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Hybrid Adaptive Large Neighborhood Search Algorithm 

for the Mixed Fleet Heterogeneous Dial-a-Ride Problem  

Mohamed Amine Masmoudi. Manar Hosny  . Emrah Demir  . Erwin Pesch 

Abstract The mixed fleet heterogeneous dial-a-ride problem (MF-HDARP) consists of designing 

vehicle routes for a set of users by using a mixed fleet including both heterogeneous conventional and 

alternative fuel vehicles. In addition, a vehicle is allowed to refuel from a fuel station to eliminate the 

risk of running out of fuel during its service. We propose an efficient hybrid Adaptive Large 

Neighborhood Search (hybrid ALNS) algorithm for the MF-HDARP. The computational experiments 

show that the algorithm produces high quality solutions on our generated instances and on HDARP 

benchmarks instances. Computational experiments also highlight that the newest components added to 

the standard ALNS algorithm enhance intensification and diversification during the search process. 

Keywords Dial-a-ride problem . Alternative fuel station . Adaptive Large Neighborhood Search 

algorithm . Mixed vehicle fleet 

1. Introduction 

Everyday millions of people travel to different locations using various public commuting services. 

Unfortunately, people who suffer from physical disabilities often do not benefit from public services 

due to accessibility and mobility complications. To improve these services, researchers in this field 

have introduced the reduced mobility transportation problem, which seeks to plan vehicle routes to 

improve the disabled persons’ mobility. This problem is also known as the Dial-a-Ride Problem 

(DARP).  

As a general practice, Conventional Vehicles (CVs) with unlimited fuel supply are considered in 

all DARPs (see e.g. Muelas et al., 2013; Braekers et al., 2014). However, CVs are among the main 

contributors to harmful emissions, such as greenhouse gases (GHGs) and air pollutants (U.S. EIA 

2013). In an attempt to reduce the harmful environmental impacts and for saving the limited energy 

resources, many organizations today resort to incorporating Alternative Fuel Vehicles (AFVs) in their 

fleet, including flexible fuel vehicles and fuel cell vehicles (US DOE, 2018). AFVs operate on 

different types of alternative fuels, such as biodiesel, propane, ethanol, and hydrogen. As an example 

from practice, in Stockholm City, the transport of persons is conducted by heterogeneous AFVs using 

different fuel types (Ethanol ED95, biogas, and biodiesels). Moreover, in Canada, several companies 

such as Société de Transport de Montréal (STM) in Montréal and the Réseau de Transport de la 

Capitale (RTC) in Québec, use different types of AFVs added to their existing CVs’ fleet.  
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 From a research perspective, the use of AFVs has recently attracted attention in the field of the 

Vehicle Routing Problem (VRP) (see, e.g., Erdoğan and Miller-Hooks, 2012; Adler and Mirchandani, 

2016; Andelmin and Bartolini, 2017; Yavuz, 2017), giving rise to a new VRP variant known as the 

Green Vehicle Routing Problem (GVRP) with refueling, since refueling of AFVs during their service 

route is a main concern as will be explained shortly. However, to our knowledge, the use of AFVs in 

the DARP applications has not been previously considered in the literature. Thus, this paper promotes 

using a mixed fleet of CVs and AFVs with tank refueling within the context of the DARP.  

AFVs can be classified into two main categories: dedicated AFVs and dual-fuel AFVs.  Dedicated 

AFVs use only alternative fuel, such as CNG and propane. On the other hand, dual-fuel AFVs come 

into two main types: bi-fuel and flexible-fuel. Bi-fuel vehicles can operate with either alternative or 

conventional fuel; i.e., a special tank and fuel system is provided for each of these types, but the 

vehicle can operate on only one of them at a time. In contrast, a flexible-fuel vehicle has one fuel tank 

that can be filled with either type of fuel.  The most common fuel used in flexible-fuel vehicles is a 

blend of gasoline and ethanol (DVRPC, 2011). In our case, we adopt a fleet of flexible-fuel vehicles 

(i.e., a fleet of alternative fuel vehicle using biodiesel).   

One important point to note when using AFVs in VRP applications, though, is that the amount of 

alternative fuel in the vehicle tank is limited, in contrast to the traditional gasoline or diesel fuel, where 

the amount of fuel in the vehicle tank is assumed to be enough to travel for longer distances. In 

addition, the traditional gasoline or diesel refueling stations are usually plentiful, while Alternative 

Fuel Stations (AFSs) are usually scarce and often unevenly distributed across urban areas (Erdoğan 

and Miller-Hooks, 2012; Yavuz, 2017). Therefore, the main difference between the GVRP with 

refueling and the traditional VRP is the consideration of refueling requirement during route planning. 

Failing to address this issue, may cause vehicles to run out of fuel or may cause unnecessary detours 

from the pre-planned routes to reach an AFS (Erdoğan and Miller-Hooks, 2012). Thus, many papers in 

the GVRP literature have considered the limitation in the driving range of AFVs as well as the need 

for refueling in specialized stations (see, e.g., Erdoğan and Miller-Hooks, 2012;  Koç and Karaoglan, 

2015). In these papers, the aim is efficient route planning that considers both customers’ visits as well 

as frequent visits to refueling stations during the planning period. Our research is in line with these 

studied GVRP variants, where we incorporate AFVs as well as refueling stations in the route for 

serving customers in the DARP.  

However, in the context of the DARP, the refueling requirement may cause service disruptions 

and may lead to the dissatisfaction of customers. Therefore, careful planning of these visits should be 

considered with this need in mind. We also note that the concept of refueling in the field of 

transportation of the disabled and the elderly is indeed applied in practice. For example, the company 

“Transport Adapté du Québec Métro Inc. (TAQM)” in Quebec, Canada (Thériault, 2005) offers 

services for the exclusive use of people with limited mobility. For this company, refueling of vehicles 

is an important requirement, due to the long distances frequently traveled to their destinations in 

different regions (e.g., health centers, special education institutions, working institutions, etc.). As a 

file:///C:/Users/Asus%20X551M/Downloads/MPMF-HDARP%2026-07-2017_ED.docx%23Erdoğan
https://www.accesstotravel.gc.ca/?aspxerrorpath=/19.aspx&aspxerrorpath=/19.aspx
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result, it is mandatory to refuel the vehicles at the start of the day, during the trip, or at the end of the 

working day. The order of the customers' visits and the choice of an access point for each AFS are 

highly affected by an inappropriate planning. For example, a vehicle may frequently spend time during 

its journey for searching the nearest AFS due to restricted refueling infrastructure. Planning efficient 

routes that satisfy the customers' demands is one of the main concerns of TAQM. Therefore, it is 

necessary for the company to minimize the distance needed to reach AFS, while complying with the 

time constraints of each user.  

Regarding the fuel consumption of AFVs, there are several studies concerning emission (fuel 

consumption) models (e.g., Demir et al., 2014) that report the major effect of the vehicle’s type on fuel 

consumption. Thus, to enrich our research, we consider two types of emission models to calculate the 

fuel consumption rate: the Comprehensive Modal Emissions Model (CMEM) of Barth and 

Boriboonsomsin (2009) for the CVs and National Atmospheric Emissions Inventory (NAEI) model 

(NAEI, 2012) for the AFVs. 

In addition, the considered mixed fleet in our problem is heterogeneous in terms of their capacity 

of carrying people (i.e., they are vehicles with different capacity resources like passenger seats, 

stretchers and wheelchairs). Thus, the problem that we consider belongs to the Heterogeneous Dial-a-

Ride Problem (HDARP) with CVs’ category as studied by Braekers et al. (2014), and Masmoudi et al. 

(2016, 2017). We call this specific problem as the Mixed Fleet HDARP (MF-HDARP).  

2. Literature review 

This section presents a brief literature review related to our problem. First, we review the most 

recent studies in the HDARP. Second, green vehicle routing problem papers that explicitly consider 

alternative fuel vehicles with refueling are presented. Third, VRPs that consider a mixed fleet of 

vehicles are reviewed. Finally, we discuss the main differences between our problem and the related 

studies followed by the main scientific contributions of our research.      

2.1. The heterogeneous dial-a-ride problem 

The reduced mobility people transportation is often complicated by the presence of several types 

of users with special needed equipment, such as a patient seat, a wheelchair and a stretcher (Wong and 

Bell 2006).  The DARP with heterogeneous users and/or vehicles (called HDARP) (Parragh, 2011) is 

a generalization of the DARP, but it has not been extensively studied in the literature. Wong and Bell 

(2006) tackled the DARP with two types of vehicles (equipped with wheelchairs) and two types of 

users for elderly and disabled people’s transportation. Xiang et al. (2006) developed a heuristic 

algorithm to solve a more practical version of the DARP with several types of users and vehicles. In a 

later study, Parragh et al. (2012) introduced a variant of the HDARP, in which the requirements of 

assistants and their lunch break constraints are considered.  

In the study of Braekers et al. (2014), multiple depots of heterogeneous vehicles and users are 

considered to reduce the total routing costs. More recently, Masmoudi et al. (2017) solved the standard 

HDARP using a hybrid Genetic Algorithm (GA). To our knowledge, their hybrid GA provides the 
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best-known results on these instances so far, and outperforms current state-of-the-art algorithms for 

the standard DARP and HDARP. In another study, Masmoudi et al. (2016) augmented the multi 

depots and coffee break concepts on the standard HDARP. The authors developed two hybrid 

metaheuristic approaches, namely hybrid Bees Algorithm with Simulated Annealing (BA-SA) and 

hybrid Bees Algorithm with Deterministic Annealing (BA-DA), as well as ALNS algorithm.  

Later, Braekers and Kovacs (2016) extended the single period HDARP to a multi-period DARP 

and considered a limited number of drivers to serve each user over a predefined number of days. More 

recently, Masmoudi et al. (2018b) proposed a new DARP variant by considering a fleet of 

homogeneous Electric Vehicles (EVs) instead of the CVs. In their problem, the EVs are allowed to be 

recharged by swapping their depleted battery by a full one from any battery-swap station. To solve this 

problem, three Evolutionary Variable Neighborhood Search (EVO-VNS) variants are proposed. In 

their methods, the VNS is embedded with some features adopted from population-based methods, 

such as crossover of the GA, to diversify the search, and the Shuffled Frog-Leaping Algorithm 

(SFLA) to create the initial solution for each VNS iteration. The proposed algorithms are compared on 

new randomly generated instances with up to eight vehicles and 96 requests. These instances are based 

on the benchmark HDARP instances of Masmoudi et al. (2017) and on an artificial data set with 

different characteristics, containing up to 15 vehicles and 100 users. The results show that the 

proposed approaches provide high quality solutions on the new generated instances. In addition, they 

demonstrate that the hybridization of several features of population based methods with VNS 

outperforms the traditional VNS. To the best of our knowledge, this is the only study that incorporates 

a fleet of EVs in the DARP.  

For other variants of (H)DARP, interested readers can find several real concepts related to this 

problem in the applications studied by Zhang et al. (2015), Liu et al.(2015), Lim et al. (2016), and 

Amirgholy and Gonzales (2016). Interested readers are also referred to surveys on the DARP by 

Molenbruch et al. (2017) and Ho et al. (2018). 

2.2. The green vehicle routing problem with refueling 

The problem presented in this research is related to alternative fuel vehicles, fuel stations, and 

green vehicle routing problems with refueling using a limited fuel tank. 

During the last few years, research in the field of logistics and operations research has been 

extended by considering environmental impacts and costs related to both people and industrial 

transportation activities. Within this domain, the Green Vehicle Routing Problem (GVRP), which 

considers the fuel tank capacity limitation, has received an increasing attention recently. Erdoğan and 

Miller-Hooks (2012) were the first authors to introduce the GVRP, where refueling and a fleet of 

biodiesel-powered alternative fuel vehicles are considered. A constant fuel consumption rate is used in 

order to decide when the vehicle should be refueled. The authors proposed a mixed-integer linear 

model to minimize the travel distance considering AFSs as well as a finite driving autonomy, where 

the number of tours and their limited duration are respected. A constant fuel consumption is 

considered in Koç and Karaoglan (2015). They suggested a mixed integer programming formulation 
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and proposed a more sophisticated branch-and-cut algorithm, in which various adequate inequalities 

taken from the literature are incorporated, in order to improve the lower bound. They also used a 

simulated annealing metaheuristic to acquire the upper bound. The algorithm was evaluated by testing 

it on benchmark GVRP instances of Erdoğan and Miller-Hooks (2012). The results indicate that there 

is a possibility to optimally solve 22 out of 40 instances with 20 customers during a short computation 

time. An exact solution approach based on a set partitioning formulation by adding a new valid 

inequality is proposed by Andelmin and Bartolini (2017) to solve the GVRP. Yavuz (2017) developed 

an Iterated Beam Search (IBS) algorithm for the GVRP with refueling of a homogeneous service fleet 

by allowing multiple AFS visits. Other studies on the GVRP with refueling can be found in Adler and 

Mirchandani (2016) and Xiao and Konak (2017). Interested readers are referred to the survey paper of 

Demir (2018) for GVRP varieties. 

2.3. Mixed fleet vehicle routing problem 

In recent years, using a mixed fleet of vehicles in different VRP variants has attracted the attention 

of researchers, since it is more practical and relevant. However these studies are still limited in the 

literature and only few works have addressed this concept. Sassi et al. (2014) used a mixed fleet of 

vehicles composed of EVs and CVs in the context of Electric Vehicle Routing Problem (EVRP), 

which is considered as an extension of the GVRP (Schneider et al., 2014). Goeke and Schneider 

(2015) considered also a mixed fleet of EVs and CVs for the EVRP. The authors developed a realistic 

energy consumption model for the EVs based on the CMEM of Barth and Boriboonsomsin (2009), 

designed for the traditional CVs. ALNS method is proposed to solve this problem. The experiments 

show that this method is able to find good results on the proposed problem and on the benchmark VRP 

with time windows and the EVRP.  

More recently, Hiermann et al. (2019) proposed a new EVRP variant called Hybrid Heterogeneous 

Electric Fleet routing problem with Time Windows and recharging stations (H2E-FTW), where they 

consider a mixed fleet of vehicles, composed of Battery Electric Vehicles (BEVs), Plug-in Hybrid 

Vehicles (PHEV) and CVs, as well as multiple vehicle types from each class with different battery 

sizes, capacity and fuel consumption and/or electric energy per mile. To solve this problem, the 

authors proposed an efficient sophisticated hybrid genetic algorithm based on layered route evaluation 

procedures. The algorithm was tested on a variety of benchmark instances of the E-FSMFTW (Electric 

Fleet Size and Mix vehicle routing problem with Time Windows and recharging stations) and the E-

VRPTW and was able to obtain better or equal average results than existing algorithms on these 

problems. In addition, 119, 11, and 19 new best solutions were found for the E-FSMF, the E-VRPTW, 

and the E-VRPTW with partial recharging. The authors also investigated how fuel and energy cost can 

impact the decision regarding fleet composition. They concluded that a mixed fleet can reduce costs in 

most operational scenarios, in comparison to the use of a single vehicle type. 
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2.4. Summary and discussion  

The different characteristics of the MF-HDARP can be frequently encountered in practice. Our 

MF-HDARP is both similar to and different from HDARP, mixed fleet VRP, and GVRP, as explained 

next. 

First, based on the HDARP literature summarized above, we can observe that using a fleet of CVs 

(Parragh, 2011; Braekers et al., 2014; Masmoudi et al., 2016, 2017), or using EVs (Masmoudi et al., 

2018b) is considered separately. However, in real-world applications most companies operate different 

modes of transportations. Thus, in our research we adopt a mixed fleet of CVs and AFVs with tank 

refueling.  

 Second, there is a limited number of studies of DARP that use EVs (DARP-EV). Specifically, we 

are only aware of one paper (Masmoudi et al., 2018b) that studies this problem. In addition, this study 

has some limitations in terms of using only one mode of transportation, since the fleet is composed of 

homogeneous EVs (i.e., all vehicles have the same type of resources). On the other hand, our research 

is different than the DARP-EV of Masmoudi et al. (2018b) in that we use both a mixed fleet of CVs 

and AFVs, and the fleet has different capacity resources (i.e., heterogeneous fleet). Thus our problem 

is more complex than the traditional DARP-EV. It is also worth mentioning that using AFVs with fuel 

tank instead of EVs is beneficial for companies that operate CVs with gasoline or diesel. This is 

because biodiesel is an alternative fuel that can be adopted in conventional engines that use diesel, 

either separately or by blending it with diesel (Verma and Sharma, 2016). Moreover, using biodiesel in 

either form does not require any engine adjustment of the CV (Masmoudi et al., 2018a). Thus, newly 

manufactured diesel-powered vehicles can run on biodiesel without any alterations or special 

requirements. This allows logistics companies to transform some of their CVs to AFVs using 

biodiesels, without having to replace their fleets.  

Third, using a mixed fleet of vehicles is very limited in the literature and applied only in some 

EVRP variants (Sassi et al., 2014; Goeke and Schneider, 2015; and Hiermann et al., 2019). It has not 

been applied in any DARP or HDARP variants. Thus, we believe that it deserves to be studied in the 

context HDARP. Moreover, as previously mentioned, our research is different than the existing mixed 

fleet applications in that we use different capacity resources inside the vehicle, instead of only one 

resource type, as in the majority of mixed fleet vehicle routing problems. Finally,  most studied GVRP 

with tank refueling (see, e.g., Erdoğan and Miller-Hooks, 2012; Koç and Karaoglan, 2015; Andelmin 

and Bartolini, 2017; Yavuz, 2017) use a constant fuel consumption rate. However, in recent studies of 

the EVRP and the Pollution Routing Problem (PRP), the fuel(energy) consumption rate is not linear 

and depends on several factors, such as the speed, load,..,etc (see, e.g., Demir et al., 2012, 2014; 

Franceschetti et al., 2017; Androutsopoulos and Zografos, 2017; Toro et al., 2017; Salehi et al., 2017). 

Similar to the mentioned works, we apply a fuel consumption rate function.  Moreover, to enrich our 

research, we consider two emission models to calculate the fuel consumption rate: the CMEM and 

National Atmospheric Emissions Inventory (NAEI) (NAEI, 2012) model. The CMEM model is 

applied to CVs (Demir et al., 2012), while the NAEI model is implemented on the AFVs. In fact, the 
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main advantage of using the NEAI in our research, especially for the AFVs, is that the NAEI model is 

calculated based on both total fuel consumption data as well as fuel properties. Moreover, since it is 

obvious that fuel consumption is the origin of CO2e (Demir et al., 2012), the amount of fuel 

consumption can be immediately converted into that of CO2e through multiplying it with a certain 

coefficient. To the best of our knowledge, these two models have not been applied on any DARP 

variant yet, as well as in the EVRP and the mixed fleet vehicle routing problem.  

To sum up, our MF-HDARP is considered as a combination of several aspects from the existing 

HDARP, mixed fleet vehicle routing problem and the GVRP with refueling. To our knowledge, this 

rich problem variant has not been previously tackled in the literature. 

2.5. The main scientific contributions and structure of the paper 

The contributions of this research are as follows: i) we introduce a Mixed Fleet Heterogeneous 

Dial a ride Problem (MF-HDARP) and provide a mathematical formulation of the purposed problem. 

ii) A hybrid Adaptive Large Neighborhood Search (ALNS) algorithm is developed to solve the MF-

HDARP. The motivation for adopting ALNS for solving the MF-HDARP is its successful 

performance on related vehicle routing problems including (H-)DARP, in addition to its robustness in 

efficiently solving problem instances with different characteristics. iii) We hybridize the traditional 

ALNS with several diversification and intensification mechanisms to improve its performance. 

Specifically, we add an exploration mechanism to avoid local optima using crossover operators, and 

an intensification mechanism using a local search procedure. In addition, several special 

characteristics and algorithmic improvements have been developed to achieve good performance on 

the MF-HDARP, as will be discussed later. iv) We introduce a new large size data set instances with 

different characteristics having up to 200 requests. v) Extensive computational experiments show that 

our algorithm is able to produce good-quality solutions, on both existing and new benchmark 

instances. And finally, vi) we assess the effect of hybridizing the ALNS with the different new 

components (i.e., crossover and local search operators), and draw some insights on the performance of 

these components.  

The rest of the paper is organized as follows. Section 3 provides the problem definition. Section 4 

describes our proposed algorithm, and Section 5 reports the computational experiments. Conclusions 

are summarized in Section 6. 

3. Problem definition 

The MF-HDARP can be formally described as follows. Consider a graph 𝐺 =  (𝑉′, 𝐴)  with node 

set 𝑉′ and arc set = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉′, 𝑖 ≠ 𝑗} where 𝑉′ is further partitioned into subsets 𝑁 and 𝐹’ 

(𝑉′=𝑁 ∪ 𝐹′);  𝑁 = {1, … ,2𝑛} corresponds to 𝑛 users to be serviced, where 𝑃 = {1, … , 𝑛} and 𝐷 =

{𝑛 + 1, … ,2𝑛} are the sets of nodes corresponding to pickup and delivery locations, respectively. Let 𝐹 

the set of refueling stations. 𝐹’ is the set of vertices in 𝐹. The depot is a special node that belongs to 

the set 𝐹’. It is assumed that the depot is a refueling station, where vehicle routes must start and end. In 



8 

 

addition, the depot node is duplicated, where the starting node is denoted by 𝑑 and the ending node is 

denoted by 𝑒. There is a non-negative travel cost 𝑐𝑖𝑗, travel speed 𝑣𝑖𝑗 and a non-negative distance 𝑑𝑖𝑗 

associated with each arc (𝑖, 𝑗) from set 𝐴. We assume that vehicles travel each arc (𝑖, 𝑗)  with different 

speeds between 𝑣𝑙 and  𝑣𝑤, and the number of stops that can be made for refueling is unlimited. When 

refueling takes place, it is assumed that the tank is refilled to its maximum capacity. The time window 

to visit any refueling node is set as [0, T], where T is the length of the planning horizon. Moreover, a 

mixed fleet with a fixed size of heterogeneous vehicles, which is composed of 𝑚𝐴𝐹 AFVs and 𝑚𝐶𝑉 

CVs, are available to serve the 𝑛 users.  

Each CV(AFV) has a capacity 𝑄𝑟,𝐶𝑉(𝑄𝑟,𝐴𝐹𝑉) that gives the amount of resource 𝑟 available on 

each CV(AFS), where each type of resource is dedicated to: the accompanying person of the 

handicapped 𝑄0,𝑘, handicapped person’s seat  𝑄1,𝐶𝑉(𝑄1,𝐴𝐹𝑉) , stretcher  𝑄2,𝐶𝑉(𝑄2,𝐴𝐹𝑉)  and 

wheelchair 𝑄3,𝐶𝑉(𝑄3,𝐴𝐹𝑉). Each CV(AFV) contains a fuel tank capacity 𝐻𝐶𝑉( 𝐻𝐴𝐹𝑉), which is 

consumed and reduced at a fuel rate 𝐹𝑅 on each traveled arc (i, j). Each user is associated with a 

demand requirement 𝑞𝑖
𝑟 for each resource 𝑟, and time window [𝑇𝑖

−, 𝑇𝑖
+], where 𝑇𝑖

− and 𝑇𝑖
+ represent 

the earliest and latest visiting time, respectively. A maximum user/patient ride time 𝐿𝑚𝑎𝑥 is implicitly 

considered to provide the highest service quality. In addition, a service time 𝑠𝑖 is imposed when 

visiting each node (∀ 𝑖 ∈  𝑁), and a refueling time 𝑠𝑓 is considered when the AFV visits a refueling 

station node (∀ 𝑓 ∈  𝐹′).  

As studied in Demir et al. (2012), for the fuel consumption rate of CVs, the constant fuel rate 𝐹𝑅 

required over the course in each arc (𝑖, 𝑗) can be calculated as: , where 𝑃𝑖𝑗 

represents the mechanical power 𝑃𝑖𝑗= (
1

2
  𝑐𝑑 𝑢 𝐴 𝑣2+𝑚 𝑔 (sin(𝛼𝑖𝑗)+𝑐𝑟 cos(𝛼𝑖𝑗))) 𝑣𝑖𝑗. All parameters 

along with typical values are summarized in Table12 in the Appendix. 

For AFVs, the fuel consumption rate with an average speed 𝑣 can be calculated as: 

𝐹𝑅𝑖𝑗(𝑣)=𝜌(𝜎1+𝜎2𝑣+𝜎3𝑣2+𝜎4𝑣3+𝜎5𝑣4+𝜎6𝑣5+𝜎7𝑣6)/𝑣, where 𝜌 = 0.037, 𝜎1 =10537.515, 

𝜎2=220.217, 𝜎3=54.175, 𝜎4=-2.404, 𝜎5=0.043, 𝜎6=0 and 𝜎7=0. A detailed explanation of each 

parameter can be found on NAEI (2012). 

Based on the heterogeneous dial a ride problem formulation of Parragh (2011) and the electric 

vehicle routing problem with mixed fleet formulation of Goeke and Schneider (2015), we provide 

below a mixed-integer programming formulation for the MF-HDARP. The MF-HDARP can be 

formulated as follows: 𝑥𝑖𝑗
𝐶𝑉  is a binary variable  that is equal to 1 if arc (𝑖, 𝑗) is traveled by the CV and 

0 otherwise. Similarly, 𝑥𝑖𝑗
𝐴𝐹𝑉 is a binary variable that is equal to 1 if the arc (𝑖, 𝑗) is traveled by the 

AFV and 0 otherwise. 𝐵𝑖 is a continuous variable that  represents the time when the service starts at 

node 𝑖. The continuous variable 𝑄𝑖
𝑟,𝐶𝑉

( 𝑄𝑖
𝑟,𝐴𝐹𝑉

) represents the load of resource 𝑟 on the CV(AFV), 

immediately after visiting node 𝑖. The continuous variables 𝑙𝑖 represents the ride time of user 𝑖 ∈ 𝑃 on 

any vehicle (CV and AFV). Finally, the continuous variable 𝑜𝑖  represents the tank fuel level of the 

AFV, when visiting node 𝑖. 
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The objective function (1) minimizes the total routing costs. Constraints (2)-(4) guarantee that 

each user is served exactly once and each pair of pickup and delivery is served by the same vehicle, 

while constraints (5) ensure that each recharging station can be used at most once.  Constraints (6) and 

(7) define the arc flow conservation. Constraints (8) and (9) guarantee that the number used of 

alternative fuel vehicles and conventional vehicles, respectively, does not exceed the fleet size. 

Constraints (10) and (11) guarantee that each vehicle begins at the origin depot and finishes at the 

corresponding destination depot. Constraints (12)-(15) enforces the capacity condition. Constraints 

(16) and (17) ensure that a vehicle has an empty load when leaving the depot. Constraints (18) and 
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(19) specify the beginning of service at each node. Constraints (20) define the ride time of each user in 

each route, which is bounded by constraint (21). These constraints also ensure the precedence 

constraint between the pickup and the corresponding drop off nodes. Constraints (22) enforce the time 

windows. Constraints (23) keep track of the fuel level of the alternative fuel vehicle, which is 

determined by the sequence and type of visited nodes. That is, if 𝑖  is a customer node and 𝑗 is visited 

immediately after 𝑖 (𝑥𝑖𝑗
𝐴𝐹 = 1), the first term in constraints (23) will guarantee that the fuel level is 

reduced by a sufficient amount, when the alternative fuel vehicle arrives at 𝑗. The reduction in fuel 

level is based on the distance from 𝑖 to 𝑗 and the fuel consumption rate. Constraints (24) guarantee that 

the alternative fuel vehicle will not get stuck after visiting any customer in the route due to shortage in 

fuel. This is done by ensuring that there is enough fuel remaining to drive to the depot, either directly 

or by passing through a refueling station.  Constraints (25) guarantee that the tank becomes full after 

visiting a refueling station. Constraints (26) enforce the time limit of the route, which is restricted 

by 𝑇𝑚𝑎𝑥. Finally, constraints (27) specify the binary decision variables. 

The HDARP is an NP-hard problem (Parragh, 2011). Several researchers have attempted exact 

methods (e.g., Branch-and-Cut, Branch-and-Price-and-Cut) to solve small-sized instances to 

optimality, since commercial solvers cannot solve instances as small as 10 requests (Zhang et al. 2015; 

Liu et al. 2015). For example, in Masmoudi et al. (2018b), CPLEX 12.6.1 can only solve very few 

small size instances with two vehicles and 15 requests. However, even the exact methods developed in 

the literature can only solve few small instances to optimality in the majority of studied problems 

(Molenbruch et al. 2017). Therefore, most HDARP studies develop metaheuristic approaches to solve 

this problem (Breakers et al., 2014; Braekers and Kovacs, 2016; Masmoudi et al., 2016, 2017, 2018b). 

Also, the Electric Vehicle Routing Problem using Mixed Fleet (E-VRPMF) is an NP-hard problem 

(Goeke and Schneider, 2015). Again, most studies have developed metaheuristics to solve this 

problem (Sassi et al., 2014; Goeke and Schneider, 2015; Hiermann et al., 2019). Since the MF-

HDARP is a combination of the traditional (H)DARP and the E-VRPMF, solving practical size 

instances of this problem requires utilizing heuristic and metaheuristic approaches, in order to provide 

acceptable solutions within reasonable processing times. In the next section our proposed 

metaheuristic approach for solving the MF-HDARP is introduced.  

4. Hybrid Adaptive Large Neighborhood Search algorithm for the MF-HDARP 

ALNS was used in solving a variety of VRPs including (H)DARP (see, e.g., Ropke and Pisinger 

2006a; Demir el al. 2012, 2014; Masmoudi et al., 2016; Žulj et al., 2018; Alinaghian and Shokouhi, 

2018). However, when ALNS is applied to highly constrained problems, it may get trapped in local 

optima. Thus, we try here to improve the convergence of ALNS towards better solutions, by applying 

different intensification strategies around good solutions, and also encouraging diversification to 

unexplored regions of the search space.  

In most of the ALNS algorithms applied in the literature, if the newly generated solution (after 

applying the removal and insertion operators), is not better than the current one, or is not accepted by 
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the well-known acceptance function of the SA algorithm, the ALNS restarts from a new solution that 

is re-generated using the removal and insertion operators on the same current solution. Nevertheless, 

in our approach, we do not retract to a formerly obtained solution. Instead, we construct a new solution 

utilizing the crossover operator of the well-known GA. The new solution is constructed by combining 

both the best solution identified so far and a new solution generated using a constructive heuristic. 

This newly generated solution is then set as the current solution.  The idea is to allow the algorithm 

enough diversification power, since the new solution, which is approximately as good as the current 

best solution, will be placed in a different region of the search space, thanks to the power of the 

crossover.  

In addition, in most studied ALNS applications, the best solution is updated only if the newly 

generated solution is better than the current best solution. In contrast, in our ALNS variant, we adopt 

an acceptance function that is applied for the best solution. In other words, if the solution is not worse 

than 𝛿% of the current best solution, the solution is accepted. This solution is then improved using a 

local search procedure.  After this, the solution obtained is compared with the best solution to decide 

whether to accept or reject the new improved solution. Thus, our ALNS gives another chance for 

promising solutions to become new best solutions after being improved by the local search procedure, 

which adds more diversification power. On the other hand, applying local search to improve promising 

solutions is intended to further intensify the search and improve the quality of these solutions even 

more. 

To sum up, all the aforementioned characteristics shape a new hybrid ALNS, which combines 

advantages of the intensification potential of the local search operators, the diversification potential of 

the crossover, and the flexibility of the acceptance function mechanism applied on the best solution in 

a novel way. 

The structure of our ALNS algorithm shown in Algorithm 1 is based on that proposed by 

Masmoudi et al. (2016). The algorithm executes for a fixed time to find a best solution x and its 

routing cost f (x). Let x the initial solution and 𝑥𝑏𝑒𝑠𝑡 the current best solution. The temperature 𝑇 is 

initialized to its maximum value 𝑇𝑚𝑎𝑥 and the weights and scores of the removal and insertion 

operators are also initialized, but they are updated during the search.  

At each ALNS iteration, combinations of operators (removal and insertion) (see subsection 4.5) 

are selected according to their past performance (see subsection 4.4). This is done as follows: in case 

𝑥𝑏𝑒𝑠𝑡 is improved in the last iteration, one removal and one insertion operator are applied. Otherwise, 

two removal operators are performed in a random order to destroy the partial solution, followed by 

one insertion operator to repair the solution. Our insertion operators insert unserved requests, if 

feasible. In case some requests cannot be served, due to constraints violation, one more conventional 

vehicle will be added to the solution. In this case, the best solution in terms of cost will be the solution 

having a fewer number of additional vehicles.  

After removing recharging station node(s) and re-insertion of users, the current solution may 

become infeasible, due to fuel related constraints. In this case, the two relevant operators Remove 



12 

 

Station (RS) and Insert Station (IS) are applied in a random order to restore feasibility. Thus, a new 

solution 𝑥’ is obtained. 𝑥’ is accepted if it is better than the current solution 𝑥, or if it satisfies the SA 

acceptance criterion 𝑒(𝑓(𝑥)−𝑓(𝑥′)/𝑇). Otherwise, a new solution is created using a randomly selected 

crossover operator (O1, O2, or O3) (see subsection 4.2), which combines different characteristics 

inherited from the current 𝑥𝑏𝑒𝑠𝑡  and a newly generated solution using the constructive heuristic (see 

subsection 4.1). When obtaining a new solution, we decide to accept or reject the solution. If the 

objective function of 𝑥’ is better than that of 𝑥𝑏𝑒𝑠𝑡, 𝑥’ becomes the new best solution. Else, if the new 

solution 𝑥’ is not worse by more than 2% of the current best solution 𝑥𝑏𝑒𝑠𝑡, 𝑥’ is enhanced by the local 

search strategy (see subsection 4.3). Then, the new solution may become the current best solution, 

only if it has better quality. 

Algorithm 1: Hybrid Adaptive Large Neighborhood Search  Algorithm 

1.  Initialize: The weights and scores of removal, insertion, and local search operators, 𝑥𝑏𝑒𝑠𝑡= x, T= 𝑇0 

𝑇𝑏=𝑇0; 2.  While the stopping criterion is not reached Do      

3.         Select and apply the removal operator(s) on the current solution x;        

4.         Select and apply the insertion operators on 𝑥 to obtain x’; 

5.  Perform the RS and IS operators on x’; 

6.  If x’ is feasible Then 

7.       If f (𝑥’) < f (x) or f (𝑥’) satisfies the acceptance criterion Then 

8.  x← x’; 

9.       Else If  f (𝑥’) > f (x) Then 

10.                       𝑥𝑛𝑒𝑤← newly constructed solution by the constructive heuristic 

11.  x← Crossover(𝑥𝑏𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤); 

12.       Else If  f (x’) < f (𝑥𝑏𝑒𝑠𝑡) Then 

13.  𝑥𝑏𝑒𝑠𝑡  ← x’; 

14.  𝑇𝑏=𝑇; 

15.       Else If f (x’) < f (𝑥𝑏𝑒𝑠𝑡)*1.02 Then 

16.  x’← local search (x’); 

17.  If f (x’) < f (𝑥𝑏𝑒𝑠𝑡) 

18.  𝑥𝑏𝑒𝑠𝑡  ← x’; 

19.  𝑇𝑏=𝑇; 

20.  End If 

21.       End If         

22.         End If        

23.         T ← 𝛼 × T; 

24.         If 𝑇< 0.01  

25.                 𝑇𝑏=2*𝑇𝑏;  

26.                T=min{𝑇𝑏 , 𝑇𝑚𝑎𝑥}; 

27.         End If        

28.        Adjust the weights and probabilities of the removal, insertion and local search operators  

29.  End While 

30.  Return: 𝑥𝑏𝑒𝑠𝑡  

As in similar ALNS applications in the literature, the temperature is reduced after each iteration by 

multiplying 𝑇 by a cooling factor 𝛼. If after the reduction, the temperature becomes less than 0.01, 

then, 𝑇𝑏 is multiplied by two and the temperature 𝑇  is set to  𝑇𝑏, where 𝑇𝑏 is applied to record the 
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temperature when 𝑥𝑏𝑒𝑠𝑡 is found. In order to avoid that the search restarts from scratch from a 

randomly generated solution, we limit the temperature 𝑇 to 𝑇𝑚𝑎𝑥. 

4.1. An initial solution 

The proposed heuristic for constructing the initial solution considers the AFS nodes in the 

planning of routes. A list 𝐿 containing a set of users to be served is initialized to be inserted one by one 

in a set of empty CVs and AFVs routes. The following steps are run. A vehicle starts at the depot, 

visits a set of users, and then returns to the depot. While an AFV is still available, the insertion of 

users is performed by inserting a randomly selected user 𝑖 from the list 𝐿 in the best position of its 

pickup and delivery nodes in already existing routes, provided that the ride time, time windows, 

vehicle capacity and maximum route duration are respected. If a user 𝑖 cannot be added in the route 

due to lack of fuel, the selected user is re-inserted along with a refueling station node, such that the 

nearest recharging station node to the already existing node 𝑖-1 is inserted. If the insertion of user 𝑖 is 

not possible in already existing routes, a new route is added to the current solution and the same 

insertion procedure is applied. If the user cannot be assigned to any available AFV, the user is then 

inserted into a CV route until at most the predefined number of CVs and AFVs is constructed. 

4.2. Diversification mechanism 

To diversify the search, we develop three effective and simple crossover operators that are well-

known in GA literature. The advantage of using a diversification procedure is to discover new regions 

of the search space that may not have been visited yet by the insertion and removal operators.  

One-point crossover (O1): This crossover operator is inspired from Prins (2004). First, a random point 

𝑝 is selected, then the new solution acquires all the users and AFS nodes (if found) from the best 

solution 𝑥𝑏𝑒𝑠𝑡 before the crossover point 𝑝. To complete the new solution, the remaining elements are 

inherited from 𝑥𝑏𝑒𝑠𝑡 in the same order as they appear in a solution generated using our constructive 

heuristic beginning from the first route. 

Two-point crossover (O2): This operator is the classical Order Crossover using two points proposed 

by Goldberg (1988). This operator arbitrarily selects two crossover points and transcribes the partial 

permutation between them moving from 𝑥𝑏𝑒𝑠𝑡 into the new solution. While maintaining their relative 

ordering, the rest of elements are taken from a solution generated using our constructive heuristic. 

Linear two-point crossover (O3): This operator is proposed by Sevaux and Dauzere-Peres (2003), 

which is similar to O2. The only difference is that the remaining users and refueling nodes are 

inherited from the solution generated using our constructive heuristic, starting with the first position 

from left to right of the order of users and recharging station nodes of each route in the solution. 

4.3. Local Search operators 

To further improve the quality of solutions, we apply several well-known local search operators. 

These include two intra-route operators: the 2-opt operator of Lin (1965) and the relocate operator of 

Savelsbergh (1992). Moreover, two inter-route operators are applied: the 2-opt* operator of Potvin and 

Rousseau (1995), and the relocate operator of Savelsbergh (1992). We note that the 2-opt* operator is 
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applied only between the CVs or between the AFVs routes (including the alternative fuel station 

nodes). To accept new solutions during local search, first improvement strategy is applied. This is 

done by generating all possible neighbors of the current solution, using the current local search 

operator, until an improving solution is located. If no improving solution is found, the next local 

search operator is applied. If all local search operators are tried and no improving solution is found, 

the procedure terminates and the current solution is returned. In addition, our selection of the local 

search operator (I1, I2, I3 and I4) is distinguished by using a roulette wheel selection mechanism, 

based on the performance score of the operator, instead of random selection, as described in 

subsection 4.4. This procedure can achieve a balance between the quality of the solution and run time.   

After processing the neighborhood moves, some recharging stations nodes may become redundant 

in the solution, and the current solution may need recharging station node(s). Thus, two operators 

adopted from Schneider et al. (2014) are also used, namely remove and insert station operators as 

described next.  

Remove station (RS): This operator checks at each route in a solution each pair of nodes (i, j). If the 

refueling level in the tank at node 𝑖 is enough to visit directly node 𝑗, the refueling station node 

between them is then deleted.  

Insert station (IS): This operator considers all nodes (𝑖, 𝑗) of each AFV route (∀ 𝑖, 𝑗 ∈ 𝑁), such that if 

the remaining fuel level in the tank of the vehicle 𝑘 at node 𝑖 is not enough to visit directly node 𝑗, an 

AFS node  is inserted. The insertion is done by finding the nearest refueling station to the current node 

𝑖. We note that by each visit of refueling station, the tank of the vehicle 𝑘 is refueled to its maximum 

level.  

4.4. Adaptive weight adjustment procedure 

Our ALNS uses five removal operators, four re-insertion and four local search operators. We 

select an appropriate operator at each iteration, using a roulette wheel selection mechanism. As in 

Ropke and Pisinger (2006a), the probability of choosing operator 𝑑 at iteration 𝑡, is defined by 𝑃𝑑
𝑡+1= 

𝑃𝑑
1(1- 𝑟𝑝) + 𝑟𝑝𝜋𝑖/𝜔𝑖, where 𝑟𝑝 is the roulette wheel parameter, 𝜋𝑖 is the score of an operator 𝑖, and 𝜔𝑖 is 

the number of times the operator i has been used in the last 100 iterations. Moreover, the score of an 

operator is increased according to the following criteria: i) the score is increased by 𝜋1, if the existing 

operator finds a new best solution; ii) the score is enhanced by 𝜋2, if it locates a better solution than 

the current; iii) if the current operator finds a feasible solution, which is non-improving, the scores of 

operators are increased by 𝜋3. After 100 iterations, the weights are adjusted using the scores obtained. 

4.5. Removal and insertion operators 

At each iteration, a set of nodes/users is selected from a current solution x and added to a list L by 

removal operators. Our five removal operators (R1 to R5) are adopted from Masmoudi et al. (2016), 

and are applied to destroy the current partial solution 𝑥. These operators are: random-users removal 

(R1), path-removal (R2), time-oriented removal (R3), related removal (R4), and distance-oriented 

removal (R5).  
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Also, in our ALNS, four insertion operators (P1 to P4) are implemented to reinsert the removed 

users to form a new solution, based on Masmoudi et al. (2016). These operators are: basic greedy 

insertion (P1), best position inter-route insertion (P2), sorting time insertion (P3), and best position 

intra-route insertion (P4). For a detailed description of these removal and insertion operators, the 

reader is referred to Masmoudi et al. (2016). 

4.6. Evaluation function 

We evaluate each solution by the following evaluation function based on Parragh (2011), and 

Masmoudi et al. (2018b): 𝑓(𝑠) = 𝑐(𝑠) + ∑ 𝛼𝑞𝑒(𝑠) + 𝛽𝑑(𝑠) + 𝛾𝑤(𝑠) + 𝜏𝑎(𝑠) + 𝑜(𝑠)3
𝑟=0 . The term 

c(s) gives the routing cost of solution s. Moreover, the terms 𝑞𝑟(𝑠), 𝑑(𝑠), 𝑤(𝑠), 𝑎(𝑠) and 𝑜(𝑠) 

represent the load, duration, time window, ride time and fuel violations, respectively. The violations 

are calculated as follows: 𝑞𝑟(𝑠)=∑ (𝑑𝑖
𝑟2𝑛

𝑖=1 − 𝑄𝑟)+, 𝑑(𝑠)=∑ (𝐵𝑒 −𝐾
𝑘=1 𝐵𝑑−𝑇𝑚𝑎𝑥)+, 𝑤(𝑠)=∑ (𝐵𝑖

2𝑛
𝑖=1 -

 𝑇𝑖
+)+and 𝑎(𝑠)= ∑ (𝑙𝑖

𝑛
𝑖=1 − 𝐿𝑚𝑎𝑥)+. Note that these terms are applied only for all i ∈ N where 𝑥+= 

{0,𝑥} and 𝐾 is the set of the fleet size composed by the CVs and AFVs. The term o(s) is computed as 

follows: 𝑧𝑖=𝑧𝑖−1-𝐹𝑅𝑖𝑗*𝑐𝑖−1,𝑖, if 𝑖 ∈ 𝑉\𝐹 and 𝑧𝑖=𝐻, if 𝑖 ∈ 𝐹′. Binary variable 𝑜(𝑠) is equal to 0 if 𝑧𝑖 ≥

0, ∀ 𝑖 ∈ 𝑉\𝐹 and 1 otherwise. The associated penalty parameters 𝛼, 𝛽, 𝛾 and 𝜏 are dynamically 

adjusted during the search (as in Parragh et al., 2010 and Cordeau and Laporte, 2003). We note that a 

solution s can only become a new best solution if 𝑞𝑟(𝑠)=𝑑(𝑠)= 𝑤(𝑠)= 𝑎(𝑠)= 𝑜(𝑠)= 0. 

5. Computational experiments 

In this section, we present the details of the results obtained by our proposed algorithms. All 

algorithms are implemented in C language and performed on a configuration Intel Core i7-5555U 3.14 

GHz and 8 GB RAM. 

5.1. Data and experimental setting 

Our generated small-medium dataset instances are based on the benchmark instances generated by 

Parragh et al. (2012) for the HDARP. These instances are divided into three sets (U, E, I), which have 

been developed based on the instances of Cordeau and Laporte (2003) for the standard DARP with 

heterogeneous vehicles and users. Two types of vehicles (T1 and T2) for each of the AFVs and CVs 

per instance are considered with four distinct resources identified in each vehicle. These include staff 

seats, patient seats, stretchers and wheelchair places. For each vehicle kind (AFV and CV), type T1 

has a capacity of 1 staff seat, 6 patient seats, 0 stretchers and 1 place for a wheelchair; while type T2 

has a capacity of 2 staff seats, 1 patient seat, 1 stretcher, and 1 place for a wheelchair. Table1 presents 

the structure of the vehicle fleet and provides a general view related to the way of conducting and 

managing the various kinds of users in each of the three instance sets. The number of requests in these 

instances ranges from 16 to 96, while the number of vehicles is between 2 and 8 with a single depot. 

The maximum duration of the working day ranges between 240 and 720 minutes (depending of the 

instance), and the maximum ride time 𝐿𝑚𝑎𝑥= 30 minutes. The time window length is equal to 30 

minutes and the fixed service time duration 𝑠𝑖 is set to three minutes. 
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 Table 1 

 Probabilities used to generate instances as in Parragh et al. (2012) 

Instance 

Set 

User request probabilities Probability for a 

companion (%) 

Vehicle fleet 

% Seat % stretcher % wheelchair     

U 0.50 0.25 0.25 0.00 Mixed (CVs (T1, T2) ;AFVs(T1,T2)) 

E 0.25 0.25 0.50 0.10 Mixed (CVs (T1,T2) ; AFVs(T1,T2))  

I 0.83 0.11 0.06 0.50 Mixed (CVs (T1,T2) ; AFVs(T1,T2))  

We suppose that at the beginning of the working day, each available vehicle type is fully refueled. 

We decided to set the number of recharging stations equal to the number of vehicles in each instance. 

The approximation of the number of recharging stations is based on the generated instances of 

Erdoğan and Miller-Hooks (2012), in which some instances that consist of three vehicles, the number 

of recharging stations is considered equal to three. Based on how Cordeau (2006) defines the 

coordinates of pickup and delivery nodes of users, all coordinates of AFSs are randomly generated in a 

specific square area (i.e., [−10,10]2). To determine the number of CVs and the AFVs used in our 

problem, we apply the procedure of Goeke and Schneider (2015). First, we start with an overall 

vehicle number 𝐾 that is associated with the number of CVs found in the HDARP instances Parragh et 

al. (2012), and then CVs are progressively replaced with AFVs until the number of the AFVs is equal 

to the number of CVs divided by two. 

For the large size instances, we adopt the generation idea of the benchmark instances of Masmoudi 

et al. (2018b). These instances are divided into three data sets (𝐴0, 𝐴1 and 𝐴2), as done in Braekers 

and Kovacs (2016). In the benchmark instances of Masmoudi et al. (2018b), each data set 𝐴0, 𝐴1 and 

𝐴2 contains between 20 and 100 requests. The data set 𝐴0 is characterized by that the locations of the 

pickup and delivery of the users are distributed randomly, while the data sets 𝐴1 and 𝐴2 have 

clustered locations. A time window of 15 minutes is specified for the delivery/pickup node, in case of 

outbound/inbound request. In addition, the minimum ride time is assumed to be 60 minutes, while the 

maximum ride time is assumed to be double the direct ride time, i.e., 𝐿𝑖
𝑚𝑎𝑥= max{60, 2 × 𝑡𝑖,𝑛+𝑖}.  In 

addition, for each user a service time of three minutes is needed to complete the service. The number 

of refueling stations in each instance is equal to 0.3*|𝑛|. The limited route duration ranges between 480 

min and 720 min. Accordingly, we generated large size instances containing between 100 and 200 

requests. For the number of vehicles of each instance, we use the same available number of vehicles in 

Braekers and Kovacs (2016), unless it is not enough to serve 𝑛 users. For more details, we refer to 

Braekers and Kovacs (2016) and Masmoudi et al. (2018b). In addition, to determine the number of 

CVs and AFVs used in each instance, we apply the same procedure as defined previously. Different 

types of users and vehicles are considered as explained previously. 

5.2. Parameter setting 

This section explains the sensitivity analysis to set the parameters of our algorithm. Mainly, the 

parameters are chosen based on recommendations from the literature (e.g., Ropke and Pisinger, 

2006a,b, Demir et al., 2012; Leung et al., 2013; Masmoudi et al., 2016) and our preliminarily 

experiments. We initialize 𝑃𝑑
0= 0.10 for the removal operators, 0.125 for the insertion operators, 𝑟𝑝= 
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0.7, 𝜋1=15, 𝜋2=5, 𝜋3=10, as suggested by Masmoudi et al.(2016), the temperature value 𝑇𝑚𝑎𝑥=25 as 

suggested by Leung et al.(2013), since it is enough to accept a deteriorating solution and 𝛼 =0.99975 

as suggest by Ropke and Pisinger (2006a,b) and Demir et al.(2012). A summary of all used parameters 

in our hybrid ALNS is shown in Table 13  in the Appendix. 

To study the performance of different removal and reinsertion operators of the ALNS, we use a 

similar tuning methodology as Demir et al.(2012). Table 2 shows the percentage of time each operator 

is used by our algorithm within 5 minutes of runtime. The numbers in brackets refer to the total time 

spent to run each operator. The results are obtained considering five instances from each data set (U, 

E, I), with different levels of heterogeneity. Each instance is computed ten times. We report the overall 

average of average results values (Avg) for each data set (U, E, I) and for all instances in the last line 

of Table 2. 

 Table 2  

 Percentage of use within 5 minutes of runtime and the computational time needed by each operator 

Inst. 

(Data) 

Removal operators   Insertion operators 

R1 R2 R3 R4 R5   P1 P2 P3 P4 

a4-16(U) 22.27(0.0) 15.15(0.0) 22.67(0.0) 18.62(0.0) 21.29(0.0)  26.80(0.0) 17.74(0.0) 29.22(0.0) 26.26(0.0) 

a5-40(U) 21.18(0.0) 26.72(0.0) 24.79(0.0) 8.85(0.0) 18.47(0.0)  37.50(0.0) 13.75(0.0) 21.57(0.0) 27.19(0.1) 

a5-60(U) 25.17(0.1) 21.07(0.0) 13.72(0.0) 17.34(0.0) 22.70(0.0)  28.85(0.0) 15.63(0.0) 24.54(0.0) 30.99(0.2) 

a6-60(U) 22.28(0.0) 15.25(0.0) 22.71(0.0) 18.40(0.0) 21.36(0.1)  25.64(0.2) 18.45(0.1) 25.02(0.0) 30.91(0.4) 

a7-56(U) 18.51(0.0) 23.85(0.0) 21.09(0.0) 21.52(0.0) 15.02(0.0)  40.34(0.1) 18.32(0.1) 15.86(0.1) 25.49(0.5) 

Avg (U) 21.88(0.0) 20.41(0.0) 21.00(0.0) 16.95(0.0) 19.77(0.0)   31.83(0.1) 16.78(0.0) 23.24(0.0) 28.17(0.2) 

a6-48(E) 18.21(0.0) 29.03(0.0) 19.99(0.0) 21.13(0.0) 11.65(0.0)  31.48(0.3) 19.85(0.0) 18.79(0.1) 29.88(0.4) 

a6-72(E) 24.35(0.0) 29.17(0.0) 16.90(0.0) 10.70(0.0) 18.88(0.0)  43.24(0.1) 18.77(0.1) 20.26(0.1) 17.73(0.2) 

a7-70(E) 20.26(0.0) 17.17(0.0) 25.32(0.0) 14.03(0.0) 23.22(0.0)  36.17(0.5) 20.49(0.1) 17.64(0.1) 25.51(0.4) 

a8-64(E) 20.15(0.0) 24.70(0.0) 11.60(0.1) 19.81(0.1) 23.74(0.0)  26.90(0.0) 22.08(0.0) 20.05(0.1) 30.96(0.6) 

a8-96(E) 22.95(0.0) 19.77(0.1) 16.13(0.2) 24.75(0.0) 16.41(0.1)  31.04(0.1) 19.82(0.1) 20.34(0.3) 28.82(0.2) 

Avg (E) 21.18(0.0) 23.97(0.0) 17.99(0.1) 18.08(0.0) 18.78(0.0)   33.77(0.2) 20.20(0.1) 19.42(0.1) 26.58(0.4) 

a6-48(I) 22.89(0.1) 25.32(0.1) 22.29(0.1) 10.92(0.1) 18.58(0.0)  33.39(0.6) 23.37(0.1) 22.20(0.0) 21.03(0.4) 

a6-60(I) 23.33(0.1) 16.57(0.1) 14.40(0.1) 19.85(0.2) 25.83(0.1)  25.35(0.9) 25.49(0.1) 18.57(0.0) 30.59(0.8) 

a7-56(I) 25.34(0.1) 21.45(0.2) 15.97(0.1) 18.86(0.1) 18.38(0.1)  26.59(0.7) 25.18(0.2) 18.63(0.2) 29.59(0.6) 

a8-64(I) 27.43(0.1) 20.61(0.2) 14.01(0.1) 20.19(0.1) 17.76(0.1)  30.17(0.9) 26.00(0.4) 20.47(0.2) 23.38(0.7) 

a8-80(I) 27.53(0.1) 22.02(0.3) 2.99(0.2) 27.91(0.3) 19.55(0.1)  32.77(1.4) 24.81(0.6) 17.21(0.2) 25.20(1.1) 

Avg (I) 25.30(0.1) 21.19(0.2) 13.93(0.1) 19.55(0.2) 20.02(0.1)   29.65(0.9) 24.97(0.3) 19.42(0.1) 25.96(0.7) 

Avg (UEI) 22.79(0.0) 21.86(0.1) 17.64(0.1) 18.19(0.1) 19.52(0.0)   31.75(0.4) 20.65(0.1) 20.69(0.1) 26.90(0.4) 

The results in Table 2 show that removal operators have similar frequency of use in many cases. 

This is due to applying two operators in the same iteration for most of the cases.  Moreover, P1 and P4 

operators (as indicated in bold) are applied to some extent more than the other two operators. 

Therefore, by comparison with the rest of operators in terms of CPU time, P1 and P4 are significantly 

used more than the other operators. 

Table 3 indicates the number of times an operator has found the best and a better solution than the 

current one, respectively; i.e., the values in brackets refer to the number of times the current solution 

has been improved, but has not become a best solution. We report the overall average of average 

results values (Avg) for each data set (U, E, I) and for all instances in the last line of Table 3. 
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        Table 3  

                    Number of global best and number of improved solutions attained by 

                    each operator within 5 minutes of runtime 

Inst. 

(Data) 
Removal operators    Insertion operators 

  R1 R2 R3 R4 R5   P1 P2 P3 P4 

a4-48 (U) 27(179) 13(193) 14(215) 31(71) 20(189)  40(51) 16(393) 8(318) 36(85) 

a5-50 (U) 20(170) 20(94) 17(219) 27(239) 17(125)  31(158) 19(258) 10(285) 40(146) 

a6-72 (U) 27(62) 30(200) 17(84) 16(225) 13(156)  32(94) 18(194) 11(251) 39(188) 

a7-56 (U) 28(118) 22(183) 18(212) 11(239) 19(211)  31(249) 14(243) 18(259) 37(212) 

a8-80 (U) 15(53) 27(91) 16(225) 25(241) 17(153)  23(166) 19(308) 21(245) 37(44) 

Avg (U) 23(116) 22(152) 16(191) 22(203) 17(167)  31(144) 17(279) 14(272) 38(135) 

a4-16 (E) 26(130) 18(110) 17(133) 22(232) 21(213)  41(99) 21(300) 12(382) 26(37) 

a6-48 (E) 26(101) 20(167) 22(114) 10(151) 22(100)  25(143) 28(195) 15(222) 32(73) 

a7-56 (E) 22(117) 16(80) 24(58) 16(228) 29(81)  38(44) 6(196) 14(211) 42(113) 

a7-84 (E) 21(70) 18(136) 26(40) 29(207) 25(188)  36(161) 13(190) 8(130) 42(160) 

a8-96 (E) 18(131) 29(229) 18(122) 17(183) 18(118)  34(193) 8(125) 17(248) 41(217) 

Avg (E) 23(110) 20(144) 21(93) 19(200) 23(140)  35(128) 15(201) 13(239) 37(120) 

a4-24 (I) 25(212) 17(194) 21(114) 23(160) 14(86)  35(150) 16(208) 25(310) 24(98) 

a5-60 (I) 27(127) 24(133) 20(138) 14(219) 15(76)  29(155) 15(286) 28(197) 28(55) 

a7-56 (I) 22(203) 7(159) 11(189) 19(157) 25(64)  26(256) 25(131) 22(213) 27(172) 

a7-84 (I) 19(209) 27(233) 25(131) 14(87) 15(31)  32(205) 28(234) 17(176) 23(76) 

a8-64 (I) 23(130) 15(237) 24(116) 16(140) 22(152)  29(178) 24(261) 11(273) 36(63) 

Avg (I) 23(176) 18(191) 20(138) 17(153) 18(82)  30(189) 22(224) 21(234) 28(93) 

Avg (UEI) 23(134) 20(163) 19(141) 19(185) 19(130)   32(153) 18(235) 16(248) 34(116) 

As illustrated by the obtained results in Table 3, all removal operators seem to take part in 

generating better solutions. Even though the ratio of obtaining better or best results changes between 

operators, the use of various neighborhood structures might help the search towards global optima. By 

looking at the literature on neighborhood structures (see, e.g., Ropke and Pisinger 2006a, b; and Demir 

et al., 2012), it is well known that some operators might perform well on different instances of the 

same problem. On the other hand, with respect to the insertion operators, we observe that some 

insertion operators (i.e., P2 and P3) do not often contribute much. Nevertheless, as indicated in the 

literature, ALNS might need various operators as they are beneficial for obtaining better solutions in 

the following iterations. This is evident by the large number of times these two operators could 

improve the current solution (as shown from the values between brackets). Improving the current 

solution is obviously beneficial for the overall performance of the ALNS and to avoid being trapped in 

local optima. Consequently, it is deduced that there is a positive contribution from all operators, which 

helps in acquiring high quality solutions for the MF-HDARP. 

As Pisinger and Ropke (2007) indicated, it is not essential to delete a large number of users 𝑢 in 

the removal phase, because the deletion of a specific number of users will have a considerable 

influence on the results. Accordingly, the number of deleted users 𝑢 is chosen randomly in the interval 

[𝑢𝑚𝑖𝑛= 0.175.𝑛; 𝑢𝑚𝑎𝑥= 0.35.𝑛]. As demonstrated next, Table 4 gives an idea about the results of the 

parameter tuning of 𝜋1, 𝜋2 and 𝜋3. After considering the combination of seven different values, the 

tuning sequence is manifested by the arrangement of the parameters, and it is displayed in the first 

line. To find the best set of parameters, we tested five instances from each data set (U, E, I).  These 

instances have a number of requests ranging from small to large and different levels of heterogeneity. 

On each instance, we calculate the average solution value for ten runs obtained using each 

combination of parameters (𝜋1, 𝜋2, 𝜋3).  
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Table 4 

Effect of  𝜋1, 𝜋2 and  𝜋3 on the solution quality 

Inst. (Type)   (10, 5,1) (15, 10,5) (1, 1,1) (1, 5,5) (1,5, 10) (1, 10, 5) (15, 5,10) (10, 1,5) (5, 1,5) 

a4-48 (U)  758.20 756.86 759.05 756.52 758.76 757.92 757.45 758.13 757.25 

a5-50 (U)  725.44 726.68 727.97 727.01 728.46 725.95 725.08 725.71 728.82 

a6-72 (U)  924.90 924.05 927.46 924.15 927.53 926.83 929.15 927.78 928.12 

a7-56 (U)  717.69 715.92 718.03 715.12 718.72 716.45 713.58 719.02 719.15 

a8-80 (U)  1001.88 1009.72 1010.18 1003.09 1011.01 1009.43 1009.78 1002.63 1011.62 

a4-16 (E)  312.14 310.18 312.59 309.90 311.14 312.18 309.86 312.49 310.97 

a6-48 (E)  610.05 611.70 609.44 610.70 609.87 610.93 608.35 607.75 609.96 

a7-56 (E)  709.68 706.13 712.18 707.46 712.68 706.99 707.46 708.87 713.08 

a7-84 (E)  1157.61 1163.63 1162.96 1160.47 1162.36 1162.02 1164.50 1161.16 1161.92 

a8-96 (E)  1291.24 1291.88 1292.17 1293.20 1292.33 1290.98 1291.24 1290.62 1292.60 

a4-24 (I)  389.01 390.35 388.88 389.97 389.07 389.16 387.68 387.92 389.34 

a5-60 (I)  784.90 783.86 786.38 786.33 785.71 783.82 786.81 783.81 784.46 

a7-56 (I)  723.52 724.28 724.25 722.92 724.01 723.96 727.63 722.95 722.59 

a7-84 (I)  1113.58 1112.99 1112.15 1119.30 1114.08 1120.12 1112.84 1120.13 1114.83 

a8-64 (I)   739.86 745.94 740.62 738.96 738.99 745.39 736.02 744.27 736.03 

Due to the help of diversification techniques, our setting of the parameters 𝜋1, 𝜋2 and 𝜋3  is 

consistent with the expected setting 𝜋1 ≥ 𝜋3 ≥ 𝜋2 for rewarding a good performance of an operator. 

5.3. Computational analysis  

This section presents and compares the detailed results obtained by our hybrid ALNS tested on the 

benchmark HDARP instances of Masmoudi et al. (2017) and on our newly generated instances of the 

MF-HDARP. The detailed results found by our algorithm are available on http://www.mf-mp-hdarp-

88.webself.net. 

5.3.1 Results on the heterogeneous DARP instances of Masmoudi et al. (2017) 

To evaluate the performance of our algorithm, we tested it on the large sized benchmark HDARP 

instances of Masmoudi et al. (2017) having up to 13 vehicles and 144 requests. By replacing our 

AFVs fleet by CVs, the vehicles do not need to be refueled, so in this case we obtain vehicles of the 

same type (i.e., all are CVs). Thus, our MF-HDARP is transformed to classical HDARP. Tables 5 and 

6 present the detailed results of our algorithm on the large instances of Masmoudi et al. (2017) for the 

HDARP.  Three data set benchmark instances (U, E and I) are used. Each one contains 20 instances. 

The data set U contains homogenous users and vehicles. Data set E is characterized by heterogeneous 

users and homogenous vehicles, while data set I contains heterogeneous users and heterogeneous 

vehicles. We compare our hybrid ALNS with the current state-of-art algorithms in the literature on the 

HDARP, namely the hybrid Genetic Algorithm (hybrid GA) of Masmoudi et al. (2017) and the 

Evolutionary Variable Neighborhood Search (EVO-VNS1) of Masmoudi et al.(2018b). We note that 

we have chosen only EVO-VNS1 since it presents the best approach compared to the other EVO-VNS 

versions (i.e., EVO-VNS2 and EVO-VNS3) developed by Masmoudi et al.(2018b). All algorithms 

(including the hybrid GA and EVO-VNS1) are applied for five runs as done in Masmoudi et al. (2017). 

In Tables 5, 6, and 7, column “BKS” refers to the best-known solution. Columns “Best (%)” and 

“Avg(%)” represent, respectively, the percent gap (deviation) from the best known solution (average 

solution) in five runs. It should also be noted that to obtain a fair comparison with respect to the 

computational time, we have run the GA of Masmoudi et al. (2017) on the same machine used in this 

http://www.mf-mp-hdarp-88.webself.net/
http://www.mf-mp-hdarp-88.webself.net/
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work with maximum runtime as a unified stopping criterion, which is equal to 30 minutes for each 

instance for all algorithms.  

Table 5  

Comparison of our hybrid ALNS with the EVO-VNS1 of Masmoudi et al.(2018b) on 

data set E   

Inst. BKSa 
  EVO-VNS1   Hybrid ALNS 

  Best Best% Avg Avg%   Best Best% Avg Avg% 

R1a 195.97 
 

195.97 0.00 195.97 0.00  195.97 0.00 195.97 0.00 

R2a 336.34 
 

336.34 0.00 336.34 0.00  336.34 0.00 336.34 0.00 

R3a 586.18 
 

586.18 0.00 587.15 0.17  586.18 0.00 586.18 0.00 

R4a 639.03 
 

639.03 0.00 642.33 0.52  639.03 0.00 642.16 0.49 

R5a 713.09 
 

713.09 0.00 716.66 0.50  713.09 0.00 716.38 0.46 

R6a 882.11 
 

882.11 0.00 883.23 0.13  882.11 0.00 883.86 0.20 

R7a 310.96 
 

310.96 0.00 313.13 0.70  311.55 0.19 312.67 0.55 

R8a 553.82 
 

554.06 0.04 556.40 0.47  554.50 0.12 556.26 0.44 

R9a 744.34 
 

744.64 0.04 748.46 0.55  740.36 -0.53 746.92 0.35 

R10a 963.08 
 

963.93 0.09 964.56 0.15  958.05 -0.52 963.22 0.01 

R1b 190.39 
 

190.39 0.00 190.39 0.00  190.39 0.00 190.39 0.00 

R2b 312.92 
 

312.92 0.00 312.92 0.00  312.92 0.00 312.92 0.00 

R3b 551.95 
 

551.95 0.00 553.18 0.22  551.95 0.00 551.95 0.00 

R4b 605.29 
 

605.29 0.00 608.52 0.53  605.29 0.00 605.29 0.00 

R5b 640.50 
 

640.50 0.00 642.09 0.25  641.00 0.08 642.36 0.29 

R6b 832.53 
 

832.79 0.03 835.85 0.40  832.53 0.00 835.27 0.33 

R7b 276.17 
 

276.17 0.00 276.60 0.16  276.17 0.00 276.93 0.28 

R8b 529.96 
 

529.96 0.00 531.79 0.35  530.39 0.08 531.31 0.25 

R9b 698.13 
 

698.13 0.00 700.36 0.32  698.13 0.00 699.23 0.16 

R10b 902.17  903.28 0.12 904.17 0.22  898.04 -0.46 903.27 0.12 

E 573.25   573.38 0.02 575.01 0.28   572.70 -0.05 574.44 0.20 
   aBest known solutions provided from Masmoudi et al.(2018b) 

The results in Table 5 show that our hybrid ALNS is competitive with the EVO-VNS1 algorithm 

of Masmoudi et al. (2018b) and provides good results. Regarding the number of best solutions in five 

runs (column Avg), it is clear that our hybrid ALNS outperforms the EVO-VNS by providing 13 best 

average solutions compared to only three best averages for EVO-VNS1. While for the number of best 

solutions over five runs (column Best), both methods provide the same number with four solutions 

each. However, three best new solutions are obtained by our ALNS for the instances R9a, R10a and 

R10b. For the average deviation of the average results from the best-known solution, the gap is very 

small, where 0.20% is obtained by our ALNS, compared to 0.28% achieved by the EVO-VNS1. For 

the average deviation of the best result over five runs, our hybrid ALNS improves the results with 

0.05%.  

Table 6  

Comparison of our hybrid ALNS with the hybrid GA of Masmoudi et al. (2017) on 

 data set U   

Inst. BKS Hybrid GA   Hybrid ALNS 

    Best 
Best 

% 
Avg Avg% 

  
Best Best % Avg Avg% 

R1a 190.02 190.02 0.00 190.02 0.00  190.02 0.00 190.02 0.00 

R2a 301.34 301.34 0.00 301.34 0.00  301.34 0.00 301.34 0.00 

R3a 532.00 532.00 0.00 534.08 0.39  532.00 0.00 532.47 0.09 

R4a 570.25 570.25 0.00 571.45 0.21  570.25 0.00 571.61 0.24 

R5a 626.93 628.48 0.25 631.39 0.71  627.77 0.13 628.33 0.22 

R6a 785.26 787.41 0.27 788.52 0.42  785.51 0.03 787.60 0.30 

R7a 291.71 291.71 0.00 291.79 0.03  291.96 0.09 292.47 0.26 
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R8a 487.84 488.89 0.22 491.53 0.76  488.71 0.18 489.47 0.33 

R9a 658.31 658.31 0.00 660.24 0.29  659.27 0.15 660.09 0.27 

R10a 851.82 853.16 0.16 859.91 0.95  853.47 0.19 854.67 0.33 

R1b 164.46 164.46 0.00 164.46 0.00  164.46 0.00 164.46 0.00 

R2b 295.66 295.66 0.00 295.66 0.00  295.65 0.00 295.65 0.00 

R3b 484.83 484.83 0.00 487.23 0.50  485.19 0.07 485.82 0.21 

R4b 529.33 531.86 0.48 532.19 0.54  530.46 0.21 530.79 0.28 

R5b 577.29 579.03 0.30 582.06 0.83  577.41 0.02 579.05 0.30 

R6b 730.69 737.03 0.87 741.06 1.42  731.93 0.17 733.91 0.44 

R7b 248.21 248.21 0.00 248.29 0.03  248.67 0.18 248.99 0.31 

R8b 458.73 461.11 0.52 463.32 1.00  459.65 0.20 460.00 0.28 

R9b 593.49 593.49 0.00 595.37 0.32  593.80 0.05 594.64 0.19 

R10b 785.68 791.01 0.68 793.64 1.01  786.06 0.05 788.96 0.42 

U 508.19 509.41 0.19 511.18 0.47   508.68 0.09 509.52 0.22 
                                                  aBest known solutions provided from Masmoudi et al. (2017) 

Again, observing the detailed results in Table 6, our hybrid ALNS obtains good results compared 

to the hybrid GA of Masmoudi et al. (2017) . The average gap to the best solution achieved by our 

hybrid ALNS algorithm amounts to 0.09%, compared to 0.19% for the hybrid GA. The average 

deviation of five runs for the hybrid ALNS represents 0.22%, while 0.47% is obtained by the hybrid 

GA.  

Table 7 

Comparison of our hybrid ALNS with the hybrid GA of Masmoudi et al. (2017) on 

 data set I   

Inst. BKS Hybrid GA   Hybrid ALNS 

    Best Best % Avg Avg%   Best Best % Avg Avg% 

R1a 190.02 193.27 0.00 193.27 0.00  193.27 0.00 193.27 0.00 

R2a 301.34 319.43 0.00 319.87 0.14  319.43 0.00 319.43 0.00 

R3a 532.00 584.84 0.00 586.11 0.22  584.05 -0.13 585.05 0.04 

R4a 570.25 591.24 0.00 593.56 0.39  590.57 -0.11 591.39 0.03 

R5a 626.93 677.50 0.00 679.11 0.24  677.72 0.03 678.26 0.11 

R6a 785.26 838.26 0.00 843.27 0.60  836.70 -0.19 838.76 0.06 

R7a 291.71 328.10 0.00 329.12 0.31  327.68 -0.13 328.97 0.26 

R8a 487.84 552.35 0.00 556.46 0.74  551.01 -0.24 553.47 0.20 

R9a 658.31 713.55 0.00 718.55 0.70  713.74 0.03 714.65 0.15 

R10a 851.82 932.83 0.00 937.23 0.47  927.75 -0.54 933.22 0.04 

R1b 164.46 177.57 0.00 177.57 0.00  177.57 0.00 177.57 0.00 

R2b 295.66 304.02 0.00 304.02 0.00  304.02 0.00 304.02 0.00 

R3b 484.83 551.13 0.00 555.19 0.74  548.96 -0.39 550.85 -0.05 

R4b 529.33 557.99 0.00 559.12 0.20  555.76 -0.40 557.48 -0.09 

R5b 577.29 628.62 0.00 630.59 0.31  626.03 -0.41 628.02 -0.09 

R6b 730.69 794.03 0.00 797.57 0.45  790.93 -0.39 794.82 0.10 

R7b 248.21 297.41 0.00 297.51 0.03  295.03 -0.80 297.10 -0.10 

R8b 458.73 517.26 0.00 520.01 0.53  514.00 -0.63 517.20 -0.01 

R9b 593.49 662.75 0.00 666.44 0.56  659.86 -0.44 662.39 -0.05 

R10b 785.68 865.07 0.00 873.18 0.94  860.23 -0.56 864.81 -0.03 

I 508.19 554.36 0.00 556.89 0.38   552.72 -0.27 554.54 0.03 

                                a Best known solutions provided by Masmoudi et al.(2017) 

However, as indicated by the results in Table 7, our hybrid ALNS is more efficient than the hybrid 

GA in the case where heterogeneous users and vehicles are used. The average deviation of the average 

results derived from the best-known solutions in data sets I is 0.03% for our hybrid ALNS, compared 

to 0.38% for the Hybrid GA. In addition, our hybrid ALNS improves the results of Masmoudi et al. 

(2017) in the average deviation from the best result over five runs by 0.27%. Also, our hybrid ALNS 

provides 14 new best solutions compared to only two best solutions for the hybrid GA (column Best). 
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In addition, our hybrid ALNS is able to provide 17 best average solutions, compared to the hybrid GA 

(column Avg).  

To sum up, it seems from the detailed results of Tables 5 to 7 that our hybrid ALNS is more 

effective on data set E (with heterogeneous users and homogeneous vehicles) and I (with 

heterogeneous users and heterogeneous vehicles). This is apparently due to the additional 

diversification and intensification mechanisms used in our algorithm, which seem to contribute 

positively to improving the quality of solutions. 

5.3.2 Results on the new MF-HDARP instances 

Since we used benchmark instances from the literature to test our method, we implemented the 

following approach. For the small-medium instances, our hybrid ALNS was run for a maximum of 5 

minutes on each instance. Then, the average of five runs as well as the best solution in five runs 

obtained after 2 mins, 2.5 mins, 3 mins, 3.5 mins and 4 mins are recorded and the best solution values 

are compared to the best solution found after 5 minutes. Similarly, for the large size instances, our 

hybrid ALNS was run for a maximum of 60 minutes on each instance. Then, the best and average 

solution values obtained after 20 mins, 25 mins, 30 mins, 35 mins and 40 mins in 5 runs are recorded 

and compared to the values found after 60 minutes. We present the results of our algorithm on the 

small-medium and large MF-HDARP instances in Tables 8 and 9, respectively. The columns “Best%” 

and “Avg%” present the percentage of deviation from the best (“Best”) and average (“Avg”) solution 

values found by our algorithm after 5 minutes for the small-medium instances, and after 60 minutes 

for the large instances. Each instance is computed five times using each algorithm. 

    Table 8 

    Results for small/medium size instances 

Inst. 
ALNS (5 min) ALNS (2 min) ALNS (2.5 min) ALNS (3 min) ALNS (3.5 min) ALNS (4  min) 

Best Avg Best% Avg%   Best% Avg%   Best% Avg%   Best% Avg%   Best% Avg% 

U 648.70 648.82  20.51 20.53  9.40 9.42  4.25 4.26  1.55 1.56  0.18 0.19 

E 657.01 657.25  26.47 26.52  13.55 13.59  6.91 6.94  3.54 3.57  1.36 1.39 

I 657.69 657.85  23.21 23.24  11.26 11.28  5.82 5.84  2.41 2.42  0.51 0.53 

Avg 654.47 654.64   23.40 23.43   11.40 11.43   5.66 5.68   2.50 2.52   0.68 0.70 

Table 8 shows that after 2 minutes the average deviation from the best solution (obtained after 5 

mins) is 23.43 percent. Nevertheless, after 4 minutes, the average deviation reduces to 0.70 percent. 

Furthermore, we can observe that the gap deviation (column Best%) progressively decreases as the time 

limit increases. That is, the gap is 12.00% (23.40% - 11.40%) when the time limit increases from 2 mins 

to 2.5 mins, 5.74% (11.40% - 5.66%) when the time limit increases from 2.5 mins to 3 mins, and 3.16% 

(5.66% - 2.50%) when the time limit increases from 3 mins to 3.5 mins. However, a slight decrease in 

the gap with 1.82% (2.50% - 0.68%) is observed when the time limit increases from 3.5 mins to 4 mins. 

Table 9 

 Results for large size instances 

Inst. 
ALNS (60 min)   ALNS (20 min)   ALNS (25 min)   ALNS (30 min)   ALNS (35 min)   ALNS (40 min) 

Best Avg   Best% Avg%   Best% Avg%   Best% Avg%   Best% Avg%   Best% Avg% 

A0 2928.91 2963.78 
 

12.18 13.43 
 

4.16 5.28 
 

1.06 2.14 
 

0.08 1.14 
 

0.00 1.06 

A1 2969.22 3009.30 
 

21.98 23.59 
 

11.29 12.71 
 

5.22 6.54 
 

2.18 3.45 
 

0.61 4.39 

A2 3022.49 3057.36 
 

15.83 17.10 
 

6.98 8.11 
 

2.75 3.82 
 

0.97 2.01 
 

0.23 2.50 
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Avg 2973.54 3010.15   16.66 18.04   7.47 8.70   3.01 4.17   1.08 2.20   0.28 2.65 

Similar results are observed in Table 9, where it shows a progressive decrease in the change of gap 

(column Best%), with 9.19% (16.66% - 7.47%) when the time limit increases from 20 mins to 25 

mins, 4.46% (7.47% - 3.01%) when the time limit increases from 25 mins to 30 mins. However, a very 

slight decrease in the deviation is observed with 1.93% (3.01% - 1.08%) for the case when the time 

limit increases from 30 mins to 35 mins, and 0.80% (1.08% - 0.28%) when the time limit increases 

from  35 mins to 40 mins. 

Figures 1 and 2 summarize these findings, showing the decrease in the average GAP, while 

increasing the computational time. We can see that when increasing the computational time, the 

objective function converges. In addition, by using several instances with different characteristics as 

described in section 5.1, we can observe that our hybrid ALNS is efficient and robust, since it 

performs with similar quality on these instances, in different limits of computation time. 

 

Fig.1. Average gap with respect to the best solution found after five minutes for small/medium 

instances plotted against computing time 

 

Fig.2. Average gap with respect to the best solution found after 60 minutes for 

large instances plotted against computing time 

5.4. Study of the different algorithmic components of the hybrid ALNS 

In this section, we study the impact of our different components (i.e., different crossover operators 

and the local search procedure with its modified acceptance function) on exploring the search space 
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and enhancing the solution quality. For this purpose, some combinations of operators are compared, 

with respect to the standalone (improved) ALNS of Masmoudi et al. (2016), by incorporating different 

component(s) each time. The detailed results of this comparison are shown in Table11, where the large 

benchmark HDARP instances of Masmoudi et al. (2017) (Data set E) is used. First, in the combination 

“C1”, we apply the standalone (improved) ALNS of Masmoudi et al. (2016). The combination “C2” 

represents the combination of the (improved) ALNS with the local search procedure together with its 

acceptance function (Lines 15-19 of Algorithm 1). The combination “C3” represents the standalone 

(improved) ALNS using only one crossover operator (O1) (without the local search), while the 

combination “C4” applies three different crossover operators, instead of only one as in “C3”. The 

combination “C5” represents the combination “C2” by adding only one crossover operator. The 

combination “C6” represents the combination “C2” by adding two crossover operators (O1 and O2). 

The same for the combination “C7” but with using the two crossover operators (O1 and O3). While 

the last combination “C8” represents of the combination “C2” by adding three crossover operators, 

which reflects our hybrid ALNS described in Algorithm 1. We note that from “C2” to C8”, we apply 

the modified procedure of decreasing the temperature (steps 23-26). Table 10 summarizes these 

different combinations.  

Table 10 

 Different combination of the algorithmic components 

Comb.  Description 

C1 Standard (improved)ALNS of Masmoudi et al. (2016) 

C2 Standard (improved)ALNS of Masmoudi et al. (2016)+ local search procedure + modified acceptance function  

C3 Standard (improved)ALNS of Masmoudi et al. (2016)+one crossover operator (O1)+ modified acceptance function 

C4 Standard (improved)ALNS of Masmoudi et al. (2016)+ three crossover operators+ modified acceptance function 

C5 Standard (improved)ALNS of Masmoudi et al. (2016)+ one crossover operator + local search procedure + modified acceptance 

function 
C6 Standard (improved)ALNS of Masmoudi et al. (2016)+ two crossover operators (O1 and O2) + local search procedure + modified 

acceptance function 

C7 Standard (improved)ALNS of Masmoudi et al. (2016)+ two crossover operators (O1 and O3) + local search procedure + modified 
acceptance function 

C8 Standard (improved)ALNS of Masmoudi et al. (2016)+ three  crossover operators + local search procedure + modified acceptance 

function 

In Table 11, the columns “Best%” and “Avg%” represent the deviation gap from the best (“Best”) 

and average (“Avg”) results obtained by the EVO-VNS1 of Masmoudi et al. (2018b). The run time on 

each instance is limited to 30 minutes. The best and average result values of this table are shown in our 

website.  

Table 11 

Impact of different components on the solution quality  

Inst. EVO-VNS1 C1   C2   C3   C4   C5   C6   C7   C8   

  Best Avg Best % Avg% Best % Avg% Best % Avg% Best % Avg% Best % Avg% Best % Avg% Best % Avg% Best % Avg% 

R1a 195,97 195,97 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0.00 0.00 0.00 0,00 0,00 

R2a 336,34 336,34 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0.00 0.00 0.00 0,00 0,00 

R3a 586,18 587,15 0,24 0,56 0,24 0,50 0,23 0,52 0,21 -0,01 0,09 0,14 0.02 -0.09 0.08 -0.13 0,00 -0,17 

R4a 639,03 642,33 0,53 0,59 0,41 0,49 0,28 0,51 0,25 0,38 0,23 0,05 0.15 0.04 0.15 0.00 0,00 -0,03 

R5a 713,09 716,66 0,53 0,28 0,35 0,27 0,23 0,21 0,17 0,28 0,02 0,19 0.00 0.07 0.00 0.03 0,00 -0,04 

R6a 882,11 883,23 0,49 0,16 0,33 0,15 0,23 0,15 0,24 0,14 0,12 0,11 0.12 0.08 0.12 0.07 0,07 0,07 

R7a 310,96 313,13 0,27 0,17 0,27 0,17 0,27 0,17 0,27 0,03 0,26 0,11 0.25 0.03 0.25 -0.05 0,25 -0,15 

R8a 554,06 556,40 0,18 0,61 0,18 0,61 0,18 0,60 0,18 0,51 0,17 0,37 0.16 0.09 0.16 -0.01 0,16 -0,03 

http://www.mf-mp-hdarp-88.webself.net/
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R9a 744,64 748,46 0,14 0,32 0,14 0,32 0,12 0,28 0,03 -0,03 -0,35 0,01 -0.36 -0.01 -0.39 -0.12 -0,57 -0,21 

R10a 963,93 964,56 0,14 0,71 0,14 0,71 -0,04 0,15 0,12 0,43 -0,42 0,70 -0.30 0.26 -0.35 0.19 -0,61 -0,14 

R1b 190,39 190,39 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0.00 0.00 0.00 0,00 0,00 

R2b 312,92 312,92 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0.00 0.00 0.00 0.00 0,00 0,00 

R3b 551,95 553,18 0,16 0,11 0,15 0,10 0,15 -0,10 0,12 0,08 0,05 -0,02 0.05 -0.04 0.01 -0.18 0,00 -0,22 

R4b 605,29 608,52 0,45 0,15 0,31 0,11 0,20 0,02 0,20 -0,04 0,19 -0,28 0.01 -0.45 0.07 -0.42 0,00 -0,53 

R5b 640,50 642,09 0,50 0,72 0,41 0,71 0,21 0,66 0,20 0,40 0,17 0,22 0.10 0.18 0.11 0.16 0,08 0,13 

R6b 832,79 835,85 0,50 0,61 0,41 0,60 0,19 0,33 0,18 0,56 0,14 0,18 0.08 0.11 0.08 0.11 -0,03 0,09 

R7b 276,17 276,60 0,42 0,74 0,19 0,72 0,18 0,60 0,07 0,73 0,07 0,26 0.02 0.15 0.02 0.14 0,00 0,12 

R8b 529,96 531,79 0,46 0,74 0,30 0,74 0,16 0,66 0,16 0,41 0,11 0,64 0.08 0.54 0.09 0.32 0,08 -0,09 

R9b 698,13 700,36 0,45 0,81 0,35 0,72 0,20 0,25 0,07 0,65 0,02 0,52 0.02 0.07 0.02 0.18 0,00 -0,16 

R10b 903,28 904,17 0,38 0,96 0,16 0,96 -0,01 0,90 -0,07 0,95 -0,12 0,50 -0.18 0.28 -0.06 0.21 -0,58 0,12 

Avg 573,38 575,01 0,29 0,41 0,22 0,39 0,14 0,30 0,12 0,27 0,04 0,19 0.01 0.07 0.02 0.03 -0,06 -0,06 
aBest known solutions provided by Masmoudi et al.(2018b) 

From the detailed results of Table 11, we can see that using the standalone (improved) ALNS (C1) 

based on Masmoudi et al. (2016) cannot provide good results, with an average gap to the best 

(average) results of Masmoudi et al. (2018b) that is equal to 0.29% (0.41%). However, a big 

improvement is obtained when applying the crossover operators in the ALNS (C3 and C4), where a 

negative deviation gap is obtained in some instances, indicating a better result than the best and 

average results of the EVO-VNS1. Thus, combinations C3 and C4 show that using our crossovers is 

beneficial to enhance the quality of solutions and helps the algorithm to outperform the standalone 

(improved)ALNS. In addition, we can see that the solution quality is comparable for the two 

combinations C3 and C4, with a very small difference that is equal to 0.02%(0.03%), which indicates 

the effectiveness of using our diversification mechanism based on the crossovers.  

Moreover, after applying the local search procedure with its acceptance function, we can see that 

the quality of solutions has improved, compared to the standalone (improved) ALNS, with an average 

gap equal to 0.07%(0.02%) (between C2 and C1). Also, for the combinations where crossover is 

applied, the average gap between C5 and C4 is equal to 0.08%(0.08%), and 0.10%(0.11%) between 

C5 and C3. Observing the combination C5, having the local search procedure and using only one 

crossover operator, we see that it still has positive average gap value, compared to the results of 

Masmoudi et al.(2018b) and to the combination C8  (that combines all components). Thus, we can see 

that applying this combination alone is still not capable of escaping local optima. Moreover, by 

applying two different crossover operators in C6 and C7 instead of only one (C5), we can see that the 

average gap is increased with a similar average gap for both these two combinations, where 

0.01%(0.07%) is obtained by the C6 and  0.02%(0.03%) for the C7. However, applying all three 

crossovers and the local search operators with its acceptance function (i.e., C8) provides good 

solutions and outperforms the EVO-VNS1 of Masmoudi et al.(2018b), although with a slight 

improvement of 0.06%(0.06%) over the best (average) results. In conclusion, applying all components 

(locals search with the acceptance function as well as the three different crossovers) enhances both 

diversification and intensification during the search, compared to the standard(improved)ALNS. Thus, 

this combination is the most effective combination, compared to the other applied combinations. 
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6. Conclusions 

This study tackles the MF-HDARP, where we have considered a mixed fleet of vehicles composed 

of both heterogeneous CVs and AFVs within the context of the DARP. We considered different 

capacity resources of the vehicles as well as the need for refueling. We have proposed an effective 

hybrid ALNS for solving the MF-HDARP. The algorithm is supported by an efficient constructive 

heuristic and sophisticated local search and diversification techniques to improve the solution quality. 

We tested our hybrid ALNS algorithm on newly generated instances and on the benchmark instances 

of Masmoudi et al.(2017), and compared its performance with state-of-the-art algorithms in the 

literature (the hybrid GA of Masmoudi et al., 2017 and the EVO-VNS1 of Masmoudi et al., 2018b). 

The results indicate that our algorithm obtains high quality solutions and is competitive with the 

compared algorithms. Moreover, the results also indicate that our different components, which were 

added to the standard ALNS, improve its performance. Nevertheless, our hybrid ALNS algorithm is 

just slightly better than the EVO-VNS1 of Masmoudi et al., 2018b. We believe that our hybrid ALNS 

can be further improved by utilizing additional removal and insertion operators, which can help in 

achieving more diversification of the search and make its behavior more robust. 

In addition, from a methodological perspective, considering other type of AFVs with recharging 

such as electric vehicles and hybrid plug-in electric vehicles  by developing realistic energy function 

for these type of vehicles are interesting research directions. 
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Appendix  

All parameters used in the CMEM model are given in Table 12 below. 

 Table 12 

             Parameters used in the CMEM of the MF-HDARP model 

Notation Description Value 

𝑔 Gravitational constant (meter/second2) 9.81 

𝑢 Air density (kilogram/meter3) 1.2041 

𝐴 Frontal surface area of the vehicle(meter2) 3.912 

𝐶𝑟 Coefficient rolling friction 0.01 

𝐶𝑑 Coefficient of aerodynamic drag 0.7 

𝜉 Fuel-to-air mass ratio 1 

𝜅 Heating value of typical diesel fuel (kilojoules per gram) 44 

𝑒 Engine friction factor (kilojoules per revolution per liter) 0.2 

http://www.stm.info/en/press/press-releases/2012/the-stm-announces-the-purchase-of-regular-biodiesel-electric-buses
http://www.stm.info/en/press/press-releases/2012/the-stm-announces-the-purchase-of-regular-biodiesel-electric-buses
https://www.accesstotravel.gc.ca/1.aspx?lang=fr
https://www.afdc.energy.gov/fuels/
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𝑁 Engine speed (revolution per second) 33 

𝐷 Engine displacement(liters) 5 

 

Factor converting the fuel rate (grams per second to liters per second) 737 

𝜂 Efficiency parameter for diesel engines  0.9 

𝜂𝑡𝑓 Drive train efficiency 0.4 

𝑚 Vehicle mass (kilogram)  6,350 

𝑣𝑙 Lower vehicle speed (km/h) 20 

𝑣𝑤 Upper vehicle speed (km/h) 90 

 

Table 13 

Parameters used in our proposed algorithm 

Algorithm Description of parameters Best value  Score 

Hybrid 

ALNS 

Number of users removed at each 

ALNS iteration (𝑢) 

[𝑢𝑚𝑖𝑛= 0.175.𝑛; 𝑢𝑚𝑎𝑥= 0.35.𝑛] Based on Pisinger and Ropke 

(2007)   
Number of iterations to update the 

Weights of operators (𝑛𝑠𝑒𝑞) 

100 Experimental results of 

Masmoudi et al. (2016)  
Roulette wheel parameter (𝑟𝑝) 0.70 Experimental results of 

Masmoudi et al. (2016)  
𝑃𝑑

0 used for removal operators 0.10 Experimental results of 

Masmoudi et al. (2016)  
𝑃𝑑

0  used for insertion operators 0.125 Experimental results of 

Masmoudi et al. (2016)  
Score of a global better solution (𝜋1) 15 Our experimental result in Table 5  
Score of a better solution (𝜋2) 10 Our experimental result in Table 5  
Score of a worse solution (𝜋3) 5 Our experimental result in Table 5  
Initial temperature (𝑇𝑚𝑎𝑥) 25 Based on Leung et al.(2013)  

  Cooling rate (𝛼)  0.99975  Suggested by Ropke and Pisinger 

(2006a) 
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