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Abstract  
 
Early phase clinical trials have demonstrated good therapeutic index for oncolytic 

adenoviruses in patients with solid tumours when administered intratumorally, 

resulting in local tumour elimination. Entrapment and binding of adenovirus to 

erythrocytes, blood factors, and neutralising antibodies have prevented efficient 

systemic delivery and targeting of distant lesions in the clinic. We previously 

generated the novel replication-selective Ad-3∆-A20T to improve tumour targeting by 

increasing the viral dose at distant sites. Here, we developed a protocol to directly 

radiolabel the virus for rapid and sensitive detection by single-photon emitted 

computed tomography (SPECT/CT) providing a convenient method for determining 

biodistribution following intravenous administration in murine models. Longitudinal 

whole-body scans, demonstrated efficient viral uptake in pancreatic Suit-2 and 

Panc04.03 xenografts with trace amounts of 
125

I-Ad-3∆-A20T up to 48h after tail vein 

delivery. Hepatic and splenic radioactivity decreased over time.  Analysis of tissues 

harvested at the end of the study, confirmed potency and selectivity of mutant viruses. 

Ad-3∆-A20T-treated animals showed higher viral genome copy numbers and E1A 

gene expression in tumors than in liver and spleen compared to Ad5wt. Our direct 

radiolabeling approach, allows for immediate screening of novel oncolytic 

adenoviruses and selection of optimal viral genome alterations to generate improved 

mutants.  
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Introduction  

A promising novel strategy to eliminate solid tumors is the development of cancer-

selective, replicating (oncolytic) adenoviral mutants. To date, several adenoviral 

mutants have been evaluated in clinical trials with demonstrated safety, tumor 

selectivity and efficacy in conjunction with standard of care interventions [1-3]. In 

most trials, viruses were administered intratumorally. However, there is a need to 

further develop the viruses for efficient systemic delivery in order to reach deep and 

distant metastatic lesions. Major obstacles include the high-affinity binding to 

erythrocytes and blood factors, in addition to rapid elimination by hepatic Kupffer 

cells that greatly decrease the available dose at tumour sites [4-7]. Much research is 

aimed at overcoming these hurdles by developing novel mutants with prolonged 

circulatory half-life to maximise viral concentrations at the tumour sites [1, 8-10]. 

Biodistribution is usually determined in preclinical in vivo models by harvesting 

tissues from numerous animals at multiple time points to quantify tumour and tissue 

uptake. In the current study, we developed a novel strategy to select for optimal 

mutants by rapid monitoring of viral distribution in individual live animals over time 

without the need for tissue harvesting at every time point. 

We recently modified our potent replication-selective oncolytic adenovirus Ad∆∆  

[11], to generate a novel mutant, Ad-3∆-A20T with attenuated erythrocyte and blood 

factor binding and specific targeting to pancreatic ductal adenocarcinomas (PDAC) 

[12]. The de-targeting modifications reduced viral association to human erythrocytes 

and complement through ablation of viral fibre-binding to the Coxsackie and 

Adenovirus Receptor (CAR) and Complement Receptor 1 (CR-1) [13]. To further 

increase tumour-specific uptake a 20-amino acid integrin-binding peptide (A20; 

A20FMDV2) was expressed in the viral fibre-knob [12]. This peptide, derived from 

the foot-and-mouth-disease-virus (FMDV), selectively binds to αvß6-integrins with 

high affinity (KD=0.2nM) via the Arg-Gly-Asp (RGD)-domain [14, 15]. The αvß6-

integrins are frequently overexpressed in pancreatic, breast and colorectal tumours 

with negligible expression in normal cells [16-18]. Both Ad-3∆-A20T and the αvß6-

integrin targeted wild type virus Ad5A20 [19, 20] preferentially infect αvß6-integrin 

expressing cells while uptake via the typical Ad5-pathway through αvß3- or αvß5-

integrins, is significantly less [12]. The deletions in the highly cancer-selective and 

efficacious Ad∆∆ virus in combination with de- and re-targeting modifications 
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resulted in the generation of the PDAC-selective oncolytic mutant Ad-3∆-A20T, an 

improved clinical candidate for systemic delivery [12].  

In the current study, we took advantage of the high levels of αvß6-integrins in human 

PDAC cell lines, and determined viral distribution in xenograft tumours after systemic 

delivery of the re-targeted and 
125

I-labelled mutants using single photon emission 

computed tomography (SPECT/CT). Three key areas were investigated in the murine 

models: 1) the feasibility of radiolabelling adenoviral mutants; 2) the suitability of 
125

I-labelled viruses for imaging and biodistribution studies; and 3) whether this is 

achievable without the need to conduct any further genetic alterations to the virus. A 

common, fast and easy method for radiolabelling of proteins involves incorporating 
125

I into Tyr-residues which allow for sensitive imaging detection [21]. However, this 

method is typically incompatible with biologically active viruses because it is usually 

performed under non-physiological reaction conditions which include optimal pH and 

buffer compositions that greatly reduce viral potency [22]. We hypothesised that 

small animal live imaging technology, SPECT/CT and MRI would rapidly inform on 

biodistribution and tissue uptake of virus. Imaging in combination with positive 

detection of viral protein expression and replication/spread at tissue sites would allow 

for quicker identification of optimal viral mutations. Once identified, these can be 

further developed into clinically safe and potent therapies. Longitudinal distribution 

studies often require the sacrifice of multiple animals to analyse harvested tissues at 

specific time-points and our strategy could potentially provide an economical solution 

by shortening the time required for screening viral mutants in addition to reducing the 

number of animals per study. Imaging technology and quantification of radioactively 

labelled compounds have frequently been used in the discovery and development 

phases of peptides for example, [
18

F]fluorobenzoyl-A20FMDV2 for αvß6-integrins 

[17], 
18

F-, 
11

C- and 
123

I-labelled ligands for the serotonin transporter [23] and the 

somatostatin analogue 
111

In-octreotide [24]. Our findings suggest that this strategy can 

be extended to actively replicating viruses. 

The sequential steps described in this study demonstrate a novel approach for 

allowing the efficient screening of novel replication-selective adenoviral mutants 

during the preclinical phase of biotherapeutics development in vivo. We highlight the 

positive practicalities of directly labelling adenoviral mutants with 
125

I with retained 
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activity for subsequent SPECT/CT image analysis in small animals. We propose a 

method that can swiftly inform on whole-body distribution, the location of 

experimental tumours and potential off-target infection sites. In combination with 

additional biodistribution and mechanistic studies, this method can provide essential 

data for safe clinical translation.  
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Results  

Optimised 
125

I radiolabelling conditions retains adenoviral functions 

To efficiently radiolabel adenovirus with 
125

I, we considered the optimal conditions 

required for the reaction when combining the virus, oxidising agent, and radioisotope. 

The optimal performance of each of these is dependent on specific buffering 

conditions at certain pH levels. For example, the activity of Ad5 is optimal under 

physiological conditions, pH7.2-7.8 [25-27]. Outside this range the bioactivity of Ad5 

is reduced, primarily due to virion aggregation when pH level is lowered from pH8 to 

pH4 [28]. The radioisotope, Na
125

I is commercially available in the form of 

NaI/0.04M NaOH and is stored at pH10-12 to preserve stability whereas the oxidising 

reagent (Iodogen) operates most efficiently at pH6.5 and is less efficient at higher pH 

[29, 30]. It was therefore necessary to identify the optimal pH at which all three 

reagents were most compatible to perform the radiolabelling process. An overview of 

the labelling procedure is summarised in figure 1A, which include details of the 

experimental tests used at the earlier stages of protocol development for optimisation 

purposes.  

We tested various reaction conditions in the absence of radioactivity by replacing 

Na
125

I in 0.04M NaOH with non-radioactive NaI in 0.04M NaOH, to determine the 

preservation of viral infectivity and replication. The infectivity of I-labelled Ad5A20 

(expressing EGFP) in the αvß6-integrin expressing Panc04.03 cells was analysed by 

flow cytometry (Supplementary Fig. 1A). Viral infection decreased from 42% 

(positive control) to 15% as a direct consequence of Iodogen exposure, an essential 

step in the protocol, used to oxidise the NaI prior to virus labelling. A further 

reduction in infectivity was observed upon addition of NaI/NaOH, due to the 

alkalinity of NaOH (pH10-12). The addition of 200mM Tris-HCl (pH6.8 or pH4.0; 

dependent on batch of Na
125

I) lowered the final pH to 7.2-7.8 during the oxidation 

step and thereby partially restored viral infectivity (Supplementary Fig. 1B). 

Moreover, direct exposure of the virus to Iodogen greatly decreased the viral activity. 

However, transfer of the oxidised Na
125

I from the Iodogen tube to a tube containing 

only the virus and buffer eliminated viral oxidation. We applied the established 

optimal conditions (pH7.4-7.8 and 100mM Tris pH4.0) to evaluate infection and 

replication of our cancer-selective Ad-3∆-A20T, labelled with non-radioactive NaI in 

cultured Suit-2 cells. Infection with I-Ad-3∆-A20T at 100ppc, resulted in 42±3% of 
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infected cells compared to 58±4% for the non-labelled mock control at 24h (Fig. 1B; 

left panel). Comparable levels of replication were observed at 24h, 

2.1x10
7
±3.5x10

6
pfu/ml (non-labelled) and 2.2x10

7
±0.9x10

7
pfu/ml (labelled) which 

increased to 1.6x10
8
±0.8x10

8
pfu/ml and 6.3x10

7
±1.1x10

7
pfu/ml, respectively by 48h 

(Fig. 1B; right panel). 

Next, we used Na
125

I under the same conditions to evaluate the efficiency of the 

labelling reaction. The specific activity of free 
125

I versus virus-bound 
125

I was 

determined by thin layer chromatography (TLC) (Fig. 1C). The three viruses used in 

this study, Ad5A20, Ad-3∆-A20T, and Ad5wt showed labelling efficiencies of 14.2-

71.3% with the lowest specific activity for Ad5A20 (Fig. 1C). We observed a 

dependency on high virus concentrations for higher levels of radiolabelling, 

explaining the lower specific activity for Ad5A20 that had the lowest viral stock 

concentration. The sample was electrophoresed by SDS-PAGE to verify that the 

labelled material was indeed 
125

I-virus (Fig. 1D). Three discrete radioactive bands 

were identified with two corresponding to the major adenoviral capsid proteins; hexon 

(108kDa), penton (63.3kDa) and fibre (61.5kDa) and a third band of ≤10kDa 

representing the remaining free 
125

I in the sample and 
125

I-Tyr. To separate labelled 

virus from non-incorporated 
125

I, column purification was performed. Although pure 
125

I-labelled virus was successfully isolated, the yield was poor (<25% of functional 

virus) and its use was subsequently discontinued (Fig. 1D; right panel).  

In conclusion, the adapted labelling protocol had minimal effects on viral function; 

infection and replication rates remained largely unaffected. Although, the modified 

protocol is not optimal for the iodination reaction, sufficient 
125

I for imaging analysis 

was incorporated in the viral capsid proteins (see below). 

 

Detection of 125
I-Ad5A20 in pancreatic αvß6-integrin-expressing Panc04.03 

xenografts after systemic delivery 

We previously determined αvß6-integrin expression in 15 human pancreatic ductal 

adenocarcinoma (PDAC) cell lines and the highest levels were detected in Panc04.03 

cells [12]. Subcutaneous inoculation of Panc04.03 cells in immune-deficient mice 

formed small tumours (18-50µl) after ≥3weeks with the support of Matrigel. Three 

mice with bilateral tumours were selected for systemic administration of 
125

I-Ad5A20 
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(8.2x10
9
vp/animal; 10.8MBq/animal) via tail vein injection and were imaged by 

SPECT/CT (one representative mouse; Fig. 2A, additional images in Supplementary 

Fig. 2A). The viral particles of 
125

I-Ad5A20 were detected in tumours at all tested 

time points (30min, 2h, and 4h after injection), indicating that sufficient amounts had 

reached the tumour tissue in vivo. High uptake of radioactivity was also observed in 

the liver and gastrointestinal tract that decreased from 2h onwards, and likely 

reflected the presence of free 
125

I in the injection mixture (<60% of free 
125

I) in 

addition to non-specific hepatic elimination of virus and label (Supplementary Fig. 

2B). Subsequent image quantification was performed at later time points (24-48h) to 

circumvent the initial non-specific abdominal (mainly hepatic) 

accumulation/clearance of free 
125

I and 
125

I-Ad5A20 allowing for more accurate 

measurement of tumour-associated radioactivity after imaging.     

 

Accumulation of 125
I-Ad5A20 in Suit-2 pancreatic tumour xenografts up to 24h 

after systemic delivery  

We have previously established in vivo subcutaneous xenograft models using the 

human pancreatic αvß6- and αvß5- integrin expressing cancer cell line, Suit-2 [12, 

31]. All subsequent in vivo studies were performed using this model since they rapidly 

and consistently generate reproducible subcutaneous tumours; 100-200µl in 2-3 

weeks (Fig. 2B left; MRI image). 
125

I-Ad5A20 was prepared to 2.5mBq/vp whereby 

39% of 
125

I in the reaction mixture was incorporated into the virus. A total of 7x10
9
vp 

of 
125

I-Ad5A20 was injected via the tail vein in each mouse (n=3). The majority of 

radioactivity was detected in liver and spleen 4h after administration (Supplementary 

Fig. 2C) that markedly decreased after 24h when radioactivity levels were higher in 

tumours than in hepatic tissue (one representative animal in coronal and transverse 

views, SPECT/CT images; Fig. 2B right). Whilst the radioactivity associated with the 

liver, spleen and gastrointestinal tract decreased over time (4-24h), levels in urine 

increased (Fig. 2B, additional images in Supplementary Fig. 3A).  

Collectively, these studies demonstrate that the retargeted Ad5A20 quickly reached 

the tumours after systemic delivery and was maintained up to 24h. Additionally, 

tumour volumes estimated by the MRI survey scan correlated with end point volume 

(tumour weight) (160µl in Fig. 2B), and was similar to calliper measurements 
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(140µl). Combining calliper measurements with MRI and SPECT/CT imaging is 

therefore a valuable strategy for determining viral efficacy, internal tumour growth 

and tissue distribution, respectively, over time.  

 

Rapid uptake of the 
125

I-labelled oncolytic mutant Ad-3∆-A20T and Adwt in 

Suit-2 pancreatic tumour xenografts followed by efficient elimination by liver 

and spleen.   

Direct intratumoral administration of Adwt or our novel, retargeted replication-

selective Ad-3∆-A20T mutant caused significant inhibition of tumour growth in Suit-

2 xenograft models (18d; Fig. 3A) [12]. The feasibility of intravenous delivery of Ad-

3∆-A20T was investigated using 
125

I-labelled virus in conjunction with SPECT/CT 

imaging. 
125

I-Ad5wt or 
125

I-Ad-3∆-A20T were administered via the tail vein 

(7x10
9
vp) in animals with Suit-2 xenografts (n=4/group). Radioactivity was detected 

in tumours, liver and spleen from 4 to 48h (
125

I-Ad-3∆-A20T, 24 and 48h and 
125

I-

Adwt, 48h; Fig. 3B, additional images Supplementary Fig. 3B). After correcting for 

injected dose (% radioactivity incorporated into virus and total amount administered) 

and tissue weight at the end of the study, quantification of the SPECT/CT images 

showed no significant differences in tumour uptake between treatment groups (Fig. 

4A; left panel) (Liver; Supplementary Fig.4). Tumour to liver ratios of radioactivity 

were also similar at these early time points (Fig. 4A; right panel). These observations 

were verified by direct measurements of radioactivity in tissues harvested at the end 

of the study (48h) (Fig. 4B).  

 

More potent viral E1A-expression in Suit-2 tumours after systemic delivery of 

the oncolytic mutant Ad-3∆-A20T than with Adwt.   

To investigate whether tissue-associated radioactivity correspond to the presence of 

virus, expression of the early viral gene E1A was determined in tumour and spleen 

tissues at the end of the study.  Interestingly, animals treated with 
125

I-Ad-3∆-A20T 

presented with higher levels of the E1A protein in tumours, and lower levels in spleen 

compared to tissues harvested from animals treated with 
125

I-Ad5wt (Fig. 5A, 

complete gel Supplementary Fig. 6). Contrastingly, the radioactivity levels in both 

treatment groups was similar (Fig. 4A-B). These findings suggest that the initial 

tumour-associated radioactivity is a result of virus distribution in the tumour 
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microenvironment by the “leaky” vasculature often associated with tumours. 

Following the accumulation of virus in the tumours, cellular uptake of both 
125

I-Adwt 

and 
125

I-Ad-3∆-A20T rapidly proceeds which is dependent on multiple integrins.  In 

the case of 
125

I-Ad-3∆-A20T, the virus can enter the cell via specific binding to the 

αvβ6-integrin receptor, whereas αvβ3 and αvβ5 integrins which are highly expressed 

on Suit-2 cells, provide additional routes for cellular entry while 
125

I-Adwt enter only 

through αvβ3 and αvβ5 integrins. However, the higher levels of E1A-expression in 

tumours infected with 
125

I-Ad-3∆-A20T at 48h after administration suggest that 

αvβ6-targeting play more important roles in viral spread after subsequent rounds of 

viral replication and cell lysis within the tumour microenvironment. Furthermore, 

viral replication of Ad-3∆-A20T in Suit-2 cells grown in monocultures peaks after 

96h, compared to Ad5wt which peaks at 48-72h, producing more viral particles over a 

longer duration (Fig. 5B). These results verify that after the initial distribution of 

radioactively labelled virus, at the later stage, higher amounts of functional Ad5-3∆-

A20T accumulated in tumours compared to Ad5wt. As could be expected 

radioactivity rapidly declined in all tissues over time, reflecting the elimination of 

labelled capsid proteins once the virus is de-coated and initiates new rounds of 

replication while the tumour-specific targeting and cell lysis is essential for efficient 

intra-tumoral spread over time.  

 

Replication of the oncolytic retargeted Ad-3∆-A20T mutant proceeds at higher 

levels than Ad5wt after systemic delivery. 

To further validate the biodistribution of radiolabelled viruses, native non-labelled 

Ad-3∆-A20T and Ad5wt were administered via the tail vein in Suit-2 xenografted 

animals at identical viral doses. Quantitative PCR revealed that both viruses reached 

the tumour, spleen and liver tissues at 24-48h after systemic administration (Fig. 5C; 

Supplementary Fig. 5). Relative viral genome amplification was determined as fold 

change obtained by normalising the E1A DNA levels in tumour and spleen to the liver 

per animal.  We detected higher levels of viral amplification in tumour tissue 

compared to liver at both 24h and 48h time points for Ad-3∆-A20T (Fig. 5D). The 

retargeted virus was indeed directed more towards the tumour than the liver. 

Conversely, higher viral amplification was detected in liver tissues in animals treated 

with Ad5wt than Ad-3∆-A20T. Upon comparison between both viruses, no significant 
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differences in viral genome quantities were detected in the splenic tissues at these low 

doses reflecting mainly receptor-independent macrophage-mediated clearance of virus 

in this organ [7, 32]. To conclude, Ad-3∆-A20T readily infected tumours at sufficient 

levels to promote viral genome amplification while Ad5wt infected hepatic tissue 

more readily. 
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Discussion  
 

To date, clinical efficacy with oncolytic adenoviral mutants have been reported 

following intratumoral administration however, the major challenge of targeting and 

eliminating metastatic lesions remains to be addressed. The short half-life of 

adenoviruses in the human circulation is attributable to rapid blood factor binding 

leading to immediate hepatic and macrophage mediated elimination, unfavourably 

decreasing the dose at distal lesions [4, 6, 7]. Several strategies have been used to 

overcome these obstacles including, capsid modifications, polymer-coating [33, 34] 

and delivery by mesenchymal stem cells [35] to attenuate Factor X-binding, hepatic 

elimination and ablation of erythrocyte- and neutralising antibody-binding [10, 19, 

36]. Our approach was to retarget our selective and potent oncolytic adenovirus 

Ad∆∆, to αvß6-expressing pancreatic cancers by introducing the high affinity 

A20FMDV integrin-ligand and ablate the CAR and CR-1 binding to erythrocytes, by 

generating Ad-3∆-A20T [12]. To investigate Ad-3∆-A20T tumor targeting efficiency 

and biodistribution in longitudinal imaging studies in live animals, and to avoid 

further genetic alterations of the highly modified virus, we established a novel 

protocol for radioactive labelling followed by SPECT/CT analysis. We adapted the 

Iodogen method for labelling of virus with Na
125

I and demonstrated the feasibility of 

this approach by monitoring the initial virus uptake in tumor and normal tissue in real 

time. 

Several radioactive labeling techniques of proteins and peptides with 
125

I have been 

established that are routinely used to generate trace compounds with high specific 

activity including the Chloramine T, Iodogen and Bolton-Hunter methods [21, 29, 

30]. While these labeling techniques rarely cause alterations of structure and function 

of proteins and peptides, application of the same conditions to biologically active 

viruses frequently result in detrimental effects to the viral life cycle with greatly 

reduced viral activity [22]. To date and to our knowledge, imaging of adenoviruses 

that have been directly radiolabeled have not been feasible. This is largely due to the 

irreversible modifications of the capsid proteins ensued by non-physiological reaction 

conditions that drastically decrease or prevent viral infection, genome amplification 

and gene expression. In addition, the high protein concentrations that promote 

efficient iodination are not achievable for adenoviruses due to the tendency of virions 

to aggregate at high concentrations [25, 27]. Step-by step modifications of the 
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standard Iodogen iodination conditions enabled sufficient incorporation of 
125

I into 

adenoviral mutants for preclinical SPECT/CT imaging while preserving viral 

bioactivity. The standard conditions for Iodogen-mediated oxidation of NaI (e.g. basic 

pH and low salt concentrations), significantly reduced viral activity, an outcome most 

likely caused by structural changes in the fibre and other capsid proteins preventing 

receptor binding and/or cellular internalization. Increasing the buffer capacity, 

avoiding direct exposure of virus to the oxidizing agent and prolonging the reaction 

time overcame these challenges resulting in functional virus. Despite lower efficiency 

of radioisotope incorporation with this adapted protocol, we were able to determine 

the initial distribution of several labeled adenoviruses in real time by SPECT/CT 

imaging in two PDAC xenograft models. In contrast to genetically engineered viruses 

such as those that express the human Na/I symporter (hNIS), requiring the 

modification of each mutant and delivery of 
125

I or 
131

I at high doses (e.g. [37, 38]), 

our simpler direct labeling method does not require any genetic engineering and 

therefore enables for quicker results. Similarly, viral mutants expressing EGFP or 

RFP fluorescent proteins or Luciferase enzymes also require genetic modifications 

and the methods used for detection are generally less sensitive. 

Our novel Ad-3∆-A20T mutant was designed to specifically target αvß6-integrin 

expressing PDAC tumours via systemic delivery not only to reach the deep 

anatomical location of the pancreas within the abdominal cavity but also to reach the 

widespread metastatic sites [12, 39]. Interestingly, both the αvß6-integrin targeted 

Ad-3∆-A20T and the non-targeted Ad5wt viruses reached pancreatic subcutaneous 

tumours after systemic delivery in mice. It is well documented that elimination of 

adenoviruses takes place at hepatic Kupffer cells in a receptor-independent manner 

which is largely responsible for its short circulatory half-life in mice but also in 

humans. Human blood factors such as Factor X (FX) and IX (FIX) mediate hepatic 

adenovirus infection by bridging the virus to heparan sulphate proteoglycans (HSPGs) 

mainly on hepatocytes [5, 6]. However more importantly, Ad5 hepatotoxicity is less 

severe in humans than in mice possibly due to the entrapping of human erythrocytes 

by the virus, decreasing the rate of hepatocyte uptake and Kupffer cell clearance [4]. 

The high affinity binding of Ad5 to CAR and CR-1 on erythrocytes in humans does 

not occur in murine circulation. In our study, it is therefore likely that the apparent 

similar uptake-rates of Ad5wt and Ad-3∆-A20T in tumours were due to the lack of 
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Ad5wt erythrocyte-binding since the ablation of CAR- and CR-1-binding, a “design 

feature” of the Ad-3∆-A20T could not be demonstrated in our murine model as such 

binding is obsolete in mice. Another reason for the similar immediate distribution of 

radioactivity to the xenografted tumours may be due to the “leaky” vasculature often 

present in tumours. The actions of enhanced permeability and retention (EPR) may 

have disguised any differences in initial receptor-mediated cellular uptake of Adwt 

and Ad-3∆-A20T, whilst also supporting the accumulation of both viruses to the 

tumour microenvironment. Furthermore, endocytosis of virus within tumour cells may 

not be solely dependent on αvß6-integrin binding, since Suit-2 cells express other 

receptors important for adenoviral binding and internalisation including CAR, αvß3- 

and αvß5-integrins [12]. Overall, our findings demonstrate that in mice, the initial 

tumour uptake of both 
125

I-labelled and non-labelled Adwt and Ad-3∆-A20T was 

rapid after systemic delivery. The maximum amount of the tumour-associated 

radiolabelled virus was reached at 4-24h post-administration, but more importantly by 

48h, Ad-3∆-A20T replication proceeded at higher levels than Adwt. Presumably, the 

improved intra-tumoural spread and replication for Ad-3∆-A20T was caused by 

additional rounds of replication in the tumour microenvironment. In support of this 

assumption, Ad-3∆-A20T genomes and E1A expression were present at higher levels 

than Adwt by 48h in tumours. In parallel, a decreased accumulation of Ad-3∆-A20T, 

reflecting the reduced genome amplification and replication compared to Adwt in 

liver tissue was observed. Taken together, we demonstrate that systemic delivery of 

the αvß6-integrin retargeted Ad-3∆-A20T virus reached subcutaneous tumour 

xenografts in athymic mice and propagated more efficiently within the tumours than 

the native Ad5wt virus. 

Unfortunately, one limitation of studying adenoviruses in murine models is the lack of 

viral binding to murine erythrocytes and blood factors, which is a major obstacle for 

delivery in humans. However, we and others previously demonstrated that the 

modifications incorporated in Ad-3∆-A20T decreased binding to human erythrocytes 

and Factor IX/complement-4 binding protein (C4BP) which could result in higher 

circulating levels of virus in patients [6, 20, 40]. We expect that additional 

modifications of the virus may be required prior to clinical evaluation specifically, 

modifications of hexon to prevent the binding of neutralising antibodies and/or 

binding to FX [8, 10]. The combination of CAR-binding ablation and specific tumour 
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targeting are effective design strategies that can be included in future oncolytic 

mutants to improve delivery and efficacy in patients with metastatic solid tumours. 

To conclude, our findings suggest that radioactive labelling of replicating oncolytic 

adenoviral mutants is an effective approach for studying adenoviruses in a preclinical 

setting without the need for time-consuming genetic modifications nor significantly 

compromising viral bioactivity. Combined with the SPECT/CT imaging vital 

information such as viral biodistribution, viral elimination rate and any off-target 

effects over time, all this can be recorded in a cost-effective, time-saving manner 

without affecting data quality. The imaging platform is a sensitive tool for studying 

experimental tumour lesions and may be useful for determining viral uptake in 

orthotopic tumours and otherwise inaccessible tumours in live animals. Further 

refinements to the method will be necessary to enable improved detection. For 

example, removal of unincorporated label or conjugation of virus to prelabelled 

prosthetic groups for higher in vivo stability and labelling efficiency. The strategy 

holds promise for efficient selection of viral modifications and mutants prior to more 

extensive preclinical and clinical applications.  
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Materials and Methods   

Tissue culture 

Human Pancreatic ductal adenocarcinoma (PDAC) cell lines Suit-2 (Cell Services, 

Cancer Research UK) and Panc04.03 (ATCC, LGC Standards, UK) were cultured at 

37°C and 5% CO2 in Dulbecco Modified Eagle's medium (DMEM)/10% Fetal Bovine 

Serum (FBS)/1% penicillin and streptomycin (Penicillin 10000 units/ml, 

Streptomycin 10mg/ml; P/S) (Sigma-Aldrich, MO). Cells were regularly monitored 

for mycoplasma, and were STR-profiled (LGC Standards and Cancer Research UK) 

to confirm identical profiles to those reported by the suppliers and to the original vial.  

 

Viruses and infections 

The viruses used in the study include the previously described modified EGFP-

expressing mutants generated from species C wild-type adenovirus type 5 (Ad5wt) 

and Ad5A20 also expressing the 20 amino acid FMDV peptide in the fibre [11, 19]. 

Generation of Ad∆∆ (deleted in E1ACR2 and E1B19K) and Ad5-3∆-A20T (Ad∆∆; 

deleted in E3gp19K, ablated in CAR and CR-1 binding, and expressing the FMDV 

peptide) were previously described [11, 12]. The viruses were produced, purified and 

characterised according to standard protocols [11, 41]. The viral particle (vp) to 

infectious unit (plaque-forming units; pfu) was 10-50vp/pfu for all viruses. All 

infections were performed in serum-free DMEM and 2h later the infection-media was 

replaced with 10% FBS/1% P/S in DMEM. 

 

Radiolabelling of virus  

The optimised reaction conditions were as described below. Tris-HCl buffer 200mM 

pH6.8 (1ml) was added to a precoated Iodogen (1,3,4,6-tetrachloro-3α,6α-diphenyl 

glycoluril) tube (ThermoFisher Scientific, UK) and removed, followed by the 

addition of 20-27µl of Tris-HCl buffer (200mM, pH6.8) and 25-33.3µl of Na
125

I  (85-

123 MBq) in 0.04M NaOH (Hartmann GmbH, Germany). After 2min, the reaction 

mixture was transferred to an aliquot of 200-267µl of virus (1.23x10
8
-2.62x10

10
 vp; 

7.2µg-7.65µg protein) and incubated for another 2min, 24°C. The final reaction 

mixture was pH7.4-7.8.  The radiolabelling efficiency was measured using iTLC-SG 

(Agilent, CA) with a mobile phase of 85% MeOH, and exposed on phosphor screens, 

detected by Cyclone (Perkin Elmer, CT) and analysed by the OptiQuant software. The 
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percentage of free Na
125

I and virus-bound 
125

I was determined. The reaction mixture 

was diluted with PBS containing 0.01% BSA. Aliquots were analysed for viral 

integrity and function by denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

and radioactive viral proteins were detected on phosphor screens (Cyclone). In some 

studies, free 
125

I was removed by column purification (Virabind™) according to the 

manufacturer’s instructions (Cell Biolabs, CA) for further analysis of 
125

I-labelled 

virus. In these experiments, 10µg of Tyr (Sigma-Aldrich) was added to the labelled 

sample before column purification. Identical reaction protocols using non-radioactive 

NaI were applied to evaluate viral infectivity and replication by flow cytometry, 

immunoblotting, qPCR and replication assays.   

  

Immunoblotting  

Tumours and spleens were collected from mice and homogenised by sonication in ice-

cold RIPA Buffer (50mM Tris-Cl pH8.0, 150mM NaCl, 1% Triton X-100, 0.5% 

sodium deoxycholate, 0.1% SDS) supplemented with a protease inhibitor cocktail and 

PhosSTOP phosphatase inhibitor (Roche Diagnostics, Switzerland). The protein 

concentration of each lysate sample was determined using the BCA assay as per 

manufacturer’s instructions (ThermoFisher Scientific). To each 20µg of lysate 

sample, 2xLaemmli buffer (0.125M Tris-HCl pH6.8, 20% glycerol, 4% SDS, 0.01% 

bromophenol blue, 10% β-mercaptoethanol) was added and incubated at 95°C for 

5min. Protein lysates were resolved by SDS-PAGE using the Bio-Rad system (Bio-

Rad Laboratories Ltd, UK) and transferred onto PVDF membranes (ThermoFisher 

Scientific). Membranes were incubated with mouse anti-E1A (1:400; M58, GeneTex, 

TX), and mouse anti-vinculin (1:2000; Abcam, UK) overnight at 4°C in PBS 

containing 5% non-fat milk and 0.1% Tween (PBS-T). After washing with PBS-T, 

membranes were incubated for 1h at room temperature with anti-mouse HRP 

conjugated secondary antibodies (1:2000; Dako, UK). Protein bands were detected by 

enhanced chemiluminescence substrate (ECL; PerkinElmer) and visualised using 

digital capture (iChemi-XT imaging system; Syngene, UK). Densitometric analysis 

was performed using the NIH Image J software. 

 

Flow cytometry 
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Cellular infectivity was quantified by monitoring the percentage of EGFP positive 

cells using flow cytometry. Cells were seeded into 6-well plates (1x10
5
cells/well), 

incubated at 37°C for 24h prior to infection with EGFP-expressing viruses (Adwt, 

Ad5A20) for 2h at 37°C. The infection media was replaced with DMEM/10% FBS, 

cells were incubated for 24 or 48h and detached with Trypsin. Detached cells were 

washed twice and resuspended in DMEM/0.1%BSA in preparation for flow 

cytometry (FACSCalibur, BD Biosciences, UK). The percentages of cells detected in 

the FL1 setting were compared to non-infected cells, acquiring 10,000 events per 

sample and analyzed using the FlowJo software 8.8.6 (Tree Star Inc.).   

 

In vivo studies 

All in vivo experiments were performed under the approved UK Home Office Project 

Licence P1EE3ECB4 at Barts Cancer Institute in accordance with the Animals 

Scientific Procedures Act 1986.  

 

In vivo tumour growth and viral tissue distribution 

Tumour cells were inoculated subcutaneously in one or both flanks of CD
nu/nu

athymic 

mice (Charles River, UK) with Suit-2 cells in sterile PBS (1x10
6
cells/200µl) and 

Panc04.03 cells in PBS:Matrigel (Sigma-Aldrich; 1:1) (1x10
6
cells/200µl). Tumour 

volumes were estimated twice weekly by calliper measurements: volume = (length x 

width
2
 x π)/6, and animals were monitored and treated according to UK Home Office 

Regulations. When tumours were 110±30µl animals were randomised to treatment 

groups and administrated the respective virus.  

For viral distribution studies of non-radioactive mutants, purified viruses (Adwt, Ad-

3∆-A20T) were administered via the tail vein with a single injection of 3x10
9
vp in 

100µl. Tumours, spleen and liver were harvested 24, 48 and 72h later, homogenised, 

and protein expression determined by immunoblotting and/or viral DNA determined 

by qPCR.  

 

In vivo magnetic resonance imaging (MRI) 

In addition to calliper measurements of subcutaneous tumours, MRI was used to 

monitor subcutaneous and internal tumour spread. Mice were imaged by MRI (Bruker 

Icon 1T) on a heated bed to preserve body temperature (36.5-37.5°C) and were 
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subjected to isoflurane anaesthesia (flow rate of 1.5l/min, maintenance level of 1.5-

2%). The anaesthetic level was adjusted so that the respiratory rate was approximately 

30-60 breaths per minute as measured by a pressure sensitive pad. Respiratory gating 

was also employed to minimise movement artefacts; images were recorded between 

breaths. Eyes were kept hydrated with eye-gel (lubrithal 321/00/12/PUVPT, Dechra). 

A T2 survey scan was carried out using Paravision 6.0.1 software with a repetition 

time (TR) of 3377ms and echo time (TE) of 84ms. For each scan (4min), 14 slices 

were obtained with a thickness of 1.25mm and a slice gap of 0.25mm. Each slice 

contains 110x110 pixels, with a resolution of 0.273x0.273 mm, corresponding to a 

field of view of 30x30mm. An estimate of the tumour volume and potential internal 

spread was obtained by drawing 3D regions of interest (ROI) using VivoQuant 

software (version 3.5, InviCRO LLC, MA). 

 

In vivo Nano-SPECT/CT imaging 

For viral distribution studies using radioactive viruses and SPECT/CT imaging, viral 

particles (Ad5wt, Ad5A20T and Ad-3∆-A20T, typically 3-8.2x10
9 

vp in 100µl of 

iodination reaction mixture (20MBq) were administered via the tail vein with a single 

injection. Thirty minutes prior to viral administration, 5mg NaClO4 in 500µl PBS was 

delivered intraperitoneally to each animal to block uptake of free iodine via the Na/I 

symporter (NIS). Animals were anesthetized with 2% Isoflurane gas in air/O2 (1 

l/min) for whole body imaging at 0.5, 1, 4, 24, and 48h after virus administration. All 

studies were performed according to UK Home Office Regulations. SPECT-imaging 

was performed using a NanoSPECT/CT four-head camera (Bioscan Inc, Washington 

D.C.) fitted with 1.4mm pinhole collimators in helical scanning mode (24 projections, 

40 min acquisition). CT images were acquired with a 45-kVP X-ray source (1500ms 

exposure, 180 projections).  In some studies, a multiple bed system was used to allow 

three mice to be imaged simultaneously with body temperatures maintained at 36.5-

37.5°C via a warm air heating system. Reconstructed images were merged (CT recon; 

InVivoScope InviCRO LLC and SPECT recon; HiSPECT, Scivis GmbH, 

Göttingen, Germany) and the region of interest (ROI) was analysed using VivoQuant 

software (InviCRO LLC). 
125

I activity in tumour, liver and spleen was quantified with 

3D ROI analysis. Radioactivity in tumours, liver and spleen was corrected for % 

labelled virus injected in each animal and normalized to the weight of the tumour at 
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the end of the study. For liver tissues representative fixed liver volumes were used for 

the 3D ROI analysis. After completion of the 48h imaging time-points tumours, liver 

and spleens were collected, weighed and processed for immunoblotting, and 

radioactivity was quantified using a Compugamma CS counter (LKB Instruments, 

Australia).  

 

Quantitative PCR  

Whole tumour, spleen and liver tissues were removed and collected from mice at 24-

72h after tail vein administration of Adwt or Ad5-3∆-A20T. Serum free media 

(500µl) were added to tissue specimens and were mechanically dispersed in cell 

strainers (70µM, Falcon). Samples were lysed in 200µl lysis buffer (ATL buffer) 

provided in the DNA extraction kit (DNeasy Blood and Tissue kit, Qiagen). Double-

stranded DNA extraction proceeded according to the manufacturer’s instructions after 

determining quality and quantity of harvested DNA (Nanodrop; ThermoFisher, 

Scientific, UK). Quantitative PCR was performed using 20µg of extracted DNA in 

20µl reaction mixture containing Power SYBR Green Mastermix (ThermoFisher). 

Relative changes in viral DNA amplification was determined by the ∆∆CT method 

relating the DNA levels in tumour and spleen to the liver levels in each animal. The 

following primers were used: E2A F (5’ -GGA TAC AGC GCC TGC ATA AAA G-

3’); E2A R (5’-CCA ATC AGT TTT CCG GCA AGT-3’); GAPDH F (5’ TGG GCT 

ACA CTG AGC ACC AG – 3’) and GAPDH R (5’ GGG TGT CGC TGT TGA AGT 

CA- 3’). For absolute quantification of viral genomes in the same tissue specimens, a 

standard curve was generated using pure genomic Ad5wt DNA as template. The 

following primers were used: E1A F 5’ TGT ACC GGA GGT GAT CGA TCT 3’; 

E1A R’ TCG TCA CTG GGT GGA AAG C 3’. The thermal cycling profile were: 2 

min at 50°C, 10 min at 95°C and 40 cycles of 15s at 95°C and 1 min of 60°C.  Assays 

were performed in MicroAmp Optical 96-Well plates and Real-Time PCR system 

7500 (Applied Biosystems, CA).  

 

Viral replication by the 50% tissue culture infectious dose (TCID50) assay 

Suit-2 cells were seeded into 6 well plates at 1x10
5
 cells/well and after 24h, cells were 

infected with 100 particles per cell (ppc) of Ad5-3∆-A20T. Cell culture media and 

cells containing virus were collected and freeze-thawed three times in liquid nitrogen 
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at 24h-192h post infection. Viral samples were serially diluted in 96-well plates 

containing A549 cells (1x10
4
/well) as detector cells. Viral replication was determined 

as previously described for TCID50 assays [11, 12].    
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Figure legends 
 
Figure 1. Flow diagram illustrates the labelling of adenoviral mutants with 

Na
125

I using Iodogen followed by down-stream processing. A) In a typical 

reaction, 20-27µl of Tris-HCl (200mM, pH6.8) was added to an Iodogen tube 

followed by 25–33.3µl Na
125

I (85-123 MBq) in 0.04 M NaOH pH11 and incubated 

for 2min.  This was followed by the addition of 1.23x10
8
-2.62x10

10
 viral particles 

(vp) in 200-267µl Tris-Cl (10mM pH7.4) corresponding to 7.2µg-7.65µg viral 

proteins. The iodination reaction was terminated after 2.5min by transferring the 

mixture to a new tube and where it was diluted for in vivo imaging.  For in vitro 

analytical assays, 10µl Tyrosine (10µg) in Tris-Cl pH7.4 was added to quench the 

reaction, followed by column purification (Virabind). In the final optimised protocol 

Tris-HCl (200mM, pH6.8) and 25–33.3µl Na
125

I (85-123 MBq) in 0.04 M NaOH 

pH11 were incubated in the Iodogen tube for 2min and transferred to a new tube 

containing the virus as above and incubated for another 2.5min. B) Infectivity and 

replication in Suit-2 cells comparing non-radioactive labelled I-Ad-3∆-A20T (I-Ad) 

and mock-infected non-labelled Ad-3∆-A20T (Ad). The reaction conditions were 

identical to those used for the radioactive 
125

I-incorporation. Infectivity was 

determined by a specific mouse anti-E1A antibody and detected by secondary anti-

mouse FITC-coupled antibodies 24h post-infection (100ppc) by flow cytometry (left 

panel). Viral replication was determined 24h and 48h post infection (100ppc; per 

infection) (right panel). Averages± SD, n=2. C) Aliquots (1µl) of the reaction 

mixtures were analysed by instant thin layer chromatography (iTLC-SG) in 85% 

MeOH/H2O. Typical incorporation of 
125

I into the adenoviral capsid proteins were 

initially 14% (left TLC) and after optimization of pH and labelling protocols 35-71% 

(middle and right TLC). D) Aliquots (10µl) of the reaction mixture were analysed on 

a 4-12% denaturing polyacrylamide gradient gel (SDS-PAGE) and viral coat proteins 

were identified using a molecular weight ladder matched to the radiograms. In some 

studies, the reaction mixture was purified on Virabind columns and the eluate 

containing 
125

I-Ad5 (400µl) was analysed. The recovery yields of virus after Virabind 

purification were very low and only used in analytical assays. C-D) Representative 

data. 

 



 28

Figure 2. 
125

I-Ad5A20 accumulates in Panc04.03 and Suit-2 pancreatic tumour 

xenografts after tail vein injection and imaged by SPECT/CT.  A) One animal 

with small bilateral subcutaneous and internal Panc04.03 tumours imaged by 

SPECT/CT. The αvβ6-retargeted, and radioactively labelled 
125

I-Ad5A20 mutant 

(8.2x10
9
vp/animal; 10.8MBq/animal) was injected via the tail vein and imaged after 

30min, 2h and 4h.  White solid arrows indicate subcutaneous tumour; white dashed 

arrows indicate internal tumour, one representative animal shown, n=3. B) Left panel; 

T2-weighted MRI image of one representative animal with a subcutaneous Suit-2 

tumour in one flank indicated by white arrow, prior to virus administration. Right 

panel; Intravenous administration of the αvβ6-retargeted and radioactively labelled 
125

I-Ad5A20 in 200µl (7x10
9
vp of 2.5mBq/vp) in the same animal, imaged by 

SPECT/CT 24h later. White arrows indicate tumour; white open arrow indicate 

bladder, one representative animal shown, n=3. A-B) The scale for all SPECT/CT 

images is 0.006 - 0.0225 kBq. 

 

Figure 3. Biodistribution of the novel retargeted oncolytic mutant 
125

I-Ad-3∆-

A20T and 
125

I-Ad5A20 after intravenous delivery. A) Suit-2 cells (1x10
6
cells) 

were inoculated subcutaneously in one flank of CD
nu/nu athymic mice. When tumours 

reached 100µl±20µl unlabelled viruses were administrated intra-tumourally 

(3x10
9
vp/injection) on day 1, 3 and 6. Tumour growth was determined with caliper 

instrument on day 18. One-way Anova, Krusaliss Wilkinson post-test *p<0.01 

compared to mock control, 8 animals/group. B) Intravenous administration of 
125

I-Ad-

3∆-A20T (1.83mBq/vp in 200µl) and 
125

I-Ad5wt (3.27mBq/vp in 200µl) via the tail 

vein in mice with Suit-2 tumours. Live animals were imaged by SPECT/CT after 24 

and 48h, selected images are coronal and transverse views. Tumour uptake was 

retained up to 48h (white solid arrows). Open arrow indicates the bladder filled with 

radioactive metabolites, one representative animal, n=4. The scale for all SPECT/CT 

images is 0.00003 – 0.00015 kBq. 

 

Figure 4. Biodistribution of 
125

I-Ad-3∆-A20T and 
125

I-Ad5A20 quantified using 

SPECT/CT images after intravenous administration in Suit2 xenograft models. 

Tumours, spleen and liver tissues were collected 48h after treatment of animals with 
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125
I-Ad-3∆-A20T and 

125
I-Ad5wt (n=4 per group). A)  Tissues were weighed and 

correlated to the respective radioactivity SPECT/CT measurement at each time point, 

determined by ROI analysis using VivoQuant software. Left panel; data were 

corrected for injected dose (%ID) of radiolabel in tumours at 4, 24, and 48h, and 

related to tissue weight at the end of the experiment (48h; n=4/group). Right panel; 

the radioactivity/g tumour was expressed as percentages of radioactivity/g liver at 

each timepoint (n=4/group). B) Radioactivity was measured using a gamma counter at 

the end of the experiment (48h) and presented as percentages of injected dose (%ID) 

of labelled virus and relative to tissue weight; n=3/group.  

 

Figure 5. Viral genome amplification in tumour, liver and spleen tissues after 

systemic administration of Ad-3∆-A20T and Ad5wt. A) Protein lysates were 

prepared from tumour and spleen tissues harvested from animals treated with viruses 

(as shown in figure 4 with radioactive viruses) at the end of the study (48h), and used 

for immunoblotting. The early viral E1A protein was detected with a specific anti-

E1A antibody. Vinculin was detected and used as loading control, one representative 

cropped blot from each treatment group (complete blot in Supplementary Fig. 5). B) 

Viral replication of Ad-3∆-A20T and Ad5wt over time from 24h to 192h, as 

determined by standard TCID50 assay. Averages (pfu/ml)±SEM, n= 4. C) Copy 

numbers of viral genomes in tissue specimens harvested from animals 24h or 48h 

after tail vein administration of Ad-3∆-A20T determined by qPCR. Values are 

expressed as an average copy number of E1A per ng of DNA±SEM in individual 

animal; n = 4. Tumour (T), spleen (S), liver (L) tissues, M=mouse. D) Viral genome 

ratios comparing accumulation in tumour and spleen to liver values for both Ad-3∆-

A20T and Ad5wt at 24 and 48h after tail vein administration. Averages ± SEM, n=2. 
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