] that enables real-time 
quality inspection of machining results. Fig. 7 shows the system framework of Digital Twin 
Machining. The Digital Twin is enabled by the utilization of four standards: 1) STEP [27], 2) 
STEP-NC [28], 3) MTConnect [33], and 4) Quality Information Framework (QIF) [81]. 

STEP AP242 [29] is used to describe the design information of a workpiece. The manufacturing 
solutions, including all the operations, setups, tool paths, tool requirements, and in-process 
tolerances, are communicated via STEP-NC AP238 protocol [30]. MTConnect is used to monitor 
the machining results. It allows the machine tool status and coordinates to be streamed to the 
Digital Twin in real time (100 Hz). The MTConnect data stream also includes measurement
results as reported by touch probes to enable tolerance evaluation. QIF is used to report the
results of the quality evaluations. The utilization of these standards provides the Digital Twin 
Machining solution with great interoperability. 
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Fig. 7: System framework of the Digital Twin Machining [82]

The Digital Twin functions as a server that allows Web-based applications to access all the data 
in the Digital Twin. In the Digital Twin Machining application developed by STEP Tools Inc., the
models of workpieces, cutters, fixtures, as well as operations and tool paths are fully assembled 
to perform real-time machining simulation. During real machining processes, the assembled 
model is updated in real time to show the machining results on the Digital Twin. Operators can
remotely monitor the machining processes using mobile devices that support standard Web 
browsers. Measurements can be made on the Digital twin and alerts can be sent if tolerances 
are not being met. Thus, the Digital Twin Machining enables “build it here, build it now and 
build it right,” as claimed by STEP Tools Inc. 

5.2.2 Digital Twin for a rotor system

Wang et al.  [66] developed a Digital Twin application for rotating machinery fault diagnosis 
that can identify the fault parameters of a rotor system and perform quantitative diagnosis of 
the rotor system. The overall system architecture of the developed application is shown in Fig. 
8. 
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Fig. 8: Digital Twin for rotating machinery fault diagnosis [66]

Since the main purpose of this application is the fault diagnosis for rotating machinery, 
modeling of the Digital Twin mainly considers the dynamic behavior of the rotor system. Hence, 
the Digital Twin of the rotor is constructed using a finite element model that includes the 
geometry, dynamics and material properties of the rotor. The critical speed and unbalance 
response of the rotor under different conditions are obtained by finite element analysis. Four 
displacement sensors and a data acquisition system were implemented to collect the vibration 
signals from the rotor system. 

The rotor unbalance fault quantification and localization were performed to realize the fault 
diagnosis. Compared with traditional fault diagnosis methods, the developed Digital Twin
application enables unbalance quantification and localization for fault diagnosis, which further 
enables accurate diagnosis and adaptive degradation analysis of rotating machinery. 

5.2.3 Digital Twin enabled Cyber-Physical Machine Tool 

Aiming at advancing legacy machine tools to Cyber-Physical Machine Tools (CPMT) [83], Liu et 
al. [68] developed an MTConnect-based CPMT where the Digital Twin of the machine tool is a 
core component. Fig. 9 shows the system architecture of the developed MTConnect-based 
CPMT. Real-time machining data were collected from the CNC controller and embedded sensors 
and communicated through to the Digital Twin via MTConnect standard. 
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Fig. 9: MTConnect-based Cyber-Physical Machine Tool [84]

The implementation of MTConnect standard significantly improved the interoperability of the 
machining data and hence the accessibility of the Digital Twin. A prototype of a machine tool 
monitoring system was developed to enable near real-time remote machine monitoring. 

6 Research Issues 

Based on the discussions in the above sections, we summarize the following key research issues 
for advancing the research of Digital Twin-driven smart manufacturing. 
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Research Issue 1: Architecture pattern for a Digital Twin 

There exist two system architecture patterns, namely server-based and edge-based. In server-
based architecture, the data acquired from a physical device is routed back to a centralized 
server that performs the data analysis and Digital Twin construction. This pattern provides 
economies of scale and facilitates easy maintenance. In edge-based architecture, some data 
analysis is applied at the ‘edge’ of the system. That is, data pre-processing is performed locally 
and on the raw data captured from a physical device. As a result, edge-based architecture 
should be more effective on low-latency data processing if designed well. However, this pattern 
is more complicated to maintain. 

Research Issue 2: Communication latency requirement for a Digital Twin  

Latency requirement is application-driven. The application scenario determines the required 
communication latency between a physical device and its Digital Twin. This is because the 
system development costs and difficulties increase significantly as the communication latency 
requirement becomes stringent. In practice, Digital Twin-based shop floor monitoring can 
accept higher latency than cloud-based industrial control. BMWi, Germany [85] specifies the 
nominal communication latency for various manufacturing applications, which can be used as 
a guideline for designing the system architecture of a Digital Twin application. 

Research Issue 3: Data capture mechanism 

Two common methods can be used to gather data from physical devices, i.e., capturing changes 
and taking snapshots. There is extensive use in large scale computer systems for both methods, 
and sometimes a system uses a mix of them. Both methods need to be validated for specific 
application cases. 

Research Issue 4: Standards for Digital Twin 

Though anyone can develop a Digital Twin solution using common technologies, standards will 
facilitate the longevity of a Digital Twin solution. Standard-compatible Digital Twin solutions 
can inherit the flexibility, interoperability and scalability of existing and new standards for 
information model and communication protocols. This is especially important when a Digital 
Twin will be deployed in an open network of Digital Twins. Recognizing the need for 
standardization, ISO is actively developing a dedicated standard for Digital Twin manufacturing 
[9]. 

Research Issue 5: Functionalities of a Digital Twin 

Existing Digital Twin applications are mainly developed for monitoring and prediction purposes 
and used as decision-making support applications for humans. Though human involvement in 
the smart manufacturing environment is essential, direct/autonomous feedback control from 
the Digital Twin to the physical world should be developed. Hence, the Digital Twin application 
can endow the physical objects with a certain degree of autonomy. 

Research Issue 6: Digital Twin model version management 

A Digital Twin model can evolve over time as a result of engineering changes to its physical 
counterpart, changes to the modelling interests throughout the lifecycle of the physical 
counterpart, or other cases. In these cases, the different versions of a Digital Twin models over 
time should be captured, stored and integrated. Snapshot-based and change-based version 
management principles can be applied for the effective management different versions of a 
Digital Twin model. 

Research Issue 7: Humans in Digital Twin applications 

Humans play an important role in the Digital Twin-driven smart manufacturing environment. 
While some low-level operations can be autonomously achieved without human intervention, 
many decision-making activities have to be performed by humans. Though some new interaction 
technologies such as AR have been studied and implemented in a manufacturing environment 
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to improve human-machine interactions, humans are still not considered as an integral part of 
the smart manufacturing system. Significant research effort needs to be made on the topic of 
Digital Twin for people in the smart manufacturing environment in the future. 

7 Conclusions 

This paper presents the current status and advancement of Digital Twin-driven smart 
manufacturing. The core concept, reference model, enabling technologies, application 
scenarios, and research issues of Digital Twin-driven smart manufacturing are discussed in 
detail. 

With the rapid growth of integrating information technologies and operation technologies in 
the industry, significant efforts have been made to make manufacturing smart. As a core 
element of future manufacturing, Digital Twin-driven applications are going to challenge and 
change the fundamentals of manufacturing systems and operations. The convergence of the 
digital world and physical world enables smart decisions to be made at every single point of 
manufacturing operations, thus can foster a data-driven smart manufacturing environment. 

As can be seen from the literature, nearly 500 articles related to Digital Twin in the engineering 
domain have been published since 2016, and the number is proliferating, together with huge 
interest from the industry. R&D in this area needs to follow a common reference model. The 
authors believe that constructing a Digital Twin needs a standardized information model, high-
performance data processing, and industrial communications to work together. Existing 
standards in the manufacturing and industrial control domain need to be used where 
appropriate. The dedicated standard for Digital Twin smart manufacturing being developed by 
ISO can be the starting point for consolidating research efforts in this space. 

The research activities are going to stay active due to the challenging issues of constructing a 
reliable Digital Twin in practice. This is especially true for manufacturing applications, which 
pose stringent requirements on timeliness, accuracy, and reliability. The authors believe 
researches on standards, communication protocols, time-sensitive data processing, and 
reliability need to be the priorities for the next stage of the research while focusing on 
application scenarios of Digital Twin. 
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