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ABSTRACT
Software issue reports classification is a significant task in
software maintenance and evolution. Despite the research
effort being made over the years, the existing issue reports
classification techniques are still inadequate. In this paper, we
propose a new approach that is inspired by the Classification
Associations Rule Mining (CARM) methodology in data
mining, and report the testing of our method on 500 software
issue reports extracted from an open source issue tracking
system. Our experiments show that our method can achieve
a high degree of accuracy in classifying software issue reports.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Applied computing → Document management;

KEYWORDS
Mining software repositories, association rules mining, soft-
ware maintenance, software issue report
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1 INTRODUCTION
Software maintenance is an important phase in the life cycle
of a software application. Activities like bugs fixing, feature
enhancement and platform upgrade are usually triggered by
issues raised by software users during software maintenance.
For example, users of open source software log the issues they
encounter in an issue tracking system. Figure 1 shows two
examples of issue report and its type;

However, Herzig et al [5] reported, 33.8% of the issue re-
ports submitted by the users were misclassified. Consequently,
the software maintenance team often need to re-classify such
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R1, Type: Bug

Error releasing chunked connections with no re-
sponse body. http method base release connection
does not successfully release the connection if
closing the response stream throws an exception.

R2, Type: Feature Request

Allow declare error and declare warning to support
type expressions.

Figure 1: Example software issue reports

reports before assigned them to the relevant software devel-
opers. To address the issue, some attempts have been made
[2, 3, 9, 11, 12] and [10]. Although some progress has been
made, the existing approaches typically look for some “dom-
inant” patterns to build a classifier. Such approaches may
not work well in practice as issue reports are freely written
by users with little constraint on what they can include and
what vocabulary they may use. Consider the example given
in Figure 1, for instance. error appears in both reports, but
one is associated with bug reporting and the other feature
requesting. As such, error is not discriminative enough, thus
is likely to be ignored and more dominant terms or combi-
nation of terms will be sought to build a classifier by the
existing approaches. We argue that non-dominant patterns
are also important to building an effective classifier for issue
reports.

In this paper, we propose a new approach to classifying
issue reports inspired by classification association rule mining
methodology [6, 7]. Instead of looking for dominant patterns,
our approach looks for any credible patterns. That is, when a
pattern occurs frequently enough, even if it is not dominant,
it is considered useful. We tested our method on 500 software
issue reports extracted from an issue tracking system using
dataset provided by [5, 13]. Our experiments show that the
proposed method can achieve a high degree of accuracy in
classifying software issue reports.

2 PROPOSED APPROACH
2.1 Preliminaries
Without loss of generality we assume an issue report 𝑅 is
represented as a vector of terms 𝑅 = ⟨𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝐶⟩, where
each 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑛 is a distinct term extracted from the issue
report text and 𝐶 is its category. For example, R2 given in
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Example 1 may be represented as

𝑅2 = ⟨𝑒𝑟𝑟𝑜𝑟, 𝑤𝑎𝑟𝑛𝑖𝑛𝑔, 𝑡𝑦𝑝𝑒, 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠, feature⟩

Here, R2 is represented, rather arbitrarily, by a vector
that contains the nouns appeared in it and a category
term feature. From a set of vectorised reports R =

{𝑉1, 𝑉2, . . . , 𝑉𝑚}, rules of the form

𝑟 : 𝑎1, 𝑎2, . . . , 𝑎𝑘 → 𝑐

are generated, where 𝑎1, 𝑎2, . . . , 𝑎𝑘 is called an association of
terms and 𝑐 is a category. Our goal is to derive a set of such
rules that can be used to classify issue reports accurately.
To ensure that the rules that we derive from a corpus of
issue reports have some “minimal credibility”, we employ two
commonly used measures [1]:
∙ support. This is a count of how many times the

association of terms (𝑎1, 𝑎2, . . . , 𝑎𝑘) of a rule (𝑟 :
𝑎1, 𝑎2, . . . , 𝑎𝑘 → 𝑐) has occurred in a set of reports
(R). Support indicates the strength of a rule.
∙ confidence. This is the ratio of the number of times

a rule (𝑟 : 𝑎1, 𝑎2, . . . , 𝑎𝑘 → 𝑐) has occurred to the
number of times the association of terms of the rule
(𝑎1, 𝑎2, . . . , 𝑎𝑘) has occurred by itself in a set of reports
(R). Confidence indicates the accuracy of a rule.

These two measure are specified by the users of our method
and tuned for particular datasets, and we search for all the
rules from a set of vectorised reports that have the minimum
support and confidence. The rules are known as credible rules.

2.2 Rules Generation
To derive a set of all credible rules, we use the rules generation
algorithm shown in Algorithm 1 which is inspired by the
CARM methodology [6, 7]. The algorithm works as follows.
Each distinct category 𝑐𝑗 is considered in turn (step 2). For
each 𝑐𝑗 , we select the subset of vectors 𝑇𝑐𝑗 from R that
contain 𝑐𝑗 as a category (step 3). We then extract single
terms from 𝑇𝑐𝑗 that have sufficient support (step 4), and
we denote this set as 𝐿1 and call it large single terms. Note
that while we calculate support for each term in 𝑇𝑐𝑗 only,
the support calculation itself is based on the entire dataset
R, not 𝑇𝑐𝑗 .

Next, it goes into iteration (step 5). Each association of 𝑖
terms in 𝐿𝑖 (𝑡1, 𝑡2, . . . , 𝑡𝑖) is paired with category 𝑐𝑗 to form a
rule (𝑡1, 𝑡2, . . . , 𝑡𝑖 → 𝑐𝑗) and we check if the rule has sufficient
confidence (steps 6-7). Note that this confidence calculation
needs no further scan of the dataset R, as the support for
𝑡1, 𝑡2, . . . , 𝑡𝑖 is already available, first from step 4 then from
step 9 (see below), and the occurrence of 𝑡1, 𝑡2, . . . , 𝑡𝑖 →
𝑐𝑗 can be obtained by a scan of 𝑇𝑐𝑗 . Rules with sufficient
confidence are retained and others are discarded (step 8).
Once rule generation is done for associations of 𝑖 terms, the
Generate function attempts to generate associations of 𝑖 + 1
terms from the 𝑖 terms, following the well-known apriori
principle [1] (step 9). After this, the algorithm goes into
the second round, attempting to find associations having
two terms to form rules. The generated rule is retained in

Algorithm 1 Rules Generation

input: report vectors R and class values 𝐶
the user defined thresholds 𝑚𝑖𝑛𝑆𝑢𝑝𝑝, 𝑚𝑖𝑛𝐶𝑜𝑛𝑓

output: a set of credible rules ℛ
1. ℛ ← ∅;
2. for each 𝑐𝑗 in 𝐶 do
3. 𝑇𝑐𝑗 ← Select(R, 𝑐𝑗)
4. 𝐿1 ← { 𝑣 | 𝑚𝑖𝑛𝑆𝑢𝑝𝑝 ≤ |𝑣|, 𝑣 in the domain of 𝑇𝑐𝑗}
5. for (𝑖 = 1, 𝐿𝑖 , ∅, 𝑖++) do
6. for each 𝑡1, 𝑡2, . . . , 𝑡𝑖 in 𝐿𝑖 do
7. if conf(𝑡1, 𝑡2, . . . , 𝑡𝑖 → 𝑐𝑗) ≥ 𝑚𝑖𝑛𝐶𝑜𝑛𝑓
8. ℛ← ℛ∪ 𝑡1, 𝑡2, . . . , 𝑡𝑖 → 𝑐𝑗

9. 𝐿𝑖+1 ← Generate(𝐿𝑖)
10. return ℛ

ℛ. No more associations of terms may be generated, and
computation involving the bug category is complete.

2.3 Report Classification
Multiple rules generated by our association mining may be
fired during the classification process. To deal with this situa-
tion, we resort to majority vote. This is shown in Algorithm 2.

Algorithm 2 Report Classification

input: a set of credible rules ℛ and
a vectorised issue report 𝑉 = ⟨𝑡1, 𝑡2, . . . , 𝑡𝑘⟩

output: the category of 𝑉

1. for each rule 𝑟 : 𝑡1, 𝑡2, . . . , 𝑡𝑘 → 𝑐𝑗 in ℛ do
2. if 𝑉 covers 𝑟
3. 𝐶𝑜𝑢𝑛𝑡𝑐𝑗 ++
4. 𝑆 ← max∀𝑐𝑗

(𝐶𝑜𝑢𝑛𝑡𝑐𝑗 )
5. if |𝑆| > 1
6. return “unable to classify”
7. else
8. return 𝑐𝑗 associated with 𝑆

We take each derived rule 𝑟 : 𝑡1, 𝑡2, . . . , 𝑡𝑘 → 𝑐𝑗 in turn
(step 1). If the vector to be classified (𝑉 ) covers 𝑟, i.e. every
term in the antecedent of 𝑟 appears in 𝑉 (step 2), then 𝑟 is
fired and we increase the counter for category 𝑐𝑗 by 1 (step
3). Once all the rules are checked, we consider the categories
that have the largest counts (step 4). When there is a clear
winner (i.e. there is a single largest count), this category will
be returned as the category for the report. If there is a tie,
then our method will report that it is unable to classify the
vector.

3 EMPIRICAL EVALUATION
3.1 Experiment Setup
We used datasets from [5, 13] in our experiments which were
extracted from two Open Source Software (OSS) projects.
The distribution of data used in training and testing are
shown in Table 1.
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Table 1: Dataset

Project Training Data Testing Data
Http-Client 200 50

AspectJ 200 50
Total 400 100

3.2 Data Preparation
To vectorise issue reports, we used NLTK toolkit [8]. Similar
to previous studies [2, 3, 9, 11, 12] and [10], we performed
standard text processing and manually specify the keywords
used as features to classify an issue report. That is, we
randomly selected 10 issue reports used in previous studies
[5, 13], and extracted a maximum of 60 keywords from them.
We represent our reports as a binary table shown below, i.e
report 1 contains keyword error, not bug, etc:

ID error bug · · · issue Category
1 1 0 · · · 1 bug
: : : : : :

500 1 1 · · · 0 non-bug

3.3 Experimental Results
We observe the classification accuracy by varying minSupp,
minSupp and number of keywords used in our method, and
measure the accuracy as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑇𝑢𝑛𝑘𝑛𝑜𝑤𝑛

where 𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the number of correctly classified reports,
𝑇𝑡𝑜𝑡𝑎𝑙 the total number of reports used in testing, and
𝑇𝑢𝑛𝑘𝑛𝑜𝑤𝑛 the number of reports that our method is un-
able to classify as a result of our majority vote. We excluded
these “unable to classify” reports from our accuracy mea-
sure because they are not classified by our method as bug or
non-bug, so we are unable to establish whether our method
has correctly or wrongly classified them.

It is worth noting that allowing unclassified cases is an
important feature of our new method: when there is no
clear evidence (majority) to suggest that a report is bug or
non-bug, we argue that it is better to leave such cases to the
human expert rather than forcing a classification. Once these
reports are classified by human experts, we can incorporate
this knowledge into our classifier through a form of machine
learning, thereby gradually reducing the number of “unable to
classify reports” in future and allowing our model to evolve
over time. Further discussion on this topic is beyond the
scope of the current paper. In all experiments, we compare
our method to several popular machine learning algorithms
such as Multinomial Naive Bayes (NB), Decision Tree (DT
- C4.5), Support Vector Machine (SVM) and Ripper (JRip)
available from the WEKA toolkit [4].

3.3.1 Varying minConf on Accuracy. This experiment assessed
the impact of varying minConf on classification accuracy,
while fixing minSupp at 5 and keywords at 60. Figure 2

shows the accuracy of using our method to classify the testing
reports and plotted the accuracy of four standard machine
learning algorithms used in our study for comparison and
reference.

The number of rules derived from our association mining
decreases as minConf increases, since more accurate rules
are demanded, naturally less such rules will be there to find.
However, the accuracy of our classification suggests that
highly confident rules will not help classify reports accurately.
As we can see, when minConf was set at 80% or less, our
method outperformed the four popular machine learning
methods. While this may be counter-intuitive, we argue,
this validates our hypothesis that is searching for dominant
patterns (rules) only may not help classify issues reports
accurately, and it is better to look for all credible patterns.

Figure 2: Accuracy vs minConf

3.3.2 Varying minSupp on Accuracy. This experiment as-
sessed the impact of varying minSupp on classification ac-
curacy, while fixing minConf at 60% and keywords at 60.
Figure 3 shows the accuracy of using our method to classify
the testing reports. The accuracy of other four methods used
in our study are also plotted in Figure 3 for comparison.
Again, a similar pattern is observed here: as we increase min-
Supp (requiring stronger rules), less rules are obtained, but
accuracy of classification increases, and when minSupp was
set low, our method performed better than the four standard
techniques. This suggests, as in the case of varying minConf,
it is useful to look for many credible rules, not just a few
strong rules in issue reports classification.

3.3.3 Varying Number of Keywords on Accuracy. This experi-
ment assessed the impact of varying the number of keywords
used in report vectorisation on classification accuracy, while
fixing minConf at 60% and minSupp at 10. To avoid bias, we
randomly chose the keywords from the set of 60. Figure 4
shows the accuracy of using our method to classify the testing
reports compared with four other methods used in our study.

The number of rules generated increased as more keywords
were used in representing the issue reports. This is expected
as the more keywords are used, the more associations among
the keywords will form, since with the classification associa-
tion mining methodology, each association of terms can be
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Figure 3: Accuracy vs minSupp

obtained independently from other associations. It is clear
from Figure 4 that the accuracy is better when more keywords
used to represent issue reports, and when both minConf and
minSupp were set low, our method performed best in com-
parison to the four popular methods we used in our study.
This is consistent with our observations from experiments
involving varying minConf and minSupp: the more rules are
generated, the greater the classification accuracy is.

Figure 4: Accuracy vs Number of Keywords

4 THREATS TO VALIDITY
The main threat to the validity of our study would be in term
of the dataset size and number of projects used in testing our
proposed method. Unlike other related studies [2, 3, 9, 11, 12]
and [10] where experiments have been conducted on relatively
large scale datasets spanning across many different projects,
our work has been tested on a relatively small dataset of
500 reports from two open source projects. However, the
experiments reported in this paper have clearly shown the
merit and promise of our new approach. We will continue to
evaluate the performance of our method using larger datasets
extracted from more Open-Source Software (OSS) projects.

5 CONCLUSIONS
In this paper, we proposed a new approach to classifying issue
reports for software maintenance. Our method is inspired
by the Classification Association Rule Mining methodology.

Instead of looking for some dominant patterns from issue
reports to build a classifier, we search for all credible patterns
to build not so strong on their own, but collectively powerful
rules to classify issue reports. This is useful and important
when dealing with cases where multiple semantics may be
associated with certain keywords or an issue report may
actually contain multiple issues. Our preliminary experiments
show that our method is able to achieve high accuracy in
classifying issue reports extracted from a mixture of projects.
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