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Abstract

We present a practical backend for stereo visual SLAM
which can simultaneously discover individual rigid bod-
ies and compute their motions in dynamic environments.
While recent factor graph based state optimization algo-
rithms have shown their ability to robustly solve SLAM
problems by treating dynamic objects as outliers, the dy-
namic motions are rarely considered. In this paper, we ex-
ploit the consensus of 3D motions among the landmarks ex-
tracted from the same rigid body for clustering and estimat-
ing static and dynamic objects in a unified manner. Specif-
ically, our algorithm builds a noise-aware motion affin-
ity matrix upon landmarks, and uses agglomerative clus-
tering for distinguishing those rigid bodies. Accompanied
by a decoupled factor graph optimization for revising their
shape and trajectory, we obtain an iterative scheme to up-
date both cluster assignments and motion estimation recip-
rocally. Evaluations on both synthetic scenes and KITTI
demonstrate the capability of our approach, and further ex-
periments considering online efficiency also show the effec-
tiveness of our method for simultaneous tracking of ego-
motion and multiple objects.

1. Introduction
Perceiving and modeling surrounding environments are

the foundation of navigating modern Autonomous Things
(AuT), which is achieved via Simultaneous Localization
and Mapping (SLAM) formulated with onboard sensors.
With the booming demand of service robots and self-driving
cars, SLAM technology is now facing more challenging
scenarios, e.g., low-cost sensors which introduce consider-
able noise when running in complicated dynamic scenes.

Recent advanced visual SLAM approaches applicable
for dynamic scenes can be divided into two categories con-
∗corresponding author.

sidering their treatment of dynamic components: exclu-
sion [1, 7, 24, 5] or segmentation [36, 37, 4, 44]. While
the first category chooses to exclude these components to
ensure robust camera ego-motion tracking, the latter cate-
gory inclines to further segment these components into mul-
tiple instances (i.e. rigid bodies). Although it is tolerable to
discard minor movements in an almost static environment,
most scenarios including autonomous driving and multi-
robot collaborating [34] require explicit motion information
of the surroundings to help with decision making and scene
understanding. In these cases, segmentation approaches are
preferred over exclusion solutions.

Existing segmentation based dynamic SLAM systems
detect and model dynamics through either semantics from
deep learning [37, 4] or motion consistency [22, 36]. Deep
neural networks have shown their effectiveness for object
detection and semantic segmentation [19, 8] in the past few
years. But the problems applying them to SLAM systems
are two-fold: First, they can only detect movable a-priori
dynamic categories (e.g. cars or people) but cannot recog-
nize arbitrary moving instances. Second, the performance
of such models heavily depends on the amount of available
computing resources, which brings deployment issues in re-
stricted platforms (e.g. embedded computing devices).

From another perspective, methods exploiting motion
consistency for segmentation [27, 22, 36, 44] achieve ac-
ceptable performance without such problems. These solu-
tions aim to find inconsistencies in landmark observations
between adjacent frames. Current methods discover these
inconsistencies by identifying outliers apparently violating
predefined motion models and causing a high error residual.
However, these works have not sufficiently utilized the in-
formation calculated during the SLAM process, especially
tracked long-term 3D motions, which are effective for ob-
taining better segmentation considering motion consistency.

In this paper, we take a different approach to discovering
motion inconsistencies with a key observation that motions



of the dynamic components in a scene are the essence of
landmark drifting, and thus propose to cluster their motions
according to the rigidity throughout the time for deducing
underlying rigid bodies simultaneously with the maximum-
a-posteriori (MAP) estimation in the backend. Compared to
the frontend, SLAM backend provides the convenience of
globally discovering and processing long-term scene char-
acteristics, facilitating the fusion of history information and
hence having the potential of providing more accurate mo-
tion segmentation results.

In summary, we revisit the potential of a SLAM backend,
and propose an approach which can distinguish individual
rigid bodies through their locally consistent and globally in-
consistent 3D motions. The proposed backend for stereo
cameras, namely ClusterSLAM (Alg. 1), iteratively consists
of two sub-modules for simultaneously handling cluster as-
signments and motion property estimation. The main ad-
vantages of our proposed algorithm are:

(1) In contrast to recent SLAM backends, our algo-
rithm clusters rather than excludes dynamic landmarks in
the scene, and further estimates their motions.

(2) Measurement uncertainties of keypoints are taken
into account in both clustering and estimation to improve
the accuracy of cluster assignments and motion property es-
timation.

(3) We use chunks of input frames for consensus cluster-
ing and a decoupled factor graph optimization procedure to
maintain the overall system efficiency.

2. Related Work
Visual SLAM in dynamic environment. As introduced

in the previous section, exclusion and segmentation ap-
proaches are two main techniques for visual SLAM. Many
exclusion solutions [2, 24] utilize externally computed in-
formation such as optical flow to prune outlier observa-
tions in order to achieve more accurate ego-motion esti-
mation, while others [1, 7, 30] instead choose to add ro-
bust M-estimator into the MAP optimization framework
to automatically down-weight noisy observations. Con-
trarily, segmentation methods like [26, 23, 12] use tracked
sparse features to perform motion consistency analysis and
motion segmentation; dense approaches taking RGBD in-
put [36, 37, 4, 44] combine the registration residual of dense
model alignment and the geometric features for enhanced
segmentation and tracking. More techniques for dynamic
SLAM are summarized in [38].

Multibody motion segmentation. Previous methods for
motion segmentation are mainly based on subspace factor-
ization techniques [9, 28], statistical modeling and sam-
pling [15, 3, 45], epipolar/trilinear constraints [42, 41], ob-
ject/scene flow [27, 2, 20, 43], energy minimization [47,
23, 21], and deep learning based instance-level detec-
tion [19, 12, 4, 14] (i.e. tracking-by-detection). Our strategy

for segmenting multiple instances is different from previous
approaches: Instead, we found that after the noise-aware
refinement of the 3D trajectories of landmarks, the consis-
tency of motion can be extracted and grouped in an unsu-
pervised way to present landmark-wise associations, thus
deducing their underlying rigid bodies. Furthermore, such
detection may reciprocally contribute to a finer estimation
of the landmark trajectories. This strategy is not sufficiently
exploited in recent segmentation modules.

Clustering approaches. We refer readers to a recent
review [46] on clustering approaches, which divides cluster
algorithms into several categories. Since it is difficult to find
an effective way of representing a single dynamic landmark
by a feature vector, most approaches except those hierarchy
based are not directly applicable to the motion clustering
problem. Based on the property of relative stationarity be-
tween landmarks, our clustering approach calculates pair-
wise motion inconsistency to form a motion distance matrix,
and utilizes a bottom-up hierarchy-based algorithm [17, 39]
to achieve the clustering in O(n2 log n) time. We will also
show in Sec. 4.4-B that the chosen clustering method is su-
perior to alternative methods.

3. ClusterSLAM
As a SLAM backend illustrated in Alg. 1, the goal of

our approach is to obtain the position and the cluster as-
signment of these landmarks, as well as the motion of each
cluster. We use two major modules (clustering and SLAM)
in an iterative scheme to solve for and refine these variables
simultaneously.

In the clustering module (Sec. 3.1), we establish a mo-
tion distance matrix (Sec. 3.1.1) to describe the incon-
sistency of motions of these landmarks pairwisely, and
choose a hierarchical agglomerative clustering approach
(Sec. 3.1.2) to merge them into clusters. Considering the
computational complexity of such a matrix in long se-
quences, we partition input frames into short-term chunks
and use a consensus clustering (Sec. 3.1.3) to conclude the
long-term assignment of a landmark.

In the SLAM module (Sec. 3.2), we aim at solving the
position of these landmarks simultaneously with the move-
ment of these clusters. We first use a noise-aware point
cloud registration and integration approach to initiate its
shape (Sec. 3.2.1) for optimization, and then refine these
positions and motions through a decoupled factor graph op-
timization method (Sec. 3.2.2), so that the previous motion
distance matrix can be updated to continue the iteration.

As the basis of our algorithm, the stereo keypoint cor-
responding to the i-th landmark at frame t (i, t ∈ N∗) is
denoted as xit = (uL, vL, uR) where (uL, vL) are the coor-
dinates on the left image and uR is the horizontal coordinate
in the right image. X×,it ∈ R3 and Σ×,it ∈ R3×3 respec-
tively represent the local 3D coordinates and uncertainty of



the i-th landmark within the coordinate system× at frame t.
The back-projection function f : xit → Xc,i

t w.r.t. the stereo
camera model projects the observation into the camera lo-
cal coordinate system c. In order to consider the pixel errors
of these keypoint extraction methods [30, 11], we introduce
the stereo noise model [18], where the extraction error of
xit reflected on Xc,i

t can be calculated as Σc,i
t = JfΣitJ

>
f ,

where Jf is the Jacobian matrix of the back-projection func-
tion f , and Σit is the covariance of xit assigned w.r.t. the key-
point extraction error in its image coordinates. For transfor-
mations and poses, we define Pq

t ∈ SE(3) for the pose of
cluster q (q ∈ N∗) at frame t and Pc

t for the pose of the
stereo camera. We assign all static landmarks to a single
static cluster with q = 0, hence ∀t,P0

t ≡ I. For simplicity
of subsequent equations, we denote relative transformation
as Tab

t = (Pa
t )′ ·Pb

t (P′ being the inverse of P) for coordi-
nate transformations and R ∈ SO(3) the rotation part of T.
For details of how the frontend generates correspondences
between landmarks (i.e. tracklets of feature points, the input
of Alg. 1) on the input frames, we refer readers to Sec. 4.1
for our implementation details w.r.t. the evaluation datasets.

3.1. Clustering Landmarks

3.1.1 Motion Distance Matrix

Distance calculation. Our clustering approach for these
extracted landmarks is based on the fact that any pair of
landmarks located on the same rigid body, even with noisy
measurements, should durably stay constant. Hence, we ex-
amine the property between landmarks by building a motion
inconsistency matrix D, with each element dij ∈ D de-
picting the inconsistency between the motions of two land-
marks i and j, calculated with the following equation:

dij =
1

2
avg
t

(∥∥∥lijt − lij∗ ∥∥∥2

σij
t

+ log σijt

)
+ αmax

t
yijt ,

lij∗ ,
∑
t

(
1

σijt
· lijt )

/∑
t

1

σijt
, yijt =

∥∥∥xit − xjt

∥∥∥2

Σij
t

(1)
where ‖x‖2Σ , x>Σ−1x is the squared Mahalanobis dis-
tance with a covariance matrix Σ. We use those frames
t where both landmarks i and j are observed to calculate
their distance. The first term is the 3D geometric distance
term, which depicts the consistency of pairwise 3D spatial
distance lijt ∈ R from the frame t w.r.t. their maximum-
likelihood lij∗ . This term is obtained through the form of
negative log-likelihood, and we kindly refer readers to our
supplementary material for the derivation.

Generally, the vector form l×,ijt = X×,it −X×,jt ∈ R3

instead of the scalar form lijt would provide more accurate
uncertainty estimation as Σ×,it + Σ×,jt for depicting motion
consistency (× stands for any valid coordinate system), but
its scalar form lijt = ‖l×,ijt ‖ has the property of being in-
variant to local coordinate systems. Hence, we choose to

Algorithm 1 ClusterSLAM
Input: The observation of landmarks

⋃
i,t x

i
t on different

frames t.
Output: The cluster assignments θ : i→ q (q = 0 for the

static cluster), the MAP relative position of 3D landmarks
w.r.t. their cluster

⋃
i X̂

q,i, the ego-motion of stereo cam-
era
⋃
t P

c
t , and the trajectory of each cluster

⋃
t P

q
t .

k ← 1;
repeat

/* Clustering module (Sec. 3.1). */
for all partitioned chunks m do

Build motion distance matrix Dm (Sec. 3.1.1);
Cluster on Dm and get θm(i) (Sec. 3.1.2);

Conclude θ(i) from
⋃
m θm(i) (Sec. 3.1.3);

/* SLAM module (Sec. 3.2). */
for all clusters q do

if q = 0 then b← c else b← q;
Initialize

⋃
i X̂

q,i and
⋃
t P

b
t (Sec. 3.2.1);

Optimize for
⋃
i X̂

q,i and
⋃
t P

b
t (Sec. 3.2.2);

k ← k + 1;
until the clustering converges or k exceeds limit.

use the scalar form lijt and approximate its distribution us-
ing a 1-dimensional Gaussian as lijt ∼ N

(
lij∗ , σ

ij
t

)
, with

the variance σijt approximated as the error propagation from
l×,ijt to lijt :

σijt ≈
‖l×,ijt ‖2

Σ×,i
t

+ ‖l×,ijt ‖2
Σ×,j

t

‖l×,ijt ‖2
, (2)

where each Mahalanobis term can be computed under any
unified coordinate system ×.

The second term of Equ. 1 is a vision based prior term,
based on the observation that we incline to group pixels
which are close in the image space into one cluster and
Σijt = Σit + Σjt . Since the 2D distance of two landmarks
in the image space is also dependent on the camera pose,
we choose to pick the maximum rather than the average
for calculating such a prior. The constant logarithm of co-
variance from this term is ignored since all extracted land-
marks are treated with equal uncertainty in the image space.
α = 4×10−4 is a balance factor to control the importance of
the prior. Combining both terms in such a noise-aware form
enables us to take the uncertainty of measurements into ac-
count when clustering. An ablation study for ignoring these
uncertainties during clustering is presented in Sec. 4.4-A.

Element rejection. If co-occurrences of a pair of land-
marks are too rare (fewer than 4 times in our implementa-
tion), the maximum-likelihood estimation is no longer con-
sidered accurate due to the insufficiency of measurements.
For such cases, we assign their corresponding dij as in-
valid. Hence, D may become a sparse matrix, but this



does not affect the performance of our hierarchical cluster-
ing (Sec. 3.1.2).

Iterative Scheme. In Equ. 1, l and σ are refined during
multiple iterations, since the SLAM module may update the
3D position X×,it and X×,jt of each landmark. We begin
our iteration with these variables computed under the cam-
era local coordinates c, but instead transform them into a
cluster-specific coordinates q in subsequent iterations once
the shape of such a cluster is initialized.

3.1.2 Hierarchical Agglomerative Clustering

We use hierarchical agglomerative clustering (HAC) [39]
which enables us to perform clustering on such a sparse dis-
tance matrix D. At the beginning of clustering, we take
each landmark i as a cluster, and then iteratively merge
these clusters pairwisely until the distance between any pair
of clusters (defined as the maximum distance between their
landmarks) is larger than a given parameter ε (set to 60.0 in
our implementation). This complete-linkage criterion [10]
is chosen since the motion consistency between landmarks
is not transitive, i.e., the consistencies between landmarks
i, j and j, z do not ensure the consistency between land-
marks i and z. By implementing a heap structure over
all the elements in D and keep track of their changes, the
time complexity of HAC isO(n2 log n). Several alternative
choices for clustering are further compared in Sec. 4.4-B
which shows the advantage of using HAC.

3.1.3 Consensus Clustering from Multiple Chunks

The size of D grows quadratically with the number of land-
marks, which is positively related to the number of input
frames. To speed up the clustering algorithm, we divide the
input sequence into multiple chunks (100 frames each with
25 overlapped frames for cluster association) and perform
the HAC clustering (Sec. 3.1.2) separately. The influences
of the chunk size are further tested in Sec. 4.4-C.

Then, we perform consensus clustering based on all as-
signments computed from each individual chunk, by con-
structing a sparse vector for each landmark i as yi =
{θm(i)}m to depict its per-chunk assignments, and perform
the Iterative Voting Consensus algorithm [33]. We refer
readers to the supplementary material for details.

3.2. SLAM for Clusters and Camera Ego-motion

3.2.1 Noise-aware Cluster Shape Initialization

The initialization process of a new cluster q aims at acquir-
ing the estimation for the position of its landmarks X̂q,i

t

(Note the difference between X̂t and the back-projected
single-frame position X, where the former represents esti-
mated state concluding all historical frames up to the frame
t). Similar to reconstruction pipelines [32], this process

contains two operations, namely registration and integra-
tion, and we consider the uncertainty of frame observations
in both of them. In our implementation, we maintain a
Gaussian mixture Gq,it for each landmark i and regard X̂q,i

t

as the mean for all components in the mixture.

Frame-to-Model Registration. When the first frame of
a cluster q is encountered at frame t, we initialize the local
coordinates of this cluster by assigning Tqc

t = I for integra-
tion. For subsequent frames, a frame-to-model registration
is executed to obtain the transformation Tqc

t which converts
points from the current local coordinates of the frame Pc

t to
this constructed coordinate system, by optimizing the fol-
lowing equation:

Tqc
t = argmin

T

∑
i

min
g

(
1

2

∥∥∥TXc,i
t − X̂q,i

t−1

∥∥∥2

Σi
g

−Ci
g

)
,

Ci
g ,

1

2
log |Σig|+ log |Σg|, (3)

where g traverses each component of the Gaussian mixture,
and Σg is the g-th component of Gq,it−1. Σig = RΣc,i

t R> +

Σg . Ci
g is the constant factor introduced by the maximum-

likelihood estimation [6]. This formulation can be viewed
as a weighted ICP algorithm, with the weight being the un-
certainty of both the frame and the model.

Frame Integration and Shape Refinement. After the
transformation matrix of the latest frame t is robustly esti-
mated, we update the Gaussian mixture Gq,it−1 by inserting
a new component with covariance Σg′ = Rqc

t Σc,i
t (Rqc

t )>

weighted by 1/|Σg′ |, and remove the component with the
least weight from the mixture if the size of Gq,it−1 exceeds
3. This strategy ensures the registration to be considered
through one of the most reliable measurements. Then, we
integrate the obervation into the landmark position X̂q,i

t as:

X̂q,i
t = argmin

X

∥∥∥Xc,i
t −Tcq

t X
∥∥∥2

Σc,i
t

|Σg′ |
+
∑
g

∥∥∥X̂q,i
t−1 −X

∥∥∥2

Σg

|Σg|
,

(4)
where the first term is used for adding current observations
and the rest terms for previous observations.

Equs. 3 and 4 can be solved efficiently with the Gauss-
Newton method and QR decomposition, respectively. In
practice, we choose to fix Σig in Equ. 3 during each itera-
tion to make the registration easier to solve. We compare
such a probabilistic form of registration and integration to
the traditional point-to-point registration in Sec. 4.4-D. The
final initialized cluster poses and landmark positions are as-
signed as Tqc = Tqc

T and X̂s,i = X̂s,i
T , respectively, where

T is the index of the last frame.



3.2.2 Decoupled Factor Graph Optimization

Traditional factor graph optimization only treats static land-
marks X̂0,i and camera ego-motion

⋃
t P

c
t as objectives.

Assuming that the dynamic scene comprises multiple rigid
bodies, we additionally treat the motion of all clusters⋃

q,t P
q
t and their landmarks

⋃
q,i X̂

q,i as objectives. Then
the BA energy function for each individual cluster can be
written as:

Eq ,
∑
i,t

ρ(
∥∥∥xit − f ′ ((Pc

t )
′Pq

t X̂
q,i
)∥∥∥2

Σi
t

), (5)

where ρ(·) is an optional robust kernel [1] and f ′ is the in-
verse of f , i.e., the stereo projection model.

We use the following three candidate optimization strate-
gies to test their differences: First, fully-coupled optimiza-
tion tries to solve E =

∑
q Eq w.r.t. variables of all

clusters jointly. Second, decoupled optimization is per-
formed following three steps: (1) solve Eq (q 6= 0) for⋃

q 6=0{
⋃
i X̂

q,i,
⋃
t T

cq
t } by regarding (Pc

t )
′Pq

t as a sin-
gle variable; (2) solve E0 to obtain the camera ego-motion⋃
t P

c
t and static landmark positions

⋃
i X̂

0,i; (3) compos-
ite the ego-motion and these transformations to generate the
motion of clusters as

⋃
q,t P

q
t . Third, semi-decoupled op-

timization replaces the above step (2) by solving the whole
objective function E =

∑
q Eq rather than E0.

Both Hessian matrix based theoretical analysis (in sup-
plementary material) and our experiments (Sec. 4.4-E)
demonstrate the suitability and time efficiency of the de-
coupled strategy and we adopt this method in our final al-
gorithm.

4. Evaluation
4.1. Datasets and Parameter Setup

Our experiments are performed on two synthetic datasets
(SUNCG [40], CARLA [13]) and one real-world dataset
(KITTI [16]).

Synthetic datasets. The SUNCG dataset [40] provides
3D models for constructing indoor scenes, and we build 3
scenes with 2 sequences on each, respectively. In these se-
quences, 2-5 instances as well as the stereo camera are dy-
namic, with their motions generated manually in 6 Degrees
of Freedom. The CARLA simulator [13] is used for gen-
erating outdoor car-driving scenes. We use its engine to
simulate streets with multiple driving vehicles and generate
4 sequences for experiments.

Ground-truth landmarks are extracted through random
sampling among the vertices of these models, and we add
a maximum of 1.5 pixels noise to both u, v coordinates
for simulating noisy landmark observations on these stereo
frames. The synthetic stereo camera has a resolution of
1280 × 720 and a horizontal Field-of-View of 90◦, with

its baseline set to 10cm for indoor SUNCG and 50cm for
outdoor CARLA, respectively.

Real-world dataset. We use 3 KITTI raw sequences
(0013, 0015, and 0017) and Superpoint [11] for feature
point extraction. A similar step as in [23] is performed in the
frontend to find associations and generate landmark track-
lets. Please refer to our supplementary materials for detailed
information about these synthetic and real-world scans.

Parameters and Hardware Setup. Since both the base-
line and scales are different in indoor and outdoor scenes,
we use two sets of parameters for these two scenarios, re-
spectively. For indoor scenes, these parameters remain as
presented in Sec. 3. For outdoor scenes, we adjust ε to 90.0
regarding the change in stereo baseline and bigger size of
vehicles, and raise the size of each chunk to 200 to main-
tain the density of D (i.e., sufficient pairwise distances for
intra-chunk clustering). We utilize the g2o framework [25]
for implementing some of those proposed least-squares op-
timizations. All of the experiments for the backend are exe-
cuted on an Intel Core i7-8700K, 32GB RAM desktop com-
puter with a GTX 1080 GPU for timing.

4.2. Full Backend Performance

Baselines. For comparing the full backend performance,
three candidate baseline methods are built: (1) Full Bun-
dle Adjustment, where BA is performed on all visible land-
marks assuming they are static. (2) Progressive DCS (dy-
namic covariance scaling), which takes a step beyond the
Full BA through the robust dynamic covariance scaling ker-
nel [1] for determining those dynamic objects one by one
during each iteration. Specifically, the landmarks with aver-
age error larger than χ2

N +0.3(χ2
M−χ2

N ) will be marked as
dynamic and introduced to the next iteration (χ2

N represents
its smallest reprojection error and χ2

M the largest). The
algorithm will continuously segment one consensus object
after each iteration, until the number of outliers is smaller
than 10. (3) Semantic Segmentation, where a Mask R-CNN
model trained on the MS-COCO dataset [19] is employed
to get the instance-level segmentation of each input frame.
These predicted labels are used to vote for the final labeling
of each landmark through recursive Bayesian. In conclu-
sion, these three categories represent the classical, robust
strategy, and sequential tracking-by-detection methods re-
spectively as discussed in Sec. 2.

Evaluation Criteria. We then use the following metrics
to quantitatively compare the performance: (1) logχ2, as
the logarithm of reprojection error in BA, reflecting the ac-
cordance of these optimization results w.r.t. the input con-
straints. (2) RMSE, as the pointwise Root Mean Square
Error for the position of each tracked landmark w.r.t. its
ground truth position, measuring the quality of mapping.
(3-5) ATE and R./T.RPE, as the RMSE of Absolute Trajec-
tory Error and the Rotational/Translational Relative Pose



Table 1. Quantitative comparison on synthetic sequences.
Indoor Sequences Outdoor Sequences

log χ2 RMSE(m) ATE R.RPE T.RPE Acc.(%) βVI Time(s) log χ2 RMSE(m) ATE R.RPE T.RPE Acc.(%) βVI Time(s)
Full BA 9.61 2.10 0.53/- 0.48/- 0.87/- 52.73 1.19 5.45 10.92 14.39 12.94/- 0.73/- 42.55/- 81.39 0.84 6.00
P. DCS 12.80 1.53 0.63/1.61 0.49/1.82 0.99/2.60 56.05 1.18 3.83 13.85 11.22 9.36/- 0.73/- 37.61/- 80.22 0.82 1.86
Sem. SEG 9.31 0.84 0.31/0.51 0.12/0.87 0.49/0.95 69.60 1.19 3.82∗ 8.55 2.69 1.65/3.09 0.18/0.32 2.34/8.11 96.70 0.24 5.28∗

Ours w/o U 7.88 1.21 0.35/0.34 0.15/0.37 0.53/0.57 65.60 0.96 9.60 8.56 2.48 1.86/5.13 0.02/0.40 3.18/12.32 86.51 0.64 6.96
Ours w/o I 8.65 1.05 0.15/0.31 0.05/0.57 0.21/0.55 76.16 1.06 9.47 9.70 9.56 2.12/3.44 0.47/0.20 4.47/9.94 81.83 0.57 5.84
Ours 7.15 0.44 0.01/0.12 0.01/0.29 0.02/0.22 91.54 0.40 11.15 6.52 0.63 0.53/3.37 0.02/0.18 1.10/8.65 94.15 0.27 6.14
∗ Mask R-CNN [19] prediction time is excluded.

Error w.r.t. the ground truth motions, showing the quality
of the motion estimation (with camera ego-motion and ob-
ject motion separately recorded). ATE and R./T.RPE are
measured in meters, radians and meters, respectively. (6-7)
Clustering accuracy, taken as the best among all permuta-
tions of ground truth and prediction label correspondences
and βV I , as the variation of information distance [29].
These two metrics reflect the performance of segmentation.
(8) Running Time of the whole backend when all frames of
the sequence are considered as a batch.

Results and Analysis. Quantitative comparisons on all
synthetic sequences are averaged and listed in Tab. 1, with
variations of our methods presented together but further dis-
cussed in Sec. 4.4-A. Despite our proposed method requir-
ing more running time for processing, it outperforms other
methods on the performance of tracking and mapping. Al-
though Mask R-CNN [19] for segmenting individual ob-
jects is better than ours on outdoor sequences, it requires
a pre-trained model and extra time for prediction (it costs
on average 40.5 and 67.0 additional seconds in the frontend
for indoor and outdoor sequences, respectively), and does
not work for object categories not present in the training
data. Besides, the Progressive DCS scores best in running
time due to a better Gauss-Newton quadratic approximation
of its cost function [1].

In account of their quality, we found that the Progres-
sive DCS only tends to reject dynamic outliers in its first
pass. In its second pass few outliers can be detected even
though the landmarks left may contain multiple rigid bod-
ies. This is because the dramatically reduced sparse ob-
servation constraints cannot provide enough information to
determine the accurate kinematics (low signal-to-noise ra-
tio). Despite higher clustering accuracy of the Semantic
Segmentation than ours, its estimation of motions and land-
mark positions is affected by their imprecise masks, since
an inaccurate edge of the mask appearing on the border of
an object may erroneously categorize its nearby landmarks,
and eventually influence the backend performance. Further-
more, we show visual comparisons of different clustering
results on sample frames (Fig. 1) and the motion trajectories
(Fig. 2), and our method produces more accurate results.

Performance on KITTI. Our algorithm is also tested on
KITTI. The estimated trajectories are further smoothed by
applying Gaussian interpolation [35] to reduce jitter. We

Figure 1. Visual comparisons on a SUNCG sequence. Landmarks
are colorized by their index of cluster.

Figure 2. Recovered trajectories on synthetic sequences. Resolu-
tions of the major grids (solid lines) are 1m, 1m, 20m and 5m, resp.
Disconnected trajectories stand for multiple dynamic instances.

Table 2. Ego motion comparison on KITTI sequences.
0013 0015 0017

ATE R.RPE T.RPE ATE R.RPE T.RPE ATE R.RPE T.RPE
Sem. SEG 2.65 0.06 4.70 2.64 0.07 8.35 0.77 0.09 1.11
Ours 2.12 0.07 5.50 1.32 0.03 3.64 0.27 0.02 0.40

compare and list the results in Tab. 2 with a visualized sam-
ple shown in Fig. 3. In addition to a better camera ego-
motion, our algorithm can further detect and track multiple
moving cars.



Figure 3. Our results on the KITTI dataset. Middle: Overview
of the street with the camera trajectory (black) and multiple clus-
ters colorized through index and time. Top and Bottom: Sample
images and the visualized point clouds in the perspective view.

4.3. Real-time SLAM System Performance

The evaluation in Sec. 4.2 is performed by taking the
entire video sequence as a single batch and running our al-
gorithm over it. In real-time scenarios, it is intractable to
run batch optimization on all acquired frames. We hereby
present implementation strategies to build an online version
of our system which can run at 7.1Hz for outdoor cases.

Implementation Details. Similar to [23], we restrict the
size of input frames to our backend algorithm to a small
neighborhood of 30 recent frames and optimize within the
window periodically. Detected clusters between each dif-
ferent runs of the backend are associated by counting co-
existing landmarks. Pairs of history and new clusters are
associated if the landmark overlap ratio is over 70%, other-
wise the clusters are either split or dropped. After cluster
association, the involved landmarks are aligned to find the
best transform between the history and new trajectories to
connect them. Experiments show that this implementation
takes 80.10ms/20.68ms on average for every iteration of op-
timization for indoor/outdoor sequences, respectively due to
their different numbers of involved landmarks.

Comparisons and Analysis. We additionally compare
our online version, denoted as ‘Ours (RT)’, to the batch ver-
sion (denoted as ‘Ours’), stereo ORB-SLAM2 [30], its vari-
ant proposed by Murali et al. [31], DynSLAM [4] and Car-
Fusion [12] in terms of accuracy and speed. Tab. 3 compar-
atively shows our effectiveness of precisely acquiring both
trajectory and clustering through the proposed algorithm.
The criteria used are the same as Sec. 4.2.

ORB-SLAM2 [30] and Murali et al.’s system [31] are
only designed for ego-motion tracking, which perform on
par with ours in indoor cases. But for outdoor sequences
where large part of the scene is dynamic as in road junc-
tions, they fail to precisely track the ego-motion, causing
large trajectory error or even tracking loss.

Both DynSLAM [4] and CarFusion [12] acquire seg-

Table 3. Quantitative comparisons to existing systems.
Indoor Sequences

ATE R.RPE T.RPE Acc.(%) βVI Hz
ORB-SLAM2 0.03/- 0.01/- 0.02/- (52.73)† (1.19)† 8.5
Murali et al. 0.03/- 0.01/- 0.01/- (52.73)† (1.19)† 4.9
DynSLAM 0.54/0.19 1.10/0.73 2.60/0.40 61.12 1.21 2.0
Ours 0.01/0.12 0.01/0.29 0.02/0.22 91.54 0.40 *
Ours (RT) 0.03/0.12 0.01/0.30 0.05/0.21 85.27 0.60 2.2

Outdoor Sequences
ATE R.RPE T.RPE Acc.(%) βVI Hz

ORB-SLAM2 2.82/- 0.84/- 6.09/- (81.39)† (0.84)† 9.0
Murali et al. 1.19/- 0.53/- 3.45/- (81.39)† (0.84)† 5.0
DynSLAM 3.95/4.32 0.96/0.09 9.61/9.44 93.73 0.44 2.1
CarFusion -/2.97 -/0.22 -/9.39 93.02 0.51 ?

Ours 0.53/3.37 0.02/0.18 1.10/8.65 94.15 0.27 ?

Ours (RT) 0.92/1.53 0.04/0.20 1.82/3.35 88.58 0.51 7.1
†These methods do not detect dynamics, so Acc. and βVI are listed as the
values when assigning all landmarks into one static cluster.
?Offline methods.

mentation through an external deep network instead of op-
timization. Besides, DynSLAM [4] does not contain a
backend optimization and suffers from cumulative drift.
CarFusion [12] addresses a different input, i.e., multiple
video sequences captured alongside the road, so we feed the
groundtruth ego-motion to avoid its failure on tracking and
concentrate on assessing the motion of the dynamic objects.
We find its performance dependent on the precision of car
keypoint detection, where inaccurate detections may con-
flict with their intra-frame smoothing constraints and gen-
erate undesirable results.

4.4. Ablation Study

Ablation studies are performed and discussed for those
modules presented in Sec. 3.

A. Formulation of Motion Distance. We evaluate the
effectiveness of Equ. 1 by validating the necessity of its
forms, specifically on: (1) The noise-aware formulation by
switching the Mahalanobis form of the first term to Eu-
clidean and replacing the weighted average lij∗ into un-
weighted (denoted as w/o U); (2) The second vision based
prior term through directly removing it (denoted as w/o I).
Their results are listed in Tab. 1 with other parts of the al-
gorithm unchanged. For outdoor sequences, w/o U requires
more iterations to converge, and therefore is slower than our
method. Since most metrics except running time shown in
the table are worse than ours, we prove the necessity of both
forms on improving the final quality of the backend.

B. Alternative Clustering Methods. We compare both
the clustering accuracy and βVI of our agglomerative clus-
tering method with Spectral Clustering (SC) and Affinity
Propagation (AP) methods. All these three methods do not
rely on a feature vector of each element and therefore are
suitable for our scenario with the dense pairwise matrix
form. We eliminate all non co-visible landmarks and build
dense motion distance matrix D for comparison. For this
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Figure 4. Accuracy and variation of information comparison of
different clustering methods with respect to noise.
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Figure 5. Chunk size vs. quality of clustering and computational
time on two long CARLA sequences.

experiment, we generate landmark observations on these
synthetic scans with the standard deviation of noise varied
from 0.0 to 3.0 pixels to test the robustness.

Their performance w.r.t. the standard deviation of noise
is shown in Fig. 4. We found that the clustering accuracy
of AP drops quickly when noise becomes severe. Besides,
in the case of small noise, SC is not as stable as ours (It
is not fully accurate even if the input observations do not
contain any noise). For the motion distance matrix D with
size 260 × 260, the average running time of our approach
is only 6.3ms while AP takes 13ms and SC takes 180ms on
average.

C. The size of Chunks. We use the two long CARLA
sequences (denoted as CARLA-L1 and CARLA-L2) to in-
vestigate how the length of chunks would affect βV I and
running time: We adjust the chunk size from 30 to 300
and plot the results in Fig 5. In general, smaller chunks
present better clustering results but reduce the number of
observations (i.e., challenging the density of D). It also in-
creases the total running time since the inter-chunk merging
requires more computations.

D. Noise-aware Cluster Initialization. Tab. 4 shows
our results compared to a traditional point-to-point ICP ap-
proach, which neglects the uncertainty in both the registra-
tion and the integration phases. Our method works better
especially on these outdoor sequences, since the uncertainty
of the disparity becomes more important when the baseline
is larger. It is also notably slower than the traditional ICP

Table 4. Comparison of the initialization methods.
Indoor Outdoor

ATE RMSE(m) ATE RMSE(m) Time(ms)
Point-to-Point ICP 0.07/0.13 0.22 7.83/1.37 8.54 0.01
Noise-aware ICP 0.01/0.15 0.12 0.98/0.61 0.94 0.12

Table 5. Comparison of different optimization schemes.
Indoor Outdoor

RMSE(m) Time/Iter(s) RMSE(m) Time/Iter(s)
Fully-Coupled 0.034 0.83 0.73 0.57
Semi-Coupled 0.047 1.04 0.12 1.07
Decoupled 0.047 0.57 0.12 0.53

due to the requirement of computing all the covariances of
observations and replacing the SVD by the Gauss Newton
optimization. Nevertheless, the overall time to initialize all
the poses is not a bottleneck in the backend.

E. Decoupled optimization. The three alternative opti-
mization strategies in Sec. 3.2.2 are tested with their RMSE
and running time per iteration listed in Tab. 5. All opti-
mizers run for 20 iterations. As a result, the decoupled
strategy is the fastest and does not obviously show different
quality in comparison to the semi-decoupled strategy. The
fully-coupled strategy obtains better results indoor but the
pose estimation on these dynamic clusters and the camera
ego-motion may interfere with each other and present unex-
pected results especially on those noisy outdoor sequences.

5. Conclusion
Limitations. Despite the general applicability of our ap-

proach, there are several limitations worth noticing: (1) Our
backend algorithm relies on the quality of landmark extrac-
tion and association from the frontend. Althrough false as-
sociations may be numerically filtered through the robust
kernel, excessive errors can cause unexpected results from
our backend. (2) Our algorithm may fail to detect dynamic
objects with insufficient landmarks, since their recovered
trajectory would be more severely affected by every single
noisy landmark.

In this paper we presented ClusterSLAM, a general
SLAM backend to simultaneously cluster rigid bodies and
estimate their motions. In the future, our formulation of
the multi-body factor graph optimization can be enhanced
by external measurements to further develop its functional-
ity, and it is also worth attempting to utilize the long-term
consistency from the backend to reciprocally refine the data
association in the frontend.

Acknowledgements. We thank anonymous reviewers for
the valuable discussions. This work was supported by the
National Key Technology R&D Program (Project Number
2017YFB1002604), the Joint NSFC-DFG Research Pro-
gram (Project Number 61761136018) and the Natural Sci-
ence Foundation of China (Project Number 61521002).



References
[1] Pratik Agarwal, Gian Diego Tipaldi, Luciano Spinello, Cyrill

Stachniss, and Wolfram Burgard. Robust map optimization
using dynamic covariance scaling. In IEEE International
Conference on Robotics and Automation, pages 62–69, 2013.

[2] Pablo F. Alcantarilla, José J. Yebes, Javier Almazán, and
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