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Abstract: 32 

Adenoviruses are clinically important agents. They cause respiratory distress, gastroenteritis, and 33 

epidemic keratoconjunctivitis (EKC). As non-enveloped, double stranded DNA viruses, they are easily 34 

manipulated, making them popular vectors for therapeutic applications, including vaccines. Species D 35 

adenovirus serotype 26 (HAdV-D26) is both a cause of EKC and other disease, and a promising vaccine 36 

vector. HAdV-D26 derived vaccines are under investigation as protective platforms against HIV, Zika, 37 

RSV infections and are in Phase-III clinical trials for Ebola. 38 

We recently demonstrated that HAdV-D26 does not utilise CD46 or desmoglein 2 as entry receptors, 39 

whilst the putative interaction with Coxsackie and Adenovirus Receptor (CAR) is low affinity and 40 

unlikely to represent the primary cell receptor. 41 

Here, we definitively establish sialic acid as the primary entry receptor utilised by HAdV-D26. We 42 

demonstrate removal of cell surface sialic acid inhibits HAdV-D26 infection and provide a high-43 

resolution crystal structure of HAdV-D26 fiber-knob in complex with sialic acid. 44 

  45 
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Introduction: 46 

Adenoviruses are clinically significant, both as human pathogens, and as platforms for therapeutic 47 

applications. As pathogens, human adenoviruses (HAdV) have been isolated from severe infections in 48 

both immunocompromised and healthy individuals(1, 2). Some adenoviruses have been associated 49 

with acute infection of the eye(3), respiratory(4, 5), and gastrointestinal tract(1, 6). In rare cases 50 

infections prove fatal, as observed in a recent neonatal infection of HAdV-D56(7), among adult 51 

patients in New Jersey with HAdV-B7d(8), and infamously with HAdV-E4 where large epidemics of 52 

adenovirus infection have been seen in military recruits(9, 10). However, most fatal infections are 53 

observed in immunocompromised individuals(11), such as those suffering from graft versus host 54 

disease (GVHD)(12) or HIV(13, 14).  55 

Adenoviruses are classified into 7 species (A-G)(15), and between 57 and 90 serotypes depending on 56 

the taxonomic definitions used(16, 17). Some adenoviruses have been studied in detail, having well 57 

defined receptor tropisms, including as coxsackie and adenovirus receptor (CAR)(18, 19), CD46 (Major 58 

Complement Protein, MCP)(20–22), desmoglein 2 (DSG2)(23–25), or sialic acid bearing glycans(26–59 

29). However, most serotypes have low seroprevalence in the population(30–33), though this is varies 60 

significantly by geographical location(34, 35). Their rarity means many serotypes remain 61 

understudied, with poorly defined primary receptor interactions. This is especially true of the species 62 

D adenoviruses (HAdV-D); the largest of the adenoviral species, containing 35 of the 57 canonical 63 

serotypes(17). 64 

Species D adenoviruses are associated with several pathogenicities. HAdV-D56 is a potentially fatal 65 

emergent respiratory pathogen comprised of a recombination between 4 species D adenoviruses(7). 66 

Opportunistic adenovirus infection isolated from HIV/AIDS patients are most commonly from species 67 

D, where they are associated with prolonged shedding in the gastrointestinal tract(13). HAdV-D has 68 

also been associated with genital disease(36, 37). The species D adenoviruses are best known, 69 

however, for causing epidemic keroconjunctivitis (EKC) infections, which is endemic, but not isolated, 70 

to Japan(38, 39). Classically the primary EKC causing adenoviruses have been HAdV-D8(40–42), 37(42–71 

44), and 64(42, 45) (previously classified as 19a(46)). More recently other species D adenovirus have 72 

been associated with EKC, including HAdV-D53(previously classified as HAdV-D22/H8)(47, 48), 54(49), 73 

56(50), 74 

Their double stranded DNA genome makes them readily amenable to genetic modification(51), and 75 

therefore has made them attractive candidates for genetic manipulation for therapeutic applications 76 

in cancer (oncolytic viruses)(52) and as vaccine vectors(53, 54). Species D adenoviruses are of special  77 

interest as vaccine vectors. Their ability to induce robust cellular and humoral immunogenic responses 78 
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in humans, coupled with low seroprevalence rates in the general population(30, 33) makes them 79 

attractive platforms for vaccines, as evidenced by their progression through clinical trials for HIV(55, 80 

56), Zika(57), and Ebola treatment(58, 59). However, there remains a lack of understanding regarding 81 

their basic biology and mechanisms of cellular infection. This is exemplified by Adenovirus serotype 82 

26 (HAdV-D26), which is being investigated as a vaccine vector for zika(57), HIV(60), respiratory 83 

syncytial virus(61), and has entered phase III clinical trials as an Ebola vaccine(58). 84 

Despite its clinical success, recent findings further highlight the lack of clarity over the primary 85 

receptor usage of HAdV-D26. It is now clear that, despite previous publications to the contrary, HAdV-86 

D26 cannot engage CD46 as a primary cellular entry receptor(62). Instead, the HAdV-D26 fiber-knob 87 

protein (HAdV-D26K) may engage CAR as a primary receptor, although the affinity of this interaction 88 

is attenuated compared to the classical HAdV-C5 interaction with CAR due to the presence of an 89 

extended HAdV-D26 fiber-knob DG loop, which sterically inhibits the interaction with CAR(62). The 90 

deduced low affinity of the interaction between CAR and HAdV-D26 fiber-knob make it unlikely that 91 

CAR represents the definitive primary receptor of HAdV-D26. 92 

Here, we conclusively demonstrate that HAdV-D26 utilises sialic acid bearing glycans as a primary 93 

entry receptor, and that this interaction can form a productive infection. We deduce the structure of 94 

HAdV-D26K in complex with sialic acid (Neu5Ac), demonstrating a similar topology to the known sialic 95 

acid interacting adenovirus HAdV-D37 fiber-knob in the sialic acid binding pocket, but highlight crucial 96 

mechanistic differences likely to enhance HAdV-D26 affinity for sialic acid compared to other 97 

serotypes. 98 

Results: 99 

HAdV-D26K has an electrostatic profile permissive to sialic acid interaction: 100 

Our recent findings rule out any role for DSG-2 or CD46 in HAdV-D26 infection, whilst the low affinity 101 

of the interaction between HAdV-D26K and CAR made it an unlikely primary cell entry receptor. 102 

Previous amino acid sequence alignments demonstrated little conservation of sialic acid binding 103 

residues with the fiber-knob domains of the known sialic acid utilising adenoviruses HAdV-G52SFK 104 

(short fiber-knob) or Canine adenovirus serotype 2 (CAV-2)(62). However, these alignments indicated 105 

HAdV-D37, known to bind sialic acid in the apex of the fiber-knob, bore some similarity at a sequence 106 

level. We sought to evaluate the ability of HAdV-D26K to interact with the remaining previously 107 

described adenovirus receptor, sialic acid. 108 

HAdV-D37 fiber-knob is identical to that of HAdV-D64, and highly homologous to HAdV-D8 (Fig.1A). 109 

These three viruses have been shown to cause epidemic keratoconjunctivitis (EKC) and to interact 110 
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with sialic acid. The closely related HAdV-D19p, differing from HAdV-D64 at only two residues, has 111 

also been shown to bind sialic acid, but does not cause EKC. We compared HAdV-D26K to these viruses 112 

to determine if a similar binding mechanism was possible. 113 

These sialic acid binding viruses all have highly negative predicted isoelectric points (pI) (Fig.1A). We 114 

calculated the surface electrostatic potentials of these fiber-knob proteins, at pH7.35 to simulate the 115 

pH of extracellular fluid, using previously published crystal structures where available. There is no 116 

published structure of HAdV-D8K, so we generated a homology model based on the closest known 117 

relative with a crystal structure (Fig.1B). 118 

The viruses are highly basic, with a concentration of positive charge in the central depression around 119 

the 3-fold axis corresponding to the previously reported sialic acid binding sites (Fig.1B-D). We 120 

observed that HAdV-D8 has the most basic surface potential (Fig.1B), followed by HAdV-D37/64 121 

(Fig.1C). HAdV-D19p is less basic, due to the two amino acid substitutions, compared to HAdV-D37/64, 122 

though the central depression is unaffected, as has previously been noted (Fig.1D)(63). 123 

HAdV-D26K has a lower predicted pI, 6.49, and less positive surface potential (Fig.1A,E). However, the 124 

central depression of HAdV-D26K remains basic around the region where sialic acid is observed to 125 

bind in HAdV-D19p and HAdV-D37. HAdV-D26 retains the charge needed for sialic acid binding in the 126 

apex of the protein in the context of an otherwise acidic protein (Fig.1F). 127 

HAdV-D26 requires cell surface sialic acid for efficient infection: 128 

Sequence alignment of HAdV-D26K with these known sialic acid utilising viruses, bearing a positively 129 

charged apex, showed conservation of key binding residues between serotypes (Fig.2A). We observe 130 

complete conservation of Tyr130, and Lys165 across the 4 serotypes, and conservation of Asp128 with 131 

HAdV-D8 (Fig.2A). Further, while Tyr135 is not conserved in HAdV-D26, inspection of the crystal 132 

structure of HAdV-D37K and HAdV-D19p in complex with sialic acid (PDB 1UXA and 1UXB, 133 

respectively)(63) reveals this to be a main chain oxygen contact, positioned similarly in HAdV-D26, and 134 

can be considered homologous. 135 

To investigate the ability of HAdV-D26 to utilise sialic acid as a cell entry receptor we used a replication 136 

incompetent HAdV-C5 vector pseudotyped with the HAdV-D26 fiber-knob, expressing a GFP 137 

transgene. We performed infectivity studies in three cell lines, with and without pre-treatment with 138 

neuraminidase to remove cell surface sialic acid. The tested cell lines could be infected by the CD46 139 

(Fig.2B) or CAR (Fig.2C) mediated pathways to some extent, by HAdV-C5/B35K or HAdV-C5, 140 

respectively. However, infection via these routes was uninhibited by neuraminidase treatment. 141 

Transduction efficiency of HAdV-C5 and HAV-C5/B35K was actually enhanced by neuraminidase 142 
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treatment in some cases; an effect which has been previously observed(27, 64). This has been 143 

suggested to be due to a reduction in the electrostatic repulsion of the negatively charged capsid of 144 

HAdV-C5. 145 

Infection by the HAdV-C5/D26K pseudotype was significantly reduced in all three cell lines following 146 

treatment with neuraminidase (Fig.2D). This inhibition is significant (P<0.005), resulting in >5-fold 147 

decrease in infection, in all three cell lines tested. These data indicate that HAdV-C5/D26K is likely to 148 

be utilising the sialic acid mediated pathway for infection, not CD46 or CAR. 149 

HAdV-D26 forms a stable complex with sialic acid: 150 

We crystallised HAdV-D26K in complex with sialic acid in order to clarify the mechanism of interaction. 151 

Refinement of structures generated from HAdV-D26K crystals soaked in sialic acid shows electron 152 

density for a small molecule ligand in the apical depression (Fig.3A), this is best described by a racemic 153 

mixture of α and β anomers, in conjunction with double conformations of sialic acid (Fig.3B). The cubic 154 

space group (supplementary table 1) enabled assembly of the biological trimer. We observed three 155 

copies of sialic acid bound within the apex of the fiber-knob trimer (Fig.3C), as previously observed in 156 

HAdV-D37 and HAdV-D19p.  157 

Sialic acid binding was observed in structures crystallised at both pH8.0 (PDB 6QU6) and pH4.0 (PDB 158 

6QU8). Observation of sialic acid density at high σ-values suggests a highly stable interaction 159 

(Supplementary Fig.1). Electron density demonstrates the C2 carboxyl and OH groups in two 160 

conformations, and the C6 glycerol group is flexible, with the C7-C8 bond rotating to alter the 161 

orientation of the glycerol arm relative to the pyranose ring and binding pocket (Fig.3A,B, 162 

Supplementary Fig.1). The glycerol group exhibits further flexibility at the C8-C9 bond, making the 163 

terminal oxygen mobile.  The distribution of the density for the glycerol group is different at each pH 164 

(Supplementary Fig.1), suggesting pH could affect the preferred mode of interaction. 165 

The most biologically relevant sialic acid conformation places the carboxyl group axial to the chair-166 

conformation pyranose ring (Supplementary Fig.2), leaving the OH group pointing away from the fiber-167 

knob and free to form an α(2)-glycosidic bond as part of a glycan. This is suggestive of a terminal sialic 168 

acid residue, as the chain can extend out of the central depression, as was observed in the previously 169 

described HAdV-D37K:GD1a glycan structure(63, 65). 170 

HAdV-D26 possesses a sophisticated sialic acid binding pocket: 171 

Comparison between the HAdV-D26K and HAdV-D37K, the best described of the sialic acid binding 172 

adenoviruses, reveals several sialic acid contacts are conserved (Fig.4A,B). Lys349 and Tyr314 are 173 

identical, and while Lys349 exhibits some flexibility, all observed lysine conformations form a contact 174 
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with the carboxyl-group of the sialic acid (Supplementary Fig.3). Whilst Thr319 is not conserved in 175 

HAdV-D37 (which has a proline at this position), the main chain oxygen contact to the N-Acetyl 176 

nitrogen is spatially similar, so the bond can be considered homologous. 177 

The HAdV-D26K sialic acid interface forms further contacts with sialic acid that are not observed in 178 

HAdV-D37K (Fig.4A, B). HAdV-D26K contacts the N-Acetyl oxygen of sialic acid using Asn312, which 179 

forms a polar contact and a water-bridge (Fig.4A). The comparable residue in HAdV-D37K, Thr310, is 180 

too short to form a direct polar interaction (Fig.4B), instead utilising a pair of water-bridges. 181 

In HAdV-D37 the glycerol arm of sialic acid was only contacted by a water-bridge between Ser344 and 182 

the C7-OH. However, in HAdV-D26 all 3 OH groups in the glycerol arm form contacts. C7-OH is 183 

coordinated by water-bridges to both Asn312, and Gln348. C8-OH forms a water-bridge with Thr319, 184 

and C9-OH forms both a water-bridge and a polar contact directly to Gln348. Like Thr310, the serine 185 

belonging to HAdV-D37 at position 344 is too short to form a polar bond equivalent to the one with 186 

Gln348. 187 

Notably, the density for the glycerol arm of sialic acid suggests several possible conformations 188 

(supplementary fig.2) which can be interpreted as flexibility. However, we suggest that, in HAdV-D26, 189 

this is unlikely since it is so well coordinated in all conformations observed, at both pH8.0 and pH4.0 190 

(supplementary fig.3). We propose that HAdV-D26K can form a stable interaction with the glycerol 191 

arm, regardless of the specific confirmation. The variable density can be explained as the average 192 

distribution (or partition) of the different discrete positions. 193 

We also observe a hydrophobic interaction in HAdV-D26 with the N-Acetyl methyl group at C11 194 

(Fig.4C). A similar hydrophobic interaction is seen in HAdV-D37, where Tyr312 and Val322 form a 195 

hydrophobic patch (Fig.4D), but the HAdV-D37 interaction appears to be more selective, where Ile310, 196 

and Ile324 form a hydrophobic cradle around the methyl group (Fig.4C). 197 

HAdV-D26 binds sialic acid through an induced fit mechanism: 198 

We observe split density for Gln348 in both pH8.0 (Fig.5A) and pH4.0 (Fig.5B). Whilst conformation A 199 

can form polar contacts with sialic acid, conformation B points into the solvent and cannot. It is 200 

possible that Gln348 is flexible, but then is attracted to the charged density of the glycerol arm upon 201 

sialic acid interaction. We also observe greater occupancy of conformation A in the pH8.0 structure 202 

(approximately 0.7) while at pH4.0 the occupancy is evenly split. This suggests that the interaction 203 

may be more stable at higher pH, such as that associated with the pH found at the cell surface. 204 

Ile324, which is seen to be involved in hydrophobic interactions with the N-Acetyl methyl group 205 

(Fig.4C), can also have multiple conformations. In an unliganded structure of HAdV-D26 fiber-knob 206 
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(PDB 6FJO) the long arm of Ile324 is seen to rotate (Fig.5C). However, in the ligated structure Ile324 207 

occupies a single conformation (Fig.5D) forming a cradle. This creates a larger hydrophobic patch and 208 

restricts the methyl group in space by pinching it between the pair of hydrophobic isoleucines, 209 

anchoring the N-Acetyl group. 210 

Discussion: 211 

Other adenoviruses have previously been shown to interact with sialic acid. These include CAV2(66), 212 

Turkey adenovirus 3 (TAdV-3)(67), and HAdV-G52 short fiber-knob(26, 68), but these viruses interact 213 

with sialic acid in lateral regions of the fiber-knob, dissimilar from HAdV-D26K. Four other human 214 

adenoviruses fiber-knob proteins (HAdV-D8/19p/37/64K) have been previously shown to utilise sialic 215 

acid, binding in the apical region. These viruses have high sequence similarity to each other, but not 216 

to HAdV-D26K, though they all share key sialic acid contact residues (Fig.1A,2A). 217 

The structure of HAdV-D8 has not been determined, either alone or in complex with sialic acid, but 218 

infection by HAdV-D8 is sensitive to neuraminidase treatment suggesting sialic acid utilisation(69). 219 

Furthermore, HAdV-D8K has very high sequence homology and shared sialic acid contact residues with 220 

HAdV-D19p/37K making it logical to expect a similar interaction mechanism. In support of this we 221 

observe a similar electrostatic profile in the modelled fiber-knob as seen in HAdV-D37/64 (Fig.1B,C). 222 

HAdV-D64 has an identical fiber-knob domain to that of HAdV-D37, so fiber-knob interactions with 223 

sialic acid are likely to be conserved between these serotypes. HAdV-D26K conserves the key region 224 

of positive potential in the apical depression, but in the context of an otherwise more acidic protein 225 

(Fig.1E). 226 

Inspection of the sialic binding pocket of HAdV-D26K reveals a much more complex mechanism of 227 

interaction than that previously reported for HAdV-D37K (Fig.4)(63). The overall topology of the 228 

pocket is similar, with hydrophobic residues around the N-Acetyl group and polar contacts between 229 

the carboxyl and C4-OH group. However, HAdV-D26K has several differences which increase the 230 

number of contacts between the sialic acid and the fiber-knob. 231 

Subtle sequence changes enable more numerous interactions between HAdV-D26K and sialic acid 232 

than are possible in HAdV-D37K. In HAdV-D37 Pro317 forms a main chain oxygen contact to the 233 

nitrogen of sialic acid, however it also creates tension which rotates the N-terminal residue away from 234 

the carboxyl group of sialic acid. In HAdV-D26K, Tyr320, which is C-terminal of the Thr319 that is 235 

equivalent to Pro317 in HAdV-D37K does not create this tension and enables the main chain oxygen 236 

at position 320 to contact the sialic acid carboxyl group. Thr319, also forms a water-bridge with the 237 

C8-OH group, helping to stabilise the glycerol side-chain (Fig.4A). 238 
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This is one of several examples of HAdV-D26K being better evolved to contact sialic acid. The 239 

substitution of the Thr310 and Ser344 found in HAdV-D37K for longer charged residues (Asn312 and 240 

Gln348, respectively) in HAdV-D26K enables direct polar contacts, as well as additional water-bridge 241 

contacts. Substitution of Tyr308 and Val322 for more hydrophobic isoleucine residues in HAdV-D26 242 

(Ile 310 and Ile324, respectively) creates a hydrophobic indentation better tailored to fit around the 243 

N-Acetyl methyl group. 244 

The high resolution of the datasets generated to determine the sialic acid bound HAdV-D26K structure 245 

enables visualisation of multiple residue conformations with partial occupancy. In unligated structures 246 

of HAdV-D26K (PDB 6FJO), Ile324 exhibits a double conformer, occupying the available space (Fig.5C). 247 

However, when sialic acid is bound, it is restricted to have a single conformation with the long arm 248 

facing away from the sialic acid site, towards the inter-monomer cleft. Ile310 has the opposite 249 

orientation and creates an indentation which cradles the methyl group of sialic acid. Tyr312 may 250 

further contribute to the hydrophobic cradle. Tyr312 would not normally be considered a hydrophobic 251 

residue, but the side chain oxygen faces towards the solvent, where it forms a polar interaction with 252 

the C4-OH on sialic acid (Fig.4A), leaving the face of the tyrosine ring exposed to the methyl group 253 

which may contribute hydrophobic character to the cradle. This tyrosine behaves in both a polar, and 254 

hydrophobic manner at the same time. We suggest that the long arm of Ile324 adopts the sialic acid 255 

binding conformation in response to the hydrophobic pressure exerted by sialic acid entering the 256 

pocket, minimising the exposed hydrophobic surface when unbound, holding the methyl group 257 

between the short arm of Ile310 and  the Tyr312 ring, making this an example of induced fit. 258 

The double occupancy of Gln348 may indicate a second induced fit mechanism. We observe two 259 

possible conformations of Gln348 (Fig.5C). While conformation A does not form any contacts, 260 

conformation B forms a polar bond, and water-bridge, with the sialic acid glycerol group. In HAdV-261 

D37K the glycerol group forms only a water-bridge from C7-OH to Ser344, the spatial equivalent of 262 

Gln348. Whilst we have not determined the preferred conformation of the sialic acid glycerol group 263 

versus Gln348 conformation, we observed that it can form polar contacts with it regardless, while 264 

Gln348 is in conformation B (Fig.5C). 265 

We suggest Gln348 may be labile until the binding of sialic acid. Upon sialic acid binding Gln348 266 

becomes attracted to the charged glycerol group causing it to stabilise in conformation A. This has the 267 

effect of “locking” the glycerol side chain in place, which is further restrained by water-bridge contacts 268 

to Thr319 and Asn312. 269 

Gln348 has greater occupancy in a sialic acid binding conformation (conformation-A) at pH8.0, which 270 

corresponds more closely to the physiological conditions in which it would encounter at the cell 271 
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surface (Fig.5A). At pH4.0 Gln348 has approximately half occupancy in each conformation (Fig.5B). 272 

This implies the possibility of HAdV-D26K having lower sialic acid affinity under more acidic conditions, 273 

such as those encountered during endosomal trafficking down the lysosomal pathway. 274 

Therefore, the HAdV-D26K binding pocket to sialic acid is summarised by three synchronous 275 

mechanisms. An N-Acetyl anchor comprised of a polar contact to Asn312 stabilised by a water bridge 276 

and an induced hydrophobic cradle around the methyl group. An inducible lock, where Gln348 forms 277 

a polar contact to the most terminal atoms in the glycerol arm, supported by a network of water 278 

bridges. Finally, a network of polar contacts to the carboxyl, C4 oxygen, and nitrogen atoms, which 279 

stabilise the pyranose ring. 280 

This interaction in HAdV-D26K is a much more sophisticated binding mechanism compared to HAdV-281 

D19p and the EKC causing viruses. However, the overall pocket topology and several key residues bear 282 

similarities. It may be surprising to observe such similarity given the low level of sequence homology 283 

HAdV-D26K has to the HAdV-D37K (56.76%, Fig.1A). Other regions, especially the loops, have highly 284 

dissimilar sequences. There is a precedent for this within adenovirus, with recombination events being 285 

reported in numerous settings(46, 47, 70, 71). 286 

It has previously been suggested that many of the species D adenoviruses may have dual sialic acid 287 

binding affinity and CAR affinity(63). This has been observed in HAdV-D37/64, CAV-2(19, 66), and now 288 

HAdV-D26(62). Interestingly the species G adenovirus HAdV-G52 has also been observed to bind both 289 

CAR and sialic acid, but using two different fiber knob proteins on the same virus and a different 290 

mechanism of sialic acid interaction in the knob(26), which is shown to bind polysialic acid(29). 291 

Previous work has proposed CAR may be a receptor for many, if not all, of the species D adenoviruses 292 

with variable affinity(62, 63, 72), and suggest that sialic acid could also be widely utilised(63). These 293 

findings support that assertion, and adding another species D adenovirus, with low sequence 294 

similarity, to the pool of adenoviruses observed to bind both CAR and sialic acid. 295 

Human adenovirus serotypes 43, 27, and 28 fiber-knobs share high sequence homology with HAdV-296 

D26K, sharing the majority of the critical binding residues, and/or having structural homologues at 297 

those positions (Supplementary Fig.4). HAdV-D26K is the only species D adenovirus to have a 298 

glutamine at position 348 (HAdV-D26K numbering), though many have the shorter, but similarly 299 

charged, asparagine at this location, share the serine or similarly charged residue found in HAdV-D37K, 300 

or possess an asparagine which could behave similarly to glutamine. However, HAdV-D8 has an 301 

uncharged alanine at this position suggesting that a charged residue may not be strictly required for 302 

sialic acid binding, though may alter affinity (Supplementary Fig.4). 303 
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HAdV-D8K shares an asparagine at the same position as HAdV-D26K which we have shown to form 304 

polar and water-bridge contacts to sialic acid (Fig.4A). While this is unique among the classical EKC 305 

causing viruses HAdV-D19p/37/64, it is the most common residue at this position in the species D 306 

adenoviruses (Supplementary Fig.4). 307 

The HAdV-D26K surface electrostatics are most like those of HAdV-D19pK. HAdV-D19pK is capable of 308 

binding sialic acid(63), and a limited effect is seen on infection of A549 cell binding after neuraminidase 309 

treatment to remove cell surface sialic acid(69). HAdV-D19p binding to Chang C (human conjunctival) 310 

cells was completely unaffected by neuraminidase treatment, though binding was very low regardless 311 

of neuraminidase treatment(27). This inability to bind Chang C cells was shown to depend upon a 312 

single lysine residue (Lys240) in the apex of the fiber-knob, but distant from the sialic binding pocket, 313 

creating a more acidic apical region in the lysine’s absence(73). HAdV-D26K also lacks a lysine in this 314 

position and has the most acidic electrostatic profile observed in this study (Fig.1). 315 

HAdV-D37K, and the identical HAdV-D64K, have been shown to preferentially interact with the sialic 316 

acid bearing GD1a glycan on the corneal cell surface, causing EKC(65). However, it seems unlikely that 317 

a protein capable of trivalent sialic acid binding is completely specific for GD1a, a di-sialylated glycan, 318 

given the wide range of available glycan motifs which are di- and tri-sialylated. The GD1a preference 319 

may be diminished in HAdV-D19p by the acidic surface caused by the two amino acid substitutions, 320 

creating a glycan preference for tissues outside of the eye. Similarly, HAdV-D26K may have a unique 321 

glycan preference, driving its tissue tropism towards cells with different glycosylation patterns. 322 

These findings clarify the receptor tropism of HAdV-D26 and build upon the increasingly complex body 323 

of knowledge describing species D adenoviruses. The comparison of different sialic acid binding 324 

residues suggests greater plasticity regarding the specific residues needed for sialic acid binding than 325 

previously thought (Supplementary Fig.4). It seems highly likely that many adenoviruses in species D, 326 

and perhaps other species, may interact with sialic acid in this manner. This suggests potential causes 327 

of off target infection by species D derived viral vectors. Conversely, investigation of their specific 328 

glycan preferences may enable more tissue specific targeting. Knowledge of the sialic acid binding 329 

mechanism suggests mutations which may ablate sialic acid interaction, enabling engineering of 330 

better restricted tropisms for future virotherapies. This knowledge regarding HAdV-D26 receptor can 331 

inform clinical practice in the rare cases of acute HAdV-D26 infection, or in the face of adverse 332 

reactions to HAdV-D26 based vaccines, suggesting that sialic acid binding inhibitors, such as Zanamivir, 333 

or trivalent sialic acid derivatives(74) may make effective anti-HAdV-D26 therapies.  334 
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Materials and Methods: 335 

Infectivity assays: 336 

Cells were seeded at a density of 30,000 cells/well in a flat bottomed 96 well cell culture plate and 337 

incubated overnight at 37°C to adhere. Cells were washed twice with 200µl of PBS and 50ul of 338 

neuraminidase (Sigma-Aldrich, Cat#11080725001) was added to the appropriate wells at a 339 

concentration of 50mU/ml, diluted in serum free media, and incubated for 1hr at 37°C. Cells were 340 

cooled on ice and washed twice with 200µl of PBS. Green Fluorescent Protein (GFP) expressing, 341 

replication incompetent viruses were added to the appropriate wells at a concentration of 2000 or 342 

5000 viral particles per cell, in 100ul of serum free media, at 4°C, and incubated on ice for 1hr. Serum 343 

free media alone was added to uninfected control wells. Cells were washed twice with 200µl of cold 344 

PBS, complete media added (DMEM, 10% FCS) and incubated for 48hrs at 37°C. Cells were then 345 

trypsinised and transferred to a 96 well V-bottom plate, washed twice in 200µl of PBS and fixed in 2% 346 

paraformaldehyde for 20mins before wash, and resuspension in 200µl of PBS. 347 

Samples were run in triplicate and analysed by flow cytometry on Attune NxT (ThermoFisher), 348 

analysed using FlowJo v10 (FlowJo, LLC), gating sequentially on singlets, cell population, and GFP 349 

positive cells. Levels of infection were defined as the percentage of GFP positive cells (%+ve), and/or 350 

Total Fluorescence (TF), defined as the percentage of GFP positive cells multiplied by the median 351 

fluorescent intensity (MFI) of the GFP positive population. These measures are distinct in that %+ve 352 

describes the total proportion of cells infected, and TF describes the total efficiency of transgene 353 

delivery. 354 

Amino Acid Sequence Alignments: 355 

Representative whole genomes of HAdV-D64, HAdV-D19p, HAdV-D26, and HAdV-D37 were selected 356 

from the National Center for Biotechnology Information (NCBI), the fiber-knob domain amino acid 357 

sequences were derived from them, defined as the translated nucleotide sequence of the fiber protein 358 

(pIV) from the conserved TLW hinge motif to the protein C-terminus. The fiber-knob domains were 359 

aligned using the EMBL-EBI Clustal Omega tool(75). 360 

Generation of Recombinant Fiber-Knob protein: 361 

SG13009 E.coli harbouring pREP-4 plasmid and pQE-30 expression vector containing the fiber-knob 362 

DNA sequence were cultured in 20ml LB broth with 100μg/ml ampicillin and 50μg/ml kanamycin 363 

overnight from glycerol stocks made in previous studies(76–78). 1L of TB (Terrific Broth, modified, 364 

Sigma-Aldrich) containing 100μg/ml ampicillin and 50μg/ml were inoculated with the overnight E.coli 365 

culture and incubated at 37°C until they reached OD0.6. IPTG was then added to a final concentration 366 
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of 0.5mM and the culture incubated at 37°C for 4hrs. Cells were then harvested by centrifugation at 367 

3000g, resuspended in lysis buffer (50mM Tris, pH8.0, 300mM NaCl, 1% (v/v) NP40, 1mg/ml Lysozyme, 368 

1mM β-mercaptoethanol), and incubated at room temperature for 30mins. Lysate was clarified by 369 

centrifugation at 30,000g for 30mins and filtered through a 0.22μm syringe filter (Millipore, Abingdon, 370 

UK). Clarified lysate was then loaded onto a 5ml HisTrap FF nickel affinity chromatography column 371 

(GE) at 2.0ml/min and washed with 5 column volumes into elution buffer A (50mM Tris [pH8.0], 372 

300mM NaCl, 1mM β-mercaptoethanol). Protein was eluted by 30min gradient elution from buffer A 373 

to B (buffer A + 400mM Imidazole). Fractions were analysed by reducing SDS-PAGE, and Fiber-knob 374 

containing fractions further purified using a superdex 200 10/300 size exclusion chromatography 375 

column (GE) in crystallisation buffer (10 mM Tris [pH 8.0] and 30 mM NaCl). Fractions were analysed 376 

by SDS-PAGE and pure fractions concentrated by centrifugation in Vivaspin 10,000 MWCO (Sartorius, 377 

Goettingen, Germany) proceeding crystallisation. 378 

Crystallisation and structure determination.  379 

Protein samples were purified into crystallisation buffer (10 mM TRIS [pH 8.0] and 30 mM NaCl). The 380 

final protein concentration was approximately 10 mg/ml. Commercial crystallisation screen solutions 381 

were dispensed into 96-well plates using an Art-Robbins Instruments Griffon dispensing robot (Alpha 382 

Biotech, Ltd), in sitting-drop vapour-diffusion format. Drops containing 200nl of screen solution and 383 

200nl of protein solution were equilibrated against a reservoir of 60μl crystallisation solution. The 384 

plates were sealed and incubated at 18°C. 385 

Crystals of HAdV-D26K appeared in PACT Premier condition B01 and B04 (0.1 M MIB [Malonic acid, 386 

Imidazole, Boric acid], 25 % w/v PEG 1500, pH4.0 and pH8.0 respectively), within 1 to 7 days. Crystals 387 

were then soaked in reservoir solution containing N-Acetylneuraminic acid (Neu5Ac, Sigma-Aldrich 388 

Cat#A2388) at a final concentration of 10mM and incubated overnight prior to harvest. Crystals were 389 

cryoprotected with reservoir solution to which ethylene glycol was added at a final concentration of 390 

25%. Crystals were harvested in thin plastic loops and stored in liquid nitrogen for transfer to the 391 

synchrotron. Data were collected at Diamond Light Source beamline I04, running at a wavelength of 392 

0.9795Å. During data collection, crystals were maintained in a cold air stream at 100°K. Dectris Pilatus 393 

6M detectors recorded the diffraction patterns, which were analysed and reduced with XDS(79), Xia2, 394 

DIALS(80), and Autoproc(81). Scaling and merging data was completed with Pointless, Aimless and 395 

Truncate from the CCP4 package(82). Structures were solved with PHASER, COOT was used to correct 396 

the sequences and adjust the models, REFMAC5 was used to refine the structures and calculate maps. 397 

Graphical representations were prepared with PyMOL(83). Reflection data and final models were 398 
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deposited in the PDB database with accession codes: 6QU6, 6QU8, and 6FJO. Full crystallographic 399 

refinement statistics are given in Supplementary Table 1 400 

Calculation of electrostatic surface potentials and isoelectric points: 401 

HAdV-D37, HAdV-D19p, and HAdV-D26 used PDB IUXA, PDB 1UXB, and PDB 6QU8, respectively, as the 402 

input. HAdV-D8 was calculated using a homology model, generated as described below, for input. 403 

The PDB2PQR server (V 2.1.1)(84) was used assign charge and radius parameters using the PARSE 404 

forcefield, and assigned protonation states using PROPKA, at pH7.35. APBS(85) was used to calculate 405 

electrostatic surface potentials, and the map output was visualised in PyMol(83). 406 

Homology modelling of Adenovirus serotype 8 407 

The I-TASSER protein structure and function prediction server(86–88) was used to generate a 408 

homology model of HAdV-D8 based on the published sequence of HAdV-D8(42), using the published 409 

structure of it’s closest relative (by sequence identity), HAdV-D19p(63). The resultant monomer was 410 

then copied three times, using the HAdV-19p trimer as a template, and the monomers aligned in 411 

PyMol(83) so as to generate a model of the complete HAdV-D8K trimer. 412 
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Figure 1: HAdV-D26K forms a local basic area in the apical depression to facilitate sialic acid binding 621 

despite net positive surface potential. HAdV-D26K has low (56.76%) sequence identity with fiber-622 

knobs known to bind sialic acid by a similar mechanism, and an acidic isoelectric point (A). The 623 

electrostatic potential surfaces of HAdV-D8K (B), HAdV-D64/37 (C), and HAdV-D19p (D) fiber-knobs 624 

are highly basic, especially about the central depression about the 3-fold axis. HAdV-D26 fiber-knob is 625 

less basic overall but maintains positive potential in the central depression (E). Surfaces are displayed 626 

at ±10mV. 627 

Figure 2: HAdV-D26K shares key binding residues with sialic acid utilising adenoviruses and exploits 628 

sialic acid to infect cells. Sequence alignment of HAdV-D26K shows conservation of key binding 629 

residues with known sialic acid binding adenoviruses (A). Residues highlighted in Red form polar 630 

contacts with sialic acid, green contact sialic acid via water-bridge, a black underline indicates both 631 

direct and water-bridge contacts, blue indicates hydrophobic contacts. Neuraminidase treatment 632 

does not reduce the ability of HAdV-D5/B35K (B) or HAdV-C5 (C) to infect SKOV-3 (ovarian 633 

adenocarcinoma), BT-20 (breast carcinoma), or MDA-231 (metastatic breast adenocarcinoma) cells, 634 

while HAdV-D5/D26K (D) is significantly inhibited. n=3 biological replicates, error = ±SD. 635 

Figure 3: Sialic acid binds in the apical depression of adenovirus 26 fiber-knob protein. Sialic acid 636 

(orange) is seen to bind in 3 locations in the apical depression of the HAdV-D26 fiber-knob, bridging 637 

between monomers (shades of blue) of the trimeric assembly (A). The map shows clear density for a 638 

ligand (B), which is best described by a double conformer of sialic acid (C). Crystallisation statistics in 639 

supplementary table 1, 2FoFc map (blue mesh, σ=1.5), FoFc (Green mesh, σ=3.0). 640 

Figure 4: HAdV-D26K forms a complex interaction network of hydrophobic and electrostatic 641 

interactions with sialic acid. Sialic acid (orange) is seen to bind HAdV-D26 (A) and HAdV-D37 (B) 642 

through a network of polar contacts (red dashes) and hydrogen bonds (blue dashes). The interaction 643 

is stabilised by hydrophobic interactions (red regions on white surface) with the N-Acetyl CH3 group, 644 

but different residues in HAdV-D26 (C) and HAdV-D37 (D). Waters are shown as cyan spheres, residues 645 

forming comparable contacts in HAdV-D26 and HAdV-D37 are shown as blue sticks, other residues are 646 

shown as green sticks. Oxygen and nitrogen are seen in red and blue, respectively. 647 

Figure 5: HAdV-D26K affects an induced fit mechanism in sialic acid binding. HAdV-D26K residue 648 

Gln348 can occupy multiple conformations, with a greater preference for conformation A (capable of 649 

forming a polar contact with the glycerol arm of sialic acid) at pH8.0 (A) than at pH4.0 (B). Ile324 has 650 

two conformations when HAdV-D26K is unliganded (C, PDB 6FJO). However, upon sialic acid binding 651 

the Ile324 adopts a single confirmation creating a hydrophobic indentation around the N-Acetyl 652 

methyl group bounded by Ile324,Ile310, and the ring of Tyr312 (D). 653 
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Supplementary Figure 1: Sialic acid forms a stable interaction with HAdV-D26K at both pH4.0 (PDB 654 

6QU6) and pH8.0 (PDB 6QU8). The omit map at pH4.0 (A) shows density for a small molecule ligand, 655 

which can be best modelled by a sialic acid double conformer (B). The same is true at pH8.0 (C), but 656 

the preferred conformations of the glycerol group are different (D). Crystallisation statistics in 657 

supplementary table 1, 2FoFc map (blue mesh, σ=1.5), FoFc (Green mesh, σ=3.0). 658 

Supplementary Figure 2: Structure of sialic acid (N-Acetylneuraminic acid, Neu5Ac) in a biologically 659 

relevant conformation. Viewing the Neu5Ac face on with glycerol and N-Acetyl groups labelled in red 660 

boxes, and the carbons numbered (A). Side on the carboxyl group (red box) is seen in the axial 661 

conformation with the C2 OH group planar to the ring (B). 662 

Supplementary Figure 3: HAdV-D26K forms a similar interaction with sialic acid at both pH4.0 (PDB 663 

6QU6) and pH8.0 (PDB 6QU8) through a combination of polar, water-bridge, and hydrophobic 664 

interactions. At pH4.0 sialic acid forms numerous polar contacts to charged side chains in HAdV-D26K 665 

(A), similar contacts are seen at pH8.0 and exhibits a lysine double conformer (B). At pH4.0 sialic acid 666 

forms several water bridges stabilising the interaction of the glycerol group (C), the same bridges are 667 

seen at pH8.0 with the addition of a water-bridge contact on the carboxyl group not seen at pH4.0 668 

(D). A hydrophobic interface is formed around the N-Acetyl methyl group which appears to be similar 669 

and stable at pH4.0 (E) and pH8.0 (F). Polar bonds to residues are shown as red dashes, water-bridge 670 

contacts as blue dashes, and waters as cyan spheres. Sialic acid is shown in orange, polar HAdV-D26K 671 

residues as green sticks, and purely hydrophobic residues as red sticks. The HAdV-D26 surface is shown 672 

in white with hydrophobic regions in red. Oxygen and nitrogen atoms are coloured red and blue, 673 

respectively. 674 

Supplementary Figure 4: Species D adenoviruses conserve known sialic acid binding residues. 675 

Sequence alignment of species D adenovirus fiber-knob proteins. Known HAdV-D26 and HAdV-676 

D37/64/19p residues forming contacts with sialic acid are highlighted in black and red respectively. 677 

Homologous residues are coloured similarly to the virus which they share the residue with. HAdV-D8 678 

residues at known sialic acid binding locations which are dissimilar to HAdV-D26/37 are highlighted in 679 

blue, as are homologous residues in other viruses. Names utilise the short nomenclature, all are 680 

human species D adenoviruses. Numbering is for HAdV-D26K. 681 
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pI

HAdV-D8 AB448767.1 85.16% 9.03
HAdV-D64 AB448772.1 100.00% 9.14
HAdV-D19p JQ326209.1 98.90% 8.64
HAdV-D26 EF153474.1 56.76% 6.49
HAdV-D37 AB448776.1 100.00% 9.14
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               ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
HAdV-D26  188  TLWTTPDTSPNCKMSTEKDSKLTLTLTKCGSQVLGNVSLLAVTGEYHQMTATTK---KDVKISLLFDENG 
HAdV-D8   181  TLWTTPDTSPNCRIDQDKDSKLTLVLTKCGSQILANVSLIVVAGRYKIINNNTNPALKGFTIKLLFDKNG 
HAdV-D37  185  TLWTTPDTSPNCTIAQDKDSKLTLVLTKCGSQILANVSLIVVAGKYHIINNKTNPKIKSFTIKLLFNKNG 
HAdV-D19p 185  TLWTTPDTSPNCTIAQDKDSKLTLVLTKCGSQILANVSLIVVAGKYHIINNKTNPEIKSFTIKLLFNKNG 
 
               ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
HAdV-D26  255  ILLPSSSLSKDYWNYRSDDSIVSQKYNNAVPFMPNLTAYPKPSAQNAKNYSRTKIISNVYLGALTYQPVI 
HAdV-D8   251  VLMESSNLGKSYWNFRNQNSIMSTAYEKAIGFMPNLVAYPKPTTG-SKKYARDIVYGNIYLGGKPHQPVT 
HAdV-D37  255  VLLDNSNLGKAYWNFRSGNSNVSTAYEKAIGFMPNLVAYPKPSN--SKKYARDIVYGTIYLGGKPDQPAV 
HAdV-D19p 255  VLLDNSNLGKAYWNFRSGNSNVSTAYEKAIGFMPNLVAYPKPSN--SKKYARDIVYGTIYLGGKPDQPAV 
 
               ....|....|....|....|....|....|....|....|....|....| 
HAdV-D26  328  ITIAFNQETENGCAYSITFTFTWQKDYSAQQFDVTSFTFSYLTQENKDKD  
HAdV-D8   320  IKTTFNQE--TGCEYSITFDFSWAKTYVNVEFETTSFTFSYIAQE-----  
HAdV-D37  323  IKTTFNQE--TGCEYSITFNFSWSKTYENVEFETTSFTFSYIAQE-----  
HAdV-D19p 323  IKTTFNQE--TGCEYSITFDFSWSKTYENVEFETTSFTFSYIAQE-----  
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Supplementary Figure 4
   297            305       315       325       335       345       344       354       354 
      ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|. 
Ad45  YPRPNTPDS-------KIYARSKIVGNVYLAGLAYQPIVITVSFNQEKDASCAYSITFEFAWNKDYVG--QFDTTSFTFSYIAQE------ 
Ad28  YKP---VNS-------KSYARSHIFGNVYIDAKPYNPVVIKISFNQETQNNCVYSISFDYTCSKEYTG-MQFDVTSFTFSYIAQE------ 
Ad43  YKP---TNS-------KSYARSVIFGNVYIDAKPYNPVVIKISFNQETQNNCVYSISFDYTLSKDYPN-MQFDVTSFTFSYIAQE------ 
Ad26  YPKPSAQNA-------KNYSRTKIISNVYLGALTYQPVIITIAFNQETENGCAYSITFTFTWQKDYSA-QQFDVTSFTFSYLTQENKDKD- 
Ad27  YPKPTSADA-------KNYSRSKIISNVYLKGLIYQPVIIIASFNQETTNGCVYSISFDFTCSKDYTG-QQFDVTSFTFSYIAQE------ 
Ad25  YPKSTTTQS-------KLYARNTIFGNIYLDSQAYNPVVIKITFNQE--ADSAYSITLNYSWGKDYEN-IPFDSTSFTFSYIAQE------ 
Ad29  YAKATTDQS-------KIYARNTIYGNIYLDNQPYNPVVIKITFNNE--ADSAYSITFNYSWTKDYDN-IPFDSTSFTFSYIAQE------ 
Ad17  YPKPTT-GS-------KKYARDIVYGNIYLGGLAYQPVVIKVTFNEE--ADSAYSITFEFVWNKEYAR-VEFETTSFTFSYIAQQ------ 
Ad10  YPKPSN--S-------KKYARDIVYGTIYLGGKPDQPAVIKTTFNQE--TGCEYSITFDFSWSKTYEN-VEFETTSFTFSYIAQQ------ 
Ad19p YPKPSN--S-------KKYARDIVYGTIYLGGKPDQPAVIKTTFNQE--TGCEYSITFDFSWSKTYEN-VEFETTSFTFSYIAQE------ 
Ad37  YPKPSN--S-------KKYARDIVYGTIYLGGKPDQPAVIKTTFNQE--TGCEYSITFNFSWSKTYEN-VEFETTSFTFSYIAQE------ 
Ad53  YPKPTT-GS-------KKYARDIVYGNIYLGGKPHQPVTIKTTFNQE--TGCEYSITFDFSWAKTYVN-VEFETTSFTFSYIAQE------ 
Ad8   YPKPTT-GS-------KKYARDIVYGNIYLGGKPHQPVTIKTTFNQE--TGCEYSITFDFSWAKTYVN-VEFETTSFTFSYIAQE------ 
Ad54  YPKPTT-GS-------KKYARDIVYGNIYLGGKPHQPATIKTTFNQE--TGCEYSITFDFSWAKTYVN-VEFETTSFTFSYIAQE------ 
Ad56  YPKPTA-GS-------KKYARDIVYGNIYLGGKPDQPVTIKTTFNQE--TGCEYSITFDFSWAKTYVN-VEFETTSFTFSYIAQE------ 
Ad9   YPKPTA-GS-------KKYARDIVYGNIYLGGKPDQPVTIKTTFNQE--TGCEYSITFDFSWAKTYVN-VEFETTSFTFSYIAQE------ 
Ad36  YPKPTNNTSTD-PDKKVSQGKNKIVSNIYLGGEVYQPGFIVVKFNQETDANCAYSITFDFGWGKVYKDPIPYDTSSFTFSYIAQE------ 
Ad38  YPKPTKTASDK-AENKISSAKNKIVSNFYFGGQAYQPGTIIIKFNEEIDETCAYSITFNFGWGKVYDNPFPFDTTSFTFSYIAQENEDKD- 
Ad13  YPKPTKTASDK-AENKISSAKNKIVSNFYFGGQAYQPGTIIIKFNEEIDETCAYSITFNFGWGKVYDNPFPFDTTSFTFSYIAQENEDKD- 
Ad39  YPKPTKTASDK-AENKVSSAKNKIVSNFYFGGQTYQPGTIIIKFNEEIDDTCAYSITFNFGWGKTYDNPFPFDTTSFTFSYIAQENEDKD- 
Ad51  YPKNTTTSSTN-PDDKISAGKKNIVSNVYLEGRVYQPVALTVKFNSE--NDCAYSITFDFVWSKTYESPVAFDSSSFTFSYIAQENKDTDE 
Ad23  YPNPTTSTTNP-STDKKSNGKNAIVSNVYLEGRAYQPVAITITFNKE--TGCTYSMTFDFGWSKVYNDPIPFDTSSLTFSYIAQENEDEDK 
Ad20  YPKP--STVLP-STDKNSNGKNTIVSNLYLEGKAYQPVAVTITFNKE--IGCTYSITFDFGWAKTYDVPIPFDSSSFTFSYIAQENKDTNK 
Ad47  YPNPKTSTVLP-STDKKSNGKNTIVSNLYLEGKAYQPVAVTITFNKE--TGCTYSITFEFGWAKTYDVPIPFDSSSFTFSYIAQENKDTDE 
Ad32  YPKPTTDTSA-KPEDKKSAAKRYIVSNVYIGGLPDKTVVITIKLNAE--TESAYSMTFEFTWAKTFEN-LQFDSSSFTFSYIAQENEDEDK 
Ad33  YPKPTTDTSA-KPEDKKSAAKRYIVSNVYIGGLPDKTVVITIKLNAE--TESAYSMTFEFTWAKTFEN-LQFDSSSFTFSYIAQENEDEDK 
Ad24  YPKPTTDTSA-KPEDKKSAAKRYIVSNVYIGGLPDKTVVITIKFNAE--TECAYSITFEFTWAKTFED-VQFDSSSFTFSYIAQENEDEDK 
Ad46  YPKPSTDTSA-KPEDKKSAAKRYIVSNVYIGGLPDKTVVITIKFNAE--TECAYSITFEFTWAKTFED-VQFDSSSFTFSYIAQENEDEDK 
Ad22  YPKIIDSTTNP--ADKKSSAKKIIVGNVYLGGNPGQPVAVAISFNKE--TTADYSITFDFAWGKAYETPVPFDTSSMTFSYIAQENEDKTQ 
Ad42  YPKIINSTTDP--ENKKSSAKKTIVGNVYLEGNAGQPVAVAISFNKE--TTADYSITFDFAWSKAYETPVPFDTSSMTFSYIAQENQDKGE 
Ad15  YPKQTKPT-----NKEISQAKNKIVSNVYLGGKIDQPCVIIISFNEE--ADSDYSIVFYFKWYKTYEN-VQFDSSSFNFSYIAQE------ 
Ad44  YPKPPTPPTNPTTPLEKSQAKNKYVSNVYLGGQAGNPVATTVSFNKE--TGCTYSITFDFAWNKTYEN-VQFDSSFLTFSYIAQE------ 
Ad48  YPKPPTPPTNPTTPLEKSQAKNKYVSNVYLGGQAGNPVATTVSFNKE--TGCTYSITFDFAWNKTYEN-VQFDSSFLTFSYIAQE------ 
Ad30  YPKIINNGTAN-PEDKKSAAKKTIVTNVYLGGDAGQPVATTVSFNKETESNCVYSITFDFAWNKTYKN-VPFDSSSLTFSYIAQDAEDKNE 
Ad49  YPKIINNGTAN-PEDKKSAAKKTIVTNVYLGGDAAKPVATTISFNKETESNCVYSITFDFAWNKTYKN-VPFDSSSLTFSYIAQDAEDKNE 
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Table 1. Data collection and refinement statistics for structures generated in this study 
 

PDB Entry 6QU6 6QU8 6FJO 
Data Collection   
Diamond Beamline I04 I04 I04 

Date 25/10/2018 25/10/2018 05/12/2017 

Wavelength 0.91587 0.91587 0.9795 

Crystal Data   

Crystallisation Conditions 0.1 M MIB, 25 % w/v PEG 
1500 

0.1 M MIB, 25 % w/v PEG 
1500 

0.1 M SPG, 25% PEG 
1500 

pH 4.0 8.0 4.0 

a=b=c (Å) 85.73 85.92 85.78 

 90.0 90.0 90.0 

Space group P 21 3 P 21 3 P 21 3 

Resolution (Å) 1.03 – 49.5 1.19 – 42.96 1.17-85.78 

Outer shell 1.03 – 1.06 1.19 – 1.22 1.17-1.23 

R-merge (%) 5.3 (125.3) 8.5 (276.1) 6.5 (137.0) 

R-meas (%) 5.5 (161.3) 8.8 (283.2) 6.6 (140.4) 

CC1/2 1.0 (0.224) 1.0 (0.505) 1.00 (0.825) 

I / σ(I) 21.9 (0.7) 20.7 (1.3) 24.8 (2.3) 

Completeness (%) 97.7 (76.5) 100.0 (100.0) 100.0 (100.0) 

Multiplicity 14.9 (2.0) 21.4 (20.3) 21.8 (21.2) 

Total Measurements 1,509,159 1,448,478 1,568,641 

Unique Reflections 103,975 67,799 71,878 

Wilson B-factor(Å2) 8.4 11.1 12.2 

Refinement Statistics   
Total number of refined 1,936 1,846 1,761 
R-work reflections 96,027 64,286 68,283 

R-free reflections 4,907 3,441 3,558 

R-work/R-free (%) 13.6 / 14.8 14.17 / 17.20 17.0 / 19.0 

rms deviations   
Bond lengths (Å) 0.012 0.011 0.021 

Bond Angles (°) 1.754 1.661 2.080 
1Coordinate error NULL NULL 0.026 

Mean B value (Å2) 17.6 29.6 19.9 

Ramachandran Statistics   
Favoured/allowed/Outliers 119 / 9 / 0 126 / 10 / 0 133 / 10 / 1 

% 93.0 / 7.0 / 0.0 92.7 / 7.4 / 0.0 92.4 / 6.9 / 0.7 

 
* One crystal was used for determining each structure.  
* Figures in brackets refer to outer resolution shell, where applicable. 
1 Coordinate Estimated Standard Uncertainty in (Å), calculated based on maximum likelihood statistics. 
 
Buffers:  
- MIB: Malonic acid, Imidazole, Boric acid 
- SPG: Succinic acid, Sodium phosphate monobasic monohydrate, Glycine: pH 4.0 
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