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REVIEW ARTICLE

Clinical pathway modelling: a literature review
Emma Aspland , Daniel Gartner and Paul Harper

School of Mathematics, Cardiff University, Cardiff, UK

ABSTRACT
Hospital information systems are increasingly used as part of decision support tools for
planning at strategic, tactical and operational decision levels. Clinical pathways are an
effective and efficient approach in standardising the progression of treatment, to support
patient care and facilitate clinical decision making. This literature review proposes a taxonomy
of problems related to clinical pathways and explores the intersection between Information
Systems (IS), Operational Research (OR) and industrial engineering. A structured search
identified 175 papers included in the taxonomy and analysed in this review. The findings
suggest that future work should consider industrial engineering integrated with OR techni-
ques, with an aim to improving the handling of multiple scopes within one model, while
encouraging interaction between the disjoint care levels and with a more direct focus on
patient outcomes. Achieving this would continue to bridge the gap between OR, IS and
industrial engineering, for clinical pathways to aid decision support.
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1. Introduction

Clinical pathways are an effective and efficient way to
standardise the progression of treatment, which in
effect can reduce the pressure and problems sur-
rounding subject areas that decision makers need to
address.

There is a vast scope for what can encompass the term
clinical pathway, with numerous ways of formulating,
approaching, and modelling them. As far as we are
aware, the only literature reviews to explore specifically
‘clinical pathways’ in relation to OR is Elbattah and
Molloy [61] and Erdogan and Tarhan [63]. Our paper
differs from previous work as we provide a rigorous
taxonomy to characterise an abundant work of literature
around clinical pathways. Subsequently, we demonstrate
the applicability of our taxonomy by classifying the
research papers into the different categories.

This paper provides a general overview of the
publications surrounding clinical pathways in health-
care, in addition to various detailed classifications of
such publications. This enables clarity for any future
publications surrounding clinical pathways to identify
the current themes and methods used in the litera-
ture, and thus identify gaps.

For each figure that displays a key classification result,
there is a respective table within Appendix II, which fully
details the reference number for each paper within the
category.

The remainder of the paper is structured as fol-
lows: Section 2 provides a definition of clinical path-
ways, Section 3 describes the search criteria, Section 4
discusses previous literature reviews. Section 5 then

explores a sample of the selected papers to aid under-
standing of the taxonomy, Section 6 displays the
taxonomy results for the literature and Section 7
closes the paper with a discussion and conclusion.

2. Definition

The first use of the term ‘clinical pathway’ was in
1985 by Zander, Etheredge, and Bower (1987) at the
New England Medical Centre (De Bleser, Depreitere,
de Waele, Vanhaecht, and Vlayen, 2006). Since then,
the term has become more frequently used and
mutated into multiple terms. For instance, deLuc
et al. (2001) found 17 different terms which denoted
the concept of ‘clinical pathways’, and discussed that
the most common terms were ‘care pathway’, ‘critical
pathway’, ‘integrated care pathway’ and ‘care map’.

De Bleser, Depreitere, de Waele, Vanhaecht,
and Vlayen (2006) conducted a literature review
with the aim to ‘survey the definitions used in
describing the concept and to derive key charac-
teristics of clinical pathways’. The authors found
84 different definitions of a clinical pathway
between 2000 and 2003.

Kinsman, Rotter, James, Snow, and Willis (2010)
conducted a literature review and developed detailed
criteria for what should be classified as a clinical path-
way and tested this against 260 papers. They developed
the following criteria:

– The intervention was a structured multidisci-
plinary plan of care.

CONTACT Emma Aspland asplandel@cardiff.ac.uk School of Mathematics, Cardiff University, Cardiff, CF24 4AG United Kingdom

HEALTH SYSTEMS
2021, VOL. 10, NO. 1, 1–23
https://doi.org/10.1080/20476965.2019.1652547

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-3835-6278
http://orcid.org/0000-0003-4361-8559
http://orcid.org/0000-0001-7894-4907
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20476965.2019.1652547&domain=pdf&date_stamp=2021-03-05


– The intervention was used to channel the trans-
lation of guidelines or evidence into local
structures.

– The intervention detailed the steps in a course of
treatment or care in a plan, pathway, algorithm,
guideline, protocol or other ‘inventory of
actions’.

– The intervention had time-frames or criteria-
based progression (that is, steps were taken if
designated criteria were met).

– The intervention aimed to standardise care for
a specific clinical problem, procedure or episode
of healthcare in a specific population.

If an intervention satisfied the first, and then any
three of the remaining four criteria, then it was clas-
sified as a clinical pathway.

This is a very detailed definition which clearly
describes the features of a clinical pathway.

3. Search criteria

A structured search was conducted using the Scopus
search engine restricting to years 1998–2018
(November). The keywords were specified to focus
on clinical pathway and its main alternative terms as
indicated by deLuc et al. (2001): ‘care pathway’, ‘cri-
tical pathway’ and ‘care map’. Two further terms were
also included, namely ‘anticipated recovery pathways’
and ‘patient pathway’.

The term ‘patient flow’was not included in our search
terms as this review is specifically interested in the struc-
ture of well-defined pathways, and patient flow typically
relates to the general movement of patients.

We focus the search to journal publications from
five categories in the Thomson-Reuters Journal
Citation Report (JCR), and as a result only journal
articles were returned by the search. The five subject
categories are Anaesthesiology (AN), Health Policy
and Services (HPS), Industrial Engineering (IE),
Medical Informatics (MI) and Operations Research
and the Management Sciences (OR/MS), each of
which have an impact factor.

These categories were chosen to provide an over-
view of papers within the Operational Research (OR)
area, in addition to highlighting the type of informa-
tion that is being presented to other areas on this
topic. Specifically, these five categories were chosen
for the following reasons:

– Anaesthesiology (AN): captures a subgroup ofmed-
ical journals in which quantitative methods have
been published more frequently than in other med-
ical disciplines (e.g. Anaesthesia & Analgesia).

– Health Policy and Services (HPS): captures those
journals covering impact on policy decisions
and service improvement (e.g. Health Care

Management Science and Health Services
Research).

– Industrial Engineering (IE): is a quantitative
category that covers engineering journals (e.g.
Computers and Industrial Engineering or
Computers and OR) in which, for example,
patient scheduling papers have been published.

– Medical Informatics (MI): to include data
mining and healthcare information systems (IS)
topics (e.g. Journal of Medical Systems).

– Operations Research and the Management
Sciences (OR/MS): covers quantitative model-
ling and journals surrounding OR in healthcare
(e.g. Journal of the Operational Research Society).

Figure 1 shows a diagram detailing the search
process.

The screening stage, as displayed in Figure 1, con-
sisted of analysing abstracts of the resulting papers
from the search. Any papers that did not refer to
a pathway or used only qualitative or statistical meth-
ods e.g., interviews or regression respectively, were
excluded. The screening stage also excluded papers
not available in English. The diagram highlights the
use of a backward search, for which the same screen-
ing criteria as described above was applied. The final
number of records included in the analysis is 175.

4. Previous research

Additionally to the 175 papers that were selected, our
research revealed 11 papers of notable contribution and
27 literature reviews. All of these papers discuss clinical
pathways and the techniques surrounding them, in some
form. These are summarised and can be found in
Appendix II, Tables A1 and A2, respectively.

Figure 1. Diagram detailing the search process.
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Concerning the 11 papers of notable contribution,
these discussed guidelines, frameworks, case studies
and I.T. artefacts that support clinical pathways.

Of the 27 review papers in Table A2 (Appendix II),
six consider process mining or data mining [38, 63,
78, 109, 135, 168], seven consider simulation [2, 105,
132, 173, 175, 176, 208] and three consider stochastic
modelling [59, 123, 213].

There are seven papers that use the term ‘clinical
pathway’, or its synonyms, in the search terms [61,
63, 132, 156, 173, 175, 189] and two papers use
‘patient flow’ in their search terms [109, 173]. These
papers all consider clinical pathways, but most focus
on a different primary topic.

There are only two reviews that concern clinical
pathways specifically: Elbattah and Molloy [61] and
Erdogan and Tarhan [63].

Elbattah and Molloy [61] provide a comprehensive
discussion of 22 papers concerning modelling and simu-
lating clinical pathways. Our paper provides a different
perspective from [61] aswe provide a rigorous taxonomic
approach to classifying many papers.

Although Erdogan and Tarhan [63] consider pro-
cess mining as a primary topic, the amount of con-
sideration and discussion around clinical pathways
is vast, indicating 59 papers concerning clinical
pathways. The systematic mapping method used is
reflective of our method, however as clinical path-
ways are not the primary consideration, it does not
fully consider a discussion of clinical pathways post-
discovery. With clinical pathways being the main
focus of our paper, it differs from that of Erdogan
and Tarhan [63] as we consider a holistic view on
clinical pathways.

5. Exploration of a sample of papers

This section explores a sample of the papers for the
purpose to aid understanding of the classifications in
Section 6. These papers have been chosen so as to
discuss the widest range of categories, using the smal-
lest sample of papers.

The sample of papers are discussed briefly and
their relevant categories are indicated in Table 1

Ajmi et al., [3] used Business Process Modelling
Notation (BPMN) to model the workflows of the patient
journey in a Paediatric Emergency Department. The aim
was to identify bottlenecks and crowded situation indi-
cators, with noting that delay occurs in the waiting time
from the health care request. The study was integrated
into the French National Research Agency (ANR) pro-
ject, titled: ‘Hospital: Optimization, Simulation and
avoidance of strain (HOST)’.

Barbagallo et al., [14] used BPMN 2.0 to schedule
operating room activity, by room and day through
a waiting list database, and applied stochastic model-
ling to allow optimisation.

Bending et al., [19] used Monte Carlo sampling tech-
niques to estimate the direct cost of bowel cancer services.

Chemweno et al., [35] developed a discrete event
simulation on the stay of stroke patients in a stroke
unit, specifically diagnosis, to investigate capacity and
waiting times.

Du et al., [55] develop a new method of handling
clinical pathway variances in Takagi-Sugeno (T-S)
fuzzy neural networks (FNNs). Two cases concerning
osteosarcoma preoperative chemotherapy are used to
validate this method.

Huang et al., [97] used Latent Dirichlet Allocation
(LDA) for the purpose of discovering the treatment
patterns as a probabilistic combination of clinical
activities. The method was then applied as part of
experiments to careflow logs concerning intracranial
haemorrhage and cerebral infarction.

Konrad et al., [107] developed a method to use
message exchanges to automatically establish and
compare a patient’s path against a clinical pathway.
The method has been applied to a case study in major
joint replacement.

Langley et al., [116] developed a discrete event
simulation model for the diagnosis of Tuberculosis
(TB) to help provide policy makers with the informa-
tion to decide which tools, and where, they should be
implemented for maximum effectiveness.

Table 1. Summary of categories for sample of papers.
No. Condition Method Outcome Scope Decision Level

[3] None Simulation Resource & Time Clinical Strategic
[14] None Optimisation & Heuristics Cost & Resource Department Strategic & Tactical
[19] Chronic Focus Simulation Cost Clinical Strategic
[35] Acute Focus Simulation Resource & Time Clinical Tactical
[55] Chronic

Applied
Optimisation & Heuristics Pathway Mapping Clinical NA

[97] Acute Applied Data Mining or Machine Learning Pathway Mapping Clinical NA
[107] Surgical

Applied
Data Mining or Machine Learning Pathway Mapping & Patient

Progression
Clinical NA

[116] Chronic Focus Simulation Patient Progression Hospital Strategic
[120] None Stochastic Modelling Resource Disease Tactical &

Operational
[143] Surgical Focus Data Mining or Machine Learning Time Disease Operational
[203] None Stochastic Modelling & Data Mining or Machine

Learning
Legal Hospital NA
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Lanzarone et al., [120] modelled the home care
pathway using a Markov chain, where the future
workload of each operator was of interest to support
medium and short term resource planning. The
model was developed as a simple software applica-
tion, integrated into the current software used, which
supports patient to operator assignment.

Michowski et al., [143] used a Bayesian Belief
Network (BBN) to model the radical prostatectomy
clinical pathway with an interest in patients length of
stay being categorised as ‘met’ or ‘delayed’ given the
patient’s outcomes and activities. The research was
implemented as an application.

Yang and Hwang [203] utilised clinical pathways,
through data-mining using a Markov blanket filter, to
facilitate automatic and systematic construction of an
adaptable and extensible detection model of fraudu-
lent and system abusive behaviour.

6. Classification of literature

This section discusses the taxonomy which classifies
the literature, and provides summary statistics.

6.1. General characteristics

Figure 2 displays the distribution of the papers across
21 years and shows that the number of publications
considering clinical pathways has rapidly increased.
This may reflect the growing demand for the use of
clinical pathways in practice and thus the need for
more in-depth research.

Table 2 shows how the papers were distributed
across the world. A paper was classified within
a geographical area if it specifically stated that the data
or hospital was within that area, or failing that, through
any acknowledgements of a hospital in a specific area or
the country of the first author was recorded.

Table 2 shows how Europe has the greatest
number of publications relating to clinical path-
ways, followed by Asia then America. This high-
lights that research into clinical pathways is of
global interest.

This section concludes that research into clinical
pathways is growing in popularity across the
globe, year on year.

6.1.1. Publication area
Figure 3 breaks down the publications by the JCR cate-
gory which each paper was published under. Again, the
five subject categories are Anaesthesiology (AN), Health
Policy and Services (HPS), Industrial Engineering (IE),
Medical Informatics (MI) and Operations Research and
the Management Sciences (OR/MS).

There are 64 papers identified in the backward search,
whose ISSN numbers do not relate to any of the five JCR
categories, plus a further 16 papers in the backward
search that appear to have no ISSN number – and thus
also no JCR group. These are not included in Figure 3.

Two journals not included in the JCR categories
published multiple papers identified in the search,
these are Lecture Notes in Computer Science [20, 48,
85, 87, 98, 112, 179] and Studies in Health Technology
and Informatics [5, 74, 76, 94, 121, 136, 210].

It is apparent here that MI is the most popular JCR
group followed by OR/MS. Although there were only
a few papers in AN and IE, it is beneficial to capture
these as they provide another perspective on clinical
pathways.

This highlights the need to bridge the gap between
MI with OR and IS methods.

Figure 2. Frequency of publications over time.

Table 2. Number of articles by geographical area.
Continent America Asia Europe Other

Total 32 41 90 12

Figure 3. Frequency of publications in JCR category.
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6.1.2. Obtaining the pathway
Obtaining the pathway is arguably one of themost impor-
tant aspects of analysing clinical pathways. As presented in
the selected papers, there are two commonways of obtain-
ing this information: either data driven or through colla-
boration with those who interact with the pathway.

There were many different ways of obtaining data
described, including historic [143], billing [85], mes-
sages [107] and Electronic Medical Records [88].
Similarly, collaboration took on a number of different
forms including, consulting with experts [17], staff
[10], patients [136] and through observations [101].

Figure 4 explores how the information on the
pathway was obtained. Forty-seven papers did not
clearly specify how they obtained the data and have
been classified as unspecified.

Eleven papers specifically stated other methods of
collecting the information on the pathway, which are
as follows – [19, 22, 41, 82, 116, 169] stated that the
information was provided to them in some way, [79]
through previous work (also consulted with experts
and stakeholders), [128] online user input, and [21,
24, 60] used national guidelines.

The advantage of using data to inform the pathway is
that the pathway is derived factually and objectively
from actual occurrences of the pathway. The advantage
of collaboration with staff and experts is that more
information can be gathered about why certain deci-
sions and possible variances from the pathway would
occur. Therefore, it is recommended to consider both
data driven and collaboration with staff when deriving
the pathway, although we observe only 14 papers (8%)
in our survey considered both aspects.

It is important to note that only 12 papers [3, 22, 52,
60, 73, 93, 96, 119, 120, 124, 143, 170] state that their
research/product was implemented/informed policy –
this is only 6.9% of the papers surveyed. Previous reviews
have found similar results in regards to implementation
(e.g. Brailsford, Harper, Patel, & Pitt, 2009), and therefore
this finding highlights the need formore implementation
and evaluation. However, caution needs to be considered

here as it is possible that some proposed recommenda-
tions were/will be eventually implemented but was out-
side the timeline of the publication.

6.2. Medical context

6.2.1. Condition area
The papers selected consider a variety of medical con-
ditions which is either the main focus of the paper, or
applied as case study/validation/explanation etc.

There are three condition categories: Acute, Chronic
and Surgical, which have been adapted from Zhang,
Padman, and Levin (2014). A description of the condi-
tion categories are as follows:

– Acute – ‘Acute conditions are severe and sudden in
onset. This could describe anything from a broken
bone to an asthma attack’. (Medline plus, 2018),
stroke has been categorised as acute.

– Chronic – ‘A chronic condition, is a long-
developing syndrome, such as osteoporosis or
asthma’. (Medline plus, 2018).

– Surgical – Papers where the main condition was
a specific surgical procedure are classified here.

The three condition areas have been further cate-
gories as either focus or applied:

– Focus – The system surrounding the medical con-
dition was the main motivation for the paper.

– Applied – The medical condition was consid-
ered as a case study or for validation purposes.

Figure 5 shows the frequency of papers within each
condition area.

Forty-nine papers are not included, as they did not
specify a particular condition or considered multiple
diagnosis-related groups (DRG).

Chronic conditions are slightly more frequent than
acute conditions, and in all three categories, it is more

Figure 4. Frequency of papers in each collection method.

Figure 5. Frequency of papers in each condition area.
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frequent for the condition to be applied rather than
the focus of the paper.

6.2.2. Care level
The medical care system is typically split into three
sections, Primary, Secondary and Tertiary (NHS pro-
viders, 2018), which are as follows:

– Primary – First point of contact e.g. General
Practitioner or dentist.

– Secondary – Can either be elective or emer-
gency care, also known as ‘hospital and commu-
nity care’.

– Tertiary – Highly specialised treatment.

Two other levels can be considered – Home Care and
Disease:

– Home Care – This is when care is provided to
the patient at their own home.

– Disease – This concerns understanding how the
disease progresses and the care provided pro-
gresses alongside.

Figure 6 shows the frequency at which each of the
five care levels are considered, and displays that sec-
ondary care is considered most frequently.

Seven papers [11, 23, 45, 102, 115, 116, 142] con-
sider when the patient is at home and then gets
reintroduced into the system in some capacity.

It is important for these systems to work together
to allow the patient a smoother journey on the path-
way. Within Figure 6, there are 42 papers that con-
sider more than one care level – 31 papers consider
two levels, nine consider three levels. The interactions
between these levels are displayed in Figure 7.

There are also two papers that consider four levels
[16, 145] (primary, secondary, tertiary and home
care) which are not displayed in Figure 7.

From Figure 7, we can conclude that only a few
papers consider three or more care levels, and there-
fore research is not providing the full holistic view of
the pathway. It is recommended that, when appro-
priate, future work should make every effort to con-
sider multiple care levels.

The interaction between condition area and care
level can be considered, and is displayed in Figure 8.

Figure 8 shows that acute conditions are mainly
considered at a secondary care level, whereas chronic
conditions are roughly equally divided between second-
ary, tertiary or home care levels. This implies that
chronic conditions have more range to consider differ-
ent care levels.

6.2.3. Scope
Although a pathway always has a patient in mind, the
scope of the focus on the pathway varied greatly from
clinical, disease, department and hospital. This scope
considers that although it is typical for the activities of
concern to revolve around the patients, they may either
not be required to be present, or it is the system around

Figure 6. Frequency of papers in each care level.

Figure 7. Frequency of multiple care levels.

Figure 8. Cross analysis between condition area and care level.
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the patient that is of interest and not the patient move-
ments themselves.

To explain this further, an example for each type
of scope is now discussed.

● Bayer et al., [16] is categorised as ‘Clinical’, as they
produce a simulation of the stroke care pathway
where, although some activities do not require the
patient to be present, the overall focus is on the
patient themselves.

● Michalowski et al., [143] is categorised as ‘Disease’,
as the activities are related to the patients’ health,
e.g. temperature, pain at rest, vital signs etc.

● van de Klundert et al., [187] is categorised as
‘Department’, as they define an activity as ‘an atomic
unit of care delivered to the patient, asmeaningful to
execute or record the care’. They also state that
‘Although we will not explicitly model it, patient
need not be present for each of the activities (con-
sider e.g. lab tests)..

● Arnolds and Gartner [8] is categorised as
‘Hospital’, as they focus on improving hospital
layout planning by using clinical pathway mining.

Figure 9 displays the frequency of papers in each scope
category.

There were only five cases where more than one
scope was considered [13, 43, 102, 128, 211]. In all of
these cases, both clinical and disease scopes were con-
sidered. This was due to the clinical activities being
dependent on the progress of disease at particular
points e.g. Liu et al., [128] investigate the readmission
risk percentage based on the patient activities which
differ depending on the diagnosis of the disease.

From the selected literature, it appears that consider-
ing more than one scope area is difficult to carry out in
a realistic format, which is not in the form of dummy or
pseudo activities. It is believed that this is a limitation of
the types of methods (Figure 10 and Table A9) that are

considered and thus suggests an opportunity for further
work.

6.3. Technical context

6.3.1. Method
There are many methods that can be used for clinical
pathways, they have been categorised into four groups:
StochasticModelling, DataMining orMachine Learning,
Simulation, and Optimisation and Heuristics. Further
description ofwhatmethods are included, but not limited
to, in each group are as follows:

● Stochastic Modelling – Includes Markov [40]
and queueing [190] methods.

● Data Mining or Machine Learning – Includes
Bayesian techniques and Bayesian Belief Networks
[143], machine learning [76] and visualisation [20].

● Simulation – Includes discrete-event [79], agent
based [129], Monte Carlo [7] and system dynamics
[142, 191].

● Optimisation and Heuristics – Includes genetic
algorithm [57], and mathematical programming,
including dynamic [187], mixed-integer [75],
mixed-integer linear [31] and goal [167].

Figure 10 displays the frequency of papers in each
method group, and indicates that data mining or
machine learning was the most popular method to
be applied, closely followed by simulation.

Eighteen papers were identified as using multiple
methods, 16 of those papers applied two methods and
two papers applied three methods. This is just 10% of
the total selected papers. The combinations of meth-
ods applied are displayed in Figure 11.

The majority of these papers use data mining or
machine learning along with one other method, and
thus shows that those papers using multiple techniques
are bridging the gap between OR, IS and industrial
engineering.

Figure 9. Frequency of papers by scope.

Figure 10. Frequency of papers in each method.
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The interaction between method and condition
can be considered, and is displayed in Figure 12.

Figure 12 shows that datamining ormachine learning
more frequently considers applied conditions, and simu-
lation more frequently has the condition as the focus of
the paper, in all three condition areas.

Furthermore, six papers [3, 14, 24, 151, 164, 202]
discuss the use of ‘Business Process Modeling
Notation’ (BPMN). BPMN is the use of graphical
notation for the purpose of illustrating business
processes.

Fourteen papers [1, 11, 13, 18, 42, 81, 87, 100, 120,
127, 128, 144, 157, 210] indicate that they develop
a type of IT artefact that can be implemented to
support the clinical pathways under consideration.
These papers are also bridging the gap between OR,
IS and industrial engineering.

This highlights that to continue bridging the gap
between OR, IS and industrial engineering future
work should consider Data Mining and Machine

Learning alongside OR techniques, and integrate
them whenever possible.

6.3.2. Investigating area
The literature discusses three ways of investigating
the pathway: mapped, modelled and improved.
A paper is classed as mapping a pathway if it provides
some information and process of initially defining the
pathway, modelling if it created a model of that path-
way, and improved if some scenario analysis, recom-
mendation or support for improvement was made. It
is possible for a paper to consider more than one of
these investigation areas.

Figure 13 displays the frequency of papers consid-
ering each investigation area.

The two papers that were categorised exclusively as
improving discussed the development of a web-based
tool to aid with clinical pathway usage, and thus did
not map or model the pathway. There are no papers
that both map and improve the pathway, without also
modelling it. This is intuitive, as a model cannot be
improved if it was not modelled.

Figure 13 concludes that all three investigation areas
are important when considering clinical pathways, and
applying all three provides amore complete picture. It is
suggested that future work place more focus/impor-
tance on improving the pathway and its related out-
comes, as this is one of the key advantages of using an
OR technique, and can aid decision making.

The investigation area that is considered is related
to the type of method used, as displayed in
Figure 14.

Figure 14 displays that the most frequently used
techniques to map a pathway are data mining and
machine learning, whereas simulation is the most

Figure 11. Frequency of papers applying two methods.

Figure 12. Cross analysis between method and condition area.

Figure 13. Graph of the interaction between mapping, mod-
elling and improving the pathway.
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popular technique for considering modelling or
improving a pathway.

6.3.3. Outcome
The outcome, main decision variable or indication
factor for performance of interest can lead the
whole direction of research. The outcomes consid-
ered in the literature can be grouped into six
categories. A description of the categories is as
follows:

● Legal: Papers including factors of a legal matter,
such as fraud or medical negligence.

● Patient Progression: Any factor related to the
patient specifically e.g. Quality Adjusted Life
Years (QALY), survival, disease progression/
management.

● Cost: This category includes any paper related to
cost.

● Resource: Any factor considered to be a resource
e.g. MRI Scanner, capacity, staffing levels.

● Time: Any factor related to time is included in
this category e.g. length of stay, scheduling, wait-
ing times and travel times.

● Pathway Mapping: Papers that aimed to estab-
lish and map the pathway, including pathway
variances are included here.

Figure 15 shows the frequency of papers amongst
these outcomes. Pathway mapping is the most fre-
quent category, while (excluding legal) patient pro-
gression is the least frequent. This may be
concerning as the patients are those whose health
and lives are effected by all of the outcome factors,
and thus should be at the forefront of any outcome
considered. Therefore it is recommended that more
emphasis should be placed on patient outcomes in
a more direct manner.

Thirty-seven papers considered multiple out-
comes, where 32 considered two outcomes, and four
considered three outcomes (Figure 16).

Figure 16 shows that time and resource are most
frequently considered together, and it is rare to find
papers considering more than two outcome measures.

Only one paper considered four outcomes [145]
(time, resource cost and patient progression), which
is not displayed in Figure 16.

Although an outcome is often regarded as the final
result of any research, this also has an impact on the
areas surrounding constructing the approach, such as
the method or scope considered.

Figure 17 shows the frequencies of the cross ana-
lysis between outcome and method. This displays that
data mining or machine learning is most frequently
used for pathway mapping, whereas simulation is
most frequently used to measure cost, resource or
time outcome measures.

Figure 18 shows the frequencies of the cross analysis
between outcome and scope. It displays that a clinical
scope is most frequently used for pathway mapping,
whereas resource and time are approximately equally
split between hospital and departmental scope.

Figure 14. Cross analysis between method and investigation
area.

Figure 15. Frequency of papers considering outcome measure.

Figure 16. Frequency of interaction of multiple outcomes.
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As an example of the interaction between outcome
factor and scope, Barone et al., [15] considered depart-
mental scope in relation to time, resource and cost out-
come factors through simulation to plan daily nurse
requirements in a stroke unit. In contrast, Uzun
Jacobson et al., [186] considered a clinical scope in rela-
tion to patient progression outcomes, through discrete-
event simulation of hyper-acute stroke care, concerning
the percentage of patients receiving thrombolysis.

6.4. Planning decisions

Hulshof, Kortbeek, Boucherie, Hans, and Bakker
(2012) describes a taxonomic classification of plan-
ning decisions in health care in OR/MS. This taxon-
omy separates the papers into three decision levels:
Strategic, Tactical and Operational. A brief descrip-
tion of the decision levels are as follows, however
a formal definition of the three decision levels can
be found in Hulshof et al. (2012).

– Strategic planning involves structural decisionmak-
ing of the design, dimensioning and development of
healthcare. This typically has a long planning hor-
izon e.g. location planning and staffing levels.

– Tactical planning organises the operation of the
healthcare delivery system, typically on a mid-
term planning horizon, e.g. staff shift scheduling.

– Operational planning executes the routine plan-
ning of the healthcare delivery system on
a short-term planning horizon e.g. patient-to-
appointment scheduling.

Figure 19 shows the frequency of the papers in each
decision level. This highlights that strategic decisions
are considered most frequently out of the three deci-
sion levels, however more often than not, there is no
decision to consider.

Three papers state that they consider more than one
decision level. Barbagallo et al., [14] states that it considers
both strategic and tactical decisions, Landa et al., [113]

considers tactical and operational decisions and Burdett
et al., [31] consider strategic and operational decisions.

This shows that the use of clinical pathways can be
used across all the decision levels, from day-to-day
decisions to wider policy decisions.

Hulshof et al. (2012) applies the taxonomy for
those papers in the OR/MS JCR category, however
in this paper we have considered five JCR groups.
The cross analysis between decision level and JCR
category can be seen in Figure 20.

Figure 20 shows that the decision levels are in fact
spread across the five JCR groups, which shows that

Figure 18. Frequency of interaction between outcome and
scope.

Figure 19. Frequency of papers considering decision level.

Figure 20. Frequency of interaction between decision level
and JCR category.

Figure 17. Frequency of interaction between outcome and
method.

10 E. ASPLAND ET AL.



the Hulshof et al. (2012) decision level taxonomy can
be applied to more than just the OR/MS JCR group.

The decision level does impact other aspects of the
research that have been previously discussed. Therefore,
a cross analysis between the decision level with scope,
method, and outcome will now be considered. The cross
analyses between decision level andmethod, and decision
level and outcome, both help to explain why such a high
number of papers refrain from considering a decision
level.

Firstly, Figure 21 considers the interaction between
decision level and scope of the research.

There appears to be an even dispersion of scope
across the three decision levels, with strategic being
most popular in clinical and disease scope than the
other two decision levels. Considering the papers that
had no decision level, these are most often concern-
ing clinical scope, but there is also an equal spread
between the three remaining scope areas.

Secondly, Figure 22 considers the interaction between
decision level and method.

This shows that simulation is most frequently used
across all three decision levels. The interaction
between data mining or machine learning and no
decision was most commonly observed. This can be
explained as this method is most frequently used for
mapping a pathway (Figure 14) for reasons such as
defining the pathway, and therefore would have no
decision associated with this.

The conclusion drawn from the above analyses can be
supported when considering the interaction between
decision level and outcome measure (Figure 23).

Figure 23 shows that no decision most frequently
occurs when the outcome is pathway mapping.
Again, all of the outcome measures have an even
distribution across all three decision levels, with stra-
tegic decisions being slightly more prominent.

7. Conclusions

There is a vast scope for what can encompass the term
clinical pathway, with numerous ways of formulating,
approaching, and modelling these. This paper provides
a general overview of the publications surrounding
clinical pathways in healthcare. A number of taxo-
nomies have been developed, providing a detailed clas-
sification of the publications. This enables clarity for
any future publications surrounding clinical pathways
to identify the current themes and methods used in the
literature, and thus identify gaps.

Section 6 discusses the taxonomy, analysed fre-
quencies, and provided cross analysis where
appropriate. Some areas of recommended focus
for future work were highlighted in the discussion,
and are summarised as follows:

Figure 21. Frequency of interaction between decision level and
scope.

Figure 22. Frequency of interaction between decision level and
method.

Figure 23. Frequency of interaction between decision level and
outcome.
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– Careful consideration of publication area, to
ensure the information is reaching all commu-
nities involved.

– Derive the pathway from both data and colla-
boration with staff.

– Consider a medical condition, whether in focus
or applied application, as this better fits with
clinical pathways specifically.

– Include as many care levels as possible (when
appropriate) to encourage communication and
awareness between them.

– Improve the methods used to allow for multiple
types of scope to be considered together.

– Continue to bridge the gap between OR, IS
and industrial engineering by considering
data mining and machine learning alongside
OR techniques, and integrate whenever
possible.

– Incorporate all three areas of mapping, model-
ling and improving the pathway, with particular
focus on improving, as this reflects the special-
ities of OR techniques.

– Greater emphasis on patient outcomes in a more
direct manner.

– Specify the decision planning level of focus
when appropriate.

Following these recommendations should lead to
a more thorough study of the whole clinical path-
way. The paper from Monks et al., [145] presents
a methodology for simulation modelling of stroke
care systems, and captures many of the same
recommendations as discussed above, and thus is
a notable example of what future research should
aim to aspire to.

The inclusion of the cross analysis between the
identified taxonomy areas allows those who are con-
sidering research to more carefully consider the com-
binations of these areas, both for quality,
appropriateness and discovering areas in which
there is a lack of research.

In conclusion, future work should consider
industrial engineering and IS integrated with OR
techniques, with an aim to improve the handling
of multiple scope within one model,
while encouraging interaction between the pre-
viously disjoint care levels, with a more direct
focus on patient outcomes. Achieving this would
continue to bridge the gap between OR, IS and
industrial engineering, while improving methods
for clinical pathways to aid in supporting
decisions.

It is important to continue research into clinical
pathways, as it is a subject of global interest, whose
popularity continues to grow over time.
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Appendix II

Table A1. Papers of notable contribution.

Reference Type Summary
Year

Published

[6] Case Study Business Process Management technology applied to clinical pathways. Pediatric kidney transplantation
case study.

2017

[26] Case Study Factors influencing successful adoption of general simulation tools within healthcare organisations. 2013
[28] I.T.Artifact Develops a Electronic audit and feedback. (e-A&F) system. 2018
[44] Evaluation Telemedicine research. 2006
[106] Review Overview of the past, present and future of preoperative cardiovascular care. 2018
[130] Guidelines and

Case Study
Test the feasibility of building full National Institute for Health and Care Excellence (NICE) guidelines
models for cost-effectiveness analysis.

2013

[159] Survey and Case
Study

Delivery and design across healthcare planning. A case study in emergency stroke care is presented as
an exemplar.

2015

[174] Narrative Review Constructing enhanced recovery after surgery (ERAHS) pathways for hip and knee arthroplasty. 2016
[180] Framework Developing health economic models of whole systems of disease and treatment pathways for resource

allocation decisions.
2012

[193] I.T Artifact Synthea - an open-source software package that simulates the lifespan of synthetic patients. 2018
[207] Conformance

analysis
Conformance rates of actual usage of clinical pathway using Electronic Health Record log data. 2015
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Table A2. Summary of previous literature reviews.

Reference Type Summary
Dates

included

No.
Search
Engines

No.
Papers
Included Major Search Terms

[2] Literature Review Model-based cost-utility studies of
depression

2002–2010 4 14 Depression, models, computer
simulation, cost utility, QALY

[38] Literature Survey Data mining for electronic health records
(EHRs)

2000–2016 3 2516 Data mining, machine learning,
artificial intelligence, mining, AND
electronic health record (EHR)

[59] Literature Review Mathematical decision models that
evaluated 5 α- reductable inhibitors and
prostate cancer chemoprevention

until 2013 2 7 Cost-effectiveness, cost-utility,
decision-analytic, economic
model, AND prostate cancer

[61] Systematic Review Clinical pathways NA 4 22 Clinical pathways, Critical pathways,
Care maps, Integrated care
pathways, Care pathways

[63] Systematic
Mapping

Process mining in healthcare 2005–2017 10 172 ‘Process mining’ in healthcare and
clinical pathways

[65] Systematic Review Patient-reported outcome measures
(PROMs) being utilized by Advanced
practice physiotherapists (APPs)

until 2018 5 38 Physio Therapy, Advanced Practice,
Patient-reported outcome
measures

[69] Systematic Review Intraoperative efficacy improvement in
surgery

until 2015 1 38 Operating room, surgery, surgical
AND Efficiency, Lean, Six Sigma

[77] Literature Review Compare adult and pediatric Enhanced
Recovery After Surgery (ERAS) pathways

1940–2018 1 NA/83 Enhanced Recovery, Fast Track,
surgery AND child

[78] Literature Review Process mining in healthcare until 2016 8 2371 Process mining, healthcare, clinic,
hospital, care, health

[84] Systematic Review Inpatient bed management 2013–2017 3 92 Bed management, bed assignment,
bed planning, bed allocation

[105] Literature Review Simulation modelling in stroke care systems until 2014 1 30 Stroke, simulation, simulation model
[109] Literature Review Process mining in oncology until 2016 5 37 Process mining, data mining,

pathway analysis, AND patient
flow, AND oncology

[123] Literature Review Mathematical modelling for evaluating
waiting times in a hospital emergency
department

2000–2010 5 29 NA

[132] Literature Review Application of generic operational models in
health services

until 2013 2 116 Operational model AND health, care,
Clinical pathway, Simulation,
Markov

[135] Systematic Review Data mining and predictive analytics in
healthcare operations and supply chain
management

until 2015 2 22 Big data, data mining, process
mining AND optimizations AND,
healthcare

[137] Literature Review Multi-appointment scheduling in hospitals 1995–2017 2 56 Multi-appointment, integrated,
holistic AND healthcare, AND
scheduling

[156] Literature Review Computer-interpretable guidelines 2001–2013 1 21 Electronic clinical guidelines, clinical
pathway, clinical pathways, care
pathway

[155] Systematic Review Good practice guidelines and contemporary
developments

1990–2014 7 33 NA

[168] Literature Review Process mining in healthcare until 2016 3 74 Process mining, workflow mining,
healthcare

[173] Systematic Review Simulation of changes in the delivery of
surgical care

1957–2007 8 34 Clinical path, patient flow, Markov,
system dynamics, discrete event,
agent based, statechart

[175] Literature Review Validated simulation models on hospital-
wide surgical services

2000–2016 4 22 Simulation, AND clinical pathway,
care pathway, critical pathway,
patient pathway, care map

[176] Systematic Review Comparing Markov modelling and discrete
event simulation for cost-effectiveness
analysis of healthcare technologies

1947–2012 3 22 Discrete event simulation, Markov,
microsimulation, Monte-Carlo,
economic

[181] Literature Review Operations Research applied to Hospital
Administration Systems

2005–2014 6 152 Hospital, Admission, Systems

[189] Literature Review Evidence based model pathway for surgical
patients with colorectal cancer

2006–2014 3 15 Clinical pathway, and colorectal,
cancer, enhanced recovery
program

[194] Systematic Review Application of the Anderson’s Model of Total
Patient Delay to asses cancer diagnosis

1979–2009 4 10 NA

[208] Systematic Review Discrete event simulation applied to health-
related topics and decision making

until 2017 2 211 Discrete event simulation, AND
health service, Patient, healthcare

[213] Systematic Review Mathematical modelling the cost-
effectiveness of diagnostic strategies for
active TB

2000–2013 1 36 NA
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Table A3. Publications categorised by JCR.
JCR Category

MI [3, 11, 13, 14, 16, 17, 19, 32, 37, 42, 45–47, 52, 54, 56, 57, 66, 72, 73, 1–93, 95–97, 99–101, 108, 122, 124, 131, 140, 144, 149, 150,
157, 160, 164, 170, 178, 187, 196, 197, 206, 211]

OR/MS [7, 8, 12, 18, 22, 23, 27, 30, 31, 43, 50, 51, 64, 75, 79, 90, 113, 114, 134, 151, 158, 165, 169, 190, 203, 212]
HPS [9, 10, 21, 33, 39, 40, 80, 102–104, 110, 116, 141, 143, 153, 163, 166, 209]
IE [34, 120]
AN [53, 133]
No ISSN [15, 24, 36, 60, 70, 71, 82, 127, 138, 139, 142, 161, 183, 198–200]

Table A4. Way in which information about the pathway was obtained.
Obtained

Data Driven [5, 7–9, 11, 13, 32, 33, 37, 47–49, 54, 58, 62, 66, 70–72, 74–76, 80, 81, 83, 85–99, 104, 107, 108, 112, 120, 121, 124, 126, 127, 131, 133,
134, 138–140, 143, 144, 147–150, 153, 157, 160, 162, 167, 170, 172, 177–179, 183–185, 191, 192, 195, 197–206, 209–211]

Collaboration [3, 10, 14, 17, 27, 42, 51, 73, 100, 114, 142, 152, 163]
Both [12, 20, 35, 40, 56, 101, 103, 129, 136, 146, 154, 166, 171, 186]
Other [19, 21, 22, 24, 41, 60, 79, 82, 116, 128, 169]

Table A6. Care level considered.
Care Level

Primary [4, 11, 16, 19, 23, 25, 27, 40, 43, 110, 111, 114–117, 136, 145, 152, 154, 170, 178, 188, 191, 196]
Secondary [3, 5, 8, 11–22, 27, 29–36, 41–43, 45, 46, 50–52, 60, 62, 64, 67, 70–76, 79–81, 83, 87–93, 95, 97, 99, 100, 108, 110, 111, 113, 114,

124, 127–129, 133, 134, 136, 138–142, 145–147, 149, 151–154, 158, 160, 162–167, 169–172, 178, 182–188, 190–192, 197–206,
210–212]

Tertiary [1, 10, 11, 13, 16, 19–21, 32, 47, 53, 57, 68, 73, 82, 85, 94, 96, 98, 99, 102, 103, 107, 112, 121, 125, 126, 133, 140, 145, 148, 152, 154,
158, 161, 166, 177–179, 185, 191, 195, 209]

Disease [4, 7, 9, 13, 24, 25, 37, 39, 43, 48, 49, 54–56, 58, 66, 86, 101–104, 118–120, 122, 128, 131, 138, 143, 144, 150, 157, 172, 196, 211]
Home Care [7, 16, 27, 34, 118–120, 142, 145]

Table A7. Multiple care levels considered.
Multiple Care Levels

Two [4, 7, 20, 21, 25, 32, 34, 73, 99, 102, 103, 110, 111, 114, 118–120, 128, 133, 136, 138, 140, 142, 158, 166, 170, 172, 185, 188,
196, 211]

Three [11, 13, 19, 27, 43, 152, 154, 178, 191]
Four [16, 145]

Table A8. Type of scope considered.
Scope

Hospital [8, 21, 23, 27, 29–31, 36, 41, 51, 64, 67, 74–76, 79, 85, 108, 111, 114–117, 134, 142, 145–148, 152, 158, 160, 165, 166, 170, 177, 178, 184,
190, 202, 203, 209]

Department [12, 14, 15, 17, 18, 46, 50, 52, 57, 62, 68, 100, 113, 125, 129, 141, 151, 153, 154, 161, 163, 164, 167, 169, 171, 182, 185, 187, 212]
Clinical [1, 3, 5, 10, 11, 13, 16, 19, 20, 22, 32–35, 40, 42, 43, 45, 47, 53, 60, 70–73, 80–83, 87–99, 102, 107, 110, 112, 121, 124, 126–128, 133, 136,

139, 140, 149, 162, 179, 183, 186, 188, 191, 192, 195, 197–201, 204–206, 210, 211]
Disease [4, 7, 9, 13, 24, 25, 37, 39, 43, 48, 49, 54–56, 58, 66, 86, 101–104, 118–120, 122, 128, 131, 138, 143, 144, 150, 157, 172, 196, 211]

Table A5. Clinical condition area of consideration.
Condition Focus Applied

Acute [16, 25, 34–36, 46, 50, 60, 66, 110, 111, 114, 136, 145–148,
150, 163, 186, 188]

[5, 15, 29, 37, 42, 64, 70, 71, 79, 88–93, 97, 108, 124, 139, 154, 160, 162,
169, 171, 196, 200–202, 204, 205]

Chronic [1, 9, 11, 19, 23, 40, 41, 43, 45, 47, 49, 58, 73, 86, 101, 103,
104, 115–117, 122, 158, 161, 172, 179, 191, 192, 209]

[13, 24, 39, 48, 51, 54–56, 81, 82, 85, 94–96, 98, 99, 102, 112, 121, 126,
128, 131, 140, 144, 149, 157, 166, 170, 177, 178, 195, 210, 211]

Surgical [21, 53, 68, 143, 153] [20, 32, 57, 62, 107, 125, 133, 152, 185]
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Table A10. Multiple methods considered.
Multiple Methods

Two [8, 11, 12, 18, 54, 74, 76, 99, 108, 140, 151, 162, 167, 179, 190, 203]
Three [7, 211]

Table A11. Investigating type.
Investigating Type

Mapping (Ma) [1, 4, 5, 7, 22, 29, 33, 37, 42, 47, 48, 54, 56, 57, 70, 71, 81, 83, 87, 88, 90, 91, 94–99, 104, 112, 121, 126, 127, 131, 136, 138,
139, 144, 149, 154, 157, 161, 162, 164, 170, 172, 177–179, 183–185, 192, 195, 197–203, 206, 209–211]

Modelling (Mo) [15, 19–21, 23, 24, 30, 31, 36, 39, 43, 50, 55, 58, 64, 67, 76, 79, 82, 86, 89, 102, 103, 115, 117–119, 122, 129, 145–147, 150,
151, 160, 169, 171, 187, 188, 190, 191, 196, 212]

Improving (I) [13, 46]
Ma & Mo [3, 9, 11, 17, 18, 40, 60, 62, 66, 72–74, 80, 85, 90, 93, 101, 107, 108, 114, 120, 124, 125, 128, 133, 134, 140, 143, 158, 205]
Mo & I [8, 16, 25, 32, 34, 41, 45, 52, 53, 68, 75, 110, 111, 113, 116, 141, 148, 165, 182]
All Types [10, 12, 14, 27, 35, 49, 51, 100, 142, 152, 153, 163, 166, 167, 186, 204]

Table A12. Outcome focus of the pathway.
Outcome

Pathway Mapping [1, 4, 5, 13, 20, 33, 37, 42, 47, 54–56, 58, 62, 70, 71, 81–83, 86–99, 107, 112, 114, 115, 121, 126–128, 136, 138–140, 149,
154, 157, 162, 164, 171, 172, 177–179, 183, 184, 187, 188, 192, 195, 197–202, 206, 210, 211]

Time [3, 8, 10, 12, 15, 16, 18, 23, 29–32, 34–36, 41, 46, 50, 52, 57, 62, 64, 67, 68, 72, 74, 75, 80, 85, 94, 100, 108, 110, 118, 129,
133, 138, 141–143, 145–147, 151, 160, 161, 163, 165–167, 169, 182, 185, 190, 204, 205, 212]

Resource [3, 7, 10, 14, 15, 17, 25, 27, 29, 31, 32, 35, 36, 46, 52, 64, 75, 76, 100, 113, 118–120, 142, 145, 148, 151–153, 160, 161, 163,
170, 182, 191, 204]

Cost [9, 11, 14, 15, 19, 21, 22, 40, 43, 45, 53, 60, 73, 79, 101, 111, 117, 118, 125, 133, 134, 138, 145, 158, 166, 167, 209]
Patient Progression [24, 29, 39, 40, 45, 48, 49, 51, 60, 79, 86, 101–104, 107, 116, 122, 124, 131, 139, 144, 145, 150, 186, 196]
Legal [66, 203]

Table A13. Multiple outcomes considered.
Multiple
Outcomes

Two [3, 10, 14, 31, 32, 35, 36, 40, 45, 46, 52, 60, 62, 64, 75, 79, 86, 94, 100, 101, 107, 133, 139, 142, 151, 160, 161, 163, 166, 167, 182,
204]

Three [15, 29, 118, 138]
Four [145]

Table A14. Planning decision level taxonomy.
Decision Level

Strategic [3, 8, 9, 14, 16, 19, 22, 25, 27, 29, 31, 32, 39, 41, 43, 45, 46, 49, 52, 60, 64, 67, 72, 73, 80, 101–103, 111, 115, 116, 136, 158,
165–167, 170, 182, 190, 191]

Tactical [7, 10, 12, 14, 30, 34–36, 68, 74, 76, 79, 86, 108, 113, 117, 141, 142, 145, 147, 148, 161, 163]
Operational [15, 17, 18, 31, 53, 57, 75, 90, 110, 113, 118–120, 134, 143, 146, 150, 153, 160, 169, 186, 212]
No Decision [1, 4, 5, 11, 13, 20, 21, 23, 24, 33, 37, 40, 42, 47, 48, 50, 51, 54–56, 58, 62, 66, 70, 71, 81–83, 85, 87–89, 91–100, 104, 107, 112,

114, 121, 122, 124–129, 131, 133, 138–140, 144, 149, 151, 152, 154, 157, 162, 164, 171, 172, 177–179, 183–185, 187, 188,
192, 195–206, 209–211]

Table A9. Method.
Method

Data Mining or Machine
Learning

[5, 7, 8, 11, 20, 24, 29, 33, 37, 42, 47–49, 54, 62, 66, 70–72, 74, 76, 81–83, 85–94, 96–99, 104, 107, 108, 112, 121, 124,
126–128, 133, 136, 138, 139, 143, 144, 149, 150, 154, 157, 162, 164, 167, 170, 172, 177–179, 183–185, 192, 195,
197–203, 205, 206, 209–211]

Simulation [1, 3, 7, 9, 10, 12, 15–19, 21, 23, 25, 27, 32, 34–36, 39, 41, 43, 45, 46, 50–53, 60, 64, 67, 68, 73, 79, 100, 102, 108, 110, 111,
113–117, 122, 129, 134, 142, 145–148, 151–153, 158, 160, 163, 165, 166, 169, 171, 182, 186, 188, 190, 191, 196, 204]

Optimisation and
Heuristics

[4, 8, 12–14, 18, 22, 30, 31, 54–58, 74–76, 80, 95, 99, 103, 118, 119, 125, 131, 140, 161, 162, 167, 179, 187, 211]

Stochastic Modelling [7, 11, 40, 101, 120, 140, 141, 151, 190, 203, 211, 212]
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