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ABSTRACT Blind image quality assessment (BIQA) methods aim to predict quality of images as
perceived by humans without access to a reference image. Recently, deep learning methods have gained
substantial attention in the research community and have proven useful for BIQA. Although previous study
of deep neural networks (DNN) methods is presented, some novelty DNN methods, which are recently
proposed, are not summarized for BIQA. In this paper, we provide a survey covering various DNN methods
for BIQA. First, we systematically analyze the existing DNN-based quality assessment methods according
to the role of DNN. Then, we compare the prediction performance of various DNN methods on the synthetic
databases (LIVE, TID2013, CSIQ, LIVE multiply distorted) and authentic databases (LIVE challenge),
providing important information that can help understand the underlying properties between different DNN
methods for BIQA. Finally, we describe some emerging challenges in designing and training DNN-based
BIQA, along with few directions that are worth further investigations in the future.

INDEX TERMS deep learning, blind image quality assessment (BIQA), deep neural networks (DNN)
model, deep features, quality prediction.

I. INTRODUCTION

W ITH the development of social media and the in-
creasing demand for imaging services, an enormous

amount of visual data is making its way to consumers. Digital
images are likely to be inevitably degraded in the processes
from content generation to consumption. The acquisition,
processing, compression, transmission, or storage of images
is subject to various distortions, resulting degradation in
visual quality. Therefore, methods for image quality assess-
ment (IQA) have been extensively studied for the purpose of
maintain, control and enhance the perceived image quality.

In principal, subjective assessment is the most reliable
way to evaluate the visual quality of images [1], [2]. But
this method is time-consuming, expensive, and difficult to
implement in real-world systems. Therefore, objective as-
sessment of image quality has gained growing attention in
recent years. To what extent a reference image is used for
quality assessment, existing objective IQA methods can be
classified into three categories: full-reference (FR), reduced-
reference (RR) and no-reference/blind (NR/B) methods. The

FR IQA methods make full use of the undistorted reference
images to compare with distorted images and measure the
difference between them [3]–[5], while the RR IQA methods
use partial information in reference images [6]–[8]. How-
ever, in many practical applications, it is difficult to obtain
a reference image of the distorted image to be assessed,
making powerful FR and RR IQA methods inapplicable.
On the contrary, the BIQA methods have no access to the
reference images to evaluate image quality [9], [10]. Thus,
it has become increasingly important to develop effective
BIQA methods which can predict image quality without any
additional information.

Most exiting BIQA methods follow the flowchart shown in
Fig. 1. Some BIQA methods is developed based on classical
regression methods [11].Researchers attempt to design some
hand-crafted features that could discriminate distorted im-
ages, and then train a regression model to predict image qual-
ity. Early BIQA methods are based on a distortion specific
approach [78], [79], which commonly uses the prior knowl-
edge of the distortion types for quality prediction. In this
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approach, the distortion-specific features relevant to quality
perception are extracted and used for quality estimation. Li et
al. [78] propose a BIQA method based on the blur distortion.
They first calculate the gradient image to characterize the
blur distortion. Then, they divide the gradient image into
blocks and extract the energy features of each block relevant
to the blur distortion. Finally, the image quality is obtained
by normalizing the moment energy. However, when image is
distorted via unknown distortion channels, it becomes much
more difficult to find specific features to measure image
quality.

Recently, in order to assess the image quality without the
prior knowledge of distortions, the non-distortion-specific
BIQA methods have been developed. The natural scene
statistics (NSS)-based methods are widely used to extract
reliable features, which assume the natural images share cer-
tain statistics and the occurrence of distortions may change
these statistics [14]–[16], [80]–[82]. In [14], [16], they aim
to utilize NSS model, including the multivariate Gaussian
(MVG) model [14] and the Generalized Gaussian distribu-
tion (GGD) model [16], to extract low-level image features
for quality prediction. Although those methods have greatly
improved the BIQA performance, there still exists a large
gap between prediction scores and subjective scores. In order
to further improve prediction performance, Wu et al. [15]
use the multi-channel fused image features to simulate the
hierarchical and trichromatic properties of the human vision.
Then, the k-nearest-neighbor(KNN)-based model is used
to evaluate image quality. Similarly, Ji et al. [80] assume
that image quality is highly correlated with the degraded
visual information. Therefore, they use the joint entropy of
degraded features to assess image quality, which stimulates
the visual information of the images. Instead of studying
the quality-relevant image features, Wu et al. [81] focus on
exploring efficient learning models. They propose a novel
local learning method to improve the prediction performance,
which is beneficial to the training of the complex and large
data sets.

However, the obvious limitation of those BIQA methods is
that the hand-crafted features may not be able to adequately
represent complex image structures and distortions. There-
fore, to improve prediction performance, attempts have been
made to adopt deep BIQA methods, recently. The motivation
is that the deep neural network (DNN) can automatically
capture more deep features relevant to quality assessment and
optimize these features to improve prediction performance
by using back propagation method. Therefore, the DNN
can be applied to various image quality assessment (IQA)
methods [83], [84] and provides a very promising option for
addressing the challenging BIQA task.

It is well known that deep learning techniques have
achieved great success in solving various images recognition
and object detection tasks [17]–[20]. The main reason is that
it relies heavily on large-scale annotated data, like the image
recognition oriented ImageNet [21] dataset. Unfortunately,
for BIQA task, since there is a lack of sufficient ground truth

labels IQA data for training, it is difficult to straightforwardly
apply DNN to BIQA directly. This is because the DNN can
lead to overfitting phenomenon, which means the trained
model would have a perfect performance for training data
but the performance is unreliable for unseen data. Therefore,
researchers in the image quality community pay more atten-
tion to explore the useful DNN-based methods to solve this
problem.

Previous surveys have also been summarized for BIQA
methods, including classical methods [22]–[24] and DNN
methods [25], [32]. However, the surveys of classical meth-
ods lack the analysis of the popular DNN methods [22]–[24].
And although some DNN methods are reviewed in [25], these
methods can only be applied to the case where DNN input
is the image patch. At present, there are still many novel
DNN methods that have not been summarized [26]–[31]. In
addition, a simple comparison of different DNN methods is
represented in our previous work [32], but we have not made
a comprehensive analysis and evaluation of various DNN
methods, including the design strategy, network architecture,
network complexity, advantages and disadvantages.

Therefore, in this paper, we intend to systematically an-
alyze the various DNN methods, which aims to summarize
the intrinsic relationship among various DNN methods. First,
according to the different role of DNN, we divide the DNN
methods into two categories, which could distinguish differ-
ent DNN methods easily. One is the support vector regression
(SVR)-based BIQA methods, which use DNN to extract
deep feaures and SVR methods to predict image quality. The
other is the DNN-based BIQA methods, which takes full
advantage of back-propagated capability of DNN to optimize
prediction accuracy. Moreover, we analyze the first type of
DNN methods according to whether the input of DNN is
low-level features or image/image patch data. Similarly, we
analyze the second type of DNN methods according to the
difference of DNN output. Fig. 2 shows the classification
of different DNN methods, which aims to better understand
different DNN methods easily. Finally, we summarize useful
findings and discuss the challenges of DNN methods for
BIQA. We hope that this study will be beneficial for the
researchers to better understand this field.

Our contributions can be summarized as follows.
1)According to the different roles of DNN, we propose

a new classification method, which could distinguish and
improve understanding different DNN methods.

2)We analyze the DNN methods proposed in recent years,
in terms of the contributions, the network architecture, the
complexity, and the advantages and disadvantages. Especial-
ly, we also summarize many novel DNN methods that have
not been discussed in previous literature surveys.

3)We systematically evaluate the prediction performance
in difference DNN methods and obtain some interesting
conclusions. Meanwhile, we also discuss some potential
challenges and solutions for future research.

The rest of this paper is organized as follows. In Sec. II, we
reviews the methods of SVR-based image quality prediction
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using deep features extracted by DNN. In Sec. III, we reviews
the methods of DNN-based image quality prediction in detail
and compare the implementations of these methods. The
prediction performance and complexity of different DNN
methods are analyzed in Sec. IV. In Sec. V, we provide some
notable challenges of DNN-based BIQA methods. Conclu-
sions are given in Sec. VI.

Hand-crafted

features
Regression

Deep neural network (DNN)

Classifical BIQA methods

Deep BIQA methods

Q

Distorted image

 

FIGURE 1: The flowchart of existing BIQA methods.

II. SVR-BASED IMAGE QUALITY PREDICTION USING
DEEP FEATURES EXTRACTED BY DNN
Since the deep features from DNN can capture more useful
information related to image distortions and human percep-
tions [25], the straightforward approach to employing DNN
models is to extract discriminative deep features for various
distorted images, and then evaluate the image quality using
conventional SVR method. Recent work in the literature
using DNN to extract deep features can be classified into
two major schemes: 1) extracting from low-level features
of image and 2) extracting from data of image/image patch.
Figure 3 shows the flow diagram of these methods [33]–[35],
[37]–[39].

A. DEEP FEATURES EXTRACTED FROM IMAGE
LOW-LEVEL FEATURES
This kind of method aims to feed a large number of low-
level image features relevant to quality perception into a
DNN to evaluate image quality. Commonly, the low-level
features are based on the NSS and other complementary
features, which can accurately describe the structure features
of distorted images. Then, these low-level features can be
fed into the pre-trained DNN, including deep belief network
(DBN) or stacked auto-encoder (SAE) network [33]–[35], to
extract deep features. Especially, the unsupervised training
method [36] is adopted to pre-train the DBN or SAE network.
The goal is to overcome small IQA database problem and
initialize each layer parameters of the pre-trained the DBN or
SAE network. Afterwards, the parameters of entire network
are fine-tuned with the labeled image features. Finally, the
deep features extracted from the DBN or SAE model, along
with the corresponding subjective scores are used to evaluate
image quality by SVR method. Table 1 shows the details of
these methods.

Tang et.al. [33] extract three types of low-level features,
including NSS, texture, and blur/noise features. The NSS

and texture features include the univariate and cross-scale
histograms and statistics of complex wavelet transform of
images (the real part, absolute value, and phase). These
features aim to describe image global and local distortions.
The blur/noise features include the patch PCA singularity
[86], the two color model coefficient histograms [87], and
the step edge based blur/noise estimation [88]. The blur/noise
features can be added because these distortions are funda-
mental to various distortion types. Then, all of these low-level
features are used to pre-train each layer of the DBN. And, the
low-level features of IQA database with ground truth scores
are used to fine-tune the entire DBN. Finally, a Gaussian
process regression is used to obtain synthetic image quality
score.

Ghadiyaram et al. further extend this work in [34] by
combining DBN with SVR to predict authentically distorted
images’ quality. They adopt FRIQUEE method to extract
low-level features of authentic images. FRIQUEE [77] first
constructs several feature maps in multiple color spaces
and transform domain, including luminance feature maps,
LAB feature maps, and LMS feature maps. Then, the GGD,
AGGD, and wrapped Cauchy models are used to fit feature
maps and extract statistical features. Finally, these low-level
features can be fed into a DBN model with extracted deep
features and image quality scores are predicted by using SVR
method.

In addition, Lv et al. [35] further improved the prediction
accuracy and generalization ability. The authors select the
multi-scale difference of Gaussian (DoG) features that are
highly correlation with perceptual quality. This is because
DoG is believed to simulate the neural processing procedure
of how eye extracts details from images and convey them
to the brain. Then, the SAE model is used to obtain deep
features. Finally, these deep features are used to train an SVM
regression model to predict image quality.

Compared with traditional BIQA methods, the major ad-
vantage is deep features extracted from low-level features is
highly related to quality degradation. But the limitation is
hand-crafted low-level features need to be carefully designed
as the input to DNN, which does not take full advantage of
DNN.

B. DEEP FEATURES EXTRACTED FROM IMAGE/IMAGE
PATCHES
It is also observed that the deep features can be effectively
mined by feeding data of image or image patches into the
pre-trained DNN [37]–[39] for classification or recognition
task, such as AlexNet [17], GoogleNet [18], RestNet [19],
VGGNet [20]. Since the IQA is the human visual perception
of the high-level semantics [40], the methods of image or
image patches as DNN input can avoid the limitation of
selecting low-level features to represent image high-level
semantics accurately.

More specifically, some methods use image patches to
extract deep features and these deep features derived from
image patches are aggregated or pooled. Then, the predicted
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FIGURE 2: The classification of DNN methods for BIQA.

TABLE 1: The details of these methods [33]–[35]

Algorithms Low-level features DNN Regression
[33] NSS,texture,and blur/noise features DBN Gaussian process
[34] Statistical features of GGD, AGGD, wrapped Cauchy models DBN SVR
[35] multi-scale difference of Gaussian (DoG) features SAE SVR

quality of images is obtained by SVR method. In [37], the
authors use multiple overlapping image patches as input to
represent the whole image. They select the optimal layer of
the pre-trained DNN model to extract deep features of each
patch. Then, three kinds of statistical methods can be adopted
to aggregate high-level semantic features of different patches.
These aggregated features related to the whole image are fed
into a linear regression model to predict image quality.

In addition, the deep features involving high-level seman-
tic information of images are often used to evaluate image
quality [38], [39], which is more consistent with human
perception of images [41]. Sun et al. [38] proposed a BIQA
framework, which is inspired by the human visual perception
of image quality that involves the integrated analysis of
global high-level semantics and local low-level characteris-
tics. They use the first fully-connected (FC) layer of pre-
trained AlexNet architecture to extract deep features, which
aim to represent high-level semantic features associated with
global image content. In addition to considering the high-
level semantics, they also utilize the saliency detection and
Gabor filters to perform local low-level features relevant to
local image content. These features are combined to evaluate
overall image quality by using SVR method. Similarly, Wu
et.al [83] hypothesize that different levels of distortion gen-
erate individual degradations on hierarchical features. There-
fore, they propose a BIQA framework based on hierarchical
feature degradation. They first extract the low-level image
features based on the orientation selectivity mechanism in
the primary visual cortex, and then they use the last layer of

the residual network (ResNet50) to extract deep features of
visual content. Combining with the low-level image features
and deep features, the image quality score is predicted by
SVR methods. To further improve the prediction accuracy,
Gao et. al [39] exploit multi-level deep feature fusion method
to evaluate image quality. They assume that using only the
last few layers’ deep features may unduly generalize over
local artifacts. Therefore, multi-level features representation
compensates for local degradations. A DNN model formed
by the pre-trained VGGNet is used to extracted image deep
features over each layer. Afterwards, they utilize the SVR
method to estimate the quality score from each layer’s feature
vector. The image quality is estimated by averaging layer-
wise predicted score.

Considering that training a deep network is typically dif-
ficult for the small IQA database, these methods tackle the
insufficient IQA database by extracting deep features from
the pre-trained DNN model. Meanwhile, instead of selected
low-level features as network input, the mehtods of deep
features extracted from image or image patch data directly
are more accurate. However, since the deep features extracted
from the pre-trained DNN aims to deal with classification or
recognition tasks, applying these features directly to our IQA
task may not all be useful.

III. DNN-BASED BIQA USING DEEP FEATURES AND
QUALITY PREDICTION TOGETHER
Instead of using DNN models to extract deep features related
to quality degradation, this method directly uses the DNN
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FIGURE 3: The flowchart of extracting deep features methods from DNN in [33]–[35], [37]–[39]

model to predict image quality. According to different eval-
uation metrics for quality prediction, there are two kinds of
popular evaluation methods in recent years: predicting image
quality categories and predicting image quality scores.

A. PREDICTING IMAGE QUALITY CATEGORIES
The DNN methods of predicting image quality catagories
can be used to predict image quality categories, such as
excellent, good, fair, poor or bad [42]. These labels have
explicit semantic meanings in different quality ranges, so the
category results can be directly used to describe the image
quality. Meanwhile, the categorical quality assessment is a
natural and viable way for human perception and can poten-
tially reduce the randomness of the quality scores. Therefore,
this kind of method treats BIQA as a classification problem
to satisfy human visual behaviors. [43]–[47]. The general
flowchart of these methods is shown in Figure 4.

Hou et al. [43] design deep network to classify images to
five grades-excellent, good, fair, poor, or bad corresponding
to the five point quality scale recommend by the International
Telecommunication Union. The low-level features of NSS
relevant to gray images can be extracted in the wavelet
domain and fed into the DBN for layer-by-layer pre-training.
Then, they recast image quality into five grades by using
subjective method. Finally, they fine-tune the DBN to classify
image grades by maximizing the probabilistic distribution.
Further, considering not every region contributes to image
quality perception, Hou et al. [44] also propose saliency-
guided deep framework to improve prediction performance.
First, they extract salient patches of natural image and adopt
independent component analysis (ICA) method to learn basic
filters. The same procedure can be applied to encoder salient
patches of distortion image. The image-level features are
a histogram that represents the frequency of learned ICA
filters. Second, the DBN is pre-trained by layer-wise learning
method and is fine-tuned by discriminative learning method,
which makes the deep network can classify image grades.

The previous works pay attention to describe how to
construct deep network but ignore to provide a clear under-

standing of why their framework performs so well. In [45],
the authors not only propose a SAE method to classify image
grades but also try to give a visualization explanation of how
it works and why it works well. This is the first time to
analyze and visualize deep network framework. Similar to
the methods in [43], [44], they derive NSS-based features
from shearlet-transformed RGB images and use the SAE
model to classify seven quality grades that the train process
is similar to DBN. In addition, they visualize the progression
of training features to understand the DNN framework in the
fine tuning stage.

The disadvantage of these methods is that the handcrafted
features as network input cannot completely represent image
distortions and contents. In order to overcome this problem,
Bianco et al. [46] propose the end-to-end DNN framework
to improve the prediction performance. They first pre-train
AlexNet for classification task, which use 3.5 million images
to pre-training from the ImageNet and Places databases. Then
the pre-trained AlexNet is fine-tuned to classify the five
image quality grades. Further, the prediction performance is
better than the previous methods [43], [44].

In [47] a vector regression DNN model is proposed to
obtain image quality grades. They divide image scores into
five ordered intervals in response to five different grades.
A belief score vector is computed by (1) to describe the
probabilities of an image being assigned to different quality
grades.

~S = {s1, s2, s3, s4, s5} sk = y − uk k = 1, 2..., 5 (1)

where ~S is a belief score vector, which collects five quality
grade; sk is the defined belief score to describe quality grade;
y is the mean opinion score (MOS) of an image.

The DNN is trained to capture the associated belief score
vector. It suggests that the smaller the value of |sk| is, the
image quality is closer to the k-th grade. Finally, they propose
an object pooling strategy to convert image quality grade into
score, which fully takes into account the influence of the
salient objects on image quality.

Although prediction grade methods are much more natural

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2938900, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

 

Grayscale features

Pre-trained

DNN

(DBN or SAE or AlexNet)

Grade-1

Grade-2

Grade-n

RGB features

Saliency features

Image data

 

FIGURE 4: The flowchart of predicting image quality categories’ methods in [43]–[46]

to evaluate image quality, the drawback is that different defi-
nitions of grades of subjective opinions can significantly im-
pact the prediction performance of algorithms. Meanwhile,
in order to make a fair comparison with other algorithms, the
qualitative evaluations are converted into numerical scores by
using different methods. Different conversion methods will
also affect the final evaluation performance.

B. PREDICTING IMAGE QUALITY SCORES
The methods of predicting image quality scores are the
most popular for BIQA. The characteristic of this method is
purely data-driven and allows for end-to-end optimization of
feature extraction and regression. It means that these DNN
methods can be used to predict image quality scores, such
as DMOS=72.34, DMOS=25.2. This gives a specific scalar
as a score to measure image quality. Especially, most of
DNN methods adopt this approach to predict image quality,
because many of IQA databases use scalar scores to describe
image quality. Therefore, in order to keep the predicted
results in consistent with the IQA databases, this kind of
method can be treated as a regression problem. Although
previous work has summarized this method [25], it only
introduce the methods using image patch as DNN input and
some novel DNN methods that have been appeared recently
are not analyzed [26]–[31], [53], [54], [57]. Thus, we will
systematically summarize and analyze the existing methods.
According to different input in DNN, we propose a classifi-
cation method: the patch-input methods and the image-input
methods.

1) The patch-input methods
The performance of DNN heavily depends on the num-
ber of training data. However, the currently available IQA
databases are much smaller compared to the classification or
recognition tasks [17], [18]. Moreover, obtaining large-scale
reliable human subjective labels is very difficult. To expand
the training database, the patch-input method aims to divide

image into multiple patches as DNN input to increase training
samples.

There are many methods based on image patches as DNN
input. According to the different labels of training patches,
we discuss these methods in two ways. One is to use the
image subjective score (SS) as image patch label [30], [48]–
[53]. The other is to use FR as image patch label [54]–[57].

a: SS as image patch label methods

In [48], this is the earliest method that integrates feature
learning and patch quality prediction into an end-to-end
network. They divide gray images into 32×32 patches. Each
image patch with image subjective score as input is used to
train DNN, which consists of 1 convolutional (C), 2 pooling
(P) and 3 full-connected (FC) layers. The image quality is
estimated by the average score of all image patches. Never-
theless, the problem is that they ignore that the visual quality
of different local regions is often different and humans tend
to concentrate on the regions of saliency when evaluating
an image. Therefore, the salient patches of images can be
considered to predict image quality in the following methods
[49]–[51].

In [49], the authors design a seven-layer DNN architecture
to capture patch-level quality prediction focusing on color
images. They then perform the saliency detection with free
energy based neural theory to obtain image saliency map
[58]. After that, they define the weights of image patches
by the corresponding saliency map. The final image quality
score is yielded with the weighted average of each image
patch. To further improve prediction performance, in [50],
[51], they consider only the salient patches to evaluate image
quality score. First, they also split the image into patches
and use typical saliency detection methods to obtain image
saliency map. Further, they assign a threshold to remove non-
salient patches. The remaining salient patches are reweighted
into the range of [0, 1]. The whole image quality score is
calculated by the weighted average over salient patches. The
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FIGURE 5: The general flowchart of SS as image patch label methods in [49]–[51]

general flowchart is shown in Figure 5.
However, the previous weights of saliency maps are set ar-

tificially, which is inaccurate to image quality. Some methods
study the use of end-to-end DNN to simultaneously obtain
patches’ scores and corresponding weights. The weights
obtained by DNN learning method more accurately respond
to the image perception. In [52], the distorted image patches
can be fed into DNN, which consists of 9 C layers, 5 P layers
for feature extraction and 2 FC layers for regression. The role
of first FC layer of DNN architecture is used to learn patches’
weights and the second FC layer is used to learning patches’
scores. The image quality score is calculated by weighting
average of all patches’ scores. Compared with the models
employing simple average pooling or artificial setting weight
pooling, this method improves prediction accuracy and has
well generalization ability. Similarly, in [53], they also divide
image into 100 image patches and fed them into the DNN to
obtain patch score and weight. Considering the relationship
between image contents and patches’ weights, the global
regression layer is used to optimize image prediction score.

In addition, in order to learn the complicated relationship
between visual appearance and the perceived quality, Yan
et al. propose a novel two-stream DNN architecture, which
takes the raw image and the gradient image as input visa
two sub-networks [30]. The motivation of this design is to
integrate input information from different domains to repre-
sent the quality of distorted images. Each image is divided
into different patches as the inputs of the image stream sub-
network. Each of the sub-network consists of ten layers
to extract image features. Especially, the region-based full
convolutional layer is used to handle the locally non-uniform
distortions of images. The gradient stream sub-network is
similar to image stream and the input is gradient patches.
Then, a concatenate layer is used to fuse features from the
two streams and the followed three FC layers are used to
predict patch quality. Finally, the quality score of the whole
image is calculated by averaging all patches’ scores. The
overall framework of the algorithm is presented in Figure 6.

Table 2 compares the implementation of reported patch-
input algorithms, which the path label is the ground truth
score. It is worth nothing that C, P and F mean convolutional

layer, pooling layer and full-connected layer, respectively. wi

means the weight of the i-th patch. M means the number
of all patches of an image. K means the number of salient
patches of an image. qi is the prediction patch score from
DNN model. In table 2, we find that because of the increase
of training samples, the patch-input algorithms can design a
deeper network to evaluate image quality score. Meanwhile,
these methods mainly pay attention to the effect of salient
patches on image quality. However, the labeling of image
patches with the whole image subjective score is problematic,
because the ground truth score for each patch does not exist.
In addition, the whole image quality score is calculated by the
sample mathematical method, which may affect the accuracy
of image quality prediction.

b: FR as image patch label methods
To overcome the problem of inaccurate patch label, the
strategy that FR methods are used to calculated proxy score
of image patch has been studied [54]–[57]. Figure 7 shows
the flowchart of these methods.

In [54], it is a novel completely blind DNN methods. By
taking the large scale of image patches as the training set,
the authors design a feature fusion DNN in different layers
and use FSIM as the label to train DNN architecture. The
DNN consists of 6 C layers, 1 P layer, 2 sum (SU) layers
and 2 FC layers. The role of the sum layer is to fuse different
layer features to prevent gradient vanishing [19]. Especially,
the training patch label is calculated by using the FR method,
which is an accurate method to calculate patch label without
subjective scores.

In [55], J. Kim et al. propose a two-stage DNN-based to
evaluate image quality. The patch quality score generated by
FSIM method are used as proxy patch label in the first stage
of training. In the second stage, the feature vectors obtained
from image patches are aggregated using statistical moments
and then a global regression layer is used to predict image
quality score. Rather than using complex DNN to produce
proxy scores, the same authors develop a novel DNN, which
aims to regress into objective error maps [56]. In the first
stage, the objective error maps are used as proxy regression
targets to train DNN, which is calculated by the absolute
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FIGURE 6: The overall framework in [30]

TABLE 2: The comparison of DNN methods by using SS as patch label in [30], [48]–[52]

Algorithms Layer depth Path size Saliency methods Assigned weight Selected patch Image score

[48] 1C,2P,3F 32× 32 N/A N/A All patches of an image Q =
∑M

i=1 wi×qi∑M
i=1 wi

[49] 2C,2P,3F 32× 32 Free energy wi =
N×N∑
j=1

S(j) Saliency patches Q =
∑K

i=1 wi×qi∑M
i=1 wi

[50] 2C,4P,3F 32× 32 Fast SM wi =
N×N∑
j=1

S(j) Saliency patches Q =
∑K

i=1 wi×qi∑M
i=1 wi

[51] 10C,4P,3F 32× 32 SDSR wi =
N×N∑
j=1

S(j) Saliency patches Q =
∑K

i=1 wi×qi∑M
i=1 wi

[52] 9C,4P,2F 32× 32 N/A DNN learning All patches of an image Q =
∑M

i=1 wi×qi∑M
i=1 wi

[30] 10C,8P,3F 32× 32 N/A N/A All patches of an image Q =
∑M

i=1 wi×qi∑M
i=1 wi

difference between the reference image patch and distortion
image patch. In the second stage, the extracted feature maps
from DNN are fed into the global average pooling layer,
then regress onto ground-truth scores by using two fully
connected layers. The prediction accuracy is competitive
with the state-of-the-art methods.

To further improve prediction performance, Pan et al.
propose a novel framework for BIQA, which consists of
a generative quality map network and a quality pooling
network [57]. They employ MDSI [59] to generate patches’
quality maps as labels and select U-Net [60] as a base of
generative network to train image patch quality map. The
output quality maps are fed directly into the pooling network
to regress patches’ scores. Finally, the final score of the whole
image is obtained by using the average of all image patches’
scores.

Table 3 compares these algorithms to obtain patch label
by using the FR methods. Compared with the methods of
subjective score as patch label, the FR metrics are used
as intermediate local targets for each image patch, which
reduce the error of using the whole image subjective score as
patch label. In addition, instead of the simple mathematical
calculation to obtain image quality score, the global opti-

mization method is more accurate for DNN. Whereas, the
disadvantage of using FR methods as patch label is that it
is very hard to obtain reference images in many practical
applications for the FR metrics.

2) The image-input methods

Rather than using image patches as the input, the image-input
methods aim to train a prediction model by using the whole
image and its associated ground truth, which can effectively
overcome the difficulty of being able to obtain the ground
truth of image patches. However, there has been limited effort
towards end-to-end optimized BIQA using DNN, primarily
due to the lack of sufficient ground truth labels of images.

Recently, the image-input methods are developed [26]–
[29], [31], [61]. The novelty is that, despite a lack of image
databases, the DNN based on image as input can also evaluate
image quality very well. This is because the image expansion
techniques are used to solve insufficient IQA database. Ac-
cording to the different extended objects, we classify these
methods into two sub-categories: expanding distorted images
and expanding reference images.
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FIGURE 7: The flowchart of FR as image patch label methods in [54]–[57]

TABLE 3: The comparison of DNN methods by using FR as patch label

Algorithms Layer depth Path size The type of label FR metrics Image score
[54] 6C,1P,2SU,2F 32× 32 A score value FSIM Global optimization
[55] 2C,2P,6F 32× 32 A score value FSIM Average of patches’ scores
[56] 9C,2P,3F 112× 112 Error map Absolute difference Global optimization
[57] 13C,2P,2F 114× 114 Quality map MDSI Average of patches’ scores

a: Expanding distorted images’ methods
For expanding distorted images’ methods, two expanded
ways are shown: large databases, such as the ImageNet [21],
Places2 [62], and the artificial generation images [26]–[29].
The DNN then is trained by the transfer learning method [63].
This is a common way to overcome the small database task.

When the distorted images come from the large database,
these distorted images can be used to pre-train a DNN.
Then, the small IQA database is used to fine-tune the pre-
trained DNN to evaluate image quality score. In [61], Li
et al utilize Network in Network (NIN) [64] and transfer
learning technique to deal with BIQA problem. The first step
is that the NIN is pre-trained for the classification task on
the large-scale ImageNet database. Through this pre-training
process, the good initial weights can be obtained, which is
much better than randomly initialized weights. In the second
step, they modify the pre-trained NIN architecture, which
the final layer is replaced by regression layers. In the third
step, only the small IQA images with ground truth scores are
used to fine-tune the pre-trained NIN. However, for synthetic
IQA database, such as LIVE [65], TID2013 [66], CSIQ [67],
LIVE multiply distorted (MD) [68], the prediction perfor-
mance is not accurate. This is because the pre-trained NIN
learns the features of authentic distortions of the ImageNet
database, which is different from synthetic distortions.

In [31], they assume that various kinds of distortions exist
in different IQA databases, which requires different level
features to predict visual quality. Therefore, they propose a
DNN model using multiple levels of features simultaneous-
ly to achieve a consistent performance over different IQA
databases. The ResNet-50 [19] model which is pre-trained
on the ImageNet database is adopted as baseline. In the
fine-tuning stage, they divided all ResNet blocks into four
groups and extract each group’s features. Then, they define an

encoder layer to unify the feature size from different levels.
Finally, these multiple levels of features are combined and
fed into the FC layer to evaluate image quality score. This
method shows the state-of-the-art accuracy on different IQA
databases.

Besides, the artificial generation method [26], [27], [29]
can be used to construct the large-scale pre-training distor-
tion images, which is similar to the IQA database. It is far
from realistic to carry out a full subjective test to obtain a
MOS/Difference MOS (DMOS) for each image. Whereas,
the challenge of this method is how to obtain the ground truth
labels of generated images in the pre-training stage.

To overcome this problem, the motivation of Rank [26] is
to design a new strategy to generate the large-scale distortion
images without laborious human labeling. According to the
rule that the image quality decreases with the increase of
the distortion levels, they synthetically generate the ranked
image pairs with five different distortion levels from Wa-
terloo Exploration database [69]. The Waterloo Exploration
database contains 4744 pristine images and covering various
image contents. Especially, the generated distortion image
pairs are similar to the IQA database. In the LIVE database,
they exclude fast fading (FF) distortion type and gener-
ate the remaining four distortion types: JPEG compression
(JPEG), JPEG2000 compression (JPEG2000), additive while
Gaussian noise (WN), Gaussian blur (GB). In the TID2013
database, they generate 17 out of a total of 24 distortion types.
Moreover, we do know for any pair of images which is of
higher quality. Then, using the pairs of the ranked images,
we pre-train a Siamese network [70] to learn image distortion
levels by using the proposed Siamese back-propagation tech-
nique. Finally, they fine-tune a branch of Siamese network to
predict image score, which aims to transfer image distortion
levels to quality scores. Figure 8 shows the flowchart of
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FIGURE 8: The flowchart of Rank method in [26]

Rank method. Compared with existing BIQA methods, the
prediction performance is the best in LIVE database and even
outperforms the state-of-the-art in FR methods.

However, the limitation of the Rank method is that it can
only simulate distortion images in artificially synthetic IQA
database, but it is difficult to apply this method to authentic
IQA database. This is because we cannot know the priori
information of authentic distortion images. Therefore, to
improve performance of different IQA databases, Zhang et al.
design an end-to-end DB-CNN solution for BIQA that works
for both synthetically and authentically distorted images [27].
First, they describe the generation process of the large-
scale database in the pre-training step. They use two large-
scale databases: Waterloo Exploration database and PASCAL
VOC 2012 [71] to generate distorted images. Considering
the distortion types of the synthetic IQA databases, they
produce nine distortion types related to the LIVE, TID2013,
CSIQ and LIVEMD databases, i.e., JPEG, JPEG2000, WN,
GB, pink noise, contrast stretching, image quantization with
color dithering (ICQD), over-exposure and under-exposure.
Especially, the first six distortion types cover the entire CSIQ
database. Meanwhile, they synthesize distorted images with
five distortion levels except for over-exposure and under-
exposure, for which only two levels are generated. In sum-
mary, the pre-training database contains 852891 distorted
images. The ground truth label is presented as a 39-class
indicator vector to encode underlying distortion types at
the specific distortion level. The dimension of ground truth
vector comes from the fact that there are seven distortion
types with five levels and two distortion types with two levels.

Then, they design the architecture of the S-CNN for syn-
thetically distorted images, which consists of 9 C layers, 1 P,
3 FC layers and a softmax (S) layer. It aims to classify the
probability of each distortion type at the specific degradation
level. Considering this DNN model is not beneficial for
authentic IQA databases, they select the pre-trained VGG-
16 network for the classification task on ImageNet as another
branch to extract relevant features for authentically distorted
images. This is because the distortions in ImageNet occur as a

natural consequence of photography rather than simulations.
Finally, in the fine-tuning step, they tailor the pre-trained S-
CNN and VGG-16 and introduce bilinear pooling module to
combine the S-CNN for synthetic distortions and VGG-16
for authentic distortions into a single model, which aims to
discriminate synthetic or authentic distortions. The FC layer
follows the bilinear pooling layer to predict image quality
score. The flowchart of DB-CNN can be shown in Figure 9.

A closely related work to DB-CNN [27] is MEON [29],
a cascaded multi-task DNN framework for BIQA. This
method also pays attention to the influence of distortion
types and levels on quality degradation. Figure 10 shows
the flowchart of MEON method. The subtask I aims to pre-
train a distortion type identification network, for which large-
scale training samples are readily available. They select 840
high-resolution natural images to generate C distortion types’
images and each distortion type images has five distortion
levels. The ground truth label is a C-dimensional vector
to encode distortion types. This network consists of 4 C
layers, 4 P layers, 2 FC layers and 1 S layer. Especially, they
choose biologically inspired generalized divisive normaliza-
tion (GDN) instead of rectified linear unit as the activation
function of C layers and FC layers. The sub-task II network
appends two FC layers after the shared DNN architecture
from sub-task I. Then, they define a fusion layer (FS) that
combines the distortion types’ features from sub-task I and
the distortion levels’ features from sub-task II to yield an
overall quality score.

Table 4 summarizes the expanding distorted images’ meth-
ods. LM means the learn method, GT means the ground
truth of generation images and NGI means the number of
generation image. We clearly see that the transfer learning
method is used to overcome the small IQA databases. The
pre-training DNN aims to resolve the classification problem,
because the ground truth labels can be easily known instead
of humans’ subjective judgment. Especially, the depth of
network is proportional to the number of pre-trained samples.
Moreover, in order to deal with authentic images, they add
the sub-network to meet the prediction of authentic IQA
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TABLE 4: The comparison of the image-input DNN methods

Algorithms DNN type Layer depth Image size LM GT NGI
[26] VGG-16 13C,5P,3F 224× 224 Transfer learning Distortion levels 94880
[27] Two sub-networks 22C,5P,1S,4F; 224× 224 Transfer learning Distortion types and levels 852891
[29] Two sub-networks 8C,8P,1S,1FS,4F; 224× 224 Transfer learning Distortion types and levels 25200

database.

b: Expanding reference images’ methods

This is a novel topic to use generative adversarial network
(GAN) to augment images. Since the distortion images and
corresponding non-distortion reference images are typically
absent in IQA databases, it leads to the prediction perfor-
mance of image quality being not accurate. Thus, the HIQA
method [28] aims to address this problem by combining the
GAN and the GAN-guided quality regression (R) networks.
The Fig.11 shows the flowchart of the GAN method. First,
the quality-aware generative (G) network can be used to over-
come the absence of reference image, which aims to generate
the hallucinated reference image Ih conditioned on the dis-
torted image Id. In order to reduce the difference between the
hallucinated image and the corresponding reference image,
the loss function of G network can be designed by using the
pixel-wise error and the perception-wise difference. Second,
they propose a IQA-Discriminator (D) network to adjust the
loss of G to produce high perceptual outputs, even when G
fails to generate hallucination images, the predicted scores
of R network should still be reasonable value. Finally, the
distorted images and their discrepancy maps between halluci-
nated images and its corresponding distortion images are fed
into the R network and the high-level features fusion scheme
is adopted to optimize R network. Especially, the training
strategy is set. The GAN network is trained to generate a
large number of the hallucinated images, which is similar
to the reference images in IQA database. And then, the R

network is trained to predict image quality score. In GAN
network, the D network is first trained to distinguish the
fake reference images from the reference images of the IQA
database. Then, the G network is trained to generate images,
which is similar to the real reference images in the IQA
database. Finally, the image quality score can be predicted
by optimizing the loss of the R network.

IV. THE PERFORMANCE OF DIFFERENT DNN
METHODS
A. DESCRIPTION OF PUBLIC DATABASES AND
EVALUATION METRICS
The choice of a database for training is important for deep-
learning-based models, since their performance highly de-
pends on the size of the training set. We briefly describe
several popular public databases for BIQA, including LIVE
[65], TID2013 [66], CSIQ [67], LIVE MD [68], LIVE In the
Wild Image Quality Challenge Database (LIVEC) [72].

1) The LIVE database [65] includes 29 reference images
and 779 distorted images degraded by five types of distor-
tions (JPEG, JP2K, WN, GB, Rayleigh fast-fading channel
distortion (FF)). Subjective quality scores are provided in the
form of difference mean opinion score (DMOS) ranging from
0 to 100, where a lower score indicates better image quality.

2) The TID2013 database [66] contains the largest number
of distorted images. It consists of 25 reference images and
3000 distorted images with 24 different distortion types at
five levels of degradation. The database also provides the
MOS, ranging from 0 to 9. A higher value of MOS indicates
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higher quality. The distortion types include a range of noise,
compression, and transmission artifacts.

3) The CSIQ database [67] consists of 30 reference images
and 866 distorted images corrupted by six types of distor-
tions: JPEG, JP2K, WN, GB, pink Gaussian noise and global
contrast decrements. Each image is distorted by five different
distortion levels. Subjective quality scores are provided in the
form of DMOS ranging from 0 to 1.

4) The LIVE MD database [68] was the first to include
multiple distorted images. Images are distorted by two types
of distortions in two combinations: simulated GB followed
by JPEG and GB followed by additive WN. It contains 15
references and 450 distorted images, and the DMOS of each
distorted image is provided, ranging from 0 to 100.

5) The LIVE In the Wild Image Quality Challenge
Database (LIVEC) [72] comprises 1162 images, which are
captured using modern mobile devices and contain diverse
authentic image distortions. In addition, no undistorted ref-
erence images are available in LIVEC. Subjective scores are
obtained in the form of MOS in an online crowdsourcing plat-
form. MOS values lie in the range [0, 100]. The summary of

the above databases is shown in Table 5. Note that Ref means
the number of reference images. Dist means the number of
distorted images. DT means the number of distortion types.
SST and SR mean subjective score’s type and range.

TABLE 5: Comparison of different IQA databases

Database Ref. Dist. DT SST SR
LIVE 29 779 5 DMOS [0,100]

TID2013 30 3000 24 MOS [0,9]
CSIQ 25 866 6 DMOS [0,1]

LIVE MD 15 450 2 DMOS [0,100]
LIVEC N/A 1162 Numerous MOS [0,100]

Two commonly used metrics [73], Spearman Rank-Order
Correlation Coefficient (SROCC) and Pearson Linear Corre-
lation Coefficient (PLCC) are used for performance evalua-
tion. These metrics are to measure the correlation between a
set of estimated visual quality scoresQest and a set of human
subjective quality scores Qsub, as:

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2938900, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

SROCC(Qest, Qsub) = 1− 6
∑
di

m(m2 − 1)
(2)

PLCC(Qest, Qsub) =
cov(Qsub, Qest)

σ(Qsub)σ(Qest)
(3)

where m is the number of images in the evaluation database;
di is the rank difference of i th evaluation sample in Qest

and Qsub; cov(.) represents the covariance between Qest

and Qsub; σ(.) represents the standard deviation. The PLCC
measures the prediction accuracy and the SROCC measures
the prediction monotonicity. For both correlation metrics a
value close to 1 indicates high performance of a specific
quality measure.

B. PERFORMANCE COMPARISON ON INDIVIDUAL
DATABASE
We compare the performance of a number of state-of-the-
art BIQA and FR-IQA methods, including: FR-IQA methods
(PSNR, SSIM [3], FSIMc [74], DeepQA [76]) and classic
BIQA methods (BRISQUE [75], BWS [16], CORNIA [12],
GMLOG [13] and IL-NIQE [14]), current leading various
BIQA methods based on DNN (MGDNN [35], FRIQUEE
[34], GLCP [38], BLNDER [39], DLIQA [43], SESANIN
[45], VPOR [47], CNN [48], Pre-SM [50], VIDGIQA [53],
DIQaM [52], TSCN [30], BIECON [55], DIQA [56], BP-
SQM [57], MFIQA [31], RANK [26], DB-CNN [27], MEON
[29], HIQA [28] ).

For the classic BIQA methods and FR-IQA methods,
we conducted experiments by utilizing the respective codes
released by the authors. It is, however, difficult to reproduce
the BIQA methods based on DNN. We therefore first adopted
the results reported in the respective literature. Especially, for
the cases where experimental results are not given, we use the
released codes to conduct experiments and generate results,
such as CNN, DIQaM, BIECON, RANK.

As shown in table 6, the SROCC and PLCC values are
reported to various methods. The best three performances
among the BIQA methods are shown in bold. The weighted
average of the SROCC and PLCC over the five databases
is shown in the last column of table 6. The weight of
each database is proportional to the number of distorted
images in the database. Especially, in table 6, NR1 means the
classic BIQA methods. NR2 and NR3 mean the extracting
deep features from low-level features and image/image patch
methods, respectively. NR4 means the prediction grades’
methods. NR5 means the SS as patch label’s methods and
NR6 means the FR as patch label’s methods. NR7 and
NR8 mean the expanding distorted images’ methods and the
expanding reference images’ method, respectively.

We can see that the DNN methods generally perform
better than the classic BIQA methods. The fundamental
difference between DNN methods and classic BIQA methods
is that, rather than using hand-crafted features and shallow
regression for classic BIQA, DNN methods search for highly
optimized features automatically and can significantly reduce

prediction errors by the deep network. Meanwhile, we also
show the RMSE performance in table 7. It can be clearly
seen the RMSE performance of the DNN methods is better
than the classical methods in LIVE database. In other IQA
databases, the DNN methods are better than the classical
BWS method. This is because the DNN methods can learn
image deep features related to perception and use the back
propagation method to train the deep network. Therefore,
it is why the DNN methods have been developed rapidly
to improve IQA performance in recent years. In addition,
DNN methods are highly competitive with the FR methods.
However, DNN methods do not use any prior information of
reference for image quality assessment.

We compare the extracting deep features methods from
DNN models [34], [35], [38], [39]. Although some methods
do not give all the experimental results in the five databases,
we clearly see that the methods of directly extracting from
data of image/image patch [38], [39] are better than the
methods of extracting image low-level features [34], [35].
The main reason is that the selected low-features are limited
and cannot adequately describe the image distortions and
contents. However, compared with other end-to-end DNN
models, these methods are simple by using shallow regres-
sion method.

Compared with the methods of predicting quality grades
[43], [45], [47]. The VPOR method significantly outperforms
the DLIQ and the SESANIN methods in LIVE database.
First, the image grade labels, which are defined in a belief
score vector method, are more accurate than the subjective
grades in DLIQ and the SESANIN methods. Second, when
converting the image quality grade to the image score, the V-
POR method take into account the influence of object salien-
cy on image quality. It makes the prediction performance is
better than the DLIQ and SESANIN methods. Therefore, we
find that although qualitative classification methods are much
natural to human visual behaviors, the classification of grades
and the strategy of converting image score will affect the final
prediction performance.

For the patch-input methods, there is a competition be-
tween SS as image patch label methods [30], [48], [50], [52],
[53] and FR as image patch label methods [55]–[57]. When
only the image subjective score is used to obtain image patch
label, the prediction accuracy is inferior to the methods of
using FR as patch label. It is clearly see that the BIECON,
DIQA and BPSQM are all better than CNN. This is because
FR method considers the visual sensitivity of the different
image patch, so that the obtained patch label is more accurate
than the whole image subjective score as label. However,
after adding the saliency of the image patch, the subjective
score methods is highly competitive with the FR methods to
obtain image patch label. This is easy to understand because
the differences can be highlighted after considering salient
image patches. Whereas, although the FR methods and the
image patches’ saliency methods can approximately obtain
the quality of different image patches, the obtain labels are
not the real ground truth of image patches, because the
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ground truth quality of each patch does not exist.
For image-input methods, we clearly see that in the syn-

thetic IQA databases, the methods of expanding distorted
images [26]–[28] are more benefit than that of directly using
large database methods [31]. In the LIVE database, the
RANK, DB-CNN methods perform superior to the MFIQA,
because artificial generation method can simulate images
with similar distortion types and levels in synthetic IQA
database. Hence, the DNN can roughly learn the features
of similar distortion images with IQA database in the pre-
training stage. On the contrary, in the LIVEC database,
MFIQA method is better than RANK, because the pre-trained
DNN in the large database learn the real distortion features.
However, due to the limitation of synthetic distortion images,
it cannot meet the needs of various databases, which leads
to poor generalization ability in different databases. In order
to overcome this problem, the DB-CNN method design two
sub-networks that can satisfy both synthetic and authentic
distortion, thus improving the prediction accuracy. In ad-
dition, the expanding distorted images’ methods compete
with the expanding reference images. However, it is worth
noting that the popular GAN method is first used to solve
insufficient IQA database problem.

C. PERFORMANCE ON CROSS-DATABASE
It is expected that a robust BIQA model that has learned
on one image quality database should be able to accurately
assess the quality of images in other databases. Therefore,
in table 8, we compare the results of generalizability of
the classic BIQA methods and DNN methods only in the
synthetic distortion databases. But we do not consider train
the DNN model on the authentic image distortion database
(LIVEC). On the one hand, this is because some DNN meth-
ods need to use the reference images or simulated distortions
method to train DNN model, such as DIQA [56], RANK [26],
while the LIVEC is the authentic image distortions without
the reference images or prior distortion types. On the other
hand, because of the largely difference between synthetic
and authentic images, many DNN methods do not discuss
cross dataset test between synthetic and authentic datasets.
Therefore, the compared BIQA methods are trained using
all the images from one synthetic database, and then tested
on another database. In the CSIQ and TID2013 databases,
four overlapping distortion types (WN, GB, JPEG, JP2K) are
used.

In table 8, it can be seen that the DNN method is the
best performance when LIVE database is trained and other
subset databases are tested. The MFIQA and DIQA obtain
the better performance than other methods when CSIQ subset
and TID2013 subset are trained, respectively. Therefore, the
generalization ability of the end-to-end DNN methods is gen-
erally better than the classic BIQA methods and the extracted
deep features’ BIQA methods. This is because the end-to-
end methods can use images/image patches data to learn deep
features and reduce the prediction errors by back propagation
method. However, the classic BIQA methods are limited in

extracting hand-crafted features, which cannot completely
represent the image structures and distortions. Meanwhile,
the prediction performance of shallow regression, such as
SVR, is not as good as that of deep regression network.
Similarly, although the extracted deep features methods can
further extract the deep features from the limited low-level
features, the shallow regression restricts the generalization
ability.

Furthermore, in DNN methods, the generalizability of the
patch-input methods [48],[52],[56] is better than the image-
input methods [26], [31]. The main reason is the patch-input
methods use the images of IQA database to expand training
samples to train DNN network, but the image-input methods
expand the IQA database by using exterior images. These
exterior images can be fitted as IQA images to expand IQA
database. Because the difference between the fitted images
and IQA images, it reduce the generalization ability of the
DNN model.

D. THE COMPLEXITY OF DIFFERENT DNN METHODS
We calculate the complexity of different DNN methods as
shown in table 9, including CNN, DIQaM, BIECON, RANK,
DB-CNN. Especially, WPs and BPs mean the weight param-
eters and basis parameters, respectively. ATPs means the total
parameters of the DNN. CTs means the parameters of all C
layers and FTs means the parameters of all F layers.Since C
and F layers are used to update network parameters, the com-
plexity of algorithm is closely related to the C and F layers’
parameters. In table 9, we clearly see that the complexity of
CNN is lower than the DIQaM, BIECON, RANK, DB-CNN,
because the number of layers of the DNN is smaller than
that of other methods. Further, the complexity of F layers is
higher than that of C layers expect for DIQaM. Especially,
in the DB-CNN, RANK, although the number of F layer
is much smaller than that of C layer, the complexity of F
layer is still higher than the C layer. This is because the F
layer optimizes all local features jointly, while the C layer
only optimizes local features. Compared with DIQaM and
BIECON, since the number FC layers of BIECON methods is
much larger than the DIQaM, it is easy to understand that the
complexity of BIECON method is higher than the DIQaM.
Therefore, F layer has higher effect on DNN complexity than
C layer. It is worth noting that when designing the deep
network, we need to consider the number of layers and the
proportion of C and F layers.

E. DISCUSSION OF DIFFERENT DNN METHODS
As shown in table 10, we compare the implementations and
of different DNN methods. The first three DNN models are
based on the patch-input methods and the last two DNN
methods are based on the image-input methods. Note that
SS means image subjective score (SS). DL and DT mean
the distortion level (DL) and type (DT), respectively. The
comprehensive performance is presented in five different
databases (LIVE, TID2013, CSIQ, LIVEMD, LIVEC). In
table 10, we find that the prediction performance is not
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TABLE 6: The SROCC and PLCC comparison on the five databases

Types Algorithms LIVE TID2013 CSIQ LIVEMD LIVEC Weighted Average
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

FR

PSNR 0.876 0.872 0.636 0.706 0.806 0.800 0.725 0.815 N/A N/A N/A N/A
SSIM [3] 0.913 0.945 0.775 0.691 0.834 0.861 0.845 0.882 N/A N/A N/A N/A

FSIMc [74] 0.963 0.960 0.802 0.877 0.913 0.919 0.863 0.818 N/A N/A N/A N/A
DeepQA [76] 0.981 0.982 0.961 0.965 0.939 0.947 0.938 0.942 N/A N/A N/A N/A

NR1

BRISQUE [75] 0.939 0.942 0.572 0.651 0.775 0.817 0.897 0.921 0.607 0.645 0.676 0.729
CORNIA [12] 0.942 0.943 0.549 0.613 0.714 0.781 0.900 0.915 0.618 0.662 0.659 0.708
GMLOG [13] 0.950 0.954 0.675 0.683 0.803 0.812 0.824 0.863 0.543 0.571 0.713 0.727
IL-NIQE [14] 0.902 0.908 0.521 0.648 0.821 0.865 0.902 0.914 0.594 0.589 0.651 0.719

BWS [16] 0.934 0.943 0.597 0.622 0.786 0.820 0.901 0.922 0.482 0.526 0.666 0.693

NR2 MGDNN [35] 0.951 0.949 – – – – – – – – – –
FRIQUEE [34] – – – – – – – – 0.672 0.705 – –

NR3 GLCP [38] 0.958 0.959 – – – – – – – – – –
BLNDER [39] 0.966 0.959 0.819 0.838 0.961 0.968 0.944 0.964 0.945 0.953 0.890 0.902

NR4
DLIQA [43] 0.929 0.934 – – – – – – – – – –

SESANIN [45] 0.934 0.948 – – – – 0.836 0.838 – – – –
VPOR [47] 0.967 0.968 – – – – – – – – – –

NR5

CNN [48] 0.956 0.953 0.558 0.653 0.683 0.754 0.933 0.927 0.516 0.536 0.604 0.702
Pre-SM [50] 0.974 0.978 – – – – – – – – – –

VIDGIQA [53] 0.969 0.973 – – – – – – 0.701 – – –
DIQaM [52] 0.960 0.972 0.835 0.855 0.869 0.894 0.906 0.931 0.606 0.601 0.817 0.832
TSCN [30] 0.969 0.972 – – – – – – – – – –

NR6
BIECON [55] 0.961 0.960 0.717 0.762 0.815 0.823 0.909 0.933 0.663 0.705 0.765 0.797

DIQA [56] 0.970 0.972 0.843 0.868 0.844 0.880 0.920 0.933 0.703 0.704 0.839 0.857
BPSQM [57] 0.973 0.963 0.862 0.885 0.0.874 0.915 – – – – – –

NR7

MFIQA [31] 0.964 0.967 – – 0.917 0.936 – – 0.835 0.967 – –
RANk [26] 0.981 0.982 0.780 0.793 0.892 0.912 0.908 0.929 0.641 0.675 0.800 0.818

DB-CNN [27] 0.968 0.971 0.816 0.865 0.946 0.959 0.927 0.934 0.851 0.869 0.868 0.897
MEON [29] 0.943 0.954 0.808 – – – – – – – – –

NR8 HIQA [28] 0.982 0.982 0.879 0.880 0.885 0.901 – – – – – –
Red: the highest. Blue: the second. Green: the third.

TABLE 7: The RMSE comparison on the five databases

Algorithms LIVE TID2013 CSIQ LIVEMD LIVEC Weighted Average
PSNR 12.74 0.567 0.123 8.323 – –

BRISQUE [75] 9.538 – – – – –
CORNIA [12] 9.935 – – – – –

BWS [16] 9.821 0.951 0.192 8.210 22.53 6.479
CNN [48] 7.313 0.921 0.183 7.067 16.38 4.928

RANK [26] 5.438 0.818 0.115 5.621 12.25 3.764
BIECON [55] 5.537 0.452 0.108 5.365 6.471 2.509
DIQaM [52] 5.742 0.745 0.120 9.113 15.35 4.595
DIQA [56] 5.793 0.558 0.114 4.960 10.93 3.391

TABLE 8: The SROCC comparison of the cross dataset test

Train Test BRISQUE GMLOG BLNDER CNN DIQaM DIQA RANK MFIQA

LIVE CSIQ subset 0.890 0.897 0.700 0.923 0.908 0.906 0.797 0.903
TID2013 subset 0.878 0.907 0.652 0.920 0.867 0.918 0.873 –

CSIQ subset LIVE 0.919 0.903 0.825 – – 0.923 0.564 0.933
TID2013 subset 0.874 0.879 0.661 – – 0.915 0.777 –

TID2013 subset LIVE 0.877 0.889 0.751 – – 0.905 0.769 –
CSIQ subset 0.861 0.794 0.782 – – 0.871 0.735 –
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TABLE 9: The complexity of different DNN methods

Algorithms Layers Input size Kernel size Output size WPs BPs ATPs

CNN

C1 32× 32× 1 7× 7 26× 26× 1 2450 50 ATPs:7.25× 105

CPs:2.45× 104

FPs:6.48× 105

F1 1× 1× 50(2) 1× 1 1× 1× 800 8000 1600
F2 1× 1× 800 1× 1 1× 1× 800 640000 800
F3 1× 1× 800 1× 1 1× 1× 1 800 1

DIQaM

C1 32× 32× 3 3× 3 32× 32× 32 864 32

ATPs:5.24× 106

CPs:4.71× 106

FPs:5.30× 105

C2 32× 32× 32 3× 3 32× 32× 32 9216 32
C3 16× 16× 32 3× 3 16× 16× 64 18432 64
C4 16× 16× 64 3× 3 16× 16× 64 36864 64
C5 16× 16× 64 3× 3 16× 16× 128 73728 128
C6 8× 8× 128 3× 3 8× 8× 128 147456 128
C7 8× 8× 128 3× 3 8× 8× 256 294912 256
C8 4× 4× 256 3× 3 4× 4× 256 589824 256
C9 2× 2× 256 3× 3 2× 2× 512 1179648 512
F1 1× 1× 512(2) 1× 1 1× 1× 512(2) 524288 1024
F2 1× 1× 512) 1× 1 1× 1× 1 512 1

BIECON

C1 32× 32× 3 5× 5 32× 32× 48 3648 48
C2 16× 16× 48 5× 5 16× 16× 64 76864 64
F1 8× 8× 64 1× 1 1× 1× 1600 6553600 1600 ATPs:7.38× 106

F2 1× 1× 1600 1× 1 1× 1× 400 640000 400 CPs:8.06× 104

F3 1× 1× 400 1× 1 1× 1× 200 80000 200 FPs:7.294× 106

F4 1× 1× 200 1× 1 1× 1× 100 20000 100
F5 1× 1× 100 1× 1 1× 1× 1 100 1

RANK

C1 224× 224× 3 3× 3 224× 224× 64 1728 64
C2 224× 224× 64 3× 3 224× 224× 64 36864 64
C3 112× 112× 64 3× 3 112× 112× 128 73728 128
C4 112× 112× 128 3× 3 112× 112× 128 147456 128
C5 56× 56× 128 3× 3 56× 56× 256 294912 256
C6 56× 56× 256 3× 3 56× 56× 256 589824 256
C7 56× 56× 256 3× 3 56× 56× 256 589824 256 ATPs:1.34× 108

C8 28× 28× 256 3× 3 28× 28× 512 1179648 512 CPs:1.47× 107

C9 28× 28× 256 3× 3 28× 28× 512 1179648 512 FPs:1.193× 108

C10 28× 28× 256 3× 3 28× 28× 512 1179648 512
C11 14× 14× 512 3× 3 14× 14× 512 2359296 512
C12 14× 14× 512 3× 3 14× 14× 512 2359296 512
C13 14× 14× 512 3× 3 14× 14× 512 2359296 512
F1 7× 7× 512 1× 1 1× 1× 4096 102760448 4096
F2 1× 1× 4096 1× 1 1× 1× 4096 16777216 4096
F3 1× 1× 4096 1× 1 1× 1× 1 4096 1

DB-CNN

C1 224× 224× 3 3× 3 224× 224× 48 1296 48

ATPs:1.85× 107

CPs:5.0× 105

FPs:1.193× 108

C2 224× 224× 48 3× 3 112× 112× 48 20736 48
C3 112× 112× 48 3× 3 112× 112× 64 27648 64
C4 112× 112× 64 3× 3 56× 56× 64 36864 64
C5 56× 56× 64 3× 3 56× 56× 64 36864 64
C6 56× 56× 64 3× 3 28× 28× 64 36864 64
C7 28× 28× 64 3× 3 28× 28× 128 73856 128
C8 28× 28× 128 3× 3 28× 28× 128 1179648 128
C9 28× 28× 128 3× 3 14× 14× 128 147456 128
F1 14× 14× 128 1× 1 1× 1× 128 3211264 128
F2 1× 1× 128 1× 1 1× 1× 256 9984 256
F3 1× 1× 256 1× 1 1× 1× 1 9984 39

VGG(C1-C13) – – – 14710464 3968
F4 1× 1× 640 1× 1 1× 1× 1 640 1

16 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2938900, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 10: The comparison of implementations of different DNN methods

Algorithms Image size Train methods Train label Network parameters Performance
First stage Second stage

CNN 32× 32 Patch-input SS N/A 7.25× 105 0.702
BIECON 32× 32 Patch-input FSIM SS 7.38× 106 0.797
DIQaM 32× 32 Patch-input SS N/A 5.22× 106 0.832
RANK 224× 224 Image-input DL SS 1.34× 108 0.818

DB-CNN 224× 224 Image-input DL+DT SS 1.85× 107 0.897

only related to the complexity of DNN, but also to the
strategy of the design algorithm. Although the complexity
of DB-CNN is not the highest, the prediction performance
is the best in these methods. The reason is that DB-CNN
jointly considers three factors. First, they select the image-
input method, which can obtain rich distortion information.
Second, they consider the distortion types and levels as labels
to describe synthetic images in the first stage. Finally, in the
second stage, they add a sub-network to predict authentic
images.

In addition, since the RANK and DB-CNN methods fix
input image size, images need to be cropped or resized as
input to meet requirement. It leads to input image is not
enough to cover the whole image information and easy to
introduce geometric deformation. Therefore, the intermedi-
ate label and image size will also be considered to improve
prediction performance. Similarly, compared with the patch-
input methods, the DIQaM method is superior to others,
because the patch saliency is used to solve the inaccurate
patch label. Therefore, in order to improve the prediction
accuracy, patch size and proxy score will be considered.

In practical application, we need to find a balance between
the algorithm complexity and prediction accuracy. For ex-
ample, in the application of medical images, we pay more
attention to the prediction accuracy. On the contrary, in real-
time image evaluation system, we will give priority to the
algorithm complexity.

V. CHALLENGES OF DNN METHODS
In the previous sections, we present a comprehensive review
of the recent literature in DNN models for BIQA. Although
DNN-based BIQA methods can achieve outstanding perfor-
mance due to their strong representation capability, there are
several challenges at the same time. Meanwhile, we provide
some solutions to these challenges.

1) Creating the large-scale IQA database The number of
training samples is critical to the success of DNN mod-
els. Currently, the lack of large training data sets is often
mentioned as a challenge. Although both the image-input
methods and the patch-input methods overcome the problem
of insufficient IQA database to some extent, these methods
have their own shortcomings to the label accuracy of gener-
ation images. Therefore, understanding how to successfully
create reliable, very large-scale databases is still an open
question.Therefore, the online crowdsourcing system is one

possible solution, which aims to gather very rich human data
in term of subjective testing. In addition, if a large social
media company were to engage their customers to provide
image quality scores, it would also ensure the aggregate
quality of the collected human data.

2) Exploring unsupervised DNN methods The current
DNN models mainly use the supervised end-to-end optimiza-
tion to evaluate image quality. However, the lack of sufficient
ground truth labels is a serious problem for BIQA. Therefore,
we expect that training an end-to-end DNN model in a com-
pletely unsupervised manner is worth further investigations
in the future. This is because obtaining large amounts of
unlabeled data is generally much easier than labeled data
and human learning is largely unsupervised: we discover
the structure of the word by observing it, not by being told
the specific labels. Thus,we could try to design two branch
networks to the unsupervised method. The one is used to
learn the features of reference images and the other is used to
learn the distorted images’ features. Then, the most important
is we need to establish a loss mechanism to quantify the
difference between the two branch networks. In addition,
the proxy mechanism may be designed to replace the image
subjective scores.

3) Explaining the theoretical basis of DNN methods Al-
though DNN thoroughly understands the data distribution
and results, for human, there is no theoretical analysis ex-
plaining why it works well to the designed DNN architecture
and how to further improve the prediction performance.
Therefore, it is meaningful to explore the theoretical guar-
antee of DNN model, in order to guide further researches in
this field. The two methods may be selected to explain DNN
algorithms. One approach could analyze DNN architecture
by using visual method [85]. The visualization of layer-by-
layer features helps understand how the DNN learns useful
features for IQA task. Another is to explain the functions of
DNN according to the algorithms’ requirements so that the
functions of DNN could deal with the IQA problems.

VI. CONCLUSION
This paper presents a systematic survey of various DNN-
based methods for BIQA. We discussed and analyzed the
state-of-the-art DNN methods according to different strate-
gies of DNN models. This classification strategy explicitly
shows the characteristics, advantages and disadvantages of
different DNN methods for BIQA. Especially, some novel
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DNN methods, which are not present in previous study,
are also discussed. Then, we compare the performance and
complexity of various DNN models, yet the state of research
in this field is far from mature. Meanwhile, we summarize
the intrinsic relationship among different DNN methods and
obtain some interesting findings, which can help us design
DNN for BIQA. Furthermore, we provide several challeng-
ing issues of using DNN methods for BIQA, which should
be noticed. We hope this survey of DNN methods can serve
as a useful reference towards a better understanding of this
research field.
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