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Temporal variability in renewable energy presents a major challenge for electrical grid systems. Tides are
considered predictable due to their regular periodicity; however, the persistence and quality of tidal-
stream generated electricity is unknown. This paper is the first study that attempts to address this
knowledge gap through direct measurements of rotor-shaft power and shore-side voltage from a 1 MW,
rated at grid-connection, tidal turbine (Orkney Islands, UK). Tidal asymmetry in turbulence parameters,
flow speed and power variability were observed. Variability in the power at 0.5 Hz, associated with the
10-min running mean, was low (standard deviation 10—12% of rated power), with lower variability
associated with higher flow speed and reduced turbulence intensity. Variability of shore-side measured
voltage was well within acceptable levels (~0.3% at 0.5 Hz). Variability in turbine power had <1% dif-
ference in energy yield calculation, even with a skewed power variability distribution. Finally, using a “t-
location” distribution of observed fine-scale power variability, in combination with an idealised power
curve, a synthetic power variability model reliably downscaled 30 min tidal velocity simulations to
power at 0.5 Hz (R = 85% and ~14% error). Therefore, the predictability and quality of tidal-stream en-
ergy was high and may be undervalued in a future, high-penetration renewable energy, electricity grid.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

energy sources (e.g. high penetration of renewable energy in a
power grid) that are less dispatchable (i.e. the resource, thus elec-

It is vital that countries convert to a sustainable low-carbon
electricity system, and yet many renewable energy sources
exhibit variability in power output over a range of time-scales with
low predictability compared with traditional electricity sources [1].
One of the key challenges integrating renewable energy into a
guaranteed high-quality electricity supply is to ensure electricity
supply matches demand (e.g. Refs. [2,3]) — thus, reducing expen-
sive storage and system control measures [4—6].

There are many renewable energy sources, some of which are
well established and dispatchable (e.g. hydro-electric and biomass),
however recent interest in deploying a large amount of renewable
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tricity, is not always present) is discussed in context to the imma-
ture/developing tidal-stream energy industry. Fine-scale variability
in renewable energy supplies arise from, for example, the passing of
clouds for solar PV and gustiness for wind energy; it is this
renewable energy temporal variability that this paper discusses in
context to tidal-stream energy. The predictability of clouds and
therefore the persistence of solar energy is considered low [7,8],
whilst turbulent fluctuations in wind speed (which we experience
as gusts) are known to directly affect wind energy generation
through changing wind turbine rotor speed [7,9]. The variability of
tidal energy is often quoted as “low” in comparison to some other
forms of renewable energy (e.g. Refs. [10,11]), therefore this article
will explore fine-scale tidal-stream energy and implications for
electricity supply.

0360-5442/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Energy control systems are needed to match supply with de-
mand; hence, power utilities and transmission system operators
are concerned with the reported temporal variability of renewable
energy power [12]. Different solutions are available to mitigate this
concern, for example: the use of ‘spinning reserve’ when demand
exceeds generation, and curtailment of energy sources when gen-
eration exceeds demand — as well as more sophisticated control
strategies (see Refs. [13—15]). These solutions result in significant
drawbacks: (1) spinning reserves include devices such as diesel
generators and, therefore, they are potentially polluting and costly.
(2) Curtailment of energy sources means a reduced income for the
owners and may potentially discourage further investment in
renewable resources. (3) Energy storage may be an alternative so-
lution; however, large-scale storage for power grids is presently not
widely deployed. Therefore, as a result of the variability of renew-
able energy resources, higher costs are expected to be incurred in a
future low-carbon electricity system [3,16,17].

In addition to variability of electricity supply, the shift of gen-
eration from fossil-fuelled energy sources to renewable generation
creates a concern in relation to system inertia. Inertia of a power
system is defined as the ability of a system to oppose changes in
frequency, due to the kinetic energy stored in the rotating masses in
synchronous generators. In an AC system, any imbalance between
electricity supply and demand will result in a change to the fre-
quency; for example, when electricity demand exceeds generation,
the system frequency will decrease. As a result, utilities and
transmission system operators are concerned that a continuous
decrease in system inertia will compromise grid stability (e.g.
maximum deviation of 1% is tolerated at a nominal frequency of
50 Hz in the UK). Renewable sources that are decoupled from the
grid, by means of power converters (e.g. solar-PV), do not
contribute to system inertia unless specific requirements are
introduced. For example, in Germany and Denmark (e.g.
Refs. [3,14]), wind energy is contributing to system inertia. There-
fore, tidal energy could also contribute to regulation of electricity
supply.

The periodicity of the tide allows accurate tidal predictions far
into the future using harmonic analysis or ocean modelling tech-
niques (e.g. Ref. [18]). For hydrokinetic turbines, which are used in
tidal-stream electricity generation, the power (P) depends on the
cube of velocity of the current (U) at the site, the density of the fluid
(p), the swept rotor area (A) and its design or “efficiency” (Cp):
P= 0.5*p*A*Cp*U3 [ Eq.1]. Following linear wave theory for a semi-
diurnal system (like the UK), the resource (U) is above 50% of peak
flow for 67% of the tidal cycle, with the timing of peak flow ad-
vances 25.2 min each tidal cycle. Therefore, tidal energy is often
publicised as a predictable and “high-quality” renewable energy
source (e.g. Ref. [10]).

In strongly semi-diurnal systems, the largest tides of the fort-
nightly “spring-neap” cycle always occur at a similar time of day
(see [62]), due to the interaction of the phase-locked solar con-
stituent (S2) and the lunar constituent (M2). Furthermore, the
progression of the tidal wave, as it travels around the UK coastline,
means a phase difference in the timing of peak tidal electricity
production along a coastline could be exploited [19]; for example,
three tidal power stations 120° out-of-phase to one another would
produce a constant amount of power over a tidal cycle for regions
with a suitable coastline (it is unknown if such tidal systems exists
elsewhere in the world as research in this area is preliminary, see
Ref. [20]). The predictability of tidal power could therefore be ad-
vantageous for baseload electricity within the UK's national grid,
because arrays of tidal-stream turbines could be strategically sited
along a coastline to compensate tidal phase differences and pro-
duce a firm baseload of electricity [11,21].

The spatio-temporal variability of tidal currents can be simu-
lated with ocean models for tidal energy resource assessments (e.g.
Ref. [10]). Simulated velocities are typically resolved every
15—60 min. The turbulent closure schemes applied in such models
do not resolve realistic turbulent fluctuations and, hence, tidal
power fluctuations. Turbulence is the fluctuation of velocity (u’)
within a time-mean window (U); thus velocity at a point in time
(ur) is expressed as uy = U+ u'. Turbulence at highly energetic
tidal-stream sites is known to be relatively high [22]; for example,
between 12% and 13% turbulence intensity (TI) at turbine
hub—height [23], with differences noted between the flood and ebb
tidal phases and surface-wave enhanced turbulence effects [24,25].

Turbulent loadings [26,27] and turbulence effects on thrust and
power efficiency [28], have rightly been a focus of research in tidal
energy. However, as the industry moves towards commercializa-
tion and the deployment of grid-connected devices [29], under-
standing the fine-scale current speed variability (i.e. turbulence)
effects on electricity quality is therefore required; for both the
development of the industry and integration of renewable energy
at both national and micro-grid scales. Turbulence intensity at wind
energy sites has been measured between 10% and 20% [30—33] and,
therefore, wind turbulence is hypothesised to be slightly higher
than turbulence at tidal energy sites [34,35]. The combination of
slightly lower turbulence intensities at tidal-energy sites than wind
sites, with the density of sea-water being ~800 times larger than air
(see Eq. 1), suggests that fine-scale variability of tidal-stream en-
ergy should be lower than wind energy.

This paper aims to characterize tidal-stream power variability
and develop a method that can downscale resource model infor-
mation to efficiently predict electricity production for system op-
erators. Using a unique 1MW tidal-stream turbine data set,
described in Section 2, we analysed the variability of electricity and
power within a running-average time window (Section 3). Our
results (Section 4) present the first characterisation of the quality of
tidal-stream generated electricity, together with a method to
downscale broad-scale (30 min resolution) model data to predict
electricity production at 0.5 Hz frequency. Hence, we communicate
the value of tidal-stream energy in both micro-grid and national-
grid renewable electricity systems (Section 5).

2. Case study and data

The tidal-stream energy resource of Orkney (UK) is one of the
largest worldwide, recognized by the development of the European
Marine Energy Centre (EMEC) full-scale tidal test site — where the
tidal-stream energy device analysed in this study was located. The
region has been extensively studied (e.g. Ref. [36]), and a number of
models exist for the region; for example, that of [37] which will be
applied in Section 4. The tidal wave takes around 2.5 h to propagate
in a clockwise direction around the Orkney Islands, which gener-
ates a strong pressure gradient flow through the Pentland Firth and
the Firths of Orkney - tidal straits which link the Eastern-north
Atlantic to the North Sea (see Fig. 1). Tidal currents in the Firths
of Orkney exceed 3 m/s in many locations, with water depths also
suitable for the first generation of tidal turbine developments [36];
see Fig. 1.

An 18 m diameter 1 MW tidal-stream turbine, was deployed as
part of the ETI funded ReDAPT project, in the Fall of Warness at the
EMEC site (see Fig. 1). Real time generator power (measured behind
the generator within the nacelle) and shore side voltage (measured
after the shore transformer) were measured at 50 Hz and 10 Hz,
respectively. Power weighted rotor-averaged velocity and tidal
current speed, based on ADCP measurements taken at hub height
(downstream, i.e. southwest, of the turbine), was measured at
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Fig. 1. The location of the Fall of Warness in the Orkney Islands (panel a), in Scotland, UK (panel b) where the EMEC site is, and a grid-connected 1 MW tidal-stream turbine was

installed.

0.5 Hz. The electricity generated, measured power and hub height
current speed were recorded for a full tidal cycle during two dates
with similar spring tidal conditions: 26 October 2014 and 26 Nov
2014. Further details of the data are given in McNaughton [38] and
Ahmed et al. [39] and flow data is available via the University of
Edinburgh's data share (http://redapt.eng.ed.ac.uk/) - see Sellar and
Sutherland [40].

Data was provided by GE Renewable Energy and has been nor-
malised to protect commercial sensitivity. Therefore, figures are
presented in this publication as percentages relative to 20% above
the stated capacity (i.e. maximum power of device, Pr, in order to
ensure a 1 MW rated power at the shore connection) and rated
velocity (Ur), when the instantaneous velocity (u) is predicted to
provide instantaneous power (P;) at the rated turbine capacity
(P = Pr). Therefore, all data is presented as a percentage relative to
the value at rated power: this means we express velocity and power

respectively as (u‘/Ur) x 100% and <Pf/Pr> x 100%.

3. Method and preliminary analysis

All time-series data were linearly interpolated to a common
time-series at a frequency of 0.5 Hz. Some uncertainty in the syn-
chronicity of data-series (of the order of seconds) was noted (e.g.
Ref. [38], but this will not affect our analysis as we explore vari-
ability from a mean value within averaging windows of the order of
minutes to hours. The interpolated 0.5Hz time-series of tidal-
stream turbine power, shore-side voltage, and current velocity (at
turbine hub height) allows an investigation into the fine-scale
temporal variability of tidal-stream energy and potential causes
(i.e. mean flow speed, turbulence and waves). Characterisation of
the distribution of fine-scale turbine power variability, relative to
the time-averaged mean (including sensitivity test to window
choice), was performed. The fitted distribution of fine-scale turbine
power variability allows a statistical method to down-scale tidal-

stream hydrodynamic resource model information to fine-scale
predictions of resource— which is presented in Section 4.

The 0.5 Hz (2 cycles per second) time-series of hub height tidal
current velocity and tidal turbine shaft-power is shown in Fig. 2.
The fine-scale temporal variability of tidal current and power are
highlighted in Fig. 2, when compared with 30-min running means
(black line of Fig. 2). The broader temporal variability of the
resource appears to be accurately captured using hydrodynamic
tidal resource models (e.g. Ref. [10], whilst the fine-scale variability
of tidal-stream power is both novel and substantive (see Figs. 2 and
3). The fine-scale variability of tidal-stream power is clearly shown
in the power curve of Fig. 3, comparing the 0.5 Hz measured power
curve with an idealised power curve typically used in resource
estimation and 30-min hydrodynamic model data [10]. This fine-
scale variability in tidal-stream energy, the focus of this study, is
crucial to understand because it allows systems to be designed to
ensure renewable electricity can be useful to end users. Moreover,
the fine-scale variability of Fig. 2 may be important for uncertainty
quantification in resource estimation; thus, improving investor
confidence in power curve estimation (Fig. 3).

It should be noted how the idealised power curve (red line of
Fig. 3) is similar to the power observed at 0.5 Hz, even though the
idealised power curve is based on a different device deployed in a
very different tidal environment (Strangford Lough, see Ref. [10])
and applies 30-min hydrodynamic model data for current speed
(see Eq. 1). Therefore, broader-scale and turbulence scales of ve-
locity fluctuations, and the subsequent power captured by the
turbine, is the difference between the red line and the black dots of
Fig. 3. Finer-scale fluctuations in the 30-min mean velocity (x-axis
of Fig. 3) clearly result in fluctuations in power (e.g. see Eq. 1), both
above and below the red line as the 30-min average velocity is
represented in Fig. 3 (hence the observed 2s normalised power of
Fig. 3 are above and below the red line). Some data showed no
power being measured during high velocity values (~90% to 130% of
rated velocity; Fig. 3) — perhaps due to variability in velocity
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Fig. 2. The 0.5 Hz hub height tidal current and tidal turbine power, normalised to the rated power conditions and with a 30 min moving averaging (black line), for a tidal cycle in

October 2014 (panel a and c) and November (panel b and d).
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Fig. 3. The normalised 0.5 Hz measured power curve for the two tidal cycles in 2014
compared to an idealised power curve (red line of [10]) used in hydrodynamic model
resource estimation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

direction resulting in turbine stall. Values of power above 100%
were also recorded in Fig. 3, due to the device rating being asso-
ciated with the shoreside power rather than the turbine rotor shaft
power, and hence much data at ~95% power above rated velocity.

Averaged spectra of the 0.5 Hz data are presented using Fast
Fourier Transform (FFT) in Fig. 4, with power and velocity nor-
malised. These are obtained by computing separate spectra for each
hour-long subset of the data record, with a half-hour overlap be-
tween subsets and applying a Hann window to prevent aliasing.
Although this FFT analysis has limitations, the effect of waves in
oceanographic data such as this is routinely analysed with FFT [41]
and a clear mode of oscillation is present in Fig. 4 during a large
wave event. There is no significant periodicity to the fine-scale

variability with the exception of the October time-series: the
peak visible in both the velocity (panel a) and power (panel c)
around 10s (10~ ! Hz) coincides with a large wave event. Wave data
was taken from the ERA interim hindcast data [42] for the corre-
sponding model cell, and indicates a daily averaged offshore sig-
nificant wave height of ~7 m and mean period of ~10 s for the 26-
Oct-14. The apparent effect of waves to power is interesting, and
Fig. 4 implies that the turbine has been able to extract some
additional energy from the presence of waves, but quantifying this
effect is beyond the scope of this paper.

To test the sensitivity of our analysis to the choice of averaging
window, a Kolmogorov-Smirnov test (KS) for goodness of fit (see
Ref. [43]) was applied with the null hypothesis (H) that the two
data-series groups come from the same distribution (giving an
associated P value of confidence in the result). No difference in our
results was found when using sub-hourly time-averaging win-
dows: see Table 1. Therefore, based on the results of Table 1, we find
the variability in flood and ebb tidal power significantly different,
but the October and November dates can be grouped together for
analysis if a running mean, of the order of minutes, is used.

Differences in the power curve with various moving-average
windows, and the associated error (difference in the sum of po-
wer in the two tidal cycles between the 0.5Hz and the time-
averaged power time-series), is shown in Fig. 5. The results of
Table 1 and Fig. 5, along with previous studies of turbulence in-
tensity quantification at tidal-stream energy sites [23], voltage
variability [44, 45] and fine-scale wind-power variability [ 16], led to
a 10 min moving average window being used for analysis in our
study (which averages out any wave influenced oscillations) - with
data grouped for flood and ebb tides.

The variability of power, relative to the 10-min mean (6P), is also
expressed as a percentage relative to the mean (épower) so the
distribution of power variability relative to a time-averaging win-
dow can be achieved. This variability in observed power, relative to
the time-averaging window (dpower), has units of percentage
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Fig. 4. Fast Fourier Transform analysis of the normalised and smoothed 0.5 Hz hub height tidal velocity (U) and turbine measured power (P) for two tidal cycles: one on 26-Oct-14

(panels a and c) and one 26-Nov-14 (panels b and d).

Table 1

Similarity of distributions from grouped tidal-stream turbine data. The result of a two-sample Kolmogorov-Simrnov test (at 5% significance level); displayed as H (the result
given as diff or same for the two groups tested), P (asymptotic p-value between 0 and 1), and KS (the test statistic as critical value).

Velocity (various running means)

Power (various running means)

Two groups tested raw 2sdata 10mmean 15mmean 30m mean 60m mean raw2sdata 10m mean 15m mean 30m mean 60 m mean
2 dates (all tides) H  diff same same same same diff same same same same
P 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
KS 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
Floods and ebbs H  diff diff diff diff diff diff diff diff same diff
P 0.00 0.04 0.00 0.42 0.00 0.00 0.02 0.00 0.38 0.00
KS 0.22 0.23 0.49 0.20 0.70 0.23 0.25 0.40 0.20 0.70
Flood: Octand Nov H  diff same same same same diff same same same same
P 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
KS 01 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00
Ebb: Oct and Nov H  diff same same same same diff same same same same
P 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
KS 0.05 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00

relative to the mean (which will therefore be zero, whilst épower
can be negative) see Eq. 2: dpower = % x 100% [ Eq. 2]. Whilst the

standard deviation of power within the time-mean window is
expressed in units of percentage relative to rated power, the power
variability (6power) is important for downscaling resource ocean
model information to 0.5 Hz power. All power data was therefore
included in the distribution of power variability, including outliers
when no power was recorded even above rated speed (see Figs. 2
and 3), because a realistic representation of synthesised power
and electricity can therefore be achieved using resource model
information.

Turbulence Intensity (TI) was calculated using the 10 min
moving mean velocity (U) and associated standard deviation (o) of
turbulence fluctuations (u’) within the moving average window
using Eq. 3: TI= l%x 100% [ Eq. 3]. The major impact of energy
variability on power quality is in relation to the deviation of voltage
from the rated value — this will be referred to as ‘voltage variability’
in the paper. Voltage variability (F) was calculated as normalised

root mean squared error associated with the running-mean
shoreside measured voltage (V) and associated variability (V; — V)
of the shoreside measured voltage; see Eq. 4 (where b = a+10 min

and n is record length) in line with previous studies of relative

t=b T2
voltage change [44,45]: F= < <W> +V> x 100 [ Eq. 4].

4. Results

Using a 10 min moving average on the 0.5 Hz data, the mean
tidal current and associated turbulence intensity (Eq. 3), as well as
turbine measured power and voltage variability (Eq. 4) was calcu-
lated; see Fig. 6 and Fig. 7 for 26-Oct-2014 and 26-Nov-2014
respectively. The Kolmogorov-Smirnov test (KS) for goodness of fit
results (Table 1) indicate the data of the two tidal cycles (Oct and
Nov) are similar (at 5% significance level), but significant flood/ebb
asymmetry is present in both tidal current and turbine power
(Figs. 6 and 7). FFT analysis of the 0.5 Hz data (Fig. 4) suggests
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Fig. 6. Tidal-stream power and turbine produced electricity quality for the 26-oct-
2014 tidal cycle. The hub-height tidal current speed measured at 0.5Hz, with the
10 min moving average (black line) is shown in panel a. The associated turbulence
intensity (TI) shown as a blue line in panel b, with tidal cycle average as a black line
(flood and ebb means are dashed lines, with no disernable difference at this scale). The
0.5 Hz turbine measured power and 10 min mean (black line) is shown in panel c. The
shore-side measured voltage variability shown as a red line in panel d, with tidal cycle
average as black line, with flood and ebb mean values as dashed line. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

varibility in power around ~10 s, potentially due to waves and with
slightly higher TI values in October (Fig. 6), the effect is removed
with the time-averaging window and hence the similarity test
result of Table 1.

In both Figs. 6 and 7 the ebb tide appears first in the time series
(the conditions between zero hours and ~6h). The ebb tidal
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Fig. 7. Tidal-stream power and turbine produced electricity quality for the 26-nov-
2014 tidal cycle. The hub-height tidal current speed (panel a) measured at 2 seconds,
with the 10 min moving average (black line). The associated turbulence intensity (TI)
shown as a blue line in panel b, with tidal cycle average as a black line (flood and ebb
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measured power and 10 min mean (black line) is shown in panel c. The shore-side
measured voltage variability shown as a red line in panel d, with tidal cycle average
as black line, with flood and ebb mean values as dashed line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)

condition has comparatively larger associated current speeds than
the flooding tide in both dates; with larger broad-scale varibility
features in the flooding tide (see black line of 10-min moving
average) and slightly higher turbulence intensity (TI) values, which
is shown in Table 2. No strong linear correlation between voltage
variability (F), mean flow speed or TI was found (R* < 9%), with the
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flood and ebb mean F values at ~0.3% (Table 2). A voltage variation
below 3% at 1Hz or 0.3% at 8.8 Hz is defined as “tolerable” [45],
which interpolating this to 2 s data suggests a tolerable level of less
than 2.4% voltage variation. Furthermore, although some higher F
values can be seen in Figs. 6 and 7, all F values are well below that
defined as “tolerable”.

The hypothesised correlation between current speed variability
(defined here as Turbulence Intensity, TI) and the variability in tidal
turbine power produced is explored further in Fig. 8, with the linear
correlation statistics detailed in Table 3. The strong relationship
between mean flow speed, TI and variability of tidal turbine pro-
duced power (épower), within the 10-min running mean, can be
clearly seen in Fig. 8d. Power variability (dpower) was found to
decrease with increasing mean flow speed (Fig. 8a), largely because
it is a percentage of the variability around the mean value and the
mean power increases with flow speed. However, the more pro-
nounced effect (based on the flood-ebb distributions in Table 1) of
decreasing power variability with increasing flow speed (and
decreasing TI) on the ebb tides (gradient, m, of Table 3) appears to
drive the significant differences of the fine-scale power variability
between the flood and ebb data (R? values in Table 3). Further,
power variability (6power) was found to increase with increasing
levels of TI, as shown in Fig. 8c and largely because TI decreases
with increasing mean flow speeds (Fig. 8b); hence the relationship
shown in Fig. 8d and described in Table 3.

A multiple linear regression was performed on the flood and ebb
tide grouped data when current speed was above ~30% of rated
velocity (called the turbine cut-in speed: the mean speed at which
tidal power starts to be produced); giving the variability of power
(6 power), within the 10 min moving average (as a percentage
relative to the mean), with respect to mean flow speed (U as a
percentage of rated velocity) and TI. The result of the multiple
regression is shown in Eqgs. (5) and (6), with an associated R? of 71%
and 77% for flood and ebb tides respectively:

dpower (flood) = 34.90 — 0.38U + 0.52TI + 0.02(U x TI) (5)

opower (ebb) = —42.87 + 0.25U +9.19T] — 0.05(U x TI)
(6)

Not all variability was captured with a multiple linear regression
(Egs. (5) and (6), and Fig. 8d), potentially due to turbine behaviour
and flow characteristics being measured at the turbine hub-height
(instead of the entire turbine swept area) - as well as a likely phase
lag between observed flow variations and power produced by the
turbine. Another method is therefore required to resolve the fine-
scale variability to enable synthetic power production models for
energy system design. Instead, we explored the distribution of
power variability (with respect to the 10-min mean power) to un-
derstand how to cascade resource hydrodynamic model informa-
tion into fine-scale predictions of electricity production. Indeed,

Table 2

Mean values of variability associated with two tidal cycles of tidal-stream turbine
data, also split into flooding and ebbing tides: voltage variability, calculated using
the varibility of 0.5 Hz measured voltage within a 10-min running mean (Eq. 4), and
TI, calculated using varibility within a 10-min running mean of the 0.5 Hz flow speed
measured at hub height (Eq. 3).

voltage variability (F) Turbulence Intensity

(T
flood ebb flood Ebb
26-Oct-14 031% 0.33% 11.7% 11.3%
26-Oct-14 0.29% 0.33% 9.7% 9.4%

RGO

bias in the distribution of power variability must be present
because there is a clear reduction in the net power over the two
tidal cycles when using a running average window on the 0.5 Hz
normalised power; as shown in Fig. 5c.

The variability of power relative to the 10-min mean (6P) and
the distribution of power varibility within the 10-min running
mean of the 2 s data is shown in Fig. 9. The distribution of the fine-
scale variability of power clearly becomes more leptokurtic
(sharply peaked) with increasing flow speeds in Fig. 9; for both
flood and ebb tidal conditions the power fluctuations become less
compared to the mean. However, the shape of the distribution in
power variability appears to change in Fig. 9, which is important to
understand for bias correction in resource assessment (e.g. see
Fig. 5¢). Characterisation of the relative power variability distribu-
tion will allow a synthetic power production model to be used to
represent fine-scale tidal power variability; hence hydrodynamic
resource model output (typical outputs of 30—60 min) could be
downscaled to predicted power at 0.5 Hz (of potential use to system
operators).

The distribution of tidal velocity and tidal turbine power in
Fig. 10 shows interesting trends when grouped (data grouped be-
tween flood and ebb tides — and for tidal current speeds): below
turbine cut-in speed (i.e. U is ~30% of rated U), between cut-in and
rated velocity, and above rated velocity. Velocity variance, relative
to the time-averaged 10-min mean (x) (Fig. 10a and b), was nor-
mally distributed, matching a normalised Gaussian distribution

p \}2_" e 22
[ Eq. 7]. The power variability (relative to the 10-min mean power)
is not normally distributed (see Fig. 10 and Table 4); hence, there is
an over-estimation of energy if we do not include the effects of
turbulent fluctuation on power (see Fig. 5¢) and the discretised
distribution of fine-scale power variability (see Fig. 9). The nega-
tively skewed (S) distribution of the power variability is shown in
Fig. 11 and Table 4, alongside the Kurtosis (K) of the distribution.
Fig. 11 shows how the variability (e.g. standard deviation, ¢ in
Fig. 11b) of normalised power increases with tidal current speed
(U), becoming more negatively skewed (Fig. 11c¢) with increasing
Kurtosis values (Fig. 11d); indicating normalised power variability
distributions are asymmetric, with heavier distribution-tails and
sharper peaks as velocity increases — especially pronounced in
Ebbing tide data (shown in Fig. 10) when voltage variability (F) is
slightly higher and yet the turbulence intensity is lower (Figs. 7 and
8). The result of the power variability distributions in Table 4 (using
the Lilliefors test, with a hypothesis the data is from a normal
distributed at the 5% significance level), Kurtosis and Skew results
for discretised velocity groups, alongside the parameters of the best
fitting distribution, found fine-scale power variability to best
described by the t location scale distribution; where distributed
velocity groups (x) in a probability distribution (y) is described in
Eq. (8), with the gamma function (I') and parameters of shape (v),
scale (¢#) and location (u); shown in Table 4 (as these parameters,
which describe the distribution's shape, vary with current speed):

() o] )

described by Eq. 7 (where ¢ is standard deviation): y =

(8)

Applying this t location scale distribution (Eq. (8)), with the
shape (v), scale () and location (1) parameters (shown in Table 4,
and Fig. 12 for finer discretisation of velocity groups, i.e. 10% U
groups), allows synthetic power to be generated using low tem-
poral resolution velocity data. Therefore, a fine-scale tidal-stream
turbine power time-series can be generated using low resolution
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Fig. 8. The relationship between 10-min averaged tidal-stream turbine data and grouped by date (26-Oct-14 and 26-Nov-14) and flood (FD) or ebb (EB) tidal condition (see legend).
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Table 3

The linear regression data between 10-min mean flow speed (U), Turbulence Intensity (TI calculated from Eq. 3) and 10-min tidal turbine power variability (6 power calculated
from Eq. 2), for the tidal-stream turbine power quality data described in Fig. 7; when flow speed >35% rated. The gradient (m) and intercept (c) of the linear regression within
form y = mx-+c with associated R? value, and data grouped by date and tidal stage (flooding or ebbing tidal condition).

Data tested Grouped data Gradient (m) Intercept (c) R? (%)
0 power (y as %) and U (x as % rated) (Fig. 8a) floods Oct -2.24 258 35
flood Nov -0.78 96 48
ebbs Oct —0.46 62 71
ebbs Nov —-0.63 78 39
Floods —0.39 55 63
Ebbs —0.75 95 43
TI (y) and U (x) (Fig. 8b) floods Oct -0.07 16 62
flood Nov -0.04 12 35
ebbs Oct -0.11 20 67
ebbs Nov -0.11 19 49
Floods —0.05 14 43
Ebbs —0.10 19 50
0 power (y) and TI (x) (Fig. 8c) floods Oct 30.87 —257 51
flood Nov 3.68 -7 6
ebbs Oct 22.77 —-173 63
ebbs Nov 6.66 -34 90
Floods 417 —-17 54
Ebbs 6.98 —38 75

tidal current data (i.e. from a hydrodynamic resource model), which
can be used for electrical system and grid integration analysis. To
demonstrate this synthetic power production model, a realistic
fine-scale tidal power time-series (at 2 s) was generated using tidal
velocity data output from a hydrodynamic tidal-resource model (of
[37]) at a frequency of 30 min, and the idealised power curve pre-
sented by Lewis et al. [10] - see Fig. 3.

The synthesised fine-scale power model is compared to that
measured for the 26-Nov-2014 data in Fig. 13. Although the 30 min
hydrodynamic model tidal velocity data has none of the charac-
teristics of the tidal-stream energy device (apart from cut-in and

rated power values; see Fig. 3), the distribution of fine-scale power
are similar; as shown in the “QQ” (quantile-quantile) plot of
Fig. 13d, which shows the two distributions are similar (at the 5%
significance level) with a KS test result of 0.03 (P value <0.01).
Therefore, using a synthetic power production model (using t
location scale distribution, with the shape (v), scale (¢#) and location
(¢) parameters of Table 4, and in Fig. 12), fine-scale realistic power
can be predicted at 0.5Hz based on 30 min velocity data; an
important step for grid-integration within electrical systems.
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Fig. 9. The probability distribution (coloured scale) of the relative (compared to the
mean) variability of tidal-turbine power (éP), within a 10-min moving average,
compared to the flow speed, for the tidal turbine data of the 26-Oct-14 and 26-Nov-14
and grouped into flood (a) and ebb (b) and all (c) tidal conditions.

5. Discussion

Rapid fluctuations in power generated by renewable energy
sources are known to cause problems to power system operation
because they result in power unbalance and power quality issues
[46]. Fine-scale variability of power from a tidal-stream turbine was
observed for a site in Orkney (Fig. 3). This variability is shown to
have a bias, because there is a reduction in the net power in two

U floods (a)

U ebbs (b)

tidal cycles when the averaging period is increased (Fig. 5c).
However, fine-scale power variability had only a small effect on
resource estimates (Fig. 5), with less than 1% error in the energy
harvested by the tidal turbine for frequencies typical of resource
modelling studies. Hence, a standardised device power curve can
be applied to coarse hydrodynamic resource model data for accu-
rate resource assessment without the need to include fine-scale
resource variability (i.e. turbulence) or device characteristics
(beyond swept area, cut-in and rated speed and power). Further-
more, fine-scale power variability (see Fig. 3) can be statistically
characterized, and downscaled, for electricity supply design stra-
tegies (Fig. 13). Therefore, this study provides the first discussion of
the power and electricity being produced by tidal-stream turbines.
A strong linear relationship was found between power vari-
ability, associated with a 10 min running mean, and both turbu-
lence intensity and mean flow speed (see Table 2). Power fine-scale
varibility characteristics were consistent for a wide range of time-
averaging windows (Table 1), but there were clear differences be-
tween the flooding and ebbing tide data. For example, by applying
the multi-regressional result in Eq. (5) (flooding) and Eq. (6)
(ebbing), fine-scale rotor-power varibility was estimated to be
+20% (flood tide) and +24% (ebb tide) for the tidal-stream turbine
operating in a 2.5 m/s mean flow with a Turbulence Intensity of
10%. Although very few studies exist, for the two dates when tidal
power was measured (Table 1), the observed fine-scale power
variability was similar to that measured in other tidal turbines at
different locations (e.g. Refs. [45,47]). Our observations of fine-scale
turbine power variability were higher than those measured in a
lower turbulence environment [45,48], yet average TI values
measured in our study were lower than those measured at another
tidal-stream energy site [23,25]: 9—12% compared to 12—13%.
Flood-ebb asymmetry was found in our study, with faster ebb
current speeds and higher turbulence measurements (mean TI of
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Fig. 10. The probability distributions of the 10-min running mean data grouped by flow seed conditions: (1) flow speeds less than cut-in speed of turbine (U<30% of rated speed);
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The 10-min probability distribution information of 0.5 Hz normalised tidal turbine power variability for two tidal cycles, and also grouped by tidal current speed, with velocity
(U) below turbine cut-in speed (U<30% of rated velocity, when no power is produced), U between cut-in (30%) and rated turbine velocity (100%), and when current speeds are
above rated velocity of the turbine (U>100%). The distribution that closest matches that observed is described and the KStest result given (with associated P-value), and the

parameters required to describe this distribution given.

Grouped data result (based on velocity Velocity (U) Power (P)
U<30% 30%<U<100% U>100% 30%<U<100% U>100%
Flooding tide Mean (X) —0.05 0.00 0.00 0.00 0.00
S.D. (standard deviation, o) 3.96 6.95 8.86 7.56 10.22
Kurtosis (K) 3.09 343 3.12 6.07 4.16
Skewness (S) 0.11 -0.10 —0.09 0.58 —-0.90
KStest result and p-value (in brackets) 0.01 (0.07) 0.01 (0.01) 0.01 (0.02) 0.11 (0.00) 0.16 (0.00)
Closest distribution: normal normal normal T-location T-location
location (u) n/a n/a n/a -0.26 2.09
scale (v) n/a n/a n/a 4.01 5.34
shape (v) n/a n/a n/a 2.04 1.86
Ebbing tide Mean (%) 0.09 0.00 0.00 0.00 0.00
S.D. (standard deviation, o) 478 7.47 8.08 7.44 11.67
Kurtosis (K) 341 3.53 3.46 541 14.87
Skewness (S) 0.29 -0.07 -0.29 0.17 -1.58
KStest result and p-value (in brackets) 0.04 (0.00) 0.02 (0.00) 0.02 (0.00) 0.07 (0.00) 0.24 (0.00)
Closest distribution: normal normal normal T-location T-location
location (u) n/a n/a n/a -0.18 0.30
scale (v) n/a n/a n/a 5.01 229
shape (v) n/a n/a n/a 3.18 1.14
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Fig. 11. The variability associated with the normalised 10-min moving window power average, measured at 0.5 Hz from a tidal turbine for two tidal cycles. The 10-min mean power
curve for all data, and grouped into flooding and ebbing tides (panel a), with the standard deviation (S.D.), Skewness and Kurtosis of the power variability distributions in panels b, ¢

and d respectively; and discretised to the nearest 10% velocity (U) group.

~9% during the ebb and 12% during the flood; Table 2), matching
those simulated in the Fall of Warness [37]; and other sites (e.g.
Refs. [23,25]). Fine-scale power variability was higher during the
flood tide, likely because current speeds are lower then and power
variability decreased with high current speeds (above rated ve-
locity, when power capping also occurred; see Figs. 9—11). More-
over, an oscillation in the mean current speed and power during the
flooding tide was observed for both dates (Figs. 6 and 7), which may
also explain the increase in flood-tide power variability. This broad-
scale oscillation feature of the flood tide was not predicted by the
[37] model, but could be caused by an eddy feature (perhaps

generated by a neighboring bathymetric or topographic feature and
then migrating through the site as it is sheds and persists [49]). This
variability in flow direction may be the cause of some recorded
power variability, and future work ought to resolve current direc-
tion as well as magnitude. For example, zero power was recorded
for some instances of high current speeds (Figs. 2C and 3), which
may be due to changes in tidal current direction causing turbine
blade stall, although this event occurred during a period of large
waves and thus could be due to wave-tide interaction processes
[50].

The Fast Fourier Transform (FFT) of tidal turbine power (Fig. 4)
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Fig. 12. The three parameters used to describe the t-location scale distribution of 0.5 Hz power, when using a 10-min moving average and normalising the power by rated velocity
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Fig. 13. The synthetic fine-scale power produced from a tidal turbine. The 0.5 Hz observed (grey shaded) and 30min frequency hydrodynamic model predicted (red line) hub-height
tidal current speed in panel a, with the observed 2 Hz tidal-turbine power in panel b (with red line a 30-min moving average). Panel ¢ shows the 30-min hydrodynamic resource
model power time-series (calculated using idealised power curve of Fig. 2) and the synthesised 0.5 Hz power (grey; calculated applying the t-location scale distribution parameters
of Fig. 11), with the similarity of the 0.5 Hz synthesised power (P) and that observed (P) in panel d. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

produced similar results to those by Thiringer et al. [48]; with two modes of power oscillation observed by Thiringer et al. [48] below
exceptions: Firstly, the spectral peak associated with a ~10 s period, 2 s, which were potentially due to the turbine blade passing the
in both power (Fig. 4a) and hub height current speed (Fig. 4c) for support structure [51]. The spectral peak within the October data
the October data. Secondly, the temporal resolution of the power coincided with a large wave event offshore of the site (based on
measurements in this study were not high enough to resolve the ERA-interim data the 0.125° resolution re-analysis product; see
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Ref. [42]), and could be scope for future research as waves are
known to affect the tidal resource [50] and measurements of tur-
bulence [24]. Indeed, the results of our power quality analysis may
be considered location and device-specific (e.g. rotor speed control
mechanisms, such as pitch control, may differ between devices;
[52]). Further work is needed to assess the quality of tidal-stream
electricity at a variety of sites in comparison to other forms of
renewable energy. Further work is also needed to understand the
effect of fine-scale tidal turbine power variability when aggregated
to the power output from an array of devices (see Ref. [45]). For
example, variability in wave energy is well known but can be
mitigated by a number of spatially separated sites [53].

The estimated tidal turbine voltage variability (F) matches that
measured by MacEnri et al. [45] for the SeaGen tidal device, with
values within the limit defined as tolerable (no strong linear cor-
relation between F, mean flow speed or TI was found, and mean F
values were ~0.3%); especially considering the relative large
contribution of a 1MW turbine to the Orkney grid (~5MW).
Therefore, tidal energy voltage and power variability is less severe
than reported in other forms of renewable energy [54,55]. Although
further work is needed to fully assess the impact of tidal energy on
power quality, tidal energy is likely to be more dispatchable than
other renewable sources due to the higher predictability.

The power variability observed in this study agrees with [29],
who report the variability of tidal energy to be much better than
other forms of renewable energy, such as wind (e.g. Ref. [56]) and
wave energy (e.g. Refs. [54,55]). Indeed, storage mechanisms to
mitigate the effects of renewable power variability (such as
flywheel and batteries; e.g. [57]), can also be applied to tidal en-
ergy; for example, as tidal energy is surrounded by water, novel
pumped-hydro [57] and hydrogen [58] storage solutions could be
incorporated.

The characterisation of tidal power variability, for storage so-
lution design and optimization, is clearly an important research
question that future studies should aim to resolve (e.g. the size of
storage required for electricity users may not be large in compari-
son to other renewable forms). Indeed, tidal energy is considered
one of the more expensive renewable electricity forms [59], and
energy storage would increase costs further. Therefore tidal energy
integration may appear less expensive when the costs of both
technologies are included (i.e. Levelised Cost of Energy, storage and
grid integration solutions) — especially within micro-grids with a
high penetration of intermittent and less controllable renewable
energy forms (for example, 100% renewable energy micro-grids for
remote communities in fuel poverty).

Another method to mitigate the impact of fluctuations in
renewable power supplied to the power grid, as well as design
effective system control measures, is to accurately predict power
variability. Methods of predicting power variability are well
established in the wind industry, by using high-fidelity and
computationally expensive Large Eddy Simulation (LES) models to
simulate fine-scale wind field progression through a site, and thus
predict fluctuations within the wind resource (e.g. Ref. [60]). Tidal
energy is often stated to be predictable, due to the periodicity of the
tide [18], yet predictions of turbulent fluctuations in the tidal cur-
rent would require similar LES methods. Another method of pre-
dicting fluctuations in the tidal energy resource could be
established with a power variability probability density distribu-
tion, as has also been applied in the wind industry [46].

In our study, tidal velocity characteristics did not fully, and
directly, characterize the observed power variability (Table 2) —
potentially as velocity measurements made at hub height cannot
represent flow characteristics throughout the entire turbine swept
area. Therefore not all variability observed in Fig. 3 can be quanti-
fied due to instrument uncertainty and the lack of high-resolution

flow data throughout the swept area of the turbine, which should
be investigated in future studies; however the observed variability
of measured power can be statistically characterized (Fig. 10). Fine-
scale power variability distributions enable a simple statistical
prediction method for energy supplied by a wind turbine based on
synoptic (i.e. mean flow) information (e.g. Refs. [57,58], noted as
computationally less expensive [46], and allow comparisons of
power quality to be made between wind and tidal turbines).

The tidal turbine power variability (shown in Figs. 9 and 10) was
found to be different to that of wind turbines. This variability can
also clearly be seen in Fig. 3, and the analysis of power variability in
Fig. 10 (~60%) finds the distribution is similar to that shown by Ren
et al. [58]; but only the resource (current speed variability), not
power, matched a Gaussian distribution found by Ren et al. [58].
Further, the Weibull or Rayleigh distributions of power reported by
other authors [57,61] were not found in this study. Furthermore,
wind power variability estimates appear to be an order of magni-
tude greater than observed in our tidal turbine data, due to the
Weibull or Rayleigh distributions [57,61].

Fine-scale tidal turbine power variability was found to be well
described by the t location scale distribution; where distributed
velocity groups (x) in a probability distribution (y) are described in
Eq. (8), with the gamma function (I') and parameters of shape (v),
scale (¢) and location (u); shown in Table 4. Therefore, the likely
tidal power at 0.5Hz can now be predicted based on 30-min-
averaged current speeds output from an ocean model (or using a
tidal prediction algorithm), together with knowledge of cut-in and
rated velocity of the tidal turbine (the idealised power curve of [10]
assumes a device efficiency, Cp, of 60% within Equation 1).

When using the 30-min hydrodynamic model simulations of
[37] and an idealised power curve of Lewis et al. [ 10]; the fine-scale
power variability model performed well (R?> 85% and RMSE of 14%,
but with an energy difference of less than 0.7% for the tidal cycle),
and produced a statistically similar distribution (see Fig. 13) of
power variability. Therefore, the variability observed in Fig. 3 can be
resolved, and coarse hydrodynamic resource model data can be
statistically downscaled to provide accurate resource predictions,
even at very high temporal resolution and with a idealised power
curve based on a different tidal turbine (twin rotor MCT device —
see Ref. [10]). Considering the current high cost of tidal-stream
energy, compared to other temporal variability renewable energy
sources, the predictability of tidal-stream energy could be an asset
in high penetration renewable energy distributed electricity
supplies.

Future work could improve on the simple statistical model
presented here (downscaling resource to 0.5Hz power), by
increasing the observational data and the dependency of fine-scale
turbulent fluctuations (i.e. the temporal clustering of power vari-
ability). In the sampling of the statistical distribution, to downscale
hydrodynamic model 30-min data to 2 s power production, inde-
pendence between data was assumed (i.e. a turbulent fluctuation
synthesised at time t will not influence the next iteration at time
t+0t). Future work should also aim to validate this fine-scale power
prediction tool for different devices and sites, as well as exploring
the use of power supply prediction in micro and national-scale
grids to determine the true value of tidal power within a future
renewable energy mix.

6. Conclusion

The temporal variability and predictability of tidal-stream po-
wer was measured from a grid-connected 1 MW turbine in a highly
energetic tidal site. Voltage variability was well within tolerable
limits and no significant effect to estimates of annual mean energy
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yield were found (i.e. 1% reduction in energy calculated for typical
resource assessment frequencies). Therefore, resource uncertainty
due to fine-scale power variability appears low for tidal-stream
energy, and idealised power curves (with accurate cut-in and
rated flow speeds) are suitable for resource assessments — which
we show can be statistically downscaled to fine-scale (2 Hz) power
prediction. The value of tidal energy in power systems therefore
appears to be undervalued, since this resource is perceived as being
expensive (e.g. Levelized Cost Of Energy), without accounting for
predictability. A skillful, yet simple, probability distribution model
of power variability was applied to 30-min hydrodynamic model
data (tidal velocity at hub height) using the t location scale distri-
bution, with parameters based on mean flow speed (which also
described turbulence characteristics). Therefore, synthetic turbu-
lence and fine-scale tidal turbine power variability model can be
applied to low-temporal resolution resource data, with an idealised
power curve, for a computationally efficient prediction of tidal-
stream power.

Acknowledgements

This paper was the result of a collaboration funded by the Welsh
Government and Higher Education Funding Council for Wales
through the Sér Cymru National Research Network for Low Carbon,
Energy and Environment. SPN and MJL wish to acknowledge the
support the Sér Cymru National Research Network for Low Carbon,
Energy and the Environment (NRN-LCEE) and the EPSRC METRIC
project EP/R034664/1. The authors also wish to thank Dr. Phil Coker
from Reading University, UK for his useful comments and discus-
sion. AGB wishes to acknowledge the financial support of the Welsh
European Funding Office, and the European Regional Development
Fund Convergence Programme.

Appendix A. Supplementary data

Data in this publication was allowed through a NDA and so is not
publically accessible data. However, the hydrodynamic models and
standardised method, applied throughout the publication, will
allow replicability (because percentage change analysis was
applied). Therefore, supplementary data to this article can be found
online at https://doi.org/10.1016/j.energy.2019.06.181. Further de-
tails of the data are given in McNaughton [38] and Ahmed et al.
[39]. Furthermore, data are available via the University of Edin-
burgh's data share (http://redapt.eng.ed.ac.uk).
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