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       ABSTRACT 

This thesis focuses on applying Artificial Intelligence (AI) methods for detecting, 

classifying and predicting the faults in induction motors in order to prevent any failures 

happening during their operation due to loading conditions. It is very important to 

monitor and detect any faults in the motor during its operation in order to alert the 

operators so that potential problems could be avoided. In this study, a new AI 

algorithm has been developed and applied to detect, classify and predict the induction 

motor faults at an early stage. This is based on a hybrid approach using the Bees 

Algorithm (BA) and Data Mining called Bee for Mining (B4M), which overcomes the 

drawbacks of current AI methods in achieving higher classification accuracy with 

reduced rule set generated from the training data. The proposed B4M algorithm has 

been implemented, tested and validated using the University of California at Irvine 

(UCI) dataset, and was compared with other well-known classifiers.  

Later, the proposed B4M algorithm was applied in dealing with two most common 

faults, firstly, that of rotor (one rotor bar, four rotor bars and eight rotor bars), and 

secondly, bearing defects (inner race, outer race and ball bearing defects). In this 

research, three condition monitoring techniques involving thermal imaging, current 

and vibration signal processing have been used to monitor these faults. Further, 

features such as image metrics and Discrete Wavelet Transform (DWT) coefficients 

were extracted from the thermal images, and DWT coefficients from the current and 

vibration signals. Later, five-feature selection methods were applied in order to select 

the best features for defect classification. Finally, an improvement to the proposed 

B4M was made by producing a new hybrid classification algorithm by combining 
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Genetic Algorithm (GA) with B4M referred to as GA-B4M where the GA was used 

for feature selection. The new algorithms were successfully implemented on 

MATLAB and its performance was tested on real data and compared with other 

algorithms using the WEKA software.  

The results obtained for the thermal image monitoring data showed 98.97% 

classification accuracy with a reduced rule set containing 10 rules for B4M while a 

100% accuracy with a larger rule set of 63 and 72 rules were achieved by Decision 

Table and OneR classifiers respectively. For the current monitoring data, the 

classification accuracy fell to 79.62% with only 8 rules for B4M, while 79.20% with 

837 rules was achieved by Random Tree. Similarly, for the vibration monitoring data 

the B4M achieved 80.05% with 7 rules in comparison with Naïve Bayes tree at 79.25% 

with 31 rules. Furthermore, the results achieved by the proposed hybrid approach GA-

B4M on thermal imaging dataset also showed an overall improvement on the 

classification accuracy reaching 99.85% with 7 rules. Similarly, on the current and 

vibration dataset the GA-B4M obtained 79.98% with 16 rules and 98.74% with 7 rules 

respectively. This study has shown that the new proposed classification algorithms 

B4M and GA-B4M are able to detect, classify and predict the induction motor faults 

more reliably. 
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INTRODUCTION AND THESIS OBJECTIVES 
 

 

 

“This chapter describes the main purposes of maintenance strategies. It also 

introduces condition monitoring and describes the different types of condition 

monitoring systems and techniques. Finally, the research aim, objectives and the 

thesis structure have been presented”.  

 

 

 

 

 

 



Chapter 1: Introduction and Thesis Objectives 

   Page | 2  

1.1 Introduction 

The induction machine condition monitoring plays a vital role in the industrial 

facilities as it guarantees both the reliability and low cost operation [1]. Condition 

monitoring gives an opportunity to maintain the machine at early stage or before any 

possible disastrous accident or any dangerous damage. Furthermore, it allows having 

a schedule or planned service for the technician, which will decrease the possibility of 

production losses. Induction motors (IM) have been widely used in most of industrial 

applications due to their robustness, low cost and operation (operate with an easily 

available power supply). However, IM may fail far sooner than its designed lifetime 

because of the installation issues, duties, and operational environments. Recently, the 

approach of “run-to-fail” has been rejected for most manufacturing process and 

operations. For that reason, the condition monitoring has been required as an 

alternative system to protect the motor based on the motor data collection and analysis 

during its operation, which makes it acceptable and more desirable due to its capability 

of detecting the motor faults in early stage [2]. Moreover, most of the companies and 

industries are searching/looking for the best condition monitoring methods in order to 

reduce the damage to the environments or the maintenance cost, which may mitigate 

any possible injuries to the operators or technicians. There are three essential 

maintenance strategies as follows [3], [4]:  

a) Preventive maintenance (time-based-maintenance): the machine are 

thoroughly inspected and tested at a set of intervals, and any necessary 

maintenance has to be carried out to remedy faults present within the system. 
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b) Breakdown maintenance: the machines are run until they completely fail, 

this kind of maintenance it considered as a very expensive in terms of machine 

damage and lost output, or it may also lead to dangerous occurrences. 

c) Predictive maintenance: this strategy requires a continuous monitoring in 

order to detect and diagnose any defects happened to the machine. If the 

defects have been detected, the maintenance must be planned and executed as 

soon as possible. 

The main objectives of these maintenance are assisting the machine for productivity 

improvements, extend the machine life, minimise the number of maintenance and 

replacements routine and producing a high quality products [1], [5]. In the induction 

motors, faults could be occur in the rotor, bearing, stator or any other peripheral 

devices that are connected to the induction motor. These faults have been broadly 

classified into broken rotor bars, bearing faults, eccentricity, gearbox failure and many 

others. In other word, the mentioned faults may produce one or more symptoms such 

as unbalanced line current and voltages, excessive heating, torque pulsations, vibration 

and noise and other symptoms. 

The recent development in the computer software and electrical equipment based on 

the Artificial Intelligence (AI) systems (machine learning)  attract the attention of the 

electrical engineers to lunch an extensive researches to apply the AI techniques for 

motor fault detection and diagnosis [6]. The AI techniques such as Artificial Neural 

Network (ANN), Fuzzy Logic (FL),  Genetic Algorithm (GA) and many others have 

been applied to induction motor faults detection and diagnosis. These techniques have 

used association, reasoning and decision-making process as would the human brain in 

solving diagnosis problems [7]. 
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1.2 Research Aim and Objectives 

The aim of this research is to investigate and recommend a new condition monitoring 

technique based on three common approaches, which are thermal image, motor current 

signal analysis and vibration signal analysis. The thermal image has been captured 

using FILR thermal camera, the motor current signals have been collected using 

current transformers and the vibration signals have been collected using laser 

vibrometer. 

Specifically, the aim of this research is: 

 To develop and improve a new artificial intelligence technique based on Bees 

Algorithm (optimization algorithm), data mining and Genetic Algorithm to be 

used for detecting, classifying and predicting the motor faults at an early stage. 

1.2.1 Research Objectives 

In the last decades, there has been a huge amount of research into creating a new 

condition monitoring technique for electrical machines based on AI [8]–[10]. The 

research and development of designing a newer and alternative diagnostic system is 

continuous. However, since condition monitoring and fault diagnosis system should 

always suite new, the condition monitoring based on the AI has been developed 

rapidly to cover all the induction motor situations under any circumstances. This 

continuous development and research have argued by the fact that there is no specific 

system/technique could be considered generally or the best for all existing 

applications, since an operator must treat each motor drive as a unique entity. In this 

respect, the fundamental causes, mechanical load characteristics, potential failure 
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modes and operational conditions have to be carefully taken into consideration when 

designing a monitoring system for specific applications [11]. 

Additionally, all previous studies that are carried out in the field of condition 

monitoring show that there have been many challenges and opportunities for engineers 

and researchers to focus on. Several solutions and recommendations concerning the 

condition monitoring methods have been given in this area, generally depending on 

the machine type, operating conditions (loading), size, cost constraints, available 

instruments etc. Besides, several fields of technology and science such as thermal, 

electrical, mechanical and sometime chemical engineering should be considered and 

combined whenever possible, in order to allow analysts to correlate different aspects 

of each technology to troubleshoot symptoms and determine a course of action to avert 

failures. This is also a stringent requirement when aiming to build or design a 

competitive condition monitoring system. 

In this research, three computational tools would be extensively used. These are NI 

LabVIEW, MATLAB and WEKA software’s. NI LabVIEW is systems engineering 

software for applications that require test, measurements and control with rapid access 

to hardware and data insight. MATLAB is a very ubiquitous scientific and technical 

computing tool that has found wide applicability. WEKA is a machine learning 

environment created by University of Waikato. This research was oriented to achieve 

the following objectives: 

In terms of machine learning  

1- To develop a new innovative, non-intrusive, accurate, reliable and simple 

artificial intelligence technique based on Bees Algorithm (optimization 
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algorithm) and data mining approach, called Bee for Mining (B4M) that is able 

to detect and diagnose the motor faults in an early stage. 

2- To validate the new proposed classification algorithm based on the University 

of California at Irvine Machine Learning Repository (UCI machine learning 

datasets). 

3- To compare the capability of the new algorithm with other well-known 

classification algorithms based on the UCI machine-learning datasets. 

In terms of condition monitoring  

1- To explore induction motor failures modes and understand condition-

monitoring techniques.  

2- To design and construct a test rig with the associated instrumentation for 

induction motor faults to collect the real data from the induction motor with 

seven faulty cases and three different condition monitoring technique, thermal 

image, motor current signature analysis and vibration signal. 

3- Apply different feature extraction and feature selection methods with purpose 

of extracting and selecting the best fault information from the raw images and 

signals for all three condition-monitoring techniques.  

4- To apply the new proposed classification algorithm that are relaying on the 

Bees Algorithm and Data Mining approaches (B4M) in the suggested 

condition monitoring techniques.  
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5- To compare the capability of the new algorithm with other well-known 

classification algorithms based on the thermal image, current and vibration 

signals. 

In terms of the machine learning hybrid system  

1- To build a new hybrid classification system based on the Genetic Algorithm 

and the proposed classification algorithm (B4M), which is called (GA-B4M), 

in order to make the classification system more robust and accurate for 

classifying the motor faults correctly.  

2- To apply the new hybrid system to the seven faulty cases and three suggested 

condition-monitoring techniques. 

1.3 Thesis Outline 

 Chapter 1: Introduction and Thesis Objectives. It presents the research 

objectives and the thesis outline. 

 Chapter 2: Induction Motors and Related Faults. Since the induction motor 

is aimed to study in this research, this chapter introduces background 

information about the induction motor such as induction motor structure and 

principle. It also introduces the most common types of electrical and 

mechanical faults, because they are the problems that are aimed to be solved. 

 Chapter 3: Literature Review. The previous related work on condition 

monitoring is presented in this chapter. 
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 Chapter 4: Proposed Bee for Mining (B4M). In this chapter, the combination 

of the Bees Algorithm and Data Mining have been described in detail in order 

to produce the proposed Bee for Mining (B4M). 

 Chapter 5: Proposed Methods for Data Pre-Processing and Feature 

Selection. In this chapter, the proposed methods for pre-processing the 

induction motor dataset have been explained for all condition monitoring 

approach, thermal image, current and vibration signals.  

 Chapter 6: Genetic Algorithm based Feature Selection for B4M (GA-

B4M). This chapter explains how the Genetic Algorithm has been used as 

feature selection method and how it works theoretically.  

 Chapter 7: Experimental Setup and Measurements. The practical work of 

this research starts in this chapter. It shows what equipment was used in 

experiments, how the induction motor test rig was built, and the procedure of 

the experiments, how the required measurements were taken and how the 

acquired data were stored in order to be proceeded in the next chapter. It also 

shows the induction motor healthy and the faulty signals and how the faults 

have been generated. 

 Chapter 8: Data and Signal Analysis. It explains how to analyse the motor 

data and signals based on the proposed methods that are explained in previous 

chapters. It also shows the signal analysis for all three condition monitoring 

approaches (thermal image, current and vibration condition monitoring). 

 Chapter 9: Results and Discussion. The results that were obtained from the 

induction motor conditions (healthy and faulty) are discussed using MATLAB 
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and WEKA software’s. Then, the results of the other classification algorithms 

have been discussed and compared with the proposed technique. 

 Chapter 10: Conclusions and Future Work. All the discussions about the 

results of testing the proposed techniques in both simulation and practical work 

are concluded in this chapter. It also introduces some recommendations for 

future work. 



 

 

 

 

 

 

2 CHAPTER 2  
 

 

INDUCTION MOTORS AND RELATED FAULTS 
 

 

 

“In this chapter, the concept of induction motor and a brief review of what are the 

main types of induction machine faults are presented. In order to cover the 

understanding of the induction motors, the induction motor structure and its 

fundamental are introduced first. Then brief review of induction motors symptoms and 

mechanisms of the electrical and mechanical faults are presented”.  
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2.1 Induction Motor Structure 

Induction Motors are also known as asynchronous motors and are typically Alternative 

Current (AC) electric motors. In induction motors, electric current is required to 

generate the torque to drive the motor [12]. It has been considered as asynchronous 

machine since they operate at speed lower than the synchronous speed. Worth noting, 

asynchronous speed is the speed of rotating magnetic field, which depends upon the 

machine pole numbers and the supplied frequency.  The driving torque is achieved by 

electromagnetic induction that is obtained from the electromagnetic field of the stator 

coils. IM contains magnetic circuits, which are connected to two electric circuit, these 

circuits are:  

a) Magnetic circuit, which is responsible for carrying the magnetic flux that is 

made of laminated magnetic material generally steel.  

b) Electrical circuit, which is normally made of insulated aluminium or copper to 

carry the current. 

These two circuits are very important for rotating the main part of the induction motor, 

which is rotating part (rotor) as illustrated in figure 2-1.  

 

Figure 2-1: Parts of induction motor [13]. 
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A series of thin aluminium pieces permanently attached to a laminated cylinder make 

up the rotor structure. The rotor pieces are attached in a horizontal fashion and parallel 

to the rotor shaft. Towards the edge of the rotor, aluminium plates are intertwined with 

a shorting ring. There are two types of rotor: wound and squirrel cage rotors. The 

wound rotor of an induction motor is similar to a three-phase stator winding because 

it carries a poly-phase winding. In addition, three isolated slip rings are connected to 

a rotor winding which are mounted on rotor shaft. In this type of rotor (wound rotor) 

as shown in figure 2-2, an external changeable resistance is connected to the slip rings 

in order to limit the rotor heating and starting current.  

 

Figure 2-2: Induction motor wound rotor [14]. 

During starting up, the inserted resistance to the wound rotor produces less starting 

current with high starting torque than the squirrel cage rotor [13]. So far, wound rotor 

has been concerned; the structure and functions of squirrel cage rotor will be 

explained. It consists of parallel slots with a laminated cylinder core in order to carry 

rotor conductor, no wires are connected but it has a thick bars of aluminium or copper. 

Furthermore, it has two end rings that are braced or welded, and these ends are short 

circuit. For that reason, it is impossible to connect or add any external variable 

resistance. The shaft is usually not parallel to the rotor bars, it is a little bit skewed, as 

shown in figure 2-3.  
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Figure 2-3: Induction motor squirrel cage rotor [19]. 

The squirrel cage rotor is different from the wound rotor in a number of aspects. The 

main difference is that the squirrel cage rotor is economical, simpler and more rugged 

than the wound rotor. Additionally, if a constant frequency and constant voltage 

connected to the squirrel cage rotor, it produces a constant speed. Thus, it is compatible 

with stationary speed drive system [13][14]. Otherwise, many industries required 

adjustable speed or various speed for products applications. In addition, it is important 

to ask why squirrel cage induction motors are preferred in most industries than DC 

motors.  

In terms of Direct Current (DC) motor has been used in order to obtain adjustable 

range of speeds. Nevertheless, because of the DC motors are very expensive and the 

brushes and commutators need to be serviced frequently, the squirrel cage induction 

motors are preferred in most industries because as mentioned above, rugged, cheap 

and no need for commutators. Recently, the squirrel cage motors are used in high and 

low-performance applications owing to its versatility.  

Moving on now to consider the stator, it is fabricated in such a way that windings of 

low resistance (copper) wire coils are permanently attached to the motor body/frame. 
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Whenever a current and high potential is applied to the stationary runs/coils, a strong 

magnetic field is induced in the stator coils [15].  The stator windings are arranged in 

a pattern that the magnetic field appears to synchronously rotate around the motor 

housing [16]. Through the electromagnetic induction, the power will transfer from one 

part to other. When stator windings are powered from a three-phase AC source, a 

rotating magnetic field is induced, then it converts electrical energy into mechanical 

energy [17].  

 

Figure 2-4: Induction motor rotor and stator magnetic circuit [18]. 

Induction motors operate under a complex system of current, voltage and magnetic 

field in a synchronized manner to induce the rotary effect. For the case of three-phase 

AC induction motors, however, no excitation is required for it to start. Instead, the 

motor is a self-starting device [15]. In between the rotor and stator, an air gap/space 

allows free movement for the rotor during its operation [18] as illustrated in figure 2-4 

above. In effect, a synchronous speed is established in the stator. An electromotive 

force (EMF) is induced in the rotor bars by the magnetic field produced in the stator 

windings. Afterwards, a current is generated in the rotor and a separate magnetic field 

is generated within the rotor windings, whose polarity is opposite to that of the stator 
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windings. This current is created due to the relative speed between rotor conductor 

and the rotating flux. Consequently, a magnetic flux generate a force that pulls the 

field in the rotor, thereby inducing a turning effect on the rotor. As described in Lenz’s 

Law, the rotor spins in a similar direction in order to reduce the causing effect that is 

the relative speed. The resultant rotation is in accordance with Faraday’s law of 

electromagnetic induction “EMF is induced in a circuit due to changing magnetic flux 

linkage experienced within the circuitry.” 

In addition to the above two main parts of induction motor, there are other parts which 

are:  

a) Bearings: two bearings have been used for supporting the rotor at each end in 

order to rotate the shaft. 

b) End flanges: two flanges are placed in both ends of induction motor for 

supporting the bearings, and  

c) Shaft: is used for transmitting the generated torque to load. 

Another significant aspect on induction motors is that these motors are generally 

suitable for continuous speed operations. Furthermore, compared to other alternatives, 

induction motors are cheaper to acquire and maintain. While designing induction 

motor, operational features can be examined using several calculations described in 

the subsequent subsections. By applying these calculations, an electrical engineer will 

be in a position to select a motor that best suits a particular job. The section below 

describes briefly the IM principles. 
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2.2 Induction Motor Principle 

The magnetic field distribution between the air gap and the rotation is one of the most 

fundamental concept. Because of non-ideal winding distribution, the effect of the 

space harmonic and slots have been neglected. The sinusoidal current in the three-

phase induction machine is impressed on the stator winding, as it is given below [19]: 

݅ ൌ 	 ܫ 	cos߱ݐ 

                                               ݅ ൌ 	 ܫ 	cosሺ߱ݐ െ 120°ሻ                                     (2-1) 

݅ ൌ 	 ܫ 	cosሺ߱ݐ  120°ሻ  

Where: ܫ: maximum current, ߱: line frequency. 

In order to produce Magnetic Motive Field (MMF) wave and distribute it sinusoidally, 

each phase will work individually to produce the MMF, which pulses about the X-axis 

and Y-axis. The expressions of instantaneous MMF at spatial angle (ߠ) are given 

below [19]: 

ሻߠሺܨ ൌ ܰ݅ cos  ߠ

ሻߠሺܨ                                               ൌ ܰ݅ cosሺߠ െ
ଶగ

ଷ
ሻ                                         (2-2) 

ሻߠሺܨ ൌ ܰ݅ cosሺߠ 
ଶగ

ଷ
ሻ  

Where: ܰ: number of turns in each phase winding, ߠ: spatial angle. 

The MMF are: 

ሻߠሺܨ ൌ ሻߠሺܨ  ሻߠሺܨ   ሻߠሺܨ

ሻߠሺܨ                           ൌ 	ܰ݅ cos ߠ  	ܰ݅ cos ቀߠ െ
ଶగ

ଷ
ቁ  ܰ݅ cosሺߠ 

ଶగ

ଷ
ሻ        (2-3) 

The MMF has been distributed sinusoidally, which rotates the air gap at frequency 

(߱). Furthermore, for two poles induction motors the current variation has one 
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revolution per cycle, which is created by ܨሺߠ,  ሻ. Thus, the rotational speed for P-poleݐ

motor can be as given below: 

                                            ݂ ൌ 	
ఠ

ଶగ
				,				 ௦ܰ ൌ

ଵଶ


                                              (2-4) 

Where: ௦ܰ: synchronous speed (RPM), ݂: stator frequency (Hz), ܲ: number of pole 

pairs. 

The motor synchronous speed indicates the speed of rotation for stator magnetic field. 

௦ܰ is a function of pole number and the frequency of the power source in the motor as 

explained above in the equation (2-4). The rotor conductors are subjected to rotating 

magnetic field when the induction motor rotor is stationary and inducing the short 

circuit rotor current to rotate at the same rotor frequency. Hence, the interactions 

between the rotor MMF and the air gap flux will produce the torque. The difference 

between the rotor speed and synchronous (stator) field speed gives the slip speed. The 

slip speed of an induction motor is calculated and expressed as a fraction of the 

synchronous speed. Slip speed is an important parameter in the motor because without 

slip, the induction motor will produce a torque equivalent to zero. The motor slip 

equation is expressed as follows:  

                                                           ܵ ൌ ேೞିேೝ
ேೞ

                                                     (2-5) 

Where: ܵ: slip, ܰ: rotor speed (RPM). 

Furthermore, the motor efficiency should also be considered. This is determined by 

comparing the input and output power. Higher efficiency is desired in induction 

motors since they are used for energy conversion. Low values of efficiency implies 

that the motor is less productive and it should be substituted. 
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ܧ                                          ൌ ௨௧௨௧	௪

௨௧	௪	
ൈ 100%                                             (2-6) 

2.3 Faults of Induction Motors 

Induction motors are reliable electric machines [9]. However, they are susceptible to 

several electrical and mechanical faults as shown in figure 2-5. Flaws in induction 

motor often lead to unbalanced stator current and voltages [20], reduction in 

efficiencies, torque oscillations, excessive vibrations, overheating and torque 

reduction. 

Figure 2-5: Block diagram of IM faults [21]. 

As illustrated in figure 2-6 [21], faults in induction motor occur in varied magnitudes 

with bearing faults assuming higher probabilities of occurrence followed by stator 

faults, but rotor faults assume the least probability of occurrence but it still need to 

monitored due to the environment change. 

 

Figure 2-6: Probability of fault-occurrence in induction motors [21]. 
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The most common electrical and mechanical faults of the induction motors will be 

explained below. 

2.3.1 Electrical Faults 

Electrical faults in an IM can stem from rotor bars and stator faults, which are briefly 

explained below.  

2.3.1.1 Rotor Faults 

Figure 2-7 shows a squirrel cage for an AC induction motor that comprises of end 

rings and rotor bars. A broken bar can be completely or partially cracked. Such bars 

are susceptible to breaking due to constant starts at rated voltages, manufacturing 

defects, mechanical stresses or thermal stresses caused by metal fatigue [22].  

 

Figure 2-7: Squirrel cage of IM broken rotor bar [23]. 

Many reasons of causing broken rotor bar, due to manufacturing fault, such as irregular 

metallurgical stress might happen during brazing processes, which sometimes lead to 

rotor rotation failure, and an extra stress on the rotor bars due to large centrifugal force, 

which caused by heavy end ring. These faults have also effect on the rotor currents 

asymmetrical distribution [24]. In addition, some faults have been occurred in 
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different locations of the rotor such as at the joint between end ring and bars. A. 

Bonnet and G. Soukup [25] stated that the most rotor faults are happened at the joint 

between the end ring and bars due to manufacturing fault or any other possibilities, for 

instance if the motor is subject to stop and start frequently or long time to start up. 

Recently, broken rotor bars are common faults in induction motors. Furthermore, the 

main reasons that causes the faults in induction motors rotors are described below [26]: 

a) Manufacturing defects as mentioned earlier in the last section. 

b) Thermal stress, which is caused by the hot spot, sparking, excessive losses or 

thermal overload. 

c) Mechanical stress due to bearing failure, fatigued parts and lose lamination. 

d) Magnetic stress due to unbalance magnetic pull, vibration, electromagnetic 

force and electromagnetic noise. 

e) Dynamic stress due to cyclic stress, shaft torques and centrifugal forces. 

f) Environmental stress due to moisture and chemical into the rotor material. 

A broken bar in an induction motor induces a series of side effects. One of the 

commonly known effect is the appearance of sideband components. The so-called 

sidebands are observed in the power continuum of the stator current towards the right 

edges and left sides of the fundamental frequency. The lower side band element is 

triggered by magnetic and electrical asymmetries of the rotor cage within AC 

asynchronous motors. Consequently, constant speed ripples produced by the resulting 

force pulsations instigate the right side band element. These side band frequencies are 
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determined by classical twice slip frequency sidebands, therefore occur at ± 2s ௦݂  

around the supply frequency as follows [27]: 

                                                     ݂ ൌ ௦݂ ቀ



ሺ1 െ ሻݏ േ  ቁ                                     (2-7)ݏ

Where ௦݂:  fundamental frequency, 



 = 1, 5, 7, 11, 13… due to normal configuration 

of winding, s: slip per unit.  

Sideband elements, as explained earlier, are widely used for reorganization/correction 

of induction motor faults. Other electric properties created by the broken bars 

including stator current envelopes, oscillations speed, instantaneous power 

oscillations and torque ripples have been used for motor fault detection [28].  

The previous section has explained the squirrel cage rotor faults in induction motors. 

Turning now to wound rotor faults, rotor windings of wound rotor are linked to 

external resistance via slip rings. By adjusting the resistance, it is possible to control 

the torque/speed properties of the induction motor. Further, it is possible to start the 

motor with low in-rush current through insertion of high- resistance windings in the 

rotor circuit. However, as the motor accelerates towards higher speed, the resistance 

of winding decreases, which is leading to faults. In addition, slip rings that are used in 

wound rotor motors are susceptible to damage. Subsequently, current in the rotor 

windings drops below the expected values [29]. Just like stator windings, rotor 

windings are also susceptible to failure due to a number of catastrophe issues such as:  

a) Insulation faults due to motor breakdown.  

b) Overheating which is caused by an electrical overload, leading to power-surge 

within the rotor coils or unbalanced motor supply voltage, and open-rotor bars 

could lead to winding overheating. 
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c) Rotor locks emanating from mechanical faults can generate current that 

exceeds the starting current.  However, rotor overheating may increase rotor 

losses. At a heightened levels, the motor temperatures may increase up to 350 

°C.  

2.3.1.2 Stator Faults 

Stator faults are caused by one of the following factors, which create short-circuiting 

and effects on the stator coils:  

a) Mechanical forces and stresses. 

b) Thermal stresses and normal ageing process. 

c) Environmental pollution. 

d) Switching transient and electrical overloads. 

Short-circuiting in stator windings is common feature in induction motors. It occurs 

between turns of two phases, or between turns of a single phase, or between turns of 

all phases. In addition, short-circuiting is observed between the stator core and 

windings of the conductor. The following section summarizes the faults in stator 

windings: 

Short circuiting effects between turns of a similar phase as illustrated in figure 2-8a 

below. Winding short circuits are illustrated in figure 2-8b. Figure 2-8c and figure 2-8d 

illustrate short-circuiting between stator core and windings respectively. Similarly, 

figure 2-8e captures short-circuiting throughout the connections, while figure 2-8f 

illustrates short-circuiting between two phases due to abrasion and stator voltage 
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transients [30].  Over-rated and sub-rated voltage supplies could also create these 

faults [31]. 

 

Figure 2-8: Different stator windings faults caused by insulation damage [30]. 

The stator faults could also be effected by an external faults as described briefly below: 

a) Single-Phase Faults 

The induction motors are subjected to loss one of their phases and this issue will 

have an effect on the power system distribution. This kind of fault causes a serious 

problem, because it prevents the motor to operate in actual horsepower. 

Furthermore, to detect the single-phase fault, for some cases the negative phase 

current has been used during the motor operation. Thus, the motor voltage and 
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current measurement was used for detecting the phase fault before loading the 

motor. 

b) Phase Unbalance Faults 

The probability of the unbalance faults is less than full phase faults, but if it 

happened, it may have similar consequences. Recently, more attention has been 

paid for the new induction motor installation in order to distribute the balance 

equally. 

Having discussed the electrical faults and their causes, the final section of this chapter 

addresses the most common mechanical faults in induction motors. 

2.3.2 Mechanical Faults 

Mechanical faults can be caused by either of the following faults:  bearing faults, 

eccentricity and misalignment. These faults account for 40% to 50% of the total faults 

observed in the motor [32].  

2.3.2.1 Bearing Faults 

Bearing faults are complications encountered in either the rolling element or the ball 

bearings that touch the inner and outer rings [9]. Ball bearings or the rolling elements 

continuously rotate in tracks inside the bearing ring. Bearing fault defects on outer 

ring, ball or inner ring. These faults could occur by internal stresses, vibrations, 

currents and inherent eccentricity that influence the formation of mechanical faults. A 

clear analysis of motor history helps to arrive at a conclusive statement that motors 

were previously driven by variable frequency drives lead to exhibited several 

premature failures. Misalignment faults and bearing faults within the load drive system 
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may generate periodic variations to motor.  Figure 2-9 illustrates four types of rolling 

bearing misalignments [33]. 

 

 Figure 2-9: Bearing faults [33]. 

2.3.2.2 Eccentricity Faults 

Eccentricity fault is also known as air gap eccentricity, which occurs in two primary 

forms namely, dynamic and static forms [34]. In static eccentricity fault, rotation of 

the axis is displaced from the centre with the position of the least air gap length being 

fixed in space. The fault occurs due to inaccurate positioning of the stator or/and rotor 

during the construction phase [35]. The displacement of the rotor from the central axis 

within the stator bar makes the distribution field in the air gap to be asymmetrical. As 

a result, a non-uniform air gap is created, thus generating a radial force of the 

electromagnetic origin. The effect is commonly termed as “Unbalanced Magnetic 

Pull” (UMP) which works towards the minimum air gap.  
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Furthermore, static eccentricity stimulates dynamic eccentricity as well.  In dynamic 

eccentricity, the rotor does not spin within its own axis, but the least air gap spins with 

the rotor. Dynamic eccentricity may lead to several problems:  For example; it might 

cause bending to the shaft, may lead to mechanical resonance, misalignment, bearing 

wear or may cause the static eccentricity [36]. Figure 2-10 illustrates several 

eccentricity faults in an induction motor where: a) without eccentricity, b) static 

eccentricity, c) dynamic eccentricity, d) mixed eccentricity respectively. 

 

Figure 2-10: Different types of IM eccentricity faults [37]. 

2.3.2.3 Misalignment Faults 

There are three common types of misalignment faults, which are parallel, angular and 

combination as shown in figure 2-11. 

 

 

 

Figure 2-11: Misalignment types [38]. 
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a) Parallel misalignment: this fault occurs when the centre line of both shafts 

are parallel. These shafts could be displaced right/left, offset 

vertically/horizontally. 

b) Angular misalignment: this fault occurs when the driven equipment are set 

to angle with the motor. The mismatch angle could be to below/above, or to 

right/left. The centre line of the driven equipment and the motor can be cross 

each other if they are extended rather than in parallel. By the time this fault can 

damage both the drive equipment and the motor. 

c) Combination misalignment: this fault occurs when both shafts are suffering 

from parallel misalignment besides the angular misalignment. 

Currently, AC induction motors have been widely used in the industries. In fact, over 

85% of induction motors are in consumer and industrial markets. They are grouped as 

polyphase, or single phase. Induction motors are distinct from DC motors since they 

are consistently manoeuvre higher workloads that exceed a horsepower i.e. (746 

Watts). Notably, 3-phase induction motors are required for intensive, power-driven 

applications [39], [40].  

What follows next is an account of faults that occur in all kind of the induction motors. 

Electrical machines are considerably insecure because of detrimental operating 

environments or exposed unexpected fault which depend on the special circumstances 

such as start/stops, overload, unstable cooling, insufficient lubrication, etc. Thus, all 

these conditions are predicted to put all motors beneath risks of failures [41]. 

According to the IEEE standard 493-1997, table 2-1 [42] stated the most common 

faults in induction motors and statistical appearances recorded, based on different 

faults in industry.   
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Table 2-1: Common faults in induction motors [42]. 

Type of 
faults 

Number of faults/failures 

Induction 
motors 

Synchronous 
motors 

Wound 
rotor 
motors 

DC 
motors 

All 
motors 

Bearing 152 2 10 2 166 

Winding 75 16 6 -- 97 

Rotor 8 1 4 -- 13 

Shaft 19 -- -- -- 19 

Brushes or 

slip rings 
-- 6 8 2 16 

External 

device 
10 7 1 -- 18 

Others 40 9 -- 2 51 

The next chapter explains the way of protecting the induction motors by using the 

traditional and artificial intelligence methods for three common condition monitoring 

techniques thermal image processing, current and vibration signals processing.  
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“In this chapter, condition monitoring methods on induction motor faults detection 

have been presented. For example, traditional methods (motor current signature 

analysis MCSA, signal processing techniques) and artificial intelligence techniques. 

Additionally, this review will also cover the development of the condition monitoring 

from earlier studies to most recent”. 
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3.1 Introduction 

Condition monitoring and fault diagnosis of induction motors are quite challenging 

for electrical engineers. There are several methods of condition monitoring, which are 

thermal, current, vibration monitoring, etc. However, thermal and vibration 

monitoring require very sensitive sensors and highly specialized equipment. In both 

cases of motor faults electrical and mechanical, an effective condition monitoring 

technique should be able to provide adequate warning about the machine fault before 

failing in its critical component. This process will prevent any maintenance schedule 

or any other cost that causes by the fault. The technology provides highly selective, 

sensitive and cost effective techniques for online/offline diagnosing and monitoring 

of industrial machinery. 

3.2 Thermal Monitoring 

Last decades there have been a numerous approaches to monitor the operation of 

induction motors by thermal protection technique by using for example relays, 

thermocouples, thermography (thermal cameras) and others, which are suitable for 

low cost applications. Providing thermal protection for induction machines, different 

types of relays have been already developed for overload and thermal monitoring [43]. 

Table 3-1 illustrates the sources of abnormal heating and their possible causes.  

Table 3-1: Sources of abnormal temperature and causes [43]. 

Origen Faults 

Thermal Finishing problem, lubricant refrigeration and deficient cooling. 

Environmental Lubricate contamination, dust and dirtiness. 

Mechanical Overload, bearing, transmission problem and misalignment. 

Electrical 
Supply voltage, connection defects, broken rotor bars, voltage 

unbalance and harmonic distortion. 
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In order to avoid the thermal overload, thermal sensors have been widely used for 

stator winding monitoring. However, these sensors are highly undesirable for some 

applications. 

Moving on now to consider some reasons of having both electrical stress and high 

thermal faults on the rotor cage and stator winding. The most common reasons are the 

high current and long starting time, which have an effects on the rotor cage or stator 

winding, which make it unable to be cooled. As results of these stresses, the small 

induction motors take long starting time than the large motors [44]. 

Most of induction motors start with high torque and high starting current with low 

voltage. Throughout the motor starting time, the current of the rotor and the stator are 

much higher than rated current, which cause very high thermal stress for rotor and 

stator. Thus, the temperature peak of induction motor is naturally appears during the 

motor starting instead of loading condition. Figure 3-1 illustrates the temperature of 

the rotor cage and stator winding during and after starting [45]. Furthermore, the rotor 

cage temperature could be rise to 600°C in some induction motors [46].  

 

Figure 3-1: Sample of thermal signature for induction motor (during and after 
starting) [45]. 
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As previously stated, the rotor will be affected by the high temperature, which reduces 

not only the mechanical performance, but also it could lead to dilate the rotor, all these 

are lead to rotor cage failure. Consequently, the thermal protection for the rotor and 

the stator of the induction motor is essential during both cases of steady and transient 

state in order to prevent the catastrophic failure in the motors. 

3.2.1 Thermal Protection based on Traditional Methods 

Rotor temperature contains many information about the motor status, thus it is very 

important that researchers take the rotor temperature into account for detecting and 

diagnosing the induction machine faults. There are two important rotor-monitoring 

temperature approaches, the first approach is relying on the rotor resistance [47]–[49]. 

The second approach is direct measurement of the rotor temperature by different 

thermal sensors such as infrared cameras, thermocouples, etc. The first approach has 

been proposed in order to overcome the disadvantages of the direct measurements, but 

this technique requires advance knowledge of rotor speed and parameters.  

Many researches have proposed parameter-based approaches in order to estimate the 

rotor temperature from rotor resistance variations. Beguenane et al [47] published a 

paper in which they described the Model Reference Adaptive System (MRAS) and 

apply it for rotor flux observer based on the inverse time constant and rotor speed. The 

results indicate that the proposed method has ability to be applied to an Indirect Field 

Oriented (IFO) control of induction motor without speed sensors but it requires high 

performance of torque control in order to be suitable to apply for induction motor 

vector control.  

Habetler et al [48] have proposed a new method for estimating the rotor and stator 

resistance based on Model Reference Adaptive System (MRAS) for the purpose of 
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monitoring the rotor conductor and stator winding temperature. Their results show that 

the MRAS provides an accurate estimation in case of the motor is heavily loaded and 

it has the ability to track Rs (stator resistance) and Rr (rotor resistance). While, a 

sensorless rotor temperature estimator based on the harmonic spectral estimation of 

the current has been proposed. Experimental results have been proven that the 

proposed system was suitable for rotor thermal protection because it was very reliable 

and accurate [49].  

Gao et al [50] pointed out an investigation in the estimated rotor temperature error 

with the unbalance supply and the impaired cooling by applying the Goertzel 

algorithm to the voltage space vector and complex current. Goertzel algorithm has 

been widely used in touch-tone telephone services in order to detect the signals with 

multi-frequencies, which is employed to a complex space vector for extracting the 

efficient and fast component of positive sequence of fundamental frequency.  

Gao et. al. [51], which are related to the latter articles, proposed a pipelined 

architecture for estimating rotor temperature (squirrel cage induction motors) in both 

steady state and dynamic operations. This was based on the current and voltage 

measurements without including any (temperature or speed) sensors. Two super-

heterodyne receivers have been also applied on a complex current vector, which are 

operated in parallel with pipelined architecture. The first super-heterodyne receiver 

has been used for detecting the motor speed based on the instantaneous rotor slot 

harmonic frequency, which is extracted from the complex current vector, and the latter 

one has been used for the same complex current vector in order to extract a new 

complex fundamental current vector. The results indicate that the proposed system 

allows the modern microprocessors to handle all the data in parallel, as a result in the 
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superior performance during rotor temperature estimation in the absence of speed and 

temperature sensors.  

Reigosa et al [52] have suggested a new approach for estimating the rotor temperature 

based on a high-frequency signal injection, the results show that the worst case has 

been happened in the thermal transients. The estimated temperature error in the 

transients state was < 5°C, while in the steady state reduces to < 2°C. Furthermore, 

Huang and Gühmann [53] proposed an implementation for fourth order Kalman 

filter algorithm in Wireless Sensor Network (WSN) for the purpose of rotor 

temperature estimation. Six sensors have been used for acquiring current and voltage 

data from the stator, which means that the temperature could be estimated correctly 

without recording the mechanical load and rotor speed as long as the current goes 

through the stator windings. The experimental results have been proved that the 

Kalman filter implementation is suitable for real time rotor temperature estimation. 

Consequently, the approach of rotor resistance estimation has shown its robustness for 

rotor fault detection in many applications but it still needs further testing, since some 

parameters or values of the typical per-unit of induction motors are different from each 

other. In addition to this, the accuracy of these approaches are limited in case of fast 

transient state such as starting, because they have been designed for slow transient or 

steady state. 

International Electrical Testing Association (NETA) proposed a standard to rotating 

machinery and electrical systems for thermal inspection [54], these guidelines have 

helped for estimating and detecting faults severity. Singh and Naikan [55] have tested 

the thermal image monitoring (FLIR E60 camera) based on the two hot spot profiles 

of stator temperature for induction motor faults (cooling system failure and inter-turn), 
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which has been used in compliance with International Electrical Testing Association 

(NETA). The results show that the proposed profiles have efficiently diagnosed the 

motor faults. 

Lim [56] has demonstrated omnidirectional thermal imaging system for condition 

monitoring by designing a custom and specific Infrared (IR) reflected hyperbolic 

mirror set. In this study, log-polar mapping technique has been applied to have a 

panoramic form by unwarping the captured thermal image. The results show that the 

proposed system obtain high accuracy for detecting the machine faults. 

Turning on to the experimental evidence on the traditional current monitoring 

technique and discuss the most helpful method for motor fault detection based on the 

current signal. 

3.3 Current Monitoring 

High performance electrical drives currently employ sophisticated control techniques. 

In fact, the demand for such drives are currently on the rise. This demand has been 

necessitated by cost, size and efficiency of induction motors. Currently, research is 

being undertaken to examine load oscillation, unsymmetrical supply voltage and 

motor monitoring techniques to enhance the safety and serviceability. The Motor 

Current Signature Analysis (MCSA) has been employed for decades as a tool for 

diagnosing the motor faults. In spite of these efforts, induction motors are still faced 

myriad of uncontrolled challenges that reduce their lifespan [57]. Squirrel cage motors 

are preferred than other types of induction motors since they are robust and work under 

fault conditions longer for a reasonable period before they fail. 
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3.3.1 Current Protection based on Traditional Methods 

MCSA has been applied to identify most of motor faults for example, broken rotor 

bars, short-circuited turns and eccentricity. Furthermore, MCSA technique can also be 

applied to determine mechanical faults such as load oscillations, bearing and gearbox. 

By using the current harmonics, it is possible to detect the type of fault within 

components of the rotating flux. Fault monitoring and diagnosis based on MCSA 

proceeds as shown in figure 3-2.  

 

Figure 3-2: Flow chart for motor current measurement [37]. 

To diagnose faults in a motor, figure 3-3 illustrates the basic MCSA equipment system, 

MCSA uses current spectra, which has potential information of motor faults.  

 

Figure 3-3: Basic MCSA equipment system [58]. 
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Past decades have seen the rapid development of condition monitoring and series of 

reviews have been made by many researchers. They offer a good overview on how 

current monitoring progress has been made. MCSA is the state-of-the-art techniques 

[59]. This technique has many advantages. It is non-invasive, where stator current is 

measured and monitored and no other special equipment is needed. Numerous faults 

can be diagnosed using MCSA: damaged rotor bar, such as, broken rotor bars, 

eccentricities; for example, due to unbalanced rotor; bearing defects; stator winding 

short circuit [24][60].  

A notable change is in the progress from the use of traditional Fourier transform e.g. 

Fast Fourier Transform (FFT) to the use of Wavelet Transform (WT) e.g., Discrete 

Wavelet Transform (DWT), to identify fault based on current spectrum and extract a 

unique features for fault diagnosis. In addition, FFT is a traditional tool for MCSA 

analysis, it has been able to locate individual fault based on current spectrum. This 

approach has been successfully used for broken rotor bars and eccentricities faults 

detection [15].  

Schoen et. al. [61] have addressed the application of MCSA to detect the rolling-

element bearing damage in induction machines. This study investigates the efficacy 

of current monitoring for bearing fault detection by correlating the relationship 

between vibration and current frequencies caused by incipient bearing failures. 

Experimental results, clearly illustrate that the stator current signature can be used to 

identify the presence of bearing fault. 

Benbouzid et al [60] have stated that the preventive maintenance of electric drive 

systems with induction motors by monitoring their operation for detecting the 

abnormal electrical and mechanical conditions, because this may lead to a system 
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failure. Intensive research efforts have been done on the motor current signature 

analysis. This technique utilizes the results of spectral analysis of the stator current. 

Their investigations show that the frequency signature of some asymmetrical motor 

faults can be well identified using the Fast Fourier Transform (FFT), which is leading 

to a better interpretation for the motor current spectra. Furthermore, the laboratory 

experiments indicate that the FFT based motor current signature analysis is a reliable 

tool for asymmetrical faults detection. 

Thomson et. al. [62] have presented an appraisal of on-line current monitoring 

techniques to detect airgap eccentricity in three-phase induction motors. On-line 

current monitoring is proposed as the most applicable method in the industrial 

environment. The results verify that the interpretation of the current spectrum 

proposed in this study was successful in diagnosing airgap eccentricity problems. 

Benbouzid et. al. [16] have investigated in the efficacy of current spectral analysis on 

induction motor fault detection. The frequency signatures of some asymmetrical motor 

faults, including air gap eccentricity, broken bars, shaft speed oscillation, rotor 

asymmetry and bearing failure were identified. This work verified the feasibility of 

current spectral analysis. Current spectral analysis was applied to other types of 

electrical machines too. For example,  [59], [62] verified that the use of the current 

spectrum was successful in diagnosing air gap eccentricity problems in large, high-

voltage, three-phase induction motors but not with low voltage motors.  

Benbouzid [9] made a review of MCSA as a medium tool for fault detection. This 

study introduces in a concise manner the motor signature analysis for motor faults 

detection and localization that indicate or may lead to a failure of induction motors. It 

is based on the behaviour of the current at the side band associated with the fault. It 
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has been explained that when the load torque varies with rotor position, the current 

will contain spectral components, which coincide with those caused by the fault 

condition. Researchers have concluded that Fourier analysis is very useful for many 

applications where the signals are stationary. However, it is not appropriate for 

analysing a signal that has a transitory characteristic such as drifts, abrupt changes and 

frequency trends. To overcome this problem, Fourier analysis has been adapted to 

analyse small sections of the signal in time; this technique is known as the Short Time 

Fast Fourier Transform (STFT). STFT represents a sort of compromise between time 

and frequency-based views of a signal and provides information about both.  

Arkan et al. [63] have presented a non-invasive online method for stator winding 

faults detection in three-phase induction motors from the observation of negative 

sequence supply current. A Power Decomposition Technique (PDT) was used to 

derive positive and negative sequence components of measured voltages and currents. 

The results show that the negative sequence impedance could vary between 10% and 

50% during an inter-turn short circuit.  

Miletic and Cettolo [64] have acknowledged that Motor Current Signature Analysis 

(MCSA) is one of the widely used as diagnostic method. This method is based on 

measurement of sidebands in the stator current spectrum. These sidebands are usually 

located close to the main supply frequency. Frequency converter causes changing in 

the supply frequency slightly in time as a result of some additional harmonics in the 

current spectrum. These harmonics could be easily misinterpreted as sidebands, which 

are caused by the rotor faults. In this study, the experimental results of fault diagnosis 

carried out using standard supply and using frequency converter were presented and 

compared.  
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In current spectral analysis, the actual harmonics measured from a running machine 

are always compared with known values (thresholds) obtained from a healthy motor. 

In practical applications, the thresholds change with motor operating conditions. 

Therefore, Obaid and Habetler [65] have proposed tracking method for the normal 

values of a healthy motor at different load conditions. For each load condition, a 

corresponding threshold was determined and compared with the on-line measurement 

to determine the motor condition. Besides, the FFT technique used in spectral analysis, 

other techniques in advanced digital signal processing and pattern recognition have 

been applied to motor current signal as well. Five different motor conditions were 

studied (the healthy machine and having up to four broken rotor bars), each at nine 

different loads. The results of this study show that if there is any broken rotor bar will 

directly affect the induced voltages in the stator windings and the waveform of the 

stator currents. Therefore, the spectrum analysis of the line current (motor current 

signature analysis) is one of the best non-intrusive method. While [66] utilized the 

result of spectral analysis of stator current to diagnose rotor faults. The diagnosis 

procedure was performed by using virtual instrumentation (VI). Several virtual 

instruments (VIs) were built up in LabVIEW. These VIs were used for both controlling 

and data processing. The measured current signals were processed using the Fast 

Fourier Transformation (FFT). The power spectral density of the measured phase 

current was plotted. The results obtained from the healthy motor and those having 

rotor faults were compared, especially looking for the sidebands components those are 

appeared in the special frequencies. The significance presence of some well-defined 

sidebands frequencies are clearly indicate the motor rotor faults. 

Stack et. al. [67] have proposed a method for detecting bearing faults via stator 

current. Current-based condition monitoring offers significant economic savings and 
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implementation advantages over vibration-based techniques. This method filter the 

stator current and remove the frequency content that is unrelated to bearing faults. As 

bearing health degrades, the modelled spectrum deviates from its baseline value; the 

mean spectral deviation is then used as the fault index. This fault index is able to track 

changes in machine vibration due to developing bearing faults. Due to the initial 

filtering process, this method is robust to many influences including variations in 

supply voltage, cyclical load torque variations, and other (non-bearing) fault sources. 

Experimental results from 10 different faulty bearings are used to verify the 

proficiency of this method. 

An experiment to diagnose the induction motor broken rotor bar fault conducted in 

[68]. The Motor Current Signature Analysis (MCSA) has been used to diagnose the 

rotor fault. The rotor bar was damaged by drilling into the rotor. The spectra of healthy 

and faulty motors were compared. Stator current spectrum of faulty motor shows the 

side bands at particular frequencies due to presence of broken rotor bars with great 

reliability. Finally, researchers concluded that the MCSA is a reliable technique for 

diagnosing the broken rotor bar faults. 

Jung et. al. [69] have proposed an online induction motor diagnosing system using 

MCSA with advanced signal and data processing algorithms. The advanced 

algorithms were made-up of the optimal slip-estimation algorithm. The optimal slip-

estimation algorithm suggested the optimal slip-estimator based on the Bayesian 

method of estimation. To verify the generality of the suggested algorithm, laboratory 

experiments were performed with 3.7 kW and 30 kW squirrel-cage induction motors. 

The proposed system was able to discover four kinds of motor faults and diagnose 
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them. Experimental results have successfully verified the operations of the proposed 

diagnosis system and algorithms. 

Frosini et. al. [70] have proposed a new approach of using the induction motor stator 

current and its efficiency as indicators of rolling-bearing faults. This study illustrates 

the experimental results on four different types of bearing defects: crack in the outer 

race, hole in the outer race, deformation of the seal and corrosion. Another novelty 

introduced by this study is to analyse the decrease in the efficiency of the motor with 

a double purpose: as alarm of incipient faults and as evaluation of the energy waste 

resulting from the fault condition before the machine breakdown. 

Different fault diagnosis methods by means of data processing in LabVIEW were 

compared in [71]. The results obtained by experiments verified that the three-phase 

current vector, the instantaneous torque and the outer magnetic field could be used for 

diagnosing the rotor faults. At last, authors stated that due to its simplicity, the MCSA 

is the mostly used in industrial applications. 

This section has described the traditional methods of induction motor fault diagnosis 

based on the current spectral, and has argued that the MCSA is the best-known fault 

diagnosis techniques used today. In fact, MCSA requires simplified sensor calibrations 

and installations. However, the main drawback to MCSA is that the stator current data 

must be sampled whenever the motor attains steady-state speeds.   

The next section of this chapter will describe another condition monitoring technique 

(vibration), and how it diagnoses the machine faults. 
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3.4 Vibration Monitoring 

Vibration analysis is one of the most important condition monitoring and fault 

diagnosis tool for all rotating machinery because the majority of the rotating machine 

problems are caused by bearing defects which in turn effects the shaft [72]. Rotating 

machinery generate a vibration signal during their operation, this signal has many 

information about the machine. It generates three types of vibration signals, which are 

stationary, noise and random vibrations. These signals are used for detecting the motor 

faults based on digital signal processing [73]. In the electrical machines, the vibration 

and noise could be caused by many forces such as mechanical, magnetic and 

aerodynamic [74]. Consequently, various types of asymmetries and faults in the 

electric machine could be detected by analysing the vibration signals [75]. Bearing 

faults, unbalanced rotor, rotor eccentricity and gear faults have been detected by the 

vibration signals. 

3.4.1 Vibration Protection based on Traditional Methods 

Dorrell and Smith [76] have suggested an analytical model for static eccentricity fault 

in induction motor. In this approach, the air gap between the stator magneto-motive 

forces and rotor has been used for producing unbalanced magnetic pull. In addition to 

this, an experiment has been done in order to confirm the model results and they have 

found that both the measured and predicted results are good for two cases at low slip 

in the rotor cage, when using blank rotor. They have concluded that the winding 

harmonics order and the skew of the rotor have a big impact on the unbalanced 

magnetic pull. 

Finley et. al. [77] have analysed the electromagnetic force of stator and rotor based 

on the vibration patterns. These two forces are subjected to reach their peaks when the 
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stator magnetizing current flow has reached its maximum value. However, these 

signals are very sensitive to some problems especially for motor base stiffness and 

frame and eccentricity. 

Trutt [78] has studied the relationships between two induction motor components, 

which are electrical winding damage and vibration faults. The results show that these 

two faults has good quantifiable correlation, which was probably used as a basis in 

condition monitoring for induction motors. 

Müller and Landy [79] have investigated in the factors that effects on the axial force 

based on broken rotor bar which have been done theoretically and experimentally. A 

mathematical model has been developed in this study in order to find the interaction 

of the stator flux and the inter-bar current with axial direction force. The results have 

been experimentally confirmed, but the main disadvantage of this study is that it could 

only be applied for the devices that have inter-bar current. 

The Pulse Width Modulation (PWM) inverter has been used as feeder for induction 

motors, which has been studied and investigated in [80] by comparing the healthy and 

faulty signals based on current and vibration monitoring. The vibration signal has been 

collected at different frequencies, which can be used for detecting the stator winding 

faults at an early stage. In order to have a full view, the results should be updated for 

any changes in the motor status in predictive program. The results indicate that 

establishing condition monitoring for induction motor from one data set was probably 

unachievable and undesirable. 

Vandevelde and Melkebeek [81] have designed a Finite Element Method (FEM) 

model for analysing and predicting the induction motor faults numerically based on 

noise and vibration signals, which are resulted from magnetic equivalent circuit of 
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electromechanical analysis. It has been claimed by the researchers that their results 

overcome the weaknesses inherited in the model analysis but all the analyses were not 

made of lower order forces. 

Zhang et. al. [82] have demonstrated the Wavelet Pocket Transform (WPT) and 

Power Spectral Density (PSD) for monitoring the turbo generator based on the 

vibration monitoring. The results show that the WPT overcome the drawbacks of 

constant time-frequency resolution in feature extraction, and it was promising 

compared to Fourier-based approach. 

Stack et. al.[83] have developed a fault signature model and detection scheme for 

detecting the inner race defect of induction motor bearing faults using vibration signal. 

It examines the spectrum of vibration signal for peaks with the phase-coupled 

sidebands that occurring at predicted spacing by the model. The results show that the 

inner race faults could be easily detected, and it can possibly handle the cage or rolling 

element defects. 

Rahman and Uddin [84] have used the vibration and current signals of unbalanced 

rotor and analysed them by several techniques: Fast Fourier Transform (FFT), Hilbert 

Transform (HT), and Discrete Wavelet Transform (DWT) in order to detect the fault 

severity and its location at different conditions. The Daubechies wavelet has been 

selected for analysing the healthy and faulty signals. The results show that the DWT 

is best for identifying the fault locations. However, wavelet analysis may not be 

accurate in analysing some of the harmonics presence. 

Artigao et. al. [5] have used the vibration signal for detecting the wind turbine bearing 

fault mainly based on the frequency domain of vibration signal that has been analysed 

by FFT. In this research 1.5 MW wind turbine has been used with doubly-fed induction 
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generator. The results conducted that the FFT was helpful for detecting the bearing 

faults in the wind turbine. 

Previous sections have demonstrated traditional methods for induction motor fault 

detection based on different condition monitoring techniques. It is now necessary to 

explain the course of artificial intelligence (AI) techniques and their applications for 

saving the rotating machinery and avoid catastrophic consequence. 

3.5 Artificial Intelligence Techniques for Motor Faults Diagnosis 

Recently, artificial intelligence has grown significantly in popularity because of its 

powerful capabilities. It has been widely used for improving the effectiveness and 

efficiency of fault detection and prediction in the electrical machine especially in 

rotating machinery. Artificial intelligence technique for motor fault diagnosis was 

achieved through the notion of human intelligence in machine operations to mimic the 

human features and thinking process [85]. AI comprises a series of branches including 

Artificial Neural Network (ANN), Genetic algorithms (GA), Problem Solving and 

Planning (PSP), Fuzzy Logic (FL), Logic Programing (LP) and so forth. These 

techniques deal in vast quantities of data and handle non-linear problems. Upon 

training, they can produce a model for predicting the class for new incoming data [18]. 

Figure 3-4 illustrates the steps of AI in induction motors faults diagnosis [86]. 



Chapter 3: Literature Review 

Page | 47  

 

Figure 3-4: AI flow chart for IM fault diagnosis [86]. 

3.5.1 Thermal Monitoring based on AI 

Thermal imaging has been widely used and successfully applied in many fields as a 

fault diagnosis method such as medical, mechanical system, energy and electronics 

and electrical systems. It becomes an important technology for protecting and monitor 

the behaviour of the most rotating machinery in industries, which may have effects on 

product quality, productivity, time efficiency and maintenance cost [87]. Furthermore, 

the electrical device preservation has been increasing (induction motors, transformers 

and generator ) so as for improving the power supply, enhancing the reliability of 

operation, reducing the operating cost and superior service to customer [88].  

Infrared Thermograph (IRT) is a non-intrusive and non-contact measuring technique. 

It has advantage of capability to display the temperature distribution in real time and 

any changes in the object temperature. Lately, the most common method for condition 

monitoring and fault diagnosis for electrical equipments is Infrared Thermography 

(IRT) or thermal monitoring [89]. This could be done by comparing a hot spot of 
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healthy thermal image (reference) and a hot spot of the faulty image. The reliability of 

the input power for the electrical equipment must be checked frequently in order to be 

sure that all equipment working normally. However, if the temperature of any machine 

has exceeded the limit, it will lead to a fail of the certain machine. Meanwhile, to 

diagnose and detect the faults for the electrical equipments by IRT, some of image 

processing methods have been applied for extracting the best features from the healthy 

and faulty images. Thermal images have a vital information on radiation of machine 

temperatures. This information could be extracted by using different image processing 

techniques and classified by using different classification algorithms. 

In the classification field, Nunez et. al. [90] have proposed a low cost thermographic 

analysis for detecting the induction motor bearing faults by applying the thermal 

differential technique in order to make the faults detectable even if there is any 

changing in the surrounding environment. The result prove that the low cost thermal 

camera has been able to detect the bearing faults and it has been also found that the 

absolute thermogram was not enough for the determining the bearing defects unless 

by considering the ambient temperature. 

A. Glowacz and Z. Glowacz [91] have produced a new method for extracting the 

features from the thermal image of three-phase induction motors called “Method of 

Areas Selection of Image Differences”, (MoASoID). Three types of induction motor 

faults have been considered in this study, which are healthy, squirrel cage ring fault 

and two broken rotor bars. Then, three classification methods have been applied for 

detecting the faults severity (Nearest Neighbour NN, Back Propagation Neural 

Network BPNN and k-means clustering) by using the best-extracted features from the 

thermal images based on MoASoID. The proposed technique was very useful for 
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detecting the induction motor faults and it could be used for other rotating machinery 

(generators, DC motors, and synchronous machines) for fault detection. 

Khamisan et. al. [92], 300 thermal images have been captured for detecting the 

normal and abnormal of induction motor bearing faults. The SURF (Speeded-Up 

Robust Features) feature based selection method, active contour segmentation and 

RGB (Red, Green and Blue) colour space statistical algorithms have been applied for 

feature selection in order to differentiate between the normal and abnormal images. 

The results show that the proposed technique has been able to distinguish between the 

normal and abnormal of motor state and it could be implemented and used for 

improving the classification accuracy. 

Huo et. al. [93] have proposed a new self-adaptive method using infrared 

thermography for induction motor bearing fault detection. Six bearing faults with 

different conditions have been experimentally tested, which are healthy, inner race, 

multi-fault, outer race, worn damage and roller element damages. In addition, wavelet 

approximation coefficient and decomposition level of “dmey” have been used for 

feature extraction from the image based on histogram of approximation coefficients. 

Furthermore, Genetic Algorithm (GA) has been used for feature selection and Nearest 

Neighbour (NN) for classification. The experimental results indicate that the proposed 

method was able to achieve above 95% of classification accuracy for detecting the 

motor faults. 

Younus et. al. [94] have applied different classification algorithms such as Support 

Vector Machine (SVM), Parzen Probabilistic Neural Network (PPNN), Adaptive 

Resonance Theory Neural Network (ART-NN) and Fuzzy K-Nearest Neighbour (FK-

NN) for induction motor faults detection based on thermal imaging. In addition, 
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Principal Component Analysis (PCA) and Independent Component Analysis (ICA) 

have been applied for reducing the data dimensionality. The results show that the ICA 

provide better clustering performance than the PCA and the SVM has achieved better 

classification accuracy (98.33%) than other classification algorithms. 

Lim et. al. [95] have suggested and developed an intelligence feature-based fault 

diagnosis based on the thermal images (FILIR, SC 5000) of motor faults detection 

(normal, bearing fault and misalignment) and then compare the results with the 

vibration signal. In this paper, Support Vector Machine (SVM) has been used for 

classifying the machine faults. The results indicate that the proposed method obtained 

95% classification accuracy using thermal image based on three features only, while 

the classification accuracy was 96.25% using vibration signal based on over four 

features. 

Table 3-2 shows some previous research experimental setup for induction motor faults 

detection based on thermography [93 – 98]. 
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3.5.2 Current Monitoring based on AI 

Electrical monitoring such as current signature, negative-sequences and zero-

sequences current monitoring, Park’s vector and other more have been used for 

monitoring the motor status and analysing the stator current signal for diagnosing the 

faults severity. Consequently, the current monitoring has been used as sensorless 

method for fault detection, could be implemented and applied without any extra 

hardware. 

Considerable amount of literatures have been published on the current monitoring 

technique as briefly discussed in the following, Haji, and Toliyat [102] have 

developed a pattern recognition technique based on Bäyes minimum error classifier to 

detect broken rotor bar faults in induction motors at steady state. The proposed 

algorithm uses only stator current as input without the need for any other variables. 

First, the rotor speed is estimated from the stator current, and then appropriate features 

are extracted. Once normalized mean and variance plus mean and covariance of each 

class, the technique can be used in online condition monitoring. The theoretical 

approach and experimental results show that the strength of the proposed method 

without loss of generality, the algorithm could be revised to include other faults such 

as eccentricity and phase unbalance. 

Nejjari and Benbouzid [103] have applied the artificial neural network (ANN) for 

induction motor fault detection by examining the shapes and the patterns of the Park’s 

vector of supplied faults based on the backpropagation algorithm. The method has 

been experimentally tested and the results show that the accuracy level was 

satisfactory. 
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Bouzid et. al. [104] have used a feed forward Multi-Layer Perceptron Neural Network 

(MLPNN) for detecting and locating the stator inter-turn short circuit automatically 

based on the backpropagation technique. The input for the NN is the phase differences 

between the line current and the phase voltage of IM and the output is set to either (0 

or 1). Thus, if there is a short circuit fault in the stator the NN will give 1, otherwise it 

gives 0. 

Sonje et. al. [105] have proposed a machine learning classifier for multi class to 

diagnose the faults. The classification system based on random forest classifier for 

individual and mix faults. After acquiring the stator current data with different load 

conditions, fourteen statistical parameters (minimum, maximum, mean, median, 

standard deviation, variance, sum, skewness, kurtosis, energy, R.M.S value, absolute 

value of sum, shape factor and peak factor) have been extracted from the signal to be 

used as input for the classifier. Thus, the result shows that the proposed system was 

more accurate and obtained better performance comparing to the Multi-Layer 

Perceptron Neural Network (MLPNN). 

Martins et. al. [106] have studied the unsupervised NN for online fault detection 

based on stator current data. This method has been used alfa-beta stator currents as 

input variables. This system has applied with help of the Hebbian-based unsupervised 

NN, which was used to extract principle component from the stator current dataset. 

The result was satisfactory for detecting and verifying the faults severity. 

Abid et. al. [107] have presented a support vector machine (SVM) classifier for 

detecting bearing faults by motor current signature analysis. The authors proposed a 

novel strategy for detecting the rotating machinery faults using Directed Analytic 

Graph Support Vector Machine (DAG-SVM) and Stationary Wavelet Packet 
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Transform (SWPT). Four bearing fault conditions (Normal, Inner, Outer and Cage 

defects) have been tested. The experimental results show that the proposed method is 

considerably reduces the number of descriptors from 4 to 2 under 5 different load 

conditions, as a result the classification accuracy was above 95%. 

The wavelet NN and fuzzy logic systems have been proposed by Abiyev and Kaynak 

[108] for controlling and identifying the fault of uncertain system. In this work, the 

gradient decent algorithm has been used for updating the wavelet parameters. The test 

results show that the proposed system has more adaptive and fast for classifying new 

data. 

A novel hybrid techniques of MCSA and fuzzy logic has been presented by Soomro 

et. al. [109] for induction motor mechanical faults (eccentricity and bearing) detection. 

The MCSA was used for locating the fault by using particular harmonics of line 

current spectral analysis, while the Fuzzy logic was used for assessing the motor 

operating condition and detect the faults severity. The test results show that the 

proposed technique has been able to detect and locate the faults successfully, thus it 

could be used to analyse all major motor faults. 

Glowacz et. al. [110] have presented three different types of classifiers (Nearest 

Neighbour, Linear Discriminant Analysis and Bayes) for detecting four types of faults. 

These faults are healthy, one rotor bar, two rotor bars and ring of squirrel cage. The 

best features have been selected by using Method of Selection of Amplitudes of 

Frequencies-Ratio 15% (MSAF-RATIO15). The results obtained from three 

classifiers were good in classification accuracy (above 90%), which indicate that they 

have been able to protect other electrical rotating machinery. 
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3.5.3 Vibration Monitoring based on AI 

The time-frequency domain analysis and neural network has been implemented and 

used in [111] for detecting rolling bearing faults based on vibration signal. In [112] 

the Short Time Fourier Transform (STFT) has been adopted for processing and 

analysing the vibration signal and use it as input for NN, then use analytical 

redundancy to train the model for motor fault detection. This system has used the 

spreading of vibration signal and its random nature for detecting the fault. 

Chow et. al. [8] have used the NN approach for detecting the rolling bearing faults 

based on the vibration signal. The method has been simulated and experimentally 

tested. The results indicate that this system able to detect a range of motor faults based 

on the vibration signal. Furthermore, they have used the FFT in order to obtain the 

vibration spectrum, which has specific frequencies based on the defect. The maximum 

amplitude, mean and kurtosis parameters have been also considered in NN training 

model. 

Jack and Nandi [113] have combined two AI techniques, which are genetic algorithm 

and ANN, in order to select the most important features for detecting the IM faults 

based on the estimation of vibration signal. A large set of vibration data has been 

collected and only six important features have been selected by genetic algorithm for 

fault identification. The result of classification accuracy was at 99.8%, which is good 

for detecting the fault correctly. 

Wu and Chow [114] have developed the radial-basis function (RBF) of ANN for 

motor faults detection. Four features have been extracted from the power spectrum of 

the vibration signal and they used them as input for the developed system. These 

features are skewness, total average frequency and normalized of vibration signal. The 
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proposed system was used for electrical and mechanical faults at different speeds. For 

electrical fault, the inter-turn short circuit fault for the stator was injected by 

connecting an additional resistor across the phase to change the stator electromagnetic 

force. For mechanical fault, they have removed one of the screws that have been used 

for holding the motor. Consequently, the results indicate that the system is not only be 

able to detect the faults but also able to estimate the fault extension. 

The Deep Learning approach has been developed for the purpose of learning the best 

features from the distributed frequency in the vibration signal relying on the Deep 

Belief Network (DBN) [115]. It has been built by using restricted Boltzmann machine 

and train it layer-by-layer (pre-training algorithm), which combine the extracted 

features with a well-known classification algorithm in order to detect the induction 

motor faults. The test results point out that this system able to model large dimensional 

data and learn the best representation of multiple layers. Accordingly, the 

classification accuracy has been improved and less training error has been obtained.  

Patel and Giri [116] have used random forest classifier for induction motor bearing 

faults detection based on the vibration signal, which was collected by accelerometer 

sensor. The random forest classifier used the extracted features from the vibration 

signal. Four types of faults (normal, outer race, ball fault and inner raceway) have been 

generated and the results have been compared with neural network. The results 

indicate that the proposed classifier false prediction was only two out of 1600 dataset, 

while the neural network false prediction was 14 out of 1600 dataset. 

Samanta [117] has studied the comparison of support vector machine and artificial 

neural network for detecting gear faults. In this study, two cases have been applied for 

the feature extraction: one was using GA for selecting the input features and the other 
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without GA. The obtained results with the use of GA-based selection have produced 

equal classification accuracy by using both SVM and ANN, but SVM produces higher 

classification accuracy than ANN without using GA-based selection. 

Similarly in [118] GA-based selection has been applied for selecting the best input 

features and use them as input for different ANN classifier in order to detect the 

bearing faults using vibration signal. The outcomes show that the GA-based selection 

was very effective for increasing the ANN classification accuracy. 

Satish and Sarma [119] have demonstrated the combination of two artificial 

intelligence techniques to create a cost effective and approach hybrid system of ANN 

and Fuzzy back propagation (Fuzzy-BP) for detecting and predict the medium and 

small bearing faults. This system has been built to overcome the individual 

disadvantages of each system. The results confirm that the proposed system was well 

suitable for bearing fault detection based on vibration signal. 

Saimurugan et. al. [120] have considered two faults of rotating machinery, which are 

bearing and shaft based on the vibration signal. In this study, two types of SVM 

classification (cSVC and nuSVC) have been used for detecting both faults. In the same 

time the Decision Tree (DT) classifier has been used for selecting the best features to 

be used as input for four different kernel function types of SVM (linear, three degree 

polynomial, radial basis function (RBF) and Sigmund). The results indicate that the 

four different speeds of RBF in cSVC model produce better classification accuracy 

than nuSVC model.  

Saravanan et. al. [121] have used a piezoelectric transducer for collecting the 

vibration data from the rotating machinery. In this study, Continuous Wavelet 

Transform (CWT) (multilevel 1 D wavelet decomposition) with Morlet wavelets have 
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been applied for extracting the important features from the vibration data, then 

decision tree J48 has been used for identifying and selecting the best features by using 

MATLAB software. The selected features were used as input to two different 

classification algorithms (Proximal Support Vector Machine (PSVM) and Artificial 

Neural Newark (ANN)) by using “Weka” software. The results show that the Morlet 

wavelet and the decision tree J48 for extracting and selecting the features respectively, 

have the ability to increase the classification accuracy of PSVM and ANN algorithms, 

which was above 90%.   

3.6 Common Softwares for IM Fault Detection 

Many different softwares have been used for induction motor fault diagnosis, these 

softwares were able to be used in both traditional and artificial intelligence techniques. 

These softwares include: MATLAB software, LabVIEW software, ABAQUS 

software, COMSOL Multiphysics software, Ansys software, JMAG software, 

Solidwork software, Motor Mointor software, PAM software, COSMOS work 

software, Fault tolerance software, STRANDS7 software, Nueral net. Software, Free 

Master software, Sim 20 software, Maxwell PC software, SAMCEF software and 

many others. 

Having discussed how to construct an AI system for detecting and predicting the faults 

in induction motor, the final section of this chapter addresses ways of how data mining 

approach has been combined with the most well-known optimization algorithms in 

order to build a strong system for early fault detection. 
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3.7 Data Mining for Classification Task  

The recent growth in IT infrastructure and data storage have made large volumes of 

data to become more readily available and afordable. However, raw data in itself has 

no value unless knowledge is extracted from it. One of the methods used for 

manipulating and customizing raw data is Data Mining (DM). DM is the most 

common method used for the classification, regression and clustering of large data. 

Three important categories in the data mining should be considered:   

a) Discovery: a process of searching in the entire database in order to find the 

hidden patterns without default preset. 

b) Predictive modelling: a process to discover patterns in the databases and 

employ them to predict the future. 

c) Forensic analysis: a process to apply the extracted patterns to find out unusual 

elements. 

In data mining all statistical features such as standard deviation, variance, mean, etc. 

could be used to illustrate all related properties with a signal. Motor faults can be 

classified effectively by using these features. Obtaining information from the motor 

signal by using a suitable signal processing technique followed by a good technique 

of data mining, which plays a vital role in order to monitor the behaviour of induction 

motors. In addition to this, DM technique is able to improve the fault classification 

accuracy even in poor condition [122]. 

The modern techniques of fault classifications were used to avoid the limitations of 

the traditional methods because it does not need any previous knowledge about the 

induction motor parameters and it is capable to encompass a numerous range of motor 
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behaviour operations. These technologies motivate the researcher to improve an 

efficient memory based data driven approach for fault discrimination. Thus, by 

discovering a useful knowledge from thermal image, motor current or vibration signals 

in a different form is very important step to develop many algorithms. 

Furthermore, rule discovery is one of the DM processes, which is commonly used by 

interdisciplinary fields, such as artificial intelligence, statistics, knowledge 

engineering and other domains [123]. The aim of classification rule discovery is to 

assign the given data to the most suitable class in the dataset. There are many factors 

that make classification rule discovery a challenging task. Firstly, the bigger the 

dataset the more complex the task of rule discovery and rule identification. Secondly, 

the noise in the data may lead to insufficient and irrelevant rule generation. Thirdly, 

in addition to others, the overfitting problem is difficult to overcome because it affects 

data classification [124]. Hence, an algorithmic approach is necessary to overcome 

these issues. As such, the evolutionary algorithm was very popular because of its use 

in DM [125], which includes many biologically-inspired algorithms used in DM, such 

as Genetic Algorithm (GA) [126], Particle Swarm Optimization (PSO) [127] and Ant 

Colony Optimization (ACO) [128].  

3.7.1 Optimization Algorithms based on Data Mining for Classification Tasks 

In the recent literature, many optimization approaches and algorithms have been 

developed and proposed in DM in order to solve several problems in the field of 

classification.  

Traditional methods use different strategies for handling datasets, such as conquer and 

separate. Some algorithms have their own measurements for calculating the 

performance of the extracted rules upon the dataset. Nevertheless, most of those 
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algorithms produce a very long list of complex rules, and might have an overfitting 

issue depending on the dataset [129]. For instance, a GA has been applied in DM in 

order to carry out both tasks: feature selection and mining the data simultaneously by 

improving the chromosome structure [130]. A Support Vector Machine (SVM) has 

been used with fuzzy rules in order to extract fuzzy “IF-THEN” rules from the training 

dataset as the SVM provides the extraction mechanisim for fuzzy rules [131]. In 

addition, A PSO algorithm has been used in DM, which is based on coordinated 

movement in bird flocks [127]. The use of PSO in DM was proposed by Silva et al. 

[132]. Sarath and Ravi [133] have developed a binary patrical swarm optimization 

based on assoccation rule miner and it has been applied for real bank datset which 

produced good results compared to a Priori Algorithm (PA). Furthermore, ACO has 

been successfully applied for data classification for generating multiple rule sets, 

which is called AntMinermbc (AntMiner multiple-based classifiers) [134]. 

Correspondingly in [135] ACO has been developed for rule extraction and applied for 

acoustic emission for classification tasks. Another optimization algorithm which is 

Artificial Bees Colony (ABC) has been used in DM for classification tasks, which are 

based on the search dimension of the bees and best food source [136].  

Most of the optimization algorithms were converted for the use of data classification 

through data mining rule discovery as mentioned above, but these algorithms still have 

problems with classification accuracy, validation accuracy and number of rules, which 

all play a vital role in data classification. Lately, researchers have considered 

combining two or three algorithms together in order to overcome the disadvantages of 

each algorithm and gain accurate rules for big data classification.  
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Up to now, the researchers have tended to focus on the Bees Algorithm (BA) 

(optimization algorithm) rather than other well known optimization algorithm, this is 

because it is different from other swarm intelligance methods since it merges 

neighbourhood search and random search together based on the natural bee swarms 

for finding the best food sources [137]. The BA has been effectively applied to a 

number of optimization problems and multi-objective optimization problems. Several 

studies have indicated that the BA has been used for many applications. For example, 

it has been successfully applied for feature selection with Multi-Layer Perceptron 

(MLP) whereby the combination features with the lowest classification error are 

selected. Moreover, many engineering problems have been solved by using the BA, 

such as machine shop scheduling [138], dynamic control problems [137], non-linear 

model identification [139], pattern classifier training [140] and robotic swarm 

coordination [141]. It has also been used successfully with slope angle and hill 

climbing algorithms with the aim of improving the performance of the BA for solving 

single machine scheduling [142].  

Equally important,  the BA has been applied for the identification of defects in wood 

veneer sheets [143]. In [144], a new version of BA was introduced by using 

pheromone as a new technique to recruit the bees in order to conduct the local and 

global random searches. It has been successfully applied for optimizing Fuzzy C-Mean 

(FCM) clustering [145]. Simultaneously, Tapkan et al. [146] have proposed a 

combination of BA with a cost-sensitive classification algorithm, known as BEE-

Miner, for classification tasks.  It achieved good results, relying on the 

misclassification cost and classification accuracy. However, the problem of the 

accuracy and the number of rules still exist when compared to other classification 

algorithms.  
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3.8 Previous Work Observations 

As was pointed out in the literature review, the history of condition monitoring and 

fault diagnosis is as old as the induction motor itself. The induction motors have been 

initially relied on simple protection such as over-current and over-voltage to ensure 

safe operation. In spite of these tools, many companies are still faced unexpected 

system failures and reduced motor lifetime. Redundancy and conservative design 

techniques have been adopted for improving the reliability of induction motor drive 

systems against a variety of faults that could occur. However, these techniques are 

expensive to realize.  

Condition monitoring is leading to incipient fault detection and prediction of induction 

motors, which has attracted many researchers in the past few years owing to its 

considerable influence on the safe operation of many industrial processes. Early 

detection, prediction and correct diagnosis of incipient faults could allow preventive 

maintenance to be performed and provide sufficient time for controlling the shutdown 

of product line. It could reduce the financial losses and avoid catastrophic 

consequences. As discussed above this topic could be treated under three headings: 

thermal, current and vibration monitoring. These methods have its own advantages 

and disadvantages, this is the reason of why that the thermal monitoring and vibration 

monitoring have been paid less attention than current monitoring. Previous studies of 

condition monitoring have not dealt with thermal monitoring and have paid less 

attention because of the thermal sensors, which are needed to access the motor 

performance such as thermocouples, resistance temperature detectors (RTD), winding 

thermostat and thermistor. It has been reported that the thermal monitoring was 

important because any overheating to the stator winding will decrease the motor coil 
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insulation life, which have effects on the motor resistance to either environmental or 

mechanical effects [147], [148].  

Such approaches, however, have failed to address the induction motor faults without 

thermal monitoring technique. In one hand, recently, the researchers have used thermal 

cameras to monitor the rotating machinery and read the device temperature in healthy 

and faulty conditions without any access to the motor (contactless) based on the image 

processing technique to detect the motor faults. On the other hand, up to now, the 

research has tended to focus on the current monitoring (electrical monitoring) because 

it does not need to any additional sensors, as the current and voltage transformers are 

connected to the protection system at all times. Thus, the MCSA was very popular for 

monitoring the induction motor since it is non-intrusive detection (does not disconnect 

the electrical circuit), safe to operate (no contact between the motor and the current 

transformer) and remote sensing (current transformer could be place anywhere for 

monitoring) [9], [69], [149]–[152]. 

All the studies reviewed so far, however, suffer from the fact that MCSA is not 

appropriate for analysing the non-stationary signals. Another problem with this 

approach is that it fails to take the low signal to noise ratio into account, which makes 

the MCSA non-sensitive under certain conditions such as in inverter-fed motor as 

stated in [4], [147], [153], [154]. There would be therefore a definite need for vibration 

monitoring for mechanical faults detection because it allows different locations for 

sensors to be mounted on the motor, while MCSA relying on the radial rotor 

movement. Consequently, in case of bearing fault, the MCSA has difficulty in 

distinguishing non-drive-end or drive-end if two bearings have similar physical 
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characteristics. Furthermore, the vibration signal has higher signal to noise ratio than 

the MCSA as shown in table 3-3 [155]. 

Table 3-3: Common differences between the vibration and current signals [152]. 

Fault type VIB MCSA 
Electrical faults detection × √ 

Radial rotor movement analysis × √ 

Cheap installation × √ 

Able to apply in rough environment  × √ 

Mechanical faults detection at early stage √ × 

Easy to distinguish between different bearings √ × 

Mean Time To Failure (MTTF) √ × 

Higher signal to noise ratio  √ × 

Moving on to consider the AI techniques for induction motor faults detection based 

on data mining. As indicated previously, most of AI techniques such as (ANN, GA, 

NN and SVM) have been applied and validated successfully for diagnosing the motor 

faults with different classification accuracy. Although extensive research has been 

carried out on the use of AI for induction motor fault detection and prediction, no 

single study exist shows that there is one best technique for all kind of motors to 

diagnose the faults. This is because, the bigger the dataset the more complex task for 

classifiation, the noise in the data may lead to insufficient and irrelevant to orginal 

class, and the overfitting problem is difficult to overcome because it affects the 

classification system. Therefore, several studies have revealed that the development 

of induction motor fault detection based on AI techniques is still in its early stages. 

Consequently, despite that the considerable work have been done in this field, much 

more work are required to bring such techniques into the mainstream of induction 

motor fault diagnosis. Due to the limitations and strengths of these techniques, the 

findings from these studies suggest that the combinations of intelligence techniques 
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could have an effect on the developing on the rotating machinery condition monitoring 

for fault diagnosis scheme. 

The previous sections have shown that many researches have been performed for IM 

fault detection by relying on the traditional methods and some AI techniques. 

Furthermore, the problem of IM fault still exists in many manufacturing applications. 

For that reason, the need for data mining algorithms are very important to detect and 

predict the fault before it happens based on the motor previous behaviour (data) in 

order to reduce the breakdowns of the electric machines.  

Considering the aforementioned shortcomings of the methods that were used in motor 

condition monitoring, this research is aimed to address these disadvantages by 

presenting new classification technique. This technique is based on data mining rule 

discovery that are simple in algorithm design, and easy to apply for three kinds of 

condition monitoring technique, which are thermal, current and vibration monitoring, 

based on simple digital image and signal processing. 

The next chapter describes the proposed hybrid approach by combing the Bees 

Algorithm and Data Mining methods that are used for condition monitoring in order 

to detect, classify and diagnose the induction motor faults at an early stage.  



 

 

 

 

 

 

4 CHAPTER 4 
 

 

PROPOSED BEE FOR MINING (B4M) 

 

 

 

“In this chapter, the combination of the proposed methods Bees Algorithm and Data 

Mining for induction motor faults detection have been described and explained in 

details, so called Bee for Mining (B4M). The proposed method (B4M) has been tested 

and validated based on the UCI dataset and its performance has been compared with 

other well-known classifiers. The proposed method has been translated as a software 

code or toolbox package using MATLAB software version “R2015a””. 
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4.1 The Bees Algorithm (BA) 

The Bees Algorithm is one of the most important types of swarm intelligence 

algorithm used to find the optimal solution inspired by honeybees’ natural foraging 

behaviour. The BA will require from the user to set values for the parameters as 

described in table 4-1 before it can start to optimize the given problem.  

First, in the search space, the basic BA begins with a number of scout bees arriving at 

random positions for global search or exploration. These bees will evaluate their 

positions and maximize the solutions to the problem by ranking them from the highest 

to the lowest according to their fitness value. The second stage is to select (m) best 

sites for local search or exploitation and abandon the remaining sites. Then the best of 

the best sites, which is called the elite sites (e), are chosen for intense exploitation. 

Further, the size of the neighbourhood search space is chosen for recruitment the bees, 

where fewer bees will be assigned for the non-elite sites (m-e), while more bees for 

the elite sites (e) in order to conduct the local search. Simultaneously, while the 

recruited bees are busy exploiting around the neighbourhood of the best solutions 

found so far, the global search will be carried out on the remaining sites where the 

Table 4-1: BA parameters. 

Description Symbol 
Number of scout bees n 

Number of selected bees m 

Number of elite bees e 

Number of recruited bees for elite (e) sites nep 

Number of recruited bees for other best (m-e) 

sites 
nsp 

Neighbourhood size for each selected patch 

(local search) 
ngh 
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scout bees will be sent randomly [142]. This procedure will be repeated iteratively as 

shown in figure 4-1until one of the following stopping criteria given below is met: 

a) A solution has been found, which is equal to real optimum value. 

b) The iteration number has reached the preset value. 

c) If there is no improvement over a preset number of iterations. 

 

Figure 4-1: Basic BA flowchart. 

Procedure and concept for the proposed Bee for Mining (B4M) will be introduced in 

the following sections. 

4.2 Proposed Bee for Mining (B4M) 

The Bees Algorithm which has been reconfigured in a novel way to enable it to act as 

a Data Mining (DM) tool and it is referred to as Bee for Mining (B4M) in this research. 
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The main thrust of B4M is its ability for rule discovery and rule pruning. The proposed 

B4M utilizes the basic Bees Algorithm within its process. Among other steps, the steps 

followed by the proposed B4M are as follows. When the rule discovery process is 

faced with an ambiguous situation, it will rely on the newly introduced parameters 

namely quality and coverage weight in the proposed B4M to overcome this issue, the 

details are graphically shown in figure 4-2. This has been done through a process of 

Meta-Pruning i.e., examining the discovered rules by referring to itself and measuring 

their contribution to the class assignment in terms of their quality and coverage before 

pruning. The main steps followed by the proposed B4M are summarised and described 

here below: 

1) Data Pre-Processing.  

2) Evaluation Function (fitness function). 

3) Rule Format. 

4) Rule Discovery and Extraction. 

5) Rule Pruning. 

6) Prediction Strategy. 
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4.2.1 Data Pre-Processing 

In data pre-processing stage, there is a need to delete all non-coherent and incomplete 

data, since some data can confuse the algorithm when detecting the class based on the 

features provided. Otherwise, this can lead to having inaccurate classification rules 

(overlapping problem) for the new and unseen data presented for prediction and 

generalisation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Proposed B4M flowchart. 
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4.2.2 Evaluation Function (fitness function) 

BA has been used to minimize the fitness function as the best and nearest food source, 

but in the classification task the fitness function will be used to evaluate the fitness 

value of the rules, as defined in the equation below [146]: 

Where TP (True Positive): the records or datasets that have been covered by the rules 

and these rules have predicted their class correctly. FN (False Negative): the records 

that have not been covered by the rules, but the rules have predicted their class 

correctly. FP (False Positive): the records that have been covered by the rules and the 

rules have not predicted their class correctly and TN (True Negative): the records that 

have not been covered by the rules and the rules have not predicted their class 

correctly. 

In addition, there are two important concepts that need to be considered in the rule 

discovery, as described below: 

a) The algorithm will measure and examine all data features. If the value of the 

feature is between the lower and the upper bounds then this feature is covered 

by the rule. 

b) If the class predicted by the rule is the same as the evaluated class then this 

indicates that this class has been predicted by the rule correctly. 

	݊݅ݐܿ݊ݑ݂	ݏݏ݁݊ݐ݅ܨ ൌ 	ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൈ ݕݐ݂݅ܿ݅݅ܿ݁ܵ ൌ 		 ்

ሺ்	ାிேሻ
	ൈ 	 ்ே

ሺ்ே	ାிሻ
								ሺ4‐1ሻ
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4.2.3 Rule Format 

The format of the classification rule has two parts namely antecedent and consequent 

as shown in table 4-2. The antecedent part deals with the condition and the consequent 

part deals with the outcome.   

All datasets have their own features starting with feature 1 to feature N. Each feature 

or attribute has its own values, which are divided into two categories, the lowest value 

(Lower Bound) and the highest value (Upper Bound) for the rule. Furthermore, three 

important values related to the classification rule discovery namely fitness value, class 

prediction and cover percentage, which are described in the following section, should 

be taken into account. 

4.2.4 Rule Discovery and Extraction 

The most important part in the classification method is the rule set phase because it 

identifies the group of data into a specific class. Therefore, figure 4-3 shows the 

flowchart of B4M rule discovery procedure. 

Table 4-2: classification rule format. 

Antecedent Consequent 
If (Xj ≤ Ui-j) and (Xj ≥ Li-j) then class 'X' 
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Figure 4-3: B4M rule discovery flowchart. 

The values for all the attributes will  be calculated and set in the dataset by using two 

equations as given below [156]:  

Where ݇ଵ, ݇ଶ are two different random numbers between 0 and 1 and ݂ represents the 

original feature values. The ݂ and ݂௫ are the minimum and the maximum values 

of the attribute, which represent the range of the feature. ݇ଵ, and ݇ଶ have been created 

in order to discover the rules. ܤܮ and ܷܤ represent the lower and upper bound 

ሻܤܮሺ	݀݊ݑܤ	ݎ݁ݓܮ																														 ൌ ݂ െ	݇ଵ ൈ	ሺ ݂௫ െ	 ݂ሻ																								ሺ4‐2ሻ	

ሻܤሺܷ	݀݊ݑܤ	ݎܷ݁																												 ൌ ݂ 	݇ଶ ൈ	ሺ ݂௫ െ	 ݂ሻ                      (4-3) 
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respectively. The rules will be generated automatically for each class by using the 

classification rule-mining algorithm. This process will be repeated for each class until 

all instances that belong to that class are covered. Moreover, at the end of rule 

discovery process the rule set will have many rules, and each rule will abide by the 

rule structure.  

4.2.5 Rule Pruning 

This is where the redundant rules are removed. Once all the rule sets have been 

generated for each class, each rule will be subject to rule pruning. The main purpose 

of pruning rules is to remove all unwanted rules, which may affect the classification 

accuracy. Rule pruning helps the algorithm to increase the classification accuracy due 

to the removal of some dispensable attributes or rules which negatively affects the 

classification results. This process will keep running until the performance of the 

reduced rules set cannot be improved further. In this work, a “Meta-Pruning” process 

is followed where the discovered rules themselves are made subject to the rule pruning 

mechanism. 

4.2.6 Prediction Strategy  

After the pruning process, the obtained rules set can be used for predicting the class 

of new incoming data. If more than one rule lead to the same class then some strategies 

need to be applied in the prediction stage in order to be sure that the class has been 

predicted correctly. Here, three approaches to determine the correct class are proposed: 

1) Cover all the test data, by calculating the prediction value for all the rules. 

2) Gather all the predicted values in order to determine all possible classes for 

each attribute. 
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3) Select the final class based on the highest prediction value. 

This strategy has further assisted by the following measures. The True Positive (TP) 

which is the records or datasets that have been covered by the rules and these rules 

have predicted their class correctly, and the rule coverage percentage is calculated as 

given below: 

Where ܰ represents the total value of the predicted class by the rules.  

The function for the calculation of Prediction Value (PV) for each rule is computed 

by the equation below [157]: 

0 < Quality-weight < 1, 0< Coverage-weight < 1 

Where ݒ݂ݎ is the rule fitness value and ܿݎ is the rule coverage percentage. While α 

(α ∈ [0, 1]) represents the quality-weight and β (β = (1-α)) represents the coverage-

weight, are associated with rule fitness value and rule cover percentage respectively. 

These two values (α and β) applied on the discovered rules from the dataset to avoid 

any ambiguous situations during the prediction phase and making it suitable for any 

classification problem.  

The main purpose of the prediction strategy is to balance the influence of coverage 

percentage and fitness value with respect to the prediction value, which determines 

the final predicted class. Furthermore, the value of α and β should be chosen carefully, 

because they have a big impact on the predicted classification accuracy. The proposed 

approach presented in this study is the development of a mechanism for data 

classification based on the swarm based optimization algorithm, which is the BA. 

	݁݃ܽݐ݊݁ܿݎ݁ܲ	݁݃ܽݎ݁ݒܥ																																												 ൌ 	
்

ே
																											ሺ4‐4ሻ

݁ݑ݈ܸܽ	݊݅ݐܿ݅݀݁ݎܲ																																			 ൌ 	 ሺߙ ൈ ሻݒ݂ݎ  ሺߚ	 ൈ  ሻ                      (4-5)ܿݎ
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Figure 4-4 demonstrates a new classification procedure based on the BA. The first 

stage is data pre-processing, which includes deletion of all non-numerical and missing 

data. Step two, involves calculating the maximum and minimum values for each 

attribute and category followed by the evaluation of the fitness function for the rules. 

Then BA is applied to search for the best values (food sources). The BA will run 

iteratively forming new populations so that it will keep searching for the best data until 

it reaches the near optimum solution. After convergence, rules are generated for output 

data and are assigned to their class in order to cover all data instances. Finally, all 

instances which are not covered by the rules are removed and checked to see if any 

other classes are covered by the rules. In the following chapter, the proposed B4M will 

be tested on five different UCI datasets in order to examine its overall performance. 

 

Figure 4-4: Classification procedure of proposed B4M. 
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4.3 Testing of B4M Performance on selected UCI Datasets 

This section presents the test results obtained to show the performance of the proposed 

B4M algorithm on five selected UCI datasets in terms of its classification accuracy 

and its ability for rule discovery. Further, the proposed B4M has been compared with 

other classifiers such as C5.0, C4.5, Jrip and other evolutionary algorithms in order to 

show its strengths and weaknesses. The description of the datasets used in the test is 

given below. 

4.3.1 Description of Datasets 

The UCI datasets were used to evaluate and compare the performance of the proposed 

B4M algorithm. The UCI machine learning repository has about 351 datasets on its 

machine learning research group web page [158]. In this study, five datasets have been 

used namely Iris, Wine, Soybean, Breast Tissue and Image Segmentation in order to 

evaluate B4M performance[159]. The reason for choosing them is that all five datasets 

have different characteristics. For example, one has integer and real attributes, three 

have only real attributes, and one has categorical attributes with varying sample sizes 

and number of classes. This allows the proposed B4M to be tested if it is capable of 

dealing with different types of feature attributes similar to the real world datasets. 

Table 4-3 shows the characteristics of the five selected UCI datasets that were used to 

evaluate the B4M performance. In the following section the parameter values used in 

the B4M algorithm in three different trials and the test results are given.  
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Table 4-3: Five selected UCI dataset characteristics. 

Dataset name 
No. of  
samples 

No. of 
attributes 

Attribute 
type 

No. of 
classes 

Iris 150 4 Real 3 

Wine 178 13 Integer, Real 3 

Soybean 47 35 Categorical 4 

Breast Tissue 106 10 Real 6 

Image 

Segmentation 
2310 19 Real 7 

4.3.2 The B4M Parameters 

The eight parameters used to study the performance of the proposed B4M algorithm 

are shown in table 4-4.  

The tests were repeated three times by changing only the number of iterations from 

500 to 1500 in steps of 500 (500: trial 1, 1000: trial 2, 1500: trial 3) in order to study 

their convergence. The number of iterations could be made higher than 1500 but this 

will have an effect on the processing time. Therefore, T-test and P-value were 

calculated between the three trials based on the overall classification accuracy 

achieved by the B4M. The three trials were compared statistically by evaluating each 

Table 4-4: B4M parameters. 

Parameter Value 

n 500 

m 20 

e 10 

n1 15 

n2 30 

Ngh 0.0234 

Quality-weight 0.5 

Coverage-weight 0.5 
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pair 1-2, 1-3 and 2-3 respectively based on the average classification accuracy, as 

shown in table 4-5. In the T-test, all datasets have been chosen because they have 

different types of attributes and number of classes. The T-test results point out that 

there are statistically significant differences between these comparisons for some of 

the datasets. The results show that trial 3 outperformed trial 2 for the iris and soybean 

datasets because the P-values are lower than 0.05, while trial 2 outperformed trial 1 

for the iris dataset, and trial 3 outperformed trial 1 for the soybean dataset only. 

Therefore, trial 3 has been selected for testing B4M on UCI datasets because it has 

two values lower than the threshold value (0.05). 

4.3.3 The B4M Test Results 

In testing the proposed B4M, 10-fold cross-validations have been used for each dataset 

to evaluate the performance by validating the predicted class. Two parameters namely 

quality-weight (α) and coverage-weight (β) required for class prediction should be set 

after generating the final rule set. During the B4M tests, these parameters were set to 

0.5 empirically because it has been found that this value is the best for rule prediction, 

as explained in section 4.2.6. In addition, the ngh value was chosen in such a way to 

minimise the overlapping regions of the search space between the bees. 

Table 4-5: P-value for B4M parameters based on T-test. 

Dataset Trial 1-2 Trial 1-3 Trial 2-3 
Iris 0.04 0.41 0.01 

Wine 0.47 0.21 0.24 

Soybean 0.32 0.05 0.04 

Breast Tissue  0.34 0.41 0.30 

Image Segmentation 0.31 0.46 0.31 
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The proposed B4M method has been applied on five UCI datasets containing different 

numbers of classes (3, 3, 4, 6 and 7) to see its capability on handling multiple classes 

and its ability in assigning the unseen data to the correct class. After running 10-fold 

cross-validation, the test results were analysed statistically by calculating the average 

(mean) and standard deviation for the classification and validation accuracy. Table 4-6 

shows the Classification Accuracy (CA) on the training data and Validation Accuracy 

(VA) on the unseen data with 10-fold cross-validation for all datasets. According to 

the results in table 4-6, the proposed B4M classification method was able to classify 

the data with an average classification accuracy (CA) ranging between 88.83% and 

99.10%. In terms of validation, since the performance of the B4M not only depends 

on how well it can perform on the training dataset but also on the test dataset, the 

proposed B4M achieved an accuracy of 88.66% the highest for Iris dataset and 68.57% 

the lowest for the Image segmentation dataset. The results were assessed based on the 

classification accuracy on the training set and their validation accuracy on the test set. 

These results indicate that the proposed B4M was operating efficiently to predict the 

classes for the unseen data. In addition, table 4-6 shows that the B4M performance in 

terms of the average (mean) validation accuracy is the highest for Iris dataset and worst 

for the Image Segmentation. In terms of standard deviation obtained for validation 

accuracy the performance of B4M was the best for Soybean dataset and worst for 

Image Segmentation dataset because the Image Segmentation dataset was unclear and 

has unrecognized features between its classes.  
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After applying the proposed B4M for all UCI datasets, the validation accuracy has 

been compared with and without quality-weight (α) and coverage-weight (β) as shown 

in figure 4-5. It can be seen that the inclusion of quality-weight and coverage-weight 

resulted in an increase in the validation accuracy because it produced accurate rules to 

predict the correct class for new unseen data. 

Table 4-6: Classification and Validation Accuracy with 10-fold cross-validation 

using B4M. 

No. of 
iteration 

Iris Wine Soybean 
Breast 
Tissue 

Image 
Segmentation 

CA% VA% CA% VA% CA% VA% CA% VA% CA% VA% 
1 97.67 93.33 99.26 61.11 98.55 75.00 91.38 58.33 98.97 33.33 

2 98.44 100.00 98.54 77.77 99.63 75.00 89.66 66.66 96.06 76.19 

3 98.45 73.33 99.25 83.33 99.85 75.00 88.14 58.33 97.83 71.42 

4 97.69 80.00 98.41 88.88 98.61 87.50 89.47 75.00 98.94 90.47 

5 97.67 86.66 99.25 61.11 99.65 75.00 87.93 75.00 97.89 85.71 

6 99.22 86.66 99.90 83.33 97.79 87.50 92.25 91.66 94.61 66.66 

7 98.45 93.33 98.51 61.11 98.85 75.00 89.66 58.33 93.48 66.66 

8 96.18 93.33 98.51 72.22 98.69 62.50 86.21 91.66 94.74 42.86 

9 96.92 93.33 99.92 100.00 99.61 75.00 88.33 58.33 97.89 80.95 

10 96.92 86.66 99.24 55.55 99.74 75.00 85.25 75.00 93.99 71.42 

Average  97.76 88.66 99.08 74.44 99.10 76.25 88.83 70.83 96.44 68.57 

STD 0.91 7.73 0.57 14.63 0.69 7.10 2.14 13.18 2.11 17.98 

CA = Classification Accuracy     VA = Validation Accuracy 
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Figure 4-5: Comparison of classification accuracy (X - different methods; Y - % 

classification accuracy) achieved by B4M with other methods for five UCI datasets. 

4.4 Comparison of B4M with Other Algorithms 

A comparison was carried out between the B4M performance and other classification 

methods such as C5.0, C4.5, Jrip, REGAL, PART, ATM, cAnt-Miner, BEE-Miner, 

CART and CN2 based on the average classification accuracy (given as a %) and the 

average number of rules (given as a real number). The average classification accuracy 

and the average number of rules discovered by different classification methods for the 

five UCI datasets are presented in table 4-7. All the algorithms including B4M have 

been tested using 10-fold cross-validation method. It is clear from the table that the 

proposed B4M classification accuracy is better than other classification algorithms for 

four out of five UCI benchmark datasets. In addition, the proposed B4M classification 

achieved higher accuracy for Wine, Soybean, Breast Tissue and Image Segmentation 

in terms of classification accuracy and number of rules. However, the performance of 

B4M is lower than REGAL [160] and it is in the second place in terms of classification 

accuracy for the Iris dataset, but in terms of the number of rules, it was higher than 
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REGAL and others. The results show that B4M has the ability to generate less number 

of rules with higher classification accuracy.  

Table 4-7: Comparison the results of B4M with other classification algorithms. 

Compared 
algorithms 

Iris Wine Soybean 
Breast 
Tissue 

Image 
Segmentation 

CA% 
No.of 
rules 

CA% 
No.of 
rules 

CA% 
No.of 
rules 

CA% 
No.of 
rules 

CA% 
No. of 
rules 

C5.0 [161] 92.00 5.00 * * 93.40 32.00 * * 96.3 10.05 

C4.5 [162], 

[163] 
95.32 6.20 91.03 8.90 85.60 55.90 66.16 19.40 * * 

Jrip [162], 

[164] 
96.00 3.00 92.68 5.40 * * 60.18 7.50 94.58 17.20 

REGAL[160] 99.00 11.00 97.00 60.00 * * * * * * 

PART [162], 

[164] 
93.33 3.80 91.54 5.20 91.40 20.60 64.36 21.80 95.61 27.90 

ATM [163] 96.20 4.20 95.15 5.60 87.40 50.00 65.20 12.00 * * 

cAnt-

MinerPB[162] 
93.24 4.92 93.57 4.75 80.00 22.30 67.10 6.55 * * 

cAnt-Miner 

[164] 
94.21 4.00 91.38 4.10 * * * * 93.72 12.22 

µcAnt-Miner 

[164] 
95.65 8.40 93.82 4.07 * * * * 94.64 16.13 

BEE-Miner 

[146] 
90.22 5.76 96.08 3.13 * * * * * * 

CART [163] 93.90 4.40 93.30 5.50 87.60 35.40 64.70 7.80 * * 

CN2 [162], 

[165] 
94.66 9.50 94.96 7.90 97.30 18.80 75.35 23.60 * * 

PSO/ACO 

[166] 
94.67 3.00 * * 87.01 24.20 * * * * 

B4M 97.76 3.00 99.08 3.10 99.10 4.60 88.83 6.10 96.44 7.60 

CA = Classification Accuracy     VA = Validation Accuracy 
*: Data is not available. 

Figure 4-6 and figure 4-7 show the average classification accuracy and average 

number of rules achieved by different methods for the five UCI datasets. It can be 

clearly seen that the proposed B4M has above average performance in terms of 

classification accuracy and the number of rules in four out of five datasets. However, 
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the processing time for all the applied algorithms have been not considered as the other 

algorithms have been taken from the references and it is difficult to be calculated, but 

the proposed algorithms have taken less than 60 seconds to detect the motor faults 

which is also depends on the how large is the dataset. Consequently, the results have 

proved that the proposed B4M is able to handle the classification data successfully and 

obtain equally good results if not better when compared with other classification 

algorithms.  



C
h

ap
te

r 
4:

 P
ro

p
os

ed
 B

ee
 f

or
 M

in
in

g 
(B

4M
) 

 

 

P
ag

e 
| 8

8 
 

F
ig

ur
e 

4-
6:

 C
om

pa
ri

so
n 

of
 c

la
ss

if
ic

at
io

n 
ac

cu
ra

cy
 (

%
) 

fo
r 

fi
ve

 U
C

I 
da

ta
se

ts
. 

  

   

 

F
ig

ur
e 

4-
7:

  C
om

pr
es

si
on

 o
f 

av
er

ag
e 

ru
le

s 
nu

m
be

r 
fo

r 
fi

ve
 U

C
I 

da
ta

se
ts

. 

92.00

95.32

96.00

99.00

93.02

96.20

93.24

94.21

95.65

90.22

93.90

94.66

97.76

91.03

92.68

97.00

91.54

95.15

93.57

91.38

93.82

96.08

93.30

94.96

99.08

93.40

85.60

91.40

87.40

80.00

87.60

97.30

99.10

66.16

60.18

64.36

65.20

67.10

64.70

75.35

88.83

96.30

94.58

95.61

93.72

94.64

96.44

C
5

.0
C

4
.5

J
R

IP
 

R
E

G
A

L
P

A
R

T
A

T
M

C
A

N
T

-
M

IN
E

R
P

B
C

A
N

T
-

M
IN

E
R

Μ
C

A
N

T
-

M
IN

E
R

B
E

E
-M

IN
E

R
C

A
R

T
C

N
2

B
4

M

Ir
is

W
in

e
S

oy
be

an
B

re
as

t t
is

su
e

Im
ag

e 
se

gm
en

ta
ti

on

5

6.2

3

11

3.79

4.2

4.92

4

8.4

5.76

4.4

9.5

3

8.9

5.4

60

5.2

5.6

4.75

4.01

4.07

3.13

5.5

7.9

3.1

32

55.9

20.6

50

22.3

35.4

18.8

4.6

19.4

7.5

21.8

12

6.55

7.8

23.6

6.1

10.05

17.2

27.9

12.22

16.13

7.6

C
5

.0
C

4
.5

J
R

IP
 

R
E

G
A

L
P

A
R

T
A

T
M

C
A

N
T

-
M

IN
E

R
P

B
C

A
N

T
-

M
IN

E
R

Μ
C

A
N

T
-

M
IN

E
R

B
E

E
-M

IN
E

R
C

A
R

T
C

N
2

B
4

M

Ir
is

W
in

e
S

oy
be

an
B

re
as

t t
is

su
e

Im
ag

e 
se

gm
en

ta
ti

on



  

 

 

 

 

 

5 CHAPTER 5 
 

 

PROPOSED METHODS FOR DATA PRE-
PROCESSING AND FEATURE SELECTION 

 

 

 

“In this chapter, the proposed methods of induction motor data pre-processing have 

been described and explained in detail. The proposed feature extraction methods from 

the thermal image have been described. Afterward, Wavelet Transform has been also 

explained and how it is applied to the thermal image, current and vibration signals. 

Finally, the feature selection methods have also been described and explained in 

detail. These methods have been translated as a software code or toolbox package 

using MATLAB software version “R2015a””. 
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5.1 HSV Colour Model  

The Hue-Saturation-Value (HSV) colour model is defined as how the human eyes 

senses colours. It also known as Hue-Saturation-Brightness (HSB), Hue-Saturation-

Lightness/luminance (HSL), and Hue-Saturation-Intensity (HSI). The following 

formulae have been used to convert RGB image into HSV colour model in terms of 

three components as stated below: 

 In Terms of Hue: 

It represents the colour types. Hue value could be calculated from the red, 

green and blue colours by measuring the distance from its arise. The colour 

was described as angle degree between (0° - 360°) in Hue. As shown in 

table 5-1, 0°- 60° for red colour, 60°-120° for yellow and 120°-180° for green, 

and so on. Hue region is very helpful for detection the hottest region because 

it works opposite with saturation as it is less meaningful when the saturation is 

0 or when intensity is 0 or 1, and more meaningful when the saturation is 1. 

Consequently, Hue region has been used for further processing for motor fault 

detection.  

The formula of calculating the Hue value is explained below:  

ܪ ൌ ൜
ܤ		݂݅																			0  ܩ
360 െ 	ܤ	݂݅					ߠ	   	ܩ

Table 5-1: HSV colour space distribution. 

Angle 0°- 60° 60°-120° 120°-180° 180°- 240° 240°- 300° 300°-360° 

Colour Red Yellow Green Cyan Blue Magenta 
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R: Red, G: Green, B: Blue 

 In Terms of Saturation: 

The colour range is from 0 to 100%. It also known as purity. The faded colour 

and greyness have been appeared when the saturation value is low. Thus, the 

range of the greyness is from 0 to 1, if the value is ‘0’ the colour is grey, while 

the colour is primary colour (white colour) if the value is ‘1’. In addition, the 

higher the faded the greyer colour based on the following formula (ܵ: 

saturation): 

 In Terms of Value: 

The value represents the color brightness, which varies based on the saturation. 

The value ranges are between 0 - 100%. The colour is black when the value is 

‘0’, and the colour brightness will be change and show varies color when the 

value increases based on the following formula: 

Generally, RGB colour has been widely used in the optical instruments and digital 

images. However, RGB is not sensitive and helpful to statistical analysis and human 

visual. Consequently, the non-linear transformation of HSV or HSI from RGB colour 

provides important information with more accuracy than the RGB colour. As results, 

it has been decided to use it for processing and analyzing the thermal image of 

ߠ																																										 ൌ 	 cosିଵ ቊ
భ
మ
ሾሺୖିୋሻା	ሺୖିሻሿ

ሾሺୖିୋሻమା	ሺୖିሻሺୋିሻሿ
భ
మ
ቋ	                                 (5-1)

																																													ܵ ൌ 1 െ	 ଷ

ሺୖାୋାሻ
	ሾminሺܴ, ,ܩ  ሻሿ                                   (5-2)ܤ

																																																		I ൌ 	 ଵ
ଷ
	ሺR  G  Bሻ                                            (5-3)    
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induction motors in order to extract the best and accurate colour information for fault 

classification. 

5.2 Image Segmentation 

Image segmentation is a process of partitioning image into several or multiple 

segments (sets of pixels). Basically, the result of image segmentation are set of pixels   

that may have similar characteristics such as texture, colour, or intensity. It has three 

different approaches for image segmentation:  

a) Finding the thresholds based on the pixel properties distribution, which is 

counted as a simplest way for image segmentation. This technique has been 

applied onto the image pixel intensity value. Thus, it converts the digital image 

into binary image for further processing.  

b) Finding the boundaries between all the regions by relying on the 

discontinuities in intensity level. The image has been divided into sub-regions 

based on the method rules such as all the image pixels must have the same gray 

level if it is in one region. Furthermore, it relies on the neighbouring pixels 

clustering, which sometimes referred as region according to their functional 

and anatomical roles. 

c) Finding the regions directly for any abrupt changes in the intensity value. It is 

known as edge or boundary based method. Generally, edge detection methods 

have been used for finding the discontinuities in gray level. 

Accordingly, image segmentation technique should be chosen based on the problem 

that needs to be segmented. The next section will discuss most common edge detection 

techniques that have been used in this research for image segmentation. 
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5.2.1 Image Segmentation based on Edge Detection 

The edge detection methods of an image reduce the image data quantity to be 

processed and contain essential information regarding the object shape in the scene. 

They have been able to extract the exact edge line for all object in the image with good 

orientation as well as more literature about these techniques are available and applied 

in many applications such as biometrics, medical image processing, security, 

monitoring the electrical devices and many others. However, there is no study 

indicates and judges the performance of these techniques because all the judgment that 

have been done by authors are always separately based on their applications. 

Several methods such as “Sobel”, “Prewitte”, “Roberts”, “Canny”, “LoG” and “Otsu” 

have been used for finding and extracting the hottest region from the thermal images 

by calculating the gradient based edge detection. The following sub-sections will 

review these techniques briefly. 

5.2.1.1 Sobel Edge Detection 

The Sobel edge detection method was introduced by Sobel in 1970 [167]. It proceeds 

the edge at those points where the gradients are higher. The gradient (݂) is the 

differences between the columns and rows of neighbourhood 3x3 which is calculated 

by Sobel operators, table 5-2 below shows the center pixel in each column and raw 

[168]. 

Table 5-2: Image neighbourhood (center pixel). 

Z1 Z2 Z3 
Z4 Z5 Z6 
Z7 Z8 Z9 

݂																																																													 ൌ 	ඥܵ௫ଶ 		ܵ௬ଶ																																              (5-4) 
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Where ܵ௫ & ܵ࢟ are Sobel operators in the X and Y- axis respectively. 

Masks for ܵ௫ and ܵ௬direction in Sobel operators as shown in table 5-3 and table 5-4 

5.2.1.2 Prewitt Edge Detection 

The Prewitt edge detection has proposed by Prewitt in 1970 as well [167]. It estimates 

the magnitude and orientation of image object edge. It is limited to eight possible 

directions. Nevertheless, the result shows that the most direction estimates are not 

perfect than the first 8. The gradient-based edge detector is estimated in the 3*3 

neighbourhood for 8 directions as shown in table 5-5 and table 5-6. Thus, if all the 

eight convolution masks are calculated, one of the masks will be selected for data 

processing. 

Table 5-5: Masks for ܵ௫ direction. 

-1 -1 -1 
0 0 0 
1 1 1 

Table 5-6: Masks for ܵ௬ direction. 

-1 0 1 
-1 0 1 
-1 0 1 

Table 5-3: Masks for ܵ௫ direction. 

-1 -2 -1 
0 0 0 
1 2 1 

Table 5-4: Masks for ܵ௬ direction. 

-1 0 1 
-2 0 2 
-1 0 1 
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Prewitt edge detection technique is slightly simple to implement than the Sobel 

detection, but it tends to produce somewhat noisier results. 

5.2.1.3 Roberts Edge Detection 

Lawrence Roberts introduced the Roberts edge detection method in 1965 [169]. It 

performs a simple, quick to compute, 2-D spatial gradient measurements to the image. 

Each point of the output image represents the estimated absolute magnitude of the 

spatial gradient of the input image at that point. In case of 2*2 gradient operator as 

shown in table 5-7 and table 5-8, Roberts operator has been used for calculating the 

difference between adjacent pixels. 

Table 5-7: Masks for ܵ௫ direction in Roberts operators. 

-1 0 
0 1 

Table 5-8: Masks for ܵ௬ direction in Robert’s operators. 

0 -1 
1 0 

5.2.1.4 Canny Edge Detection 

Canny edge detection is considered as multi-step method that can detect all object edge 

in the image with noise reduction [170], as shown in the following steps: 

5.2.1.4.1 Noise Reduction 

Gaussian filter has been applied to reduce the noise and unwanted details in the image 

based on the following equation: 

																																																	݃ሺ݉, ݊ሻ ൌ ,ሺ݉	ఙܩ	 ݊ሻ ∗ ݂	ሺ݉, ݊ሻ																																	(5-5) 
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Where ݃ሺ݉, ݊ሻ is the gradient operators, ܩఙ	ሺ݉, ݊ሻ is the Gaussian filter, ߪ is the 

standard deviation and ݂	ሺ݉, ݊ሻ	is the adaptive filter. 

Where the ܩఙ is computed by: 

ఙܩ																																																		 ൌ 	
ଵ

√ଶగఙమ
ݔ݁ ቀെమାమ

ଶఙమ
ቁ																																											(5-6) 

5.2.1.4.2 The Gradient Computation 

The gradient magnitude and direction have been calculated at every single point based 

on the Sobel kernel for both directions vertical (ܩ௬) and horizontal (ܩ௫). The gradient 

can be calculated for each pixel from two images as follows: 

Where ܩ௫ and ܩ௬ are the derivatives directions of X and Y points. 

In this step, two cases have been considered for gradient: the first is high gradient, 

which means that there is a significant change in the colour (implying edge), and the 

second is low gradient, which means that there is no substantial change (no edge). It 

is rounded into four angles, which are two diagonal directions, horizontal and vertical. 

5.2.1.4.3 Non-Maximum Suppression  

In this step, full scanning for the image will be done to remove any unwanted pixels 

that may not constitute as edge. Every pixel will be checked, whether it is a local 

maximum or not. If it is not a local maximum, the pixel will be set to zero, otherwise 

it will considered as edge. Consequently, at the end, the results will be a binary image 

with a thin edge. As illustrated in the following example in figure 5-1: 

ሻܩሺ	ݐ݊݁݅݀ܽݎܩ	݁݃݀ܧ ൌ 	ඥܩ௫ଶ 	ܩ௬ଶ                                 (5-7)

ሻߠሺ	݈݁݃݊ܣ ൌ 	 tanିଵ ቀ
ீ
ீೣ
ቁ																																													   (5-8)
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The edge on the point A is in a vertical direction and the gradient direction as normal, 

which is point B. Therefore, point A will be checked, if it is in local maximum, it will 

be considered as edge, otherwise, it will considered as suppressed and set to zero. 

5.2.1.4.4 Hysteresis Thresholding 

In this stage, the decision will be made to all pixels to be really edge or not. In this 

case, two values for thresholding is needed, maxVal and minVal. Any values of edges 

with the intensity gradient less than minVal are non-edge (discarded) and those with 

more than maxVal are edge. The values that are lie between these two values, they 

will be checked based on the connectivity to decide either it is an edge or not. If they 

are connected to non-edge pixels, they will be considered as not edge. Otherwise, they 

will be considered as edge. 

Unlike Sobel and Roberts, the Canny edge detection is not very susceptible to noise, 

if Canny detector worked well it would be superior. 

5.2.1.5 LoG Edge Detection 

Laplacian of Gaussian (LoG) has been proposed by Marr (1982) [171]. It is a second 

order of derivative. LoG has two important effects; it smooths the image and computes 

 

Figure 5-1: How to detect the edge by non-maximum suppression. 
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the laplacian, which yields a double edge image and locates the edges and finding the 

zero crossings between the double edges. The following masks have been used for 

implementing the laplacian function as shown in table 5-9 and table 5-10. 

Table 5-9: Masks for ܩ௫ direction in Log. 

0 -1 0 
-1 4 -1 
0 -1 0 

 

Table 5-10: Masks for ܩ௬ direction in LoG. 

-1 -1 -1 
-1 8 -1 
-1 -1 -1 

 

The LoG has been used for finding the pixel of an edge whether it is on dark or on 

light side. 

5.2.1.6 Otsu Method 

This method has been widely applied for thermal image processing in order to detect 

the hot regions. It is automatically perform clustering based on image threshold. Every 

image has two classes of pixels, and then it separates these classes by calculating the 

optimum threshold with the aim of minimal into the intra-class variance. Four 

important steps need to be followed in this method to obtain the Otsu image, which 

are explained below [172]: 

1) Select average value of image intensity (estimated threshold). 

2) Divide the image into two regions R1 and R2, and then calculate the mean ߤଵ 

and ߤଶ values for each region. 
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3) Select a new threshold 

4) Repeat steps 2-4 until ߤଵ and ߤଶ values do not change. 

All the proposed edges detection methods above have been used for extracting the 

hottest region from the thermal image in order to have the exact and best hotspot in 

the induction motor thermal image. In addition, the results that are obtained from the 

edge detection methods have been used for extracting the best image metrics such as 

mean, mean square error and peak signal to noise ratio, variance, standard deviation, 

skewness and kurtosis with the purpose of using them in classification algorithms by 

assigning them to proper class. The following section describes and discusses the 

image metrics based on the edge detection results. 

5.3 Image Metrics 

After implementing all edge detection techniques for thermal images, the most 

common image metrics have been applied in order to extract the best features that 

could be used for distinguishing between the motor faults. The most common and 

widely image metrics used is Mean (ߤ), Mean Squire Error (MSE) and Peak Signal to 

Noise Ratio (PSNR), Variance (V), Standard Deviation (SD), Skewness (S) and 

Kurtosis (K). as described below [173][174]: 

a) Mean (ࣆ) 

The mean is a most basic of all statistical measures. The mean has been widely 

used in geometry and analysis, a wide range of means have been developed for 

these purposes. In contest of image processing filtering using mean is classified 

as spatial filtering and used for noise reduction. It also calculates the average 

																																																									ܶ ൌ 	 ଵ
ଶ
	ሺߤଵ 	ߤଶሻ																																																				(5-9)
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values and extract the brightness information from the image. Many types of 

means have been discussed in [171] such as arithmetic mean, geometric mean, 

harmonic mean and contra-harmonic mean. All these previous means have 

been relied on the arithmetic mean for reducing the image noise, which could 

be calculated by the equation below [171]: 

Where ݃ is the noisy image, ݎ, ܿ is the row and column coordinates 

respectively, within the size of ݉ ∗ ݊ of image (ܹ). 

b) Mean Square Error (MSE) & Peak Signal to Noise Ratio (PSNR), 

MSR is measure the differences between the reference image pixel and 

threshold image based on the average of the square intensity. PSNR value is 

relying on the MSE value as shown in the following formulae: 

Where x (i,j) is the reference image, y (i,j) is the threshold image, ܰ and ܯ is 

the height and width of reference image respectively. 

ܴܲܵܰ ൌ 10	 logଵ
ሺଶିଵሻమ

√ெௌா
                                      (5-12) 

c) Variance 

It measures of how far a set of numbers is spread out [175]. It is one of the 

several descriptors of a probability distribution, which describes how far the 

numbers lie from the mean. Particularly, the variance is one of the distribution 

moments and it is part of systematic approach to distinguish between 

																																																								μ ൌ ଵ

୫୬
∑ gሺr, cሻሺ୰,ୡሻ∈ 																																												(5-10) 

ܧܵܯ ൌ 	 ଵ

ெே
	∑ ∑ ሺݔሺ݅, ݆ሻ െ ,ሺ݅	ݕ ݆ሻሻଶெ

ୀଵ
ே
ୀଵ 																													(5-11)
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probability distributions. In image processing, it can be utilized to determine 

the edge position. Mathematically variance is given by: 

ଶߪ																		 ൌ ଵ

ିଵ
∑ ቀ݃ሺݎ, ܿሻ െ ଵ

ିଵ
∑ ݃ሺݎ, ܿሻሺ,ሻ∈ௐ ቁሺ,ሻ∈ௐ

ଶ
	                (5-13) 

d) Standard Deviation (SD) 

It has been widely used statistically for measuring variability or diversity. In 

terms of image processing, it shows how much variation/disruption exists from 

the average (mean). In case of low standard deviation the data point tend to be 

very close to the mean, while in case of high standard deviation, the data points 

spread out over the range of values. Consequently, the standard deviation could 

be mathematically calculated by using the following formula:  

By using standard deviation filter, it may be able to recognize some important 

patterns. Therefore, this study will apply the standard deviation for induction 

motor thermal image for extracting the best image features. 

e) Skewness  

It measures the asymmetry, or more precisely, the lack of symmetry. A 

distribution, or data set, is symmetric if it looks the same to the right and left 

of the centre [176]. It can be positive, negative or undefined [177]. 

Qualitatively, a positive value indicates that the tail on the right side is longer 

than the left side and the bulk of the values lie to the left of the mean. However, 

a negative value indicates that the tail on the left side of the probability density 

function is longer than the right side and the bulk of the values lies to right of 

ߪ																		 ൌ ට ଵ

ିଵ
∑ ቀ݃ሺݎ, ܿሻ െ ଵ

ିଵ
∑ ݃ሺݎ, ܿሻሺ,ሻ∈ௐ ቁሺ,ሻ∈ௐ

ଶ
            (5-14) 
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the mean, and the zero value (undefined) indicates that the values have been 

distributed on both sides of the mean, which is defined as: 

In image processing, the darker and the glossier surfaces tend to be more 

positively skewed than the lighter and matt surfaces. Thus, the skewness have 

been used for making judgments between the image surfaces. 

f) Kurtosis 

It calculates ratio of the four central moment of distribution. In other word, it 

measures whether the data are heavy or light tailed relative to the distribution 

[176], [178]. Thus, the data set with high Kurtosis tend to have heavy tails, or 

outliers, and if the data with low kurtosis tend to have light tails or lack of outliers 

as defend below: 

ܭ											 ൌ
భ

షభ
∑ ቀ భ

షభ
∑ ቀሺ,ሻି భ

షభ
∑ ሺ,ሻሺೝ,ሻ∈ೈ ቁሺೝ,ሻ∈ೈ ቁ

ర
ሺೝ,ሻ∈ೈ

൬ భ
షభ

∑ ቀ భ
షభ

∑ ቀሺ,ሻି భ
షభ

∑ ሺ,ሻሺೝ,ሻ∈ೈ ቁሺೝ,ሻ∈ೈ ቁ
మ

ሺೝ,ሻ∈ೈ ൰
మ             (5-16) 

In digital image processing, Kurtosis are interpreted in combination with noise 

and resolution measurement. High Kurtosis goes hand in hand with low noise and 

resolution. 

The previous sections have discussed that the image metrics are very important for 

extracting the important image features, and they are very helpful for distinguishing 

the important differences between the images (healthy thermal image and faulty 

thermal image). Thus, these metrics have been adopted in this research for classifying 
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the IM faults, as they are easy and fast to be calculated by using “MATLAB R2015b” 

software for coding and organise them as “Excel” file sheet in order to be used as input 

data for the classification algorithms. Figure 5-2 illustrates the procedure of thermal 

image processing. 

 

Figure 5-2: Thermal image processing diagram. 

The structure and functions of Wavelet Transform (WT) will be explained in the 

following section, which has been also adopted as an image and signal processing for 

all induction motor thermal images in addition with the image metrics and for 

processing the current and vibration signals. 

Roberts 
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5.4 Wavelet Transform for Thermal Image, Current and Vibration Signals 

Over the past ten years, there has been a significant increase in the use of wavelet 

transform for signal decomposition. The novel concept of wavelet was first put 

forward by Morlet in 1984. However, at that time, Morlet faced much criticism from 

his colleagues. Later, with the help of Grossman, Morlet has formalised the 

Continuous Wavelet Transform (CWT). In 1985, Meyer constructed a beautiful 

orthogonal wavelet base with good time and frequency localization properties. The 

year after, Meyer and Mallat have developed the idea of multiresolution analysis 

(MRA), which makes it easy for constructing other orthogonal wavelet basis. Before 

long, Daubechies proposed an orthogonal wavelet bases in a simple and ingenious 

way. Furthermore, he has done many researches based on the wavelet analysis frames 

in order to allow more liberty in the choice of wavelet basis at a little expenses of some 

redundancy.  

In the wavelet transformation there are number of basis functions that can be used as 

a wavelet mother (wavelet function). It determines the wavelet transform results 

because it produces all wavelet functions that are used for translating and scaling the 

signals. It could be classified into two fundamental classes: orthogonal and bi-

orthogonal as explained briefly below: 

a) Orthogonal Wavelet  

The coefficient of this filter are real numbers. It has the same length and 

not symmetric. The low pass filter, G0 and the high pass filter H0 are related 

to each other. These filters are alternated flip of each other. It automatically 

gives double shift orthogonality between the low and high pass filters. The 

possibility of obtaining perfect reconstruction could be done by alternating 
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flip. In addition, orthogonal filters offer high number of vanishing 

moments, which make them useful for signal and image processing 

applications. 

b) Bi-orthogonal Wavelet 

In this case, the low and high pass filters do not have the same length as in 

the orthogonal filters. The low pass filter is always symmetric, while the 

high pass filter could be either symmetric or asymmetric. It produces two 

kinds of coefficient either integer or real numbers. Furthermore, for 

obtaining perfect reconstruction from the signal, the bi-orthogonal filter 

bank has all odd length or all even length filters. These two analysis filters 

could be one symmetric and other one asymmetric with even length, and 

only symmetric with odd length.  

 

Figure 5-3: Wavelet families (a) Harr, (b) Daubechies, (c) Coiflet, (d) Symlet,  

(e) Meyer, (f) Morlet, (g) Mexican Hat [179]. 
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Consequently, the details of particular application should be taken into account and 

choose the appropriate wavelet mother for translating the signal effectively. Figure 5-3 

illustrates the most common wavelet functions.  

Haar wavelet is one of the oldest and simplest wavelets. Daubechies wavelets are the 

most popular wavelets among both digital signal processing and image processing. 

The Haar, Daubechies, Coiflet, and Symlet have used in orthogonal wavelet bank 

filters.  

These wavelets together with the Meyer wavelets have been able to obtain perfect 

signal reconstruction. Moreover, the Meyer, Morlet and Mexican Hat wavelets are 

considered as symmetric in shape. In addition, the wavelets have been chosen based 

on their shapes and abilities for analysing signals in some particular applications. 

On the other hand, the wavelet transform provides a multiresolution decomposition of 

a signal or image in a bi-orthogonal bank filter, which results in a non-redundant signal 

or image representation. There are many functions could be generated by wavelet from 

one single function, which is called wavelet mother, based on translations and 

dilations.  

Another significant aspect of the wavelet transform is that it uses for multi-scale of 

signal through translation and dilation in both time and frequency domains, rather than 

FFT, STFT and other transformation functions [180]. It has been able to analyse the 

non-stationary signals. Thus, recently, the WT have obtained great success in machine 

fault diagnosis as it is not only having the ability in analysing the non-stationary 

signals but also has distinct advantages. Afterwards, Daubechies and Mallat have been 

credited with the development of wavelet from the Continuous Wavelet Transform 



Chapter 5: Proposed Methods for Data Pre-Processing and Feature Selection 

  

Page | 107  

(CWT) to Discrete Wavelet Transform (DWT) [181] as described in the following 

subsections. 

5.4.1 Continuous Wavelet Transform (CWT) 

The same as the Fourier Transform (FT), which obtains the correlation coefficients 

between the analysed and sinusoidal one. The WT obtains the correlation coefficients 

between the signal and an orthonormal function, which is called “wavelet function”. 

The CWT allows the signals to be analysed through the correlation coefficients of that 

signals instead of using the whole signal information. The mathematical formula for 

determining CWT is shown below [179]: 

Where ܽ is the scale parameter, ܾ is the time parameter, ߰ሺݐሻ is an analysing wavelet, 

and ത߰ is the complex conjugate of ߰. 

CWT is known as one of the best tools available to detect signal singularity, which is 

carried out with the local maxima lines [179]. It has been applied for diagnosing the 

notched rotor [182], where it has been demonstrated that both CWT and changes in 

the second harmonics could be used as robust indicators. Furthermore, the CWT 

coefficient has been used as input into the Artificial Neural Network (ANN), and it 

has been investigated to show that their system has been able to detect combined faults 

shaft crack and unbalance [183]. CWT has been adopted in most of engineering 

applications for machine fault detection in the form of scalogram. The scalogram is 

known as the square of CWT modulus. However, currently, the use of CWT for 

diagnosis the faults in the rotating machinery is still relatively rare, this is due to the 

fact that the visual interpretation of wavelet results is often difficult. Thus, more efforts 

																																									 ௫ܹሺܽ, ܾ; ߰ሻ ൌ ܽି
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have been made for extracting the best signal features for analysing the residual 

wavelet scalogram [184]. 

5.4.2 Discrete Wavelet Transform (DWT) 

The most important part of DWT is that it uses the discrete data as a scale parameter. 

In the DWT, the scale ܽ and the time ܾ as described in the last equation above are 

discretised as follow [181]: 

Where ݉ and ݊ are integers, thus the CWT function ߰,ሺݐሻ in the equation above 

converted to the DWT by the following formula: 

The discretisation of the scale parameter and time parameter leads to the discrete 

wavelet transform, which defined as: 

The DWT has two important approaches to discrete the signal at different scale and 

position (resolution levels and different frequency), which are decomposing the signal 

into approximations (A) and details (D). The approximation information could be 

obtained from the low pass filter, while the detail information could be obtained from 

the high pass filter as explained in figure 5-4. 

																																																												ܽ ൌ ܽ
, ܾ ൌ ݊ܽ

ܾ	                                       (5-18)
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Figure 5-4: DWT decomposition signal to approximation and detail using filters 
[181]. 

Figure 5-5 shows how to analyse and synthesis the signal, the input signal goes through 

two one-dimensional filters, one for high pass filter (H0), and one for low pass filter 

(H1). These filters have filtering operation and followed by subsampling by factor of 

2. Then, the signal will be reconstructed by first up sampling, after that, filtering and 

summing the sub bands will be followed. 

 

Figure 5-5: DWT two channel filters [185]. 

The synthesis filters F0 and F1 have to be adapted for analysing the H0 and H1 filters 

in order to achieve perfect reconstruction. It is very easy to obtain satisfying 

relationship between the 2-channal filters by considering Z-transform function. After 

analysis, the two sub bands will be as follows [186]: 
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The combination of these filters are: 

In order to overcome the problem of aliasing and distortion, the following conditions 

should be considered [186]: 

ሻݖሺܨ ൌ ሻݖଵሺܨ										&								ሻݖଵሺെܪ ൌ െܪሺെݖሻ 

The multiscale pyramid decomposition and reconstruction of an image or signal with 

high and low pass filters has been illustrated in figure 5-6 and figure 5-7 below. 

 

Figure 5-6: Filter bank structure of the DWT analysis [185]. 

 

Figure 5-7: Filter bank structure of the reverse DWT synthesis [185]. 

After one level of decomposition, there will be four frequency bands, which are Low-

Low (LL), Low-High (LH), High-Low (HL), and High-High (HH). The next 

decomposition level will be applied to the LL band, which forms a recursive 

ܺሺݖሻ ൌ ଵ

ଶ
ሾܨሺݖሻܪሺݖሻ  ሻݖሻሿܺሺݖଵሺܪሻݖଵሺܨ 	

ଵ

ଶ
ሾܨሺݖሻܪሺെݖሻ 

ݖଵሺܪሻݖଵሺܨ																																																												 െሻሿܺሺെݖሻ																										            (5-23) 
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decomposition procedure. Consequently, an N-level of decomposition will have 3N+1 

different frequency bands, which includes 3N high frequency and one LL bands. 

Table 5-11 illustrates a brief comparison between the performance of CWT and DWT. 

Table 5-11: Comparison of the performance of CWT and DWT [187]. 

CWT DWT 

a) It uses exponential scales with a base 

smaller than 2.  

a) It uses exponential scales with the 

base equal to 2. 

b) Large computational resources 

required to compute the CWT. 

b) Less computational resources 

required to compute the DWT. 

c) It is a shift-invariant. c) It not shift-invariant. 

d) It is highly redundant transform. 
d) Is also redundant but less than the 

CWT. 

e) It is orthonormal transform. e) It is orthonormal vector. 

f) The outputs are not down sample but 

not better than DWT. 

f) The outputs are down sampled, but 

better than CWT. 

g) The inverse of CWT could be 

implemented but usually the signal 

reconstruction is not perfect. 

g) It provides perfect signal 

reconstruction upon inversion, 

which means that the DWT of 

signal coefficients could be used to 

synthesise and exact reproduction 

of the signal with numerical 

precision. 

The DWT has been widely used for analysing the induction motor signal (thermal 

image, current and vibration signals) due to its excellent decorrelation property, it has 

been used as a transform stage in many modern image and video compression systems 

[188]. Image compression is one of the most important visible applications of 

wavelets. 
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Traditionally, in the field of image processing a Discrete Wavelet Transform (DWT) 

has been adopted for image compression due to its simplicity and practicality. It has 

been applied for many different types of images such as JPEG, MPEGZ, PNG, etc.  

In this work, the DWT technique has been adopted for extracting the best features 

from the IM thermal image. Among the various DWT techniques, Daubechies wavelet 

is considered for analysing the thermal image, as it is multilevel decomposition 

wavelet. The names of the Daubechies family wavelets are written as dbN, where N 

is the order, and db is the “surname” of the wavelet. The db1 wavelet is the same as 

the Haar wavelet, which is one of the wavelet functions as mentioned above. 

Figure 5-8 illustrates the nine members of the db family [189]. 

The wavelet toolbox in MATLAB software (version R2015a) has been used for 

analysing the thermal image, current signature and vibration signal.  

Two-dimensional discrete wavelet analysis tool based on the Daubechies wavelet 

(db7) with 7 vanishing moments and 3 levels, db73 has been used for analysing the 

thermal images. 

Procedure for thermal image analysis using DWT are below and explained in 

figure 5-9 : 

 

Figure 5-8: Daubechies wavelet families [189]. 
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a) Read the thermal image and convert it to the HSV colour in order to obtain 
the discrete pixel values. 

b) Transformation: apply two-dimensional DWT using db7 with level 3. 

c) Save the extracted features from the image to the MATLAB workspace for 
further processing. 

d) Calculate the histogram for the approximation and the details coefficients. 

e) Save the data of the histogram. 

f) Repeat the same process for other images. 

 

Import thermal image

Convert it to HSV 
colour

Apply two-dimensional DWT 
(db73)

Export the image coefficient to the 
MATLAB workspace 

Calculate the histogram for the 
image details and approximation

Save the histogram 
data

Repeat the process for 
other images

 

Figure 5-9: Procedure for thermal image analysis in MATLAB using wavelet 

toolbox. 

One-dimensional discreet wavelet analysis tool has been used for analysing the current 

and vibration signals, the procedure of analysing these signals are as follows: 

a) Import the current/vibration signals. 
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b) Apply the DWT to extract the signal features. 

c) Save the extracted features for further processing. 

d) Repeat the process for all faulty signals. 

In terms of current/vibration signal, figure 5-10 illustrates the procedure of the signal 

analysis for the current and vibration in more details. 

Import current /
vibration signal

Apply one-dimensional DWT 
(db75)

Export the new signal coefficient  
to the MATLAB workspace 

Calculate the histogram for the 
signal details and approximation

Save the histogram 
data

Repeat the process for 
other signals

 

Figure 5-10: Current and vibration signals processing procedure. 

Moving on now to consider feature selection method, because it plays a vital role in 

the field of classification. It has the ability to choose the best features among all 

dataset. Two important reasons for using the feature selection method: the first one is 

to reduce the data dimensionality, which is also reduce the processing time. The 
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second reason is to choose the features that increase the classification accuracy by 

removing the unwanted ones. 

5.5 Feature Selection Methods 

Feature Selection or Feature Subset Selection is an important topic in data mining 

especially for high dimensional datasets. It is a process commonly used in machine 

learning, wherein subsets of features available from the data are selected for 

application of a learning algorithm [190]–[192]. The best subset contains the least 

number of dimensions that most contribute to accuracy, whereas discard the remaining 

[193]. It is counted as a main stage in data pre-processing, which is used for avoiding 

the curse of data dimensionality. Feature selection could be decomposed into three 

search classes: filter, wrapper and embedded as explained in table 5-12 [194].  
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It has been able to search in two ways forward and backward. sequential feature 

selection has two main components [195][196]: 

 An objective function, called the criterion, which seeks to minimize over all 

feasible feature subsets. Common criteria are mean squared error (for 

regression models) and misclassification rate (for classification models). 

 A sequential search algorithm, which adds or removes features from a 

candidate subset while evaluating the criterion. Since an exhaustive 

comparison of the criterion value at all 2n subsets of an n-feature dataset is 

typically infeasible (depending on the size of n and the cost of objective calls), 

sequential searches move in only one direction, always growing or always 

shrinking the candidate set. 

In this research, four feature selection methods based on the wrapper method have 

been used for reducing and improving the processing time and classification accuracy, 

which are Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), 

Sequential Floating Forward Selection (SFFS), and Sequential Floating Backward 

Selection (SFBS). A brief description of these algorithms has been explained below: 

5.5.1 Sequential Forward Selection (SFS) 

SFS is classified as a simple greedy search algorithm. This method starting from 

empty set, sequentially add the feature x+ that resulted in the highest objective 

function J(Yk+x+) when combined with the features Yk that have already been 

selected. 
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 Algorithm  

SFS performs best when the optimal subset has a small number of features. 

Furthermore, when the search is near the empty set, a large number of states can 

be potentially evaluated. Towards the fullest, the region examined by SFS is 

narrower since most of the features have already been selected. Thus, the search 

space is drawn as an ellipse to emphasis the fact that there are fewer states towards 

the full or empty sets. In addition, the main disadvantages of SFS is that it is unable 

to remove the obsoleted features after the addition of the new feature. 

5.5.2 Sequential Backward Selection (SBS) 

SBS works in opposite direction of SFS, which also known as Sequential 

Backward Elimination (SBE). It starts from a full set and sequentially remove the 

feature x- that resulted in decreasing the value of the objective function J (Y-x-). 

Notice that the removal of feature may actually lead to an increase in the objective 

function J (Yk-x-) > J(Yk). Such functions are said to be non-monotonic. 

 Algorithm 

SBS works best when the optimal feature subset has large number of features, 

since SBS spends most of its time visiting large subsets. Thus, the main limitation 

1. Start with the empty set Y0= {Ø}. 

2. Select the next best feature x+ = argmax [J(Yk+x)]; x∉Yk. 

3. Update Yk+1=Yk+ x+; k=k+1. 

4. Go to step two. 

1. Start with the full set Y0=X. 

2. Remove the worst feature x- = argmax [J(Yk - x)]; x∈Yk. 

3. Update Yk+1= Yk – x- ; k=k+1. 

4. Go to step two. 



Chapter 5: Proposed Methods for Data Pre-Processing and Feature Selection 

Page | 119  

of SBS is its inability to revaluate the usefulness of a feature after it has been 

discarded. 

5.5.3 Sequential Floating Selection 

The floating variant, SFFS and SBFS, could be considered as extensions to the 

simpler SFS and SBS algorithms. The floating algorithms have an additional 

exclusion or inclusion step to remove features once they were included or 

excluded. Thus, a larger number of feature subset combinations can be sampled. It 

is very important to emphasise that this step is conditional and only occurs if the 

results of feature subset assessed as “better” by the criterion function after removal 

or addition of particular feature. There are two floating methods: 

5.5.3.1 Sequential Floating Forward Selection (SFFS) 

Starts from empty set. After each forward step, SFFS performs backward 

steps as long as the objective function increases. 

5.5.3.2 Sequential Floating Backward Selection (SFBS) 

Starts from the full set. After each backward step, SFBS performs forward 

steps as long as the objective function increases. 

 Sequential Floating Selection algorithm ( the SFFS and the SFBS 

is analogous) 

1. Start with empty set Y0= {Ø}. 

2. Select the best feature  

x+ = argmax [J(Yk+x)]; x∉Yk. 

   Yk =Yk+ x+; k=k+1. 

3. Select the worst feature 



Chapter 5: Proposed Methods for Data Pre-Processing and Feature Selection 

Page | 120  

x- = argmax [J(Yk - x)]; x∈Yk. 

4. If J (Yk-x-) > J(Yk) then 

Yk+1=Yk+ x; k=k+1. 

   Go to step three. 

         Else 

   Go to step two.  

Having discussed how to construct the B4M, image processing methods, wavelet 

transform analysis and feature selection methods, the next chapter addresses the ways 

of using the most popular machine-learning algorithm for feature selection, which is 

Genetic Algorithm (GA) 

 

 

 

 

 

 



 

 

 

 

 

 

 

6 CHAPTER 6 
 

 

GENETIC ALGORITHM BASED FEATURE 

SELECTION FOR B4M (GA-B4M) 

 

 

 

“In this chapter, the proposed hybrid approach of Genetic Algorithm (GA) and 

proposed Bee for Mining (B4M) methods have been described and explained in detail. 

In addition to this, the new hybrid technique (GA-B4M) will be used for selecting the 

features, detect, classify and predict the induction motor faults at an early stage. These 

methods have also been translated as a software code using MATLAB software version 

“R2015a””. 
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6.1 Introduction 

Volumetric features have big impact on the system density and most of the time it does 

not lead to higher prediction accuracy. However, they are not independent and might 

be correlated. A bad feature could completely disgrace the system performance. 

Therefore, it is very important to select the best features before use them as training 

data. These features are selected during or before the training phase in order to describe 

the training data. Consequently, two important point could be concluded in this case, 

the first is the smaller quantity of features are able to reduce the computational outlay, 

which plays vital role for real-time applications, and the second is leading to the higher 

classification accuracy. In this chapter, Genetic Algorithm (GA) has been used to 

select as few features as possible in order to gain best description for the training data. 

It has been also used to determine the important relationship between all different 

features to select the good subset of features. This system called a hybrid system of 

two machine-learning algorithms, Genetic Algorithm (GA) and Bee for Mining 

(B4M), with purpose of improving the proposed B4M classification accuracy based 

on the GA for feature selection. 

In 1975, the Genetic Algorithm was developed by John Holland, University of 

Michigan, for providing an efficient technique for machine learning applications to 

solve all the optimization problems. The GA algorithm technique is based on the 

mechanics of biological evaluation for inheritance, mutation, natural selection and 

crossover (recombination) [197], [198]. It is also considered as a heuristic algorithm, 

which survive or select the best individual among all population. 

 

 



Chapter 6: Genetic Algorithm based Feature Selection for B4M (GA-B4M)  

Page | 123  

6.2 Genetic Algorithm  

GA algorithm is a computational model. It works on a set of candidate for finding the 

best solution, each candidate called “chromosome”, while all the set of candidate 

solution called “population”. It allows the chromosomes to move from one population 

to another by iterative process, these iterations called “generations“. Furthermore, GA 

has many forms for solving or optimizing problems, a simple version which is called 

static population model has been used for most of experiments [199]. In this model 

each chromosome has been ranked based on the fitness value. Two chromosomes 

(individuals) have to be selected and use them as parents for reproduction. The GA 

operators has been described below.  

 Genetic Algorithm Operators 

Genetic algorithm operators that are used in the Genetic Algorithm is to 

maintain the genetic diversity. It is analogues to the natural world: selection or 

survival fittest, reproduction (recombination or crossover) and mutation. The 

genetic diversity (level of biodiversity) refers to the total number of genetic 

characteristics in the genetic makeup of each species. The operations of GA as 

follows:  

a) Parent Population Initialization 

The population of each individual has been maintained within the search 

space of GA, which represent a possible solution to a given problem. The 

population size depends on the number of chromosomes in each 

generation. If the number of chromosomes are few, thus the GA will have 

few possibilities to perform the crossover and lead to explore small part of 
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search space. Each individual in the GA has been coded as a finite length 

vector of variables, in terms of binary alphabet {0, 1} as shown in 

figure 6-1. Thus, to continue the genetic analogy, all the individuals have 

been linked to chromosomes. 

b) Evaluation 

An ideal fitness function has been assigned to each solution representing 

the abilities of an individual to compete. The GA searches for each 

individual that has the best fitness value (score). Therefore, the GA aims 

to select best individual (solution) for the given problem in order to 

produce offspring better than parents by combining the chromosomes 

information. 

c) Selection 

In this step, all individuals (chromosomes) that have high fitness score are 

given more chance to be selected for reproduction. Several methods could 

be used in this step such as tournament selection, basic roulette wheel, 

elitist selection, rank selection, hierarchical selection and steady state 

selection. 

Population 

Chromosomes 1 11100010 

Chromosomes 2 01111011 

Chromosomes 3 10101010 

Chromosomes 4 11001100 

Chromosomes 5 11101101 

Figure 6-1: Population in GA 
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d) Crossover / Recombination 

In this stage, parent’s portions could exchange with the purpose of 

producing or generating more adapted solution as shown in figure 6-2. 

 

 

 

Figure 6-2: Crossover structure. 

e) Mutation 

This could be done by randomly selecting one chromosome from the 

population and change its information as illustrated in figure 6-3. 

 

 

 

 

 

Figure 6-3: Mutation changing. 

The benefit of this process is to produce a new genetic (generation) by 

randomly change the chromosomes information to avoid the stagnation around 

local minima.  

 

Parent 1 
1 1 0 0 1 0 1 1 

Parent 2 
1 0 0 0 1 1 1 0 

Child 1 
1 1 0 0 1 1 1 0 

Child 2 
1 0 0 0 1 0 1 1 

1 1 0 0 1 0 1 1 

a. Before mutation 

1 1 0 0 0 0 1 1 

b. After mutation 
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6.3 GA Theoretical Background 

The GA works with random population for finding the optimum solutions. It evaluates 

the fitness of each chromosome based on specific objective function. Thus, in order to 

simulate the natural survival of the fittest process, the best chromosome information 

has been chosen to produce new offspring chromosomes. The new offspring will be 

involved and evaluated in the population if they provide better solutions than the weak 

population members. Generally, the search process will be continued for a large 

number of generation to obtain the best-fit value (optimum solution). Figure 6-4 

illustrates the GA procedure sequence. Four important parameter have an effects on 

the GA performance; population size, number of generation, crossover rate and 

mutation rate. Therefore, the large population size and number of generations could 

increase the likelihood of gaining the global optimum solution, but significantly 

increase the processing time. 

 

Figure 6-4: GA flow chart. 



Chapter 6: Genetic Algorithm based Feature Selection for B4M (GA-B4M)  

Page | 127  

The following steps explain the GA procedure: 

a) Choose the initial population of individuals. 

b) Evaluate the fitness value of each individuals in the population. 

c) Repeat the following on the generation until the termination: (sufficient fitness 

achieved, etc.) 

i. Select the best fit of individuals for reproduction. 

ii. Breed the new individuals through crossover and mutation 

operations to give birth offspring. 

iii. Evaluate the fitness value of new individuals. 

iv. Replace fit population with new individuals.  

First, define the representation of the chromosomes for a given problem because each 

chromosome represent a candidate solution to the problem. The most common form 

that define the chromosome is binary form. Then choose the specific objective 

function to find the optimal solution (fitness function).   

Generate an initial population for the chromosomes. In general, the initialization could 

be done randomly, but most cases this initialization has been done by the 

chromosomes that are already known in order to have better performance. In case of 

using random initialization, each chromosome will be set to 0’s or 1’s randomly based 

on the probability (initialization probability). Then, the evaluation of fitness function 

will be carried out to find the most appropriate chromosome based on the higher fitness 

value. Two individuals have been selected from the individual population relying on 

the fitness function value, which are called, parents.  

Eventually, the crossover operation will be applied on the selected chromosomes as 

explained above. Each chromosome will be divided into two segments. These segment 
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are exchanged in order to create two new chromosomes (two children). The second 

segment of parent 1 will be the second segment of child 2 and vice versa. This 

operation has been performed with the purpose of creating new generation that could 

be adapted better than the selected one. The crossover operation is very important 

because it makes the feature space exploration bigger to find a near optimal solution. 

In case of all the individuals are identical, the crossover operation will generate the 

same chromosome, which means that this operator unable to generate new 

chromosomes. 

Consequently, the population diversity could be performed by applying the mutation 

operator. The mutation of two chromosomes are randomly changing the altering value 

of each element in the chromosomes based on the mutation probability. For example, 

if the component value is binary, the mutation converting the value from 0 to 1 or 

inverse. Then, evaluate the fitness value of the new created chromosomes and 

replacing the less adapted chromosomes by the new highest value. Go back and stop 

the algorithm when the maximum number of generation has reached. 

6.4 GA based Feature Selection 

As stated above, GA can be defined as population based and algorithmic search 

heuristic methods that mimics natural evolution process of man [197], [200]. Table 6-1 

illustrates the comparative terminology to human genetics [201]. 
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The values of each chromosome are evaluated using a special function, which 

commonly referred to fitness function or objective function. In other word, the fitness 

function returns numerical values of each chromosome that are used to rank the 

chromosomes in the population. Thus, five issues in the GA should be considered, 

which are encoding the chromosome, population initialization, evaluate the fitness 

value, selection (genetic operators) and criteria to stop GA as shown in figure 6-6.  

In the GA, the chromosomes are a bit strings because the GA works with binary search 

space. To begin with, the initial population has been created (randomly) and evaluated 

by using the fitness function. The binary chromosomes have been used in this research, 

a gene value “1” represents that the particular feature indexed has been selected. 

Otherwise, the feature should not be selected for chromosome evaluation.  

Table 6-1: Comparative terminology to human genetics [201]. 

SN Human Genetics GA Terminology 
1 Chromosomes Bit strings 

2 Genes Features 

3 Allele Feature value 

4 Locus Bit position 

5 Genotype Encoded string 

6 Phenotype Decoded genotype 
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Figure 6-5: GA based feature selection. 

After using the feature index (“1”), the chromosomes will be ranked and put them in 

the ranking index, the top fittest kids will be selected to survive the next generation. 

The fitness evaluation has been done by using the algorithm in figure 6-7 below. After 

automatically pushing the elite individuals to the next generation, the remaining 

individuals in the population will passes to the crossover and mutation operations in 

order to create new individuals. As stated above, crossover is a combination of two 

chromosomes (individuals) to create new chromosome, while the mutation is used for 

genetic perturbation of each gene in the chromosome through bits flipping based on 

the mutation probability as shown in figure 6-5. The configuration of the GA for this 

research has been explained in table 6-2.  
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The following steps have been considered for feature selection using genetic 

algorithm: 

A. Initial Population Generation 

In this research, the initial population is a matrix of two dimension, which are 

chromosome length and the population size that are containing only binary digits. The 

chromosome length (Genomelength) is the bit number of each chromosome, and the 

population size is the chromosome number in the population size. It has been 

recommended to make the population size equal to the value of chromosome length in 

order to span the search space [202]. The Pseudo code for the initial population is: 

 

Figure 6-6: Pseudo code for creation the initial population. 

Table 6-2: GA parameters values. 

Parameter of GA Value 

Population size 100 

Genomelength 100 

Population type Bitstrings 

Fitness function KNN-base classification error 

Number of generations 300 

Crossover Arithmetic crossover 

Crossover probability 0.8 

Mutation Uniform mutation 

Mutation probability 0.1 

Selection scheme Tournament  of size 2 

Elitecount 2 

1- Procedure POPFUNCTION() 

2- Pop Binary matrix (population size * Genomelength) 

3- Return pop 

4- End procedure 
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B. Fitness Function 

The most important part of the feature selection based on the GA is the fitness 

function; it has to be defined for evaluating the discriminative capability for each 

subset of feature. In this work, the fitness function that has been used for evaluating 

the chromosomes is KNN (K-Nearest Neighbour)-based fitness function. The 

KNN algorithm has been used for solving the classification problems by looking 

for the shortest distance between the training and the test data in the feature search 

space based on the euclidean distance (ܦሺݔ௧௦௧,  ሻ), as expressed in the equationݔ

below: 

,௧௦௧ݔሺܦ																												 ሻݔ ൌ ඥ∑ ሺݔ௧௦௧ െ ሻଶெݔ
ୀଵ 																														(6-1) 

The KNN has been able to count each category in the class information (as 

accumulated as count (xm)) by using 3 Nearest Neighbours, after that it provides 

a report classification results and classification error based on the expression 

below: 

 (6-2)																																								ሻ൯ݔሺݐ݊ݑ൫ܿݔܽ݉݃ݎܽ																																																														

																																											Subject	to ∶ 	 ∑ ሻݔሺݐ݊ݑܿ ൌ ெݏݏ݈ܽܿ
ୀଵ 																														(6-3) 

The position of “1” is selected for each genes, which indicates the particular 

feature index. Otherwise, if the genes value “id” is 0, it will not be selected for 

the chromosome evaluation. Thus, the current population will be evaluated and 

ranked based on the KNN classification error. In addition to this, the individuals 

that have the lower fitness value, they have a chance to be survived for the next 

generation. Meanwhile, the iterations that are run the GA will be part of reducing 

the error rate by picking up the chromosome with the lowest error rate as the 

error rate of each chromosome has been reported (recorded), and then the 
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smallest error rate will be kept or picked up by GA at the end. The expression 

for the fitness function is explained below: 

ݐ݂݅																																																																				 ൌ 	 ఈ
ே
 exp	ሺିଵ

ே
ሻ                              (6-4) 

 .KNN-based classification error =ߙ           

           ܰ= number of selected features. 

The above expression has been used for learning the GA in order to minimize 

the error rate and reducing the number of features. Figure 6-7 shows the Pseudo 

code for the above expression in the GA.  

C. Individual Generation for New Population 

In this step, the new population has been created by using the genetic operators 

and elitism (mutation and crossover). In the MATLAB toolbox, GA consists three 

types of individuals (children): elite children, crossover children and mutation 

children. 

 

 

Figure 6-7: GA fitness function based on the KNN. 

1- Procedure fit() 

2- Featindex (indices of one 1’s from binary chromosome) 

3- Newdataset (dataset indexed by Featindex) 

4- Numfeat (number of elements in Featindex) 

5- 3 (number of neighbours) 

6- KNNerror (classifier KNN (dataset, class information, number of 

neighbours KNN)) 

7- Return KNNerror 

8- End procedure 
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a) Elite Children 

These children have been automatically pushed to the next generation. 

In the GA MATLAB toolbox, the elitism has been identified as 

“Elitecount” and the default value is 2 as shown in table 6-2, which is 

bounded by the population size. Thus, based on the “Elitecount”, GA 

will pick up the best two chromosomes (the lowest fitness value) and 

then push them to the next generation. For example, if the number of 

features are 200, the remaining chromosomes are 198 that they will 

proceed with the crossover and mutation operators. 

b) Crossover Children 

This kind of operator sometimes called crossover fraction. In this 

search, the value of crossover is 0.8, because if it is set to 1, then the 

mutation operators will not be proceed in GA. Therefore, the value of 

this operator will be crossover = number of remaining 

chromosomes*0.8 (198*0.8=158) as stated in the example above. 

c) Mutation Operator 

The number of mutation operator will be calculated as mutation 

operator = number of features - elite operator - crossover operator (198-

158-2=38). 

d) GA Selection Mechanism 

The most important part of GA is the selection mechanism because it 

selects the best-improved individual’s value in the population. It also 
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helps the GA to discard the bad individuals and keep the best one. The 

GA toolbox has many selection mechanisms, one is the stochastic 

uniform (default size is 4) and the other one is tournament. In this 

research, the tournament selection mechanism has been used since it is 

fast, simple and more efficient as stated in [203]–[205]. In addition to 

this, the tournament selection has been able to enforce the GA to make 

sure that the worst individual will not go to next generation [201], 

[206]–[211]. Tournament selection needs two functions to be able to 

apply in the GA, the first function is individual generation and the 

second one is picking up the best individual out of the population (the 

winner). The tournament selection value here is 2, which means that 

there are two chromosomes should be selected from the population 

after taken out the elite children. It keeps repeating until filling up the 

new population. 

e) GA Termination 

The GA will be stopped if it reaches to the optimal solution, which is 

called stopping criteria (condition). This research has two stopping 

conditions: 

a) Maximum number of individuals. 

b) Limit the generation stall. 

The GA could be able to terminate the whole process prematurely, if the 

individuals are not set properly. The value of individuals has been set to 

300, while the value of the genomelength has been set to 100. In this case, 

if the difference in the average value of the fitness function, which is 
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related to the genomelength, is equal to or less than 0.000001, the GA will 

be terminated. Consequently, this will affect the genetic homogeneity 

between chromosomes, then at the end the GA will produce the best 

chromosome. 

In the previous chapters, all methods that are used in this research have been explained 

and how they are adapted for IM motor fault classification. The chapter follows moves 

on to consider the IM test rig setup in order to collect the required data for further 

processing. 



 

 

 

 

 

 

7 CHAPTER 7 
 

 

EXPERIMENTAL SETUP AND MEASUREMENTS 

 

 

 

“This chapter describes all the equipment that has been used in this research to carry 

out the experimental tests. The test rig and the data acquisition have been also 

described. Furthermore, the data collection procedure has been explained. It also 

presents the healthy and faulty signals of the induction motor to be used to detect the 

IM faults using thermal image as well as current and vibration signals”. 
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7.1 Introduction 

Previous chapters have explained the methods that will be used in this research which 

are proposed classification algorithm Bee for Mining (B4M), feature extraction, 

feature selection and the hybrid system of Genetic Algorithm based feature selection 

for Bee for Mining (GA-B4M). In this chapter, the equipments and experimental setup 

that have been used for collect the required data (thermal images, current and vibration 

signals) for classification process (motor protection) have been explained. 

A series of experiments have been conducted and the required data have been collected 

to verify the proposed algorithms for induction motor fault classification. Tests have 

been carried out under different load conditions with different types of faults. A three-

phase squirrel-cage induction motor has been used in this research. “FLIR C2” thermal 

imaging camera has been used for capturing the motor thermal images, stator current 

has been collected by using current transformers (one for each phase), and vibration 

levels has been collected by using laser vibrometer “OFV 303”. A general description 

of the experiment test rig that are used in this investigation has been explained in the 

following sections. 

7.2 Condition Monitoring Scheme 

The general condition monitoring scheme for the proposed algorithms is shown in 

figure 7-1. Two common phases have been adapted in this research, which are training 

and prediction phases as shown in figure 7-2 . The most important phase is the training 

phase because it prepares the data and learn the classification algorithm (train model), 

while the prediction phase depends on the training phase for predicting the new 

incoming data (unseen data). Several induction motors have been tested to check 
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whether they work in a healthy or faulty conditions. In case of healthy conditions, the 

overall signal condition should be identified by the machine learning algorithms and 

keep the motors running safely. However, if the machine learning indicates that the 

motor has fault in any parts, then the maintenance action should be taken immediately 

and repair or change the motor in order to prevent the catastrophic issues. Figure 7-2 

illustrate the research framework and the procedure that are followed to reach the main 

goal, which is classifying the motor faults accurately. 

 

Figure 7-1: Condition monitoring scheme. 
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7.3 Test Rig Equipments and Data Collection 

A test bed has been built and located at Cardiff University, School of Engineering, and 

it has been used to perform all the experimental tests for this work. The experimental 

test rig in this research consists of: 

a) Three-Phase Induction Motor 

Three-phase squirrel cage induction motor and its specification has been illustrated 

in figure 7-3, which has delta connection. 

 

 

Motor model Clarke motor 80B/4 

Frequency 50Hz 

Output power 0.75 kW 

Output horse power 1.0 hp 

Speed 1480 rpm 

No. of phase 3 

Figure 7-3: Induction motor specification. 



Chapter 7: Experimental Setup and Measurements 

 

Page | 142  

b) AW Dynamometer 

AW dynamometer is used for creating the load to induction motor by increasing 

the load torque using the control panel and monitor the motor torque and speed by 

the dynamometer sensor panel as illustrated in figure 7-4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-4: Dynamometer parts: a- Electric motor dynamometer, b- Dynamometer 

sensor (R.P.M., torque, power, and torque rise), c- Dynamometer barker control. 

a 

b c 
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c) Current Transformer 

Three current transformers have been used for stator current reading (three 

phases) as shown in figure 7-5, the specification of current transformer has been 

described in table 7-1. Three 50 Watts and 1Ω resistors have inserted in series 

between current transformers and the DAQ in order to have the actual individual 

current value, through measuring voltages crossing them. 

Table 7-1: Current transformer specification. 

Attribute Value 

Current Ratio 40:5 

Maximum Cable Diameter 21mm 

Overall Height 65mm 

Overall Width 45mm 

Overall Depth 30mm 

Minimum Temperature -30°C 

Maximum Temperature +85°C 

d) National Instrument Data Acquisition Card 

The output data (signal) that are received from the current transformers will be 

connected to National Instrument Data Acquisition card (NI-DAQ USB-6211, 16 

 

Figure 7-5: Current transformer setup for collecting the stator current. 
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AI multifunction I/O). The LabView version 2015 software has been used in order 

to save the current data as “Excel” or “csv” file to be used for further processing.  

The DAQ card and the LabView circuit has been illustrated in figure 7-6 and 

figure 7-7 respectively.  

 

Figure 7-6: National Instrument Data Acquisition card (NI DAQ USB-6211 16 AI 

multifunction I/O). 

 

Figure 7-7: LabView circuit for collecting the stator current data. 
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e) Thermal Camera 

FLIR C2 thermal camera has been used in this experiment in order to capture the 

thermal image for the healthy and faulty motor. The specification of this camera 

has been illustrated in the figure 7-8 below: 

 

Focal length 1.54 mm  

Size (L*W*H) 124.46*78.74*12.44 mm 

IR sensor  80*60 (4,800 measurement pixel) 

Operating temperature range -10°C to +50°C 

Storage temperature range -40°C to +70°C 

Digital camera 640*480 pixel 

Image frequency 9 Hz 

Accuracy  ±2°C 

Thermal sensitivity < 0.10°C 

Figure 7-8: Thermal image specifications.
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f) Laser Vibrometer 

The vibration signal has been collected by using the laser vibrometer “OFV-303” 

optical head via OFV-2200 front panel. This device uses the laser to sense the 

motor vibration, and then the output from the front panel has been connected to an 

oscilloscope in order to save the data as “Excel” or “csv” file for further 

processing. Figure 7-9 shows the laser vibrometer optical head, front panel and the 

oscilloscope. Two important factors in this device need to be caliborated before 

collecting the data, which are velocity and displacement range. The first one has 

been set to 25 mm/s/V and the latter was set to 80 µm/V. For example if the voltage 

is 1.2 V the displacement range will be 1.2*80*10-6 = 0.096 mm. 

 

 

 

Figure 7-9: Laser vibrometer: a: Front panel, b: Optical 

head and c: Oscilloscope. 

a 

b 

c 
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7.4 Rig Setup 

All devices that have been described above have been connected together in the 

Wolfson Centre for Magnetics at Cardiff University Queens building (school of 

engineering) in the UK as shown in figure 7-10. 

7.5 Fault Generation 

Two types of faults have been deliberately made on several induction motors. The first 

one is rotor fault and the second one is bearing fault. Each type of fault has a three 

kinds of fault. For the rotor, the faults are, one bar, four bars and eight bars; while for 

the bearing, the faults outer race, ball bearing and inner race as illustrated in 

figure 7-11. The thermal image, current and vibration signals have been collected for 

all the IM faults to be used for classification system. Faults description have been 

explained in the following sections. 

 

 

Figure 7-10: The experimental test rig. 

Laser 
Vibrometer 

Dynamometer 

IM Three-phase 
power supply 

Oscilloscope 

Computer 

DAQ LV front panel 

Thermal Camera 

Control Unit 

CT 
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Figure 7-11: IM faults scheme. 



Chapter 7: Experimental Setup and Measurements 

 

Page | 149  

7.6 Healthy Motor 

This test were carried out in order to save the reference signal for further processing 

as shown in figure 7-12. Three types of loads have been applied for the motor, which 

are no load, 50% load and 100% load, by using an eddy current brake within the 

dynamometer. The motor under test was operating at steady state with load about 50% 

of full load at speed 750 rpm.  

 

Figure 7-12: Healthy condition. 

The thermal mages; current and vibration signals have been collected from this 

machine at three load conditions, as illustrated in figure 7-13 and figure 7-14. 

   

Figure 7-13: Thermal image for healthy motor, a: No load, b: 50% load c: 100% 
load. 

 

  

a b c 
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(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 7-14: The current and vibration signals of healthy IM, a, b, and c represent the 

current signals at (a) no load, (b) 50% load and (c) 100% load respectively, while d, 

e and f represent the vibration signal at different load conditions. 

7.7 Faulty Rotor 

Induction motor failure through broken rotor bars, initiated by cracking in the rotor 

conductor, are common in many industrial applications. One of the most common 

reason for this kind of fault to be happened is that the large starting current occur when 

the motor is relatively cold, which causes a mechanical and thermal stress (maximum). 
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Thus, the inductance of this failure mode is greatest when the start-up time is relatively 

long especially for frequent starts that are required as apart of heavy duty-cycle. 

Figure 7-15 presents how the circuit of the rotor cage are composed of the potential of 

the bars inside the rotor core [212] (Rb and Lb represent the resistance and leakage 

inductance of each bar respectively, while Re and Le represent the resistance and 

leakage inductance of each end ring segment between adjacent part respectively). In 

this research, these bars has been artificially cut by using 4mm drilling holes in order 

to see its effect on the motor temperature, current and vibration signals. Rotor faults 

description have been illustrated in the following sections.  

                      

 Figure 7-15: IM rotor circuit diagram. 

7.7.1 One Bar Rotor Fault 

One of the rotor bars has been removed from the rotor. This rotor has been tested in 

three different load conditions (no load, 50% load and 100% load) as mentioned above. 

During the measurements, three types of data have been collected, which are thermal 

image, current and vibration signals at the same time as illustrated in the following 

figures.  
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Figure 7-16 demonstrates the faulty rotor circuit and the faulty IM rotor (one bar). The 

fault has been created by using drill holes with 4mm wide and 14mm depth dimensions 

in order to cut the bar resistance.  

 

Figure 7-16: One bar fault in the experiment (left figure) and description of the rotor 

cage-related faults in circuit diagram (right figure). 

Figure 7-17 illustrates the thermal images, which are captured in three different load 

condition, while figure 7-18 represents the signal of one rotor bar fault, current and 

vibration signals in three different load conditions. 

   

Figure 7-17: Thermal images of one bar rotor fault: a: No load, b: 50% load and c: 

100% load. 

a b c 
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  (a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 7-18: The current and vibration signals for one bar fault, a, b, and c represent 

the three-phase current signal at (a) no load, (b) 50% load and (c) 100% load 

respectively, while d, e and f represent the vibration signal at different load 

conditions. 

7.7.2 Four Bars Rotor Fault 

Four of the rotor bars have been disconnected from the rotor cage of the induction 

motor. This rotor has been tested in three different load conditions (no load, 50% load 
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and 100% load) as mentioned above. During the measurements, three types of data 

have been collected, which are thermal image, current and vibration signals.  

Figure 7-19 demonstrates the faulty rotor (four faulty bars) circuit. The fault 

dimensions were the same as the one bar fault.  

 

Figure 7-19: Four bars fault in the experiment (left figure) and description of the 

rotor cage-related faults in circuit diagram (right figure). 

Figure 7-20 illustrates the thermal images, which are captured with three different load 

conditions, while figure 7-21 represents a portion of current and vibration signals for 

four bars rotor faults at three different load conditions. 

   

Figure 7-20: Thermal images of four rotor bars fault: a: No load, b: 50% load and c: 

100% load. 

a b c 
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(a) 
 

(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 7-21: The current and vibration signals for four bars rotor faults, a, b, and c 

represent the three phase current signal at (a) no load, (b) 50% load and (c) 100% 

load respectively, while d, e and f represent the vibration signal at different load 

conditions. 

7.7.3 Eight Bars Rotor faults 

Eight of the rotor bars have been disconnected from the rotor cage. This rotor has been 

tested with three different load conditions (no load, 50% load and 100% load). During 

the measurements, three types of data have been collected, which are thermal image, 
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current and vibration signals. Figure 7-22 demonstrates the faulty rotor circuit and the 

faulty rotor (eight bars). The same hole dimensions have been used for all rotor bars 

faults. 

 

 

 

 

 

 

 

 

Figure 7-22: IM rotor circuit diagram with eight bars rotor fault and eight rotor bar 
faults has been created artificially in the experiment. 

Figure 7-23 illustrates the thermal images, which are captured in three different load 

conditions, while figure 7-24 represents a part of current and vibration signals for eight 

bars rotor faults at three different load conditions. 
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Figure 7-23: Thermal images of eight rotor bars fault: a: No load, b: 50% load and c: 

100% load. 
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Figure 7-24: The current and vibration signals for eight rotor bars fault, a, b, and c 

represent the three-phase current signal at (a) no load, (b) 50% load and (c) 100% 
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load respectively, while d, e and f represent the vibration signal at different load 

conditions. 

7.8 Faulty Bearings 

Bearing faults are widespread in industry. The bearing faults have been categorized 

into two types, generalized roughness fault and single point fault. The generalized 

roughness fault could be caused by lack or loss of lubricant, contamination and 

misalignment, while the single point fault usually caused by overloading during 

operation, which may lead to fatigue crack in the bearing surface until piece of metal 

drops off. The deep groove ball bearings (6204-Z) have been used in the tests as 

specified in table 7-2. The tests were focusing on three faulty bearings (outer race, ball 

bearing and inner race) as described in the following sections. The first step was 

collecting the data for the healthy bearing in order to acquire base line measurements. 

Then, three types of bearing faults were tested and the data collected. 

Table 7-2: Bearing specifications. 

Attribute Value 
Inside diameter 20mm 

Outside diameter 47mm 

Ball bearing type Deep groove 

Race width 14mm 

Number of rows 1 

Static load rating 6.55kN 

Material Steel 

Ball material Steel 

Cage material Steel 

Race material Steel 

Race type Plain 

Dynamic lad rating 13.5kN 

Bore type Parallel 
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7.8.1 Outer Race Bearing Fault 

In the experiment, the faulty bearing has been created by drilling a 0.2 cm hole into 

outer race as shown in figure 7-25.  

This fault has an effect on three important parameters of IM such as temperature, 

unbalance rotor and vibration behaviour than the healthy one. Figure 7-26 and 

figure 7-27 demonstrate the thermal images that have been captured from the 

experimental tests with outer race bearing fault, the current and vibration signals by 

applying three types of load (no load, 50% load and 100% load) respectively. 

   

Figure 7-26: Thermal images of outer race bearing defect: a: No load, b: 50% load, 

and c: 100% load. 
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Figure 7-25: Bearing with outer race defect. 

a b c 

0.2 cm outer race bearing defect 
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(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 7-27: The current and vibration signals for outer race bearing defect, a, b, and 

c represent the three phase current signal at (a) no load, (b) 50% load and (c) 100% 

load respectively, while d, e and f represent the vibration signal at different load 

conditions. 

7.8.2 Ball Bearing Fault 

One ball with its cage has been removed from the bearing in order to investigate the 

most popular bearing faults, which is ball crashing during the load operation. 

Figure 7-28 shows the bearing ball defect. In addition, figure 7-29 and figure 7-30 

illustrate the thermal images, current and vibration signals with ball bearing defect and 

three load conditions.  
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Figure 7-28: Bearing with ball defect. 

   

Figure 7-29: Thermal images of ball bearing defect: a: No load, b: 50% load and c: 

100% load. 
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(c) 

 
(f) 

Figure 7-30: The current and vibration signals for ball bearing defect, a, b, and c 

represent the three-phase current signal at (a) no load, (b) 50% load and (c) 100% 

load respectively, while d, e and f represent the vibration signal at different load 

conditions. 

7.8.3 Inner Race Bearing Fault 

This fault has been also created by drilling a 0.2 cm hole into inner race as shown in 

figure 7-31. This fault has the same effects on the three parameters of IM as mentioned 

earlier. Figure 7-32 and figure 7-33 demonstrate the thermal images that have been 

captured from the experiment tests with outer race bearing fault and the current and 

vibration signals by applying three types of load (no load, 50% load and 100% load) 

respectively. 

 

Figure 7-31: Bearing with inner race defect. 
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Figure 7-32: Thermal images of inner race defect: a: No load, b: 50% load and c: 

100% load. 
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Figure 7-33: The current and vibration signals for inner race defect, a, b, and c 

represent the three-phase current signal at (a) no load, (b) 50% load and (c) 100% 
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load respectively, while d, e and f represent the vibration signal at different load 

conditions. 

The analytical procedure and the results obtained from the IM faults are described in 

the next chapter. 



 
 

 
 

 

 

 

 

8 CHAPTER 8 
 

 

DATA AND SIGNAL ANALYSIS 

 

 

 

“This chapter reports the collected data for the faulty induction motors for a range of 

loads. This database is used to provide the baseline representing the motor behaviour 

for different faults and load conditions in order to detect and classify the fault 

correctly. Then, the data has analysed to provide a number of statistical parameters 

for the healthy and faulty motors with purpose of detecting, diagnosing and assessing 

the severity of the seeded faults: one bar, four bars and eight bars rotor faults, outer 

race, ball bearing and inner race bearing fault”. 
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8.1 Thermal Image Analysis 

First of all, the IM motor should be checked and the images have been captured when 

it is run in the normal condition (healthy). The normal condition data has been 

collected in order to be used as base line measurements (reference signal). The 

captured images have been used for both troubleshooting motor problems and 

condition monitoring because it is very useful tool for this kind of tasks. 

Thermography images of the induction motors reveal their operation conditions as 

reflected by their surface temperature, capturing infrared temperature measurements 

of motor temperature profile as a two-dimensional image. The infrared camera has 

been able to capture the object temperature at thousands of points instantaneously for 

all of the critical components of a motor. As discussed above in the previous chapter, 

two faulty cases have been created for the induction motor, which are the rotor and the 

bearing faults, and each of these faults have different kind of fault. The following 

sections discuss one faulty case for the induction motor at different load conditions, 

while the other cases have been placed in the appendixes in order to reduce the pictures 

in this chapter and prevent the repetition of each graph. 

8.2 Thermal Images Analysis for Rotor Faults 

The thermal images have been captured for the rotor bar (one bar, four bars and eight 

bars) faults with different load conditions. The thermal camera has been placed in a 

fix position in order to capture the same image dimensions for all motor as it has effects 

on the pixel values. 

After capturing the thermal images, the next stage is to analyze these images in order 

to extract the best information to be used for classification system. As explained in the 
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chapter four section 5.2, different image-processing methods have been used for 

extracting the best data features from the thermal images (Hue, Sobel, Prewitt, 

Roberts, Canny, LoG and Otsu) as described before. MATLAB “R2015b” software 

has been used for applying these methods and calculating the image matrices. 

8.2.1 Thermal Image Analysis for Four Bars Rotor Fault 

Figure 8-1 illustrates the thermal images for four bars rotor fault with no load 

condition, and the analyzed images have also been explained based on the proposed 

method HSV image. It was noticed that the Hue method technique shows the hottest 

region in the induction motor at temperature 26.7°C, which is a little bit higher than 

the room temperature. Hence, the value and saturation images have been considered 

but it appears that they are less helpful than the Hue image for distinguishing between 

the motor faults. Thus, the other proposed segmentation methods (Sobel, Prewitt, 

Roberts, Canny, LoG and Otsu) have been applied for the Hue image to extract the 

best and most useful features from the faulty raw thermal image, which are clearly 

illustrated in the same figure. 
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Figure 8-1: Thermal image analysis for four bars rotor fault with no load condition a) 

original image, b) HSV image, c) Hue image, d) Saturation image, e) Value image, f) 

Sobel image for Hue, g) Prewitt image for Hue, h) Roberts image for Hue, i) Canny 

image for Hue, j) LoG image for Hue, k) Otsu image for Hue. 

Figure 8-2 shows the induction motor thermal image for rotor fault (four bars) with 

50% load condition at temperature 41.6°C, which is very clear that the motor 

temperature has been raised and became much bigger than the no load condition. 

Furthermore, the Hue image and other segmentation methods have been extended 

based on the temperature profile. This figure indicates that the proposed segmentation 

methods have been worked successfully and could be more useful for discriminating 

between the IM faults, and will be very helpful for the classification system to have 

better accuracy. 

 

(k) 

(a) (b) 

Hot 
region

Hot 
region



Chapter 8: Data and Signal Analysis 

Page | 170  

 

 

 

 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Hot 
region 



Chapter 8: Data and Signal Analysis 

Page | 171  

 

Figure 8-2: Thermal image analysis for four bars rotor fault with 50% load condition 

a) Original image, b) HSV image, c) Hue image, d) Saturation image, e) Value 

image, f) Sobel image for Hue, g) Prewitt image for Hue, h) Roberts image for Hue, 

i) canny image for Hue, j) LoG image for Hue, k) Otsu image for Hue. 

In addition to this, the 100% load condition thermal image for four rotor bars fault 

have been captured and segmented based on the proposed method (Hue image), as 

shown in figure 8-3 the hottest spot was 63.4°C temperature. It was clearly that the 

induction motor temperature has been raised and concentrated at some points of the 

image. All three induction motor thermal images have different temperature profile 

because of the faulty rotor; it increases the stator current in the motor by increasing 

the load, which is lead to increasing the temperature. In this case, the pixel values will 

be a little different from each other except the hotspot in the image will be more 

affected. 
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Figure 8-3: Thermal image analysis for four bars fault with 100% load condition a) 

Original image, b) HSV image, c) Hue image, d) Saturation image, e) Value image, 

f) Sobel image for Hue, g) Prewitt image for Hue, h) Roberts image for Hue, i) 

Canny image for Hue, j) LoG image for Hue, k) Otsu image for Hue. 

After applying all the proposed image segmentation methods for all healthy and faulty 

thermal images, the following step is calculating the image matrices (MSE, PSNR, 

Variance, Mean, Standard Deviation, Skew and Kurtosis) as mentioned in chapter 5- 

section 5.3. Figure 8-4a shows the MSE values for six different segmentation methods 

(Sobel, Prewitt, Roberts, Canny, LoG, Otsu), it was clearly that the MSE values of no-

load condition is much bigger than the other two load conditions (50%, 100%). 

Besides, the Otsu values with no-load condition has lower values than the other load 

conditions. In addition to this, figure 8-4b illustrates the PSNR values, which are also 

plays vital role in the motor fault detection, here the values having opposite trend to 

those of figure 8.4a. The no-load condition values are lower than all segmentation 

methods, whereas the Otsu values with no-load is larger than other Otsu values (50% 

and 100% load conditions). Thus, these values will be very helpful for the 

classification system for detecting the fault severity. 

(k) 
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Figure 8-5 a and b, illustrate two important features that may help the classification 

system for detecting the motor faults correctly, which are the variance and mean. It 

was obvious that these two values have the same behaviour for all load conditions but 

the differences were approximately in the range of (0 - 0.25) and (0 – 0.55) for the 

variance and mean respectively. In general, the variance and mean in this case have 

almost the same value in all segmentation methods, hence, for that reason the feature 

selection methods have been applied for selecting the best feature to avoid overlapping 

problems. The feature selection methods have their own decision for selecting the most 

suitable feature in order to have more accurate classification system. 

 

 

Figure 8-4: a) The MSE values, and b) The PSNR values for three different load 

conditions. 

 

Figure 8-5: a) The variance value, and b) The mean values for different load 

conditions. 
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On other hand, figure 8-6, demonstrate the Skew and the Kurtosis values. These values 

have been calculated using MATLAB “R2015b” based on the formulae as mentioned 

in chapter 5-section 5.3. Figure 8-6 a shows that the values of Skew has a slight change 

in the first three segmentation methods (Sobel, Prewitt and Roberts) among three load 

conditions, but has large difference between the Canny, LoG and other methods, which 

makes it helpful for recognizing the faults in an early stage.  

Furthermore, figure 8-6b illustrates the values of the Kurtosis, which almost the same 

as the Skew values but its range is far different from the Skew. The Sobel, Prewitt, 

Roberts and LoG have different values in three load conditions, while Otsu values in 

both Skew and Kurtosis are very low in all load conditions based on the pixels values. 

Nevertheless, they are still need to be taken into account for the classification system 

as it has negative values in the case of Skew and positive values in the case of Kurtosis. 

Therefore, every single point or value in the thermal image should be considered in 

order to classify the IM motor faults correctly. 

   

 

 

Figure 8-6: a) The thermal image Skew values and b) Thermal image Kurtosis values 

for different load conditions. 
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8.2.2 Thermal Image Wavelet Analysis for Rotor Bars Fault 

Thermal image analysis based on 2D wavelet transform analysis has been widely used 

because it has been able to extract the most useful features by using more than one 

level for different types of wavelet such as Haar, Daubechies (db), Sym, etc. as 

mentioned in chapter 5-section 5.4. In this research, the Discrete Wavelet Transform 

(DWT) analysis has been included in the IM fault investigation in order to have variety 

of feature for detecting the motor faults in a correct way. 

Initially, the N level and the wavelets types should be selected, after that, the thermal 

image coefficients have been determined by using 2D DWT. To do image 

decomposition, it is very important to decide over many selections, such as the types 

of mother wavelet, the decomposition level, types of coefficients and etc.. In this 

research, the Daubechies (db) seven mother wavelet has been applied and the 

decomposition level was three. The wavelet type and decomposition level are the same 

for all the wavelet thermal image analysis in order to obtain the same features for all 

faulty thermal images, which are db7 and 3 levels. Due to the thermal image data 

dimension, the level 3 has been chosen because there is no data for decomposition 

after the selected level and the image will lose most of its features. Having performed 

the mother wavelet and the decomposition level, two kinds of wavelet coefficients are 

very important to find from each class of machine conditions data. These coefficients 

are Approximation (a) and Details (d). Approximation coefficients that are passes 

through the low pass filter are considered for feature extraction as the low pass 

frequency signal contain most important parts of original signal. On the other hand, 

other wavelet coefficient except approximation could be useful for monitoring the 

machine fault diagnosis. 
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The wavelet analysis and its coefficients have been demonstrated in figure 8-7, the 

wavelet type was db7 using 3 levels. The purpose of using the Discrete Wavelet 

Transform (DWT) for analysing the thermal image is to decompose the image and 

extract the best coefficients that are helpful to be used for further processing. It has 

been clearly shown that the reconstructed image after 3 levels of decomposition was 

able to detect the hottest region and calculate the pixels value. 

The 50% load condition thermal image has been captured for the induction motor as 

shown in figure 8-8. This figure shows the wavelet analysis for four bars rotor faults 

with 50% load and its decomposition level. Furthermore, the difference between the 

thermal image analysis with no-load condition and the thermal image with 50% load 

condition have been visibly appeared by simply looking for the hottest region in the 

reconstructed image. 

 

 

Figure 8-7: Thermal image wavelet analysis for four bars rotor fault with no load 

condition. 
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Figure 8-9 illustrates the four bars rotor fault with 100% load condition, the wavelet 

has been applied same as the above figures. It was obvious that the motor temperature 

in the reconstructed image became more focused than the other load conditions (no-

load and 50% load). Wavelet analysis has been applied successfully for the faulty rotor 

thermal images. Consequently, all thermal images based on wavelet analysis have 

been adapted to extract more and best features to achieve good classification accuracy. 

 

Figure 8-8: Thermal image wavelet analysis for four bars rotor faults with 50% load 

condition. 
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The comparison of the thermal image approximation coefficients of the same class 

with different load conditions at the same level have been shown in figures below. The 

histogram of approximation coefficients are shown at the same conditions and the 

difference is either in ranges of histogram or amplitude. Figure 8-10 demonstrates the 

histogram of approximation coefficients at level 1 for four bars rotor fault with 

different load conditions. It is noticeably clear that the coefficient level at no-load 

condition, 50% load and 100% load, could be categorized by ranges. The histogram 

peaks of these conditions for the machine lie in different ranges, which could be used 

to distinguish between different machine faults. 

 

Figure 8-9: Thermal image wavelet analysis for four bars rotor faults with 100% load 

condition. 
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Approximation coefficients at level 2 are illustrated in figure 8-11, they also have 

different ranges and are counted as very important features for discriminating between 

the IM faults detection. In case of no-load condition two-approximation coefficients 

peaks have been extracted from the image. The first approximation coefficient peak 

range was approximately between “35-170” at the peak of 0.055, while the second one 

lies between “800-1000” at a peak of 0.12. However, in case of 50% and 100% load 

conditions, both have almost the same approximation ranges, which were between 

about (670-900), but their peaks are different in both 50% and 100% load conditions 

at 0.11 and 0.17 respectively. 

 

 

 

Figure 8-10: Approximation coefficients level (a1) for four bars rotor fault at 

different load conditions. 

No-Load 

50% Load 

100% Load 
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In figure 8-12, the level 3 of approximation coefficients for all load conditions have 

been illustrated. The different between all the load conditions were obvious, which 

could be easily useful for classification system to distinguish between the faults 

severities of induction motor. 

 

 

 

Figure 8-11: Approximation coefficients level (a2) for four bars rotor fault at 

different load conditions. 

No Load 

50% Load 

100% Load 
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In other words, the entire approximation coefficients that have been described earlier 

have their own signatures for each fault, which will be very good features for the 

machine learning algorithms to discriminate between the IM faults. Moreover, these 

features will be combined with the features of the image segmentation methods in 

order to have a very strong attributes for each fault. The stronger the features, the more 

accurate classification system can be achieved.  

In this section, the approximation coefficients for one sample of induction motor fault 

have been presented, because the extracted features for other faults have been done in 

the same procedure. The results that are obtained have been used for feeding the 

classification system (see appendix A).  

 

 

 

Figure 8-12: Approximation coefficients level a3 for four bars rotor fault at different 

load conditions. 

No Load 

50% Load 

100% Load 
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Having discussed how to extract the rotor features based on the thermal images, the 

next section of this chapter addresses ways of extracting the features from the stator 

current and vibration signals based on the wavelet transform. 

8.3 Current and Vibration Signals Analysis based on DWT 

It is well known that induction machines play a dominate role in the field of 

electromechanical energy conversion. Induction machines are widely adopted in a 

variety of diverse industries product line, ranging from mining industry, process 

manufacturing, automation applications, heating and air conditioning, transportation, 

aerospace and marine propulsion applications to the health care industry [1]. Although 

induction machines are usually well designed and constructed to be robust, however, 

the possibility of incipient fault is inherent in the machine due to the stress involved 

in the conversion of electrical energy to mechanical energy and vice versa. 

Recently, the motor current signature analysis has been widely applied in condition 

monitoring in order to monitor the induction machine behaviour in both online and 

offline. The digital signal processing have been applied for extracting the signal 

information, as the signal itself is not helpful for recognizing the fault. Discrete 

Wavelet Transform (DWT) is one of the most popular signal processing technique that 

has been adopted for extracting the most important features from the signal in order to 

be used for fault classification as mentioned in the chapter 5-section 5.4.2 . Provided 

a certain sampled of signal S, the DWT decomposes it onto several wavelet signals 

(an approximation signal an and n details signals dj) [213][214]. The decomposition 

coefficients can be determined through convolution and implemented by using a filter 

[185]. LPF represents the Low Pass Filter and HPF represents the High Pass Filter. 

The decomposition process can be iterated with successive approximation being 
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decomposed in turn, so that one signal is broken down into many resolution 

components. Moreover, due to the automatic filtering performed by the wavelet 

transform, this tool provides a very attractive flexibility for the simultaneous analysis 

of the transient evolution of different frequency components present in the same 

signal. At the same time, in comparison with other tool, the computational 

requirements are low. Thus, the DWT is available in standard commercial software 

packages, so no special or complex algorithm is required for its application 

In this research, MATLAB Wavelet Toolbox has been used to analyse the current and 

vibration signals. Prior to the application of the DWT, some considerations have to be 

done regarding the different parameters of the DWT decomposition, such as the type 

of mother wavelet, the order of the mother wavelet or the level of decomposition 

levels.  

The first step in the DWT is selecting the mother wavelet to carry out the signal 

analysis. The selected mother wavelet is related to the coefficients of the filters used 

in the filtering process inherent to the DWT [214]. Many wavelet families have been 

proposed in the last decades but some families have shown better results for particular 

applications. Nevertheless, regarding the transient extraction of fault components, the 

experience achieved after the development of multiple tests shows that a wide variety 

of wavelet families can lead to satisfactory results.  

Once the wavelet family is selected, it is advisable to carry out the DWT using high-

order mother wavelet, this is, a wavelet with associated filter with a large number of 

coefficients. If a low-order wavelet is used, the frequency response get worse, and the 

overlap between the adjacent frequency bands increases. Daubechies or any other 

mother wavelet with high orders has shown satisfactory results. 
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Consequently, Daubechies 7 has been selected as the mother wavelets used for DWT 

analysis as mentioned in chapter 5-section 5.4.2. 

The second step is to select the number of decomposition levels, which are determined 

by the low frequency components to trace. The lower the frequency components to be 

extracted, the higher the number of decomposition levels of DWT [185]. Typically, 

for the extraction of the frequency components caused by rotor asymmetries, the 

number of decomposition levels should be equal or higher than that of the detail signal 

containing the fundamental frequency.  

Finally, the number of decomposition levels nd is related to the sampling frequency of 

the signal being analysed, in this research the decomposition level is 5. This parameter 

has to be chosen in such a way that the DWT supplies at least three high-level signals 

(i.e., two details and one approximation) with frequency bands below the supply 

frequency [213].  

Additionally, due to the non-ideal filtering carried out by the wavelet signals, it is 

advisable not to set the limits of the band of the wavelet signal containing the 

fundamental frequency very close to this frequency. Otherwise, this component could 

partially be filtered within the adjacent bands, masking the evolution of other 

components within these bands due to its much higher amplitude. Sampling frequency 

of 1024 sample/s, enables good resolution analysis. Table 8-1 illustrates the frequency 

levels of the wavelet function coefficients. 
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Table 8-1: Frequency levels of wavelet coefficients. 

Wavelet analysis Frequency components (Hz) 

A5 0-18.75 

D5 18.75-37.5 

D4 37.5-75 

D3 75-150 

D2 150-300 

D1 300-600 

Once the mother wavelet and the number of decomposition level have been selected, 

it is possible to carry out the DWT of the signal; the obtained results of the analysed 

signals have been described in the following sections. 

8.3.1 Current Signal Analysis 

After preparing and selecting the DWT parameters, the DWT is now ready for 

analysing the IM current signal for extracting the information to discriminate between 

the motor faults.  

8.3.1.1 Current Signal Analysis of Healthy and Faulty Motor 

Figure 8-13 illustrates the motor healthy rotor details coefficients based on db7 at 5 

levels. The wavelet coefficients d1-d5 represents the detail coefficients for healthy 

motor (current signal) with different load conditions (No-load, 50% load and 100% 

load). 
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Figure 8-14 demonstrates the wavelet coefficients (current signal) for four bars with 

different load conditions. This level of wavelet has very helpful data for distinguishing 

between the motor faults even if it has too small difference. This is because in the 

motor environment every single change in the signal of the motor means that the motor 

has something wrong except the applied load may increase the amplitude of the 

current, which is normal. The difference between the wavelet coefficients were 

 

 

 

Figure 8-13: Wavelet analysis for healthy current signal with three different load 

conditions a) No-load, b) 50 % load, c) 100% load. 

a 

b 

c 
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obvious in all the details levels between the healthy and four bars faulty rotor. The 

difference has been happened in the signal amplitude (±4) and the signal shape, which 

could be easier for the classification system to classify the fault severity and diagnose 

it correctly. This difference has been occurred because the faulty rotor need more 

current to be rotated as some of its bars missing, and by increasing the load; the current 

will rise dramatically. Thus, the more missing bars the more current needs to rotate 

the rotor. 
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The healthy rotor current signal is different from the faulty rotor current signal in a 

number of respects as shown in following figures. Two different details coefficients 

have been extracted to explain the differences between the healthy and faulty rotor.     

Figure 8-15 illustrates the d5, d3 for the healthy and faulty rotors (four bars) with no 

load condition. The difference between these signals have been detected by red oval 

 

 

 

Figure 8-14: Wavelet analysis for four bars faulty rotor based on current signal for 

with three different load conditions a) No-load, b) 50 % load, c) 100% load. 

a 

b 

c 
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shape. The healthy d5 and faulty d5 has the same range approximately between (± 0.05) 

but the shape of the signal has different points, while the difference is very clear 

between the healthy d3 and the faulty d3 as the magnitude has been reduced 

significantly comparing to the healthy signal. 

Additionally, figure 8-16 demonstrates the d5 and d2 for the healthy and faulty rotor 

(four bars) current signals with 50% load condition. By looking to this figure, the 

difference between the healthy and faulty signals are obvious and the behaviour of the 

current signal are completely different in the shape and the range of the signal. Thus, 

the coefficients will be very strong for classification system to distinguish between the 

induction motor faults. 

 

 

 

 
 

Figure 8-15: The d5 and d3 wavelet analysis coefficients for healthy and faulty rotor 

based on the current signal with no load condition. 

Healthy 

Faulty 
rotor 
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Similarly, figure 8-17 shows the d5 and d3 wavelet coefficients for healthy and faulty 

(four bars) with 100% load condition. The signals are totally changed. It is clearly that 

the rotor current has been able to be used for IM fault detection as it has very helpful 

coefficients. Therefore, the extracted features will be robust for classifying the motor 

faults. 

 

 

 

  

 
 

Figure 8-16: The d5 and d2 wavelet coefficients for healthy and faulty (four bars) 

rotor current signal with 50% load condition. 

 

 

 

 
 

Figure 8-17: The d5 and d3 wavelet coefficients for healthy and faulty rotor (four 

bars) current signal with 100% load condition. 
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Faulty 
rotor 

Healthy 

Faulty 
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8.3.2 Vibration Signal Analysis 

The measurements of vibration signals have been collected from two different faults 

condition in addition to the healthy condition, which are rotor fault (one bar, four bars 

and eight bars) and bearing fault (outer, inner and ball). These faulty signals have been 

collected with different load conditions (no load, 50% load and 100% load).  

8.3.2.1 Vibration Signal Analysis of Healthy and Faulty Motor 

The following describes two IM cases, which are healthy and four bars faulty rotor, 

based on vibration signal. As mentioned in chapter 7- section 7.1, the vibration signals 

have been collected by using laser vibrometer with the same displacement for all 

healthy and faulty conditions. 

The faulty rotor has a big impact on the motor balance, which may effects on the motor 

vibration performance. The vibration signal of healthy machine has been demonstrated 

in figure 8-18. It shows the details coefficients of DWT analysis. The same 

decomposition levels have been applied as in the current signal in order to reduce the 

data dimensionality and time consumption. It is clear from the figure below that the 

vibration signal of healthy motor has almost the same behaviour in three different load 

conditions. As its healthy machine, the vibration signal will be the same and it may 

vary in the range (d5 (±0.2), d4 (±0.1), d3 (±0.1), d2 (±0.1), d1 (±0.2)) based on the 

applied load. Therefore, this signal contains important data to be used for further 

processing. 



Chapter 8: Data and Signal Analysis 

Page | 193  

The detailed coefficients of DWT for IM four bars rotor fault have been illustrated in 

figure 8-19. The range of faulty signal are far less than the healthy signal in all 

decomposition levels (d5 (±0.005), d4 (±0.005), d3 (±0.005), d2 (±0.005), d1 (±0.05)). By 

adapting the vibration signal for induction motor faults detection, the classification 

system will classify the bearing and unbalanced rotor fault correctly. 

 

 

 

Figure 8-18: Wavelet analysis for healthy vibration signal of induction motor with 

three different load conditions a) No-load, b) 50% load and c) 100% load. 

a 

b 

c 
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The comparison between the healthy and faulty vibration signal is shown in the 

following figures. Figure 8-20 demonstrates d5 and d3 wavelet coefficients of the 

vibration signal for healthy rotor and faulty rotor (four bars) with no-load condition. 

It is obvious that both signals has very good attitude to distinguish between the IM 

 

 

 

Figure 8-19: Wavelet analysis for faulty rotor (four bars) vibration signal of with 

three different load conditions a) No-load, b) 50% load and c) 100% load. 

a 

b 

c 
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faults. The healthy rotor vibration signal in d5 and d3 have a very high displacement 

than the faulty rotor (four bars), which have low displacement by (10-3).  

 

 

 

 
 

Figure 8-20: The d5 and d3 wavelet coefficients for healthy and faulty rotor (four 

bars) based on the vibration signal with no-load condition. 

The vibration signal for the healthy and faulty rotor (four bars) with 50% load 

condition have been illustrated in figure 8-21. A comparison has been carried out with 

d5 and d2 wavelet coefficients. These four signals are completely different in every 

single point. Thus, by using this kind of signal, it will be possible to detect the fault 

straight away only by looking at its curve.  

 

 

 

 
 

Healthy 

Faulty 
rotor 

Faulty 
rotor 

Healthy 

Figure 8-21: The d5 and d2 wavelet coefficients for healthy and faulty rotor (four 

bars) based on the vibration signal with 50% load condition. 
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In figure 8-22, the d5 and d3 wavelet coefficients for the healthy and faulty rotor (four 

bars) with 100% load condition have been demonstrated and it was very appropriate 

for motor faults detection to pick up these two coefficient because they are 

considerably different from each other.  

 

 

 

 
 

Figure 8-22: The d5 and d3 wavelet coefficients for healthy and faulty rotor (four 

bars) based on the vibration signal with 100% load condition. 
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9 CHAPTER 9 
 

 

RESULTS AND DISCUSSION 

 

 

 

“This chapter presents the results and discussion on innovative, non-instructive, 

accurate and reliable methods for the early detection and diagnosis of faults in an 

induction motor (IM) using the proposed B4M classification algorithm. The proposed 

B4M and other proposed algorithm have achieved very good results for detecting the 

induction motor faults. It also discuss the limitations of the proposed algorithms. The 

confusion matrix for all condition monitoring classification have been also 

presented”. 
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9.1 B4M Classification based on Thermal Image for Fault Detection 

9.1.1 Feature Extraction 

The acquired raw thermal image consists of information that specifics the induction 

motor faults as described in chapter 5. After applying 2D-DWT for 7th induction motor 

conditions (healthy, one bar rotor fault, four bars rotor faults, eight bars rotor faults, 

outer race bearing fault, ball bearing fault and inner race bearing fault) with different 

load conditions, three features have been extracted from the decomposition level in 

addition to 7 features of image matrices, as discussed in chapter 5 - section 5.2. 

Overall, 10 features have been extracted from the thermal image and each feature 

contains 250 samples. These features have been labelled correctly in order to be 

recognized by the classification system. Table 9-1 illustrates sample of the induction 

motor extracted features with no-load condition from the thermal images, for the all 

thermal image processing see Appendix A. 

In this research, induction motor fault data for all load conditions have been combined 

together as the load level is not as important as the motor fault. For example, if the 

motor has ball bearing fault, it does not need to be loaded to indicate that the motor 

has fault by the classification system because it does not matter if it loaded or not, the 

important thing is to detect the motor fault at an early stage. For that reason, the 

features and the samples contain all the three load conditions are presented as one 

package.  
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9.1.2 Feature Selection 

All features contribute to the classification system and there is a need for selecting the 

best feature before classification. Researchers have been carried out studies to select 

the best feature selection technique that makes them more robust across various 

classifiers. The classification accuracy increased by approximately 3-5% across a wide 

range of classifiers using feature selection methods [215]. Four feature selection 

methods have been used in this research (as described in chapter 5-section 5.5) in order 

to select and compare which feature selection technique is suitable for motor fault 

detection based on B4M classification algorithm. These methods are Sequential 

Forward Selection (SFS), Sequential Backward Selection (SBS), Sequential Floating 

Forward Selection (SFFS) and Sequential Floating Backward Selection (SFBS). 

The feature selection methods have been ran using MATLAB “R2015a” feature 

selection package, which is created by [216]. The feature selection approach is 

employed to choose the most robust feature among the whole dataset which showed 

increase in classification accuracy of about 10% higher for all classifiers when 

compared with previous results as stated in [217]. 

After applying the feature selection methods, the selected features have been 

illustrated in table 9-2. It was clearly that few features have been selected in all feature 

selection algorithm, which means that these features have strong data that make the 

classifier to discriminate between the motor faults. 
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9.1.3 Classification Results 

The classification process splits the data points depending on the percentage level of 

data given for training and testing sets. Training set means learning the data points to 

perform the correlation tasks, which is storing the data by giving set of rule to perform 

further operations. Testing set helps to find the classification accuracy of the trained 

data points. Furthermore, a cross validation technique is used to evaluate the predictive 

models by partitioning the original samples into training set to train the model and 

testing set to evaluate the model. The data sets were given as an input to the algorithm 

for training and testing which gives out the rules, classification accuracy and confusion 

matrix. The features have been extracted and selected, the induction motor faults data 

are ready to be fed for the most classification system, especially the classification 

systems that are accepting the categorical attributes. In this research, 10-folds cross 

validation have been used for training and testing the system. Moreover, all the data 

Table 9-2: The selected features for the thermal image dataset. 

Feature Selection Method 
SFS SBS SFFS SFBS 
MSE √ MSE x MSE √ MSE √ 

PSNR √ PSNR x PSNR √ PSNR √ 

Mean x Mean √ Mean x Mean x 

Variance x Variance √ Variance x Variance x 

SD √ SD x SD x SD √ 

Skew x Skew x Skew √ Skew √ 

Kurtosis x Kurtosis x Kurtosis x Kurtosis √ 

DWT-L1 √ DWT-L1 √ DWT-L1 √ DWT-L1 x 

DWT-L2 √ DWT-L2 √ DWT-L2 √ DWT-L2 √ 

DWT-L3 √ DWT-L3 √ DWT-L3 √ DWT-L3 √ 
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have been labelled from 1 to 7 to be defined as motor faults for the B4M classification 

algorithm as shown in table 9-3. 

Before applying the proposed B4M classification method, some parameters need to be 

defined, which are already chosen as described in (chapter 4 - section 4.3.2). The B4M 

has been applied for five different datasets: 

 Datasets without feature selection (Full). 

 Datasets with Sequential Forward Selection (SFS). 

 Datasets with Sequential Backward Selection (SBS). 

 Datasets with Sequential Floating Forward Selection (SFFS). 

 Datasets with Sequential Floating Backward Selection (SFBS) 

All the above datasets have been used as input for B4M classification algorithm with 

10-folds cross validation. By applying the B4M classification method, the efficiency 

of 10 given features, which are obtained from feature extraction for seven conditions, 

are illustrated in table 9-4. 

Table 9-3: Thermal image dataset description. 

Machine Condition 
Class 
Label 

No. of 
samples 

No. of 
Training 
Samples 

No. of Testing 
Samples 

Healthy 1 250 240 10 

Ball bearing fault 2 250 240 10 

Bearing Inner race 

fault 
3 250 240 10 

Bearing outer race 

fault 
4 250 240 10 

One bar rotor fault 5 250 240 10 

Four bars rotor fault 6 250 240 10 

Eight bars rotor fault 7 250 240 10 

Total Samples 1750 1680 70 
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As can be seen in table 9-4, the results were satisfactory because they have achieved 

more than 90% for all the four feature selection methods rather than the full datasets 

(without feature selection). This indicates that the B4M classification algorithm is well 

trained and could be applied for diagnosing the motor faults. In other words, the lowest 

classification accuracy and higher number of rules were obtained by using the full 

datasets, while the highest classification accuracy has been recorded by using 

Sequential Feature Selection (SFS) method with less number of rules. Furthermore, 

the other feature selection methods have obtained slightly less classification accuracy 

than each other but the number of rules was lower than the full and the SFS datasets. 

In this case the number of rules are very important to be very low as they have an 

effects on the classification system for detecting the motor faults at an early stage by 

reducing the checking time (time consuming). Thus, the SBS feature selection method 

is considered as the best because it has gained more than 96% of classification 

accuracy and lower number of rules as shown in figure 9-1.  

Table 9-4: The proposed B4M classification results. 

Dataset type 
No. of 
rules 

 Classification accuracy (%) 

Full 15  80.93 

SFS 10  98.97 

SBS 7  96.16 

SFFS 7  92.04 

SFBS 7  94.23 
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Table 9-5 shows the confusion matrix for the proposed B4M based on the SBS feature 

selection method.  

The interpretation of confusion matrix is as follows: 

 The diagonal elements in the confusion matrix show the correctly classified 

instances. The first row is belong to “healthy motor” good class with only one 

misclassification, which is 239 correct out of 240 samples. The ball bearing 

fault obtained 230 correct class out of 240 (10 samples are misclassified). 

 

Figure 9-1: The proposed B4M classification accuracy and number of rules based on 

thermal image dataset. 

Table 9-5: Confusion matrix of the proposed B4M for the thermal image dataset. 

 Predicted Class 
True Class Healthy Ball 

bearing 
Inner 
race 

Outer 
race 

One 
bar 

Four 
bars 

Eight 
bars 

Healthy 239 0 0 0 1 0 0 

Ball bearing 2 230 3 3 0 2 0 

Inner race 4 5 228 0 0 3 0 

Outer race 1 1 4 232 2 0 0 

One bar 8 0 0 4 226 2 0 

Four bars 0 0 0 0 0 240 0 

Eight bars 0 0 0 0 0 0 240 
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While, 228 out of 240 instances were correctly classified in class “inner race 

bearing fault”, which means only 12 instances have been misclassified. In 

addition, 232 out of 240 have been classified correctly for “outer race bearing 

fault”, which is slightly lower than other bearing faults.  

 In terms of rotor fault, 226 out 240 were correctly classified as they depend on 

the signal compared with the healthy condition. All the instances from class 

“four bars rotor fault” and “eight bars rotor fault” were classified correctly 240 

out 240, which means that the B4M have good discrimination between the 

motor faults. 

The results indicate that the proposed B4M classification algorithm has been applied 

successfully for detecting the induction motor faults; the results were very acceptable 

as the misclassification instances for the motor faults are very low. Even though the 

classification accuracy was about 96.16% but the rules that produces by the B4M were 

very good to save the time and cost. Many reasons that prevent the B4M from 

achieving the 99% classification accuracy and lower number of rules, the most 

important one is the overlapping between the dataset attributes, which may enforce 

the algorithm to misclassify some classes. Consequently, dominant and discriminatory 

fault characteristics in seven fault of induction motor conditions could be extracted 

from the thermal image matrices, approximation and details coefficients by DWT was 

very helpful features for motor fault detection without touching the motor 

(contactless). 

9.1.4 Comparison of B4M Performance with other Classification Algorithms 

The accuracy of the proposed B4M classification algorithm has been compared with 

other eight well-known classification algorithms (Decision Table (DT), RIPPER 
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(Repeated Incremental Pruning to Produce Error Reduction), OneR (One Rule), PART 

(Projective Adaptive Resonance Theory), J48, LMT (Logistic Model Tree), Naïve 

Bayes tree and Random Tree). All these methods have been ran using the most popular 

software, which is called “WEKA” (Waikato Environment for Knowledge Analysis). 

The WEKA software is a machine learning software written in Java. It has been 

developed at the University of Waikato in New Zealand. It contains a collection of 

visualization tools and algorithms for data analysis and predictive modelling, together 

with graphical use interfaces for easy access to these functions. It has been created to 

support several standard data mining tasks, more specifically, data pre-processing, 

clustering, classification, regression, visualization and feature selection.  

In order to obtain statistically significant results and to prove the performance of the 

proposed diagnosis methodology, the other classification algorithm have been trained 

and tested under 10-folds cross validation scheme. Thus, considering all the 

conditions, the same dataset has been used to be applied for these algorithms with 

purpose of comparing the classification performance with the proposed B4M at same 

conditions. The same selected features have been used for classifying the induction 

motor faults.  

In terms of classification accuracy, the proposed classification algorithm (B4M) has a 

compatitive results compairing to other classification algorithm as shown in figure 9-2. 

Figure 9-2 illustrates the classification accuracy results for different classification and 

feature selection methods including the proposed B4M. Clearly from the figure that 

there are two classificaiton algorithms have obtained 100% accuracy which is counted 

in the machine learning field as an excellent classifires because they have achived 

100% with no missclassified data. However, the problem of these classifires have 
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produced too many rules for predicitng the new incoming data. Thus, this problem 

will have an effect on the fault detection process as it will take long time to go throw 

all the rule set to dicide wether the new data is faulty or not. It can be seen that the 

feature selection methods have positive and negative impacts on all classifires. For 

instance, in “Naïve Bayes” classifire the full dataset (without feature selection) has 

been ranked as the highest among all other feature selection algorithm, while in other 

classifires has ranked the lowest. Besides, SFS feature selection method has achived 

the highest accuracy in the proposed B4M 98.97% among other classifires, but also 

got lower accuracy in Naïve Bayes classifire. This is the most significant reson of 

using feature selection methods as it is good to reduce the data dimentionality and may 

rise or decline the classifire accuracy. 

 

Figure 9-2: Comparison of the classification accuracy for different feature selection 

and classification algorithms based on the thermal image dataset. 

Overall, the proposed B4M classification algorithm has acquired very good and 

competitive results compairing to other classification algorithms, since it is counted 

as new released classification algorithm. The obtained results were good enough to 

detect the induction motor faults at an early stage. All the classification algorithms 

have achived good results depending on the dataset, if the dataset has overlapping 
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between its features the classification accuracy will be affected directly. The more 

clear dataset the more accureate classificaiton system. The B4M result were not the 

higher classification accuracy. A possible explaination for this might be that the 

proposed B4M need more improvments for its parameters or objective function to be 

considred as calssification system with high accuracy. Another possible explanation 

for this is that the proposed B4M has limited local and global searches and it may 

prevent it from finding the best value for each class. Another possible expalination for 

these results may be the lack of adquate iterations for the proposed B4M. All 

classification methods are differents from the proposed B4M in a number of respects. 

The proposed B4M is a combination between optimaization algorithm (Bees 

Algorithm) and data mining rule discovery as the main job for the BA is providing the 

optimal solutions for many engineering problems as mentioned in the litreture. The 

challenging part here is how to convert the work of BA from optimization to 

classification, while the other classification methods have been designed for classfying 

the data.  

 

Figure 9-3: Comparison of the number of rules for different feature selection and 

classification algorithms based on the thermal image dataset. 
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In terms of number of rules, the proposed B4M obtained the best and lower number 

of rules among all other classification algorithms as shown in figure 9-3. This is owing 

to the rule pruning strategy that are adopted in the proposed B4M, which removes the 

unrelated rules and keep the better rules in order to classify the data correctly.  

The number of rules are the most important factor in the machine learning algorithms 

as it shows the strength of the classification algorithm. When the number of rules are 

low, it means that the classification system has been focused on the best values among 

all the dataset features. The higher number of rules, the more time needed to decide 

the best class for the new data. In figure 9-3, most of the classification algorithms have 

fallen to produce rules lower than the proposed algorithm. The other classifiers have 

obtained a satisfactory result for producing the lower number of rules. In the 

meantime, the proposed B4M has shown its ability to focus on both the classification 

accuracy and the number of rules, as some classifiers produce far different number of 

rules with the same dataset, but this has not happened with the proposed B4M. The 

proposed B4M keeps holding the best values for each class while it searches for the 

other best one. This advantage makes it the best from other classifiers and produce 

lower number of rules.  

The induction motor fault detection based on the thermal image using proposed B4M 

classification algorithm has been discussed and the next section will describe the 

induction motor fault detection based on the motor current signature analysis. 

9.2 B4M Classification based on Current Signal for Fault Detection 

9.2.1 Feature Extraction  

The database includes seven different faults and three load conditions (no load, 50% 

load and 100% load). There are three distinct recordings, each of which belong to one 
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phase of the motor for each load condition. The number of raw data vector and the 

dimension are the same for the current signal in each phase. Hence, only one phase 

signal has been selected for further processing in order to exploit in the experimental 

stage. The wavelet coefficients have been extracted from the raw current signals 

contains large amount of information about the motor status. The 1D DWT have been 

applied for 6 fault conditions in addition to healthy condition (one bar rotor fault, four 

bars rotor faults, eight bars rotor faults, outer race bearing fault, ball bearing fault and 

inner race bearing fault) with different load conditions in order to extract the best fault 

information from the current signal. Ten features have been extracted from the raw 

current signal, five features belong to DWT details coefficients and five features are 

belong to DWT approximation coefficients with the aim of having all possibilities for 

induction motor faults detection as explained in chapter 5 - section 5.4. The data 

belong to each class in the database consists of 10 attributes, each of which has 750 

samples as each fault consists of 250 samples for no load, 250 samples for 50% load 

and 250 samples for 100% load. Therefore, 10 features vectors with the size of 750 

samples for seven faults (5250 samples) were obtained for each class in the dataset. 

All these features have been labelled properly for their class with the purpose of 

recognising by the classification system. Table 9-6 shows sample of extracted features 

from the current signal based on DWT. For full signal, see Appendix B. 

As stated in the previous section, the induction motor faults data for all load conditions 

have been combined together as the load level is not important than the motor fault. 
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9.2.2 Feature Selection  

The feature selection method is the next stage. Generally, the number and type of input 

features affect the precision performance and computation efficiency of the machine 

learning algorithms. Therefore, it is essential to select the best features to acquire good 

results. Here the feature selection methods play vital role to reduce the data 

dimensionality as the dataset have more than 5000 samples. The bigger the dataset 

size, the more time needed for classification process. Similarly, four most common 

feature selection methods (Sequential Forward Selection (SFS), Sequential Backward 

Selection (SBS), Sequential Floating Forward Selection (SFFS) and Sequential 

Floating Backward Selection (SFBS)) have been used in this part (as described in 

chapter 5 - section 5.5) to select and compare which is the best and more helpful 

feature for motor fault diagnosis based on B4M classification algorithm. MATLAB 

“R2015a” has been used for running all the feature selection methods.  

After applying feature selection methods, the selected features of DWT-based current 

signal have been illustrated in table 9-7. 

Table 9-7: The selected features for the current signal dataset. 

 Feature Selection Method 
SFS SBS SFFS SFBS 

D
et

ai
ls

  
C

oe
ff

ic
ie

n
ts

 DWT-L1 √ DWT-L1 √ DWT-L1 x DWT-L1 √ 
DWT-L2 x DWT-L2 x DWT-L2 √ DWT-L2 x 
DWT-L3 √ DWT-L3 √ DWT-L3 √ DWT-L3 x 
DWT-L4 √ DWT-L4 √ DWT-L4 √ DWT-L4 √ 
DWT-L5 √ DWT-L5 x DWT-L5 √ DWT-L5 x 

A
p

p
ro

xi
m

at
io

n
  

C
oe

ff
ic

ie
n

t 

DWT-L1 √ DWT-L1 √ DWT-L1 x DWT-L1 √ 
DWT-L2 x DWT-L2 x DWT-L2 √ DWT-L2 x 
DWT-L3 √ DWT-L3 √ DWT-L3 x DWT-L3 √ 
DWT-L4 x DWT-L4 √ DWT-L4 √ DWT-L4 x 
DWT-L5 x DWT-L5 x DWT-L5 √ DWT-L5 √ 
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It can be seen from table 9-7 that the feature selection methods have neglected some 

features and kept some others, as these features may have big impact on the 

classification accuracy, which lead to have too many misclassified data. The selected 

features have been used as input data for the proposed B4M classification method in 

order to classify induction motor faults.  

9.2.3 Classification Results 

The DWT-based current signal are ready for classification task. The dataset should 

split into two sets, training and testing sets. 100-folds cross validation has been also 

used for splitting this data in order to validate the system and check the time 

consumption as these are very important targets to be improved. The data have been 

labelled from 1 to 7 to be recognized by the proposed B4M and other classification 

systems. The datasets descriptions have been illustrated in table 9-8. 

Table 9-8: Current signal dataset description. 

Machine Condition 
Class 
Label 

No. of  
samples  

No. of 
Training 

No. of 
Testing 

Healthy 1 750 650 100 

Ball bearing fault 2 750 650 100 

Bearing Inner race 

fault 
3 

750 650 
100 

Bearing outer race 

fault 
4 

750 650 
100 

One bar rotor fault 5 750 650 100 

Four bars rotor fault 6 750 650 100 

Eight bars rotor fault 7 750 650 100 

Total Samples 5250 4550 700 
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The proposed B4M classification algorithm have been applied with the same 

parameters, which are already chosen as described in (chapter 4 - section 4.3.2). Five 

different datasets have been fed to the B4M as stated below: 

 Datasets without feature selection (Full). 

 Datasets with Sequential Forward Selection (SFS). 

 Datasets with Sequential Backward Selection (SBS). 

 Datasets with Sequential Floating Forward Selection (SFFS). 

 Datasets with Sequential Floating Backward Selection (SFBS) 

All the above dataset have been used as input for B4M classification algorithm with 

100-folds cross validation. By applying the proposed classification method, the system 

efficiency of 10 given features that are obtained from feature extraction has been 

illustrated in table 9-9. 

Table 9-9: The proposed B4M classification results. 

Dataset type No. of rules  Classification Accuracy (%) 

Full 7  75.44 

SFS 8  79.62 

SBS 7  74.36 

SFFS 7  77.05 

SFBS 10  77.81 

The result that is obtained by the proposed B4M classification algorithm was very 

good as it exceeds 70%. In addition to this, all possible induction motor faults have 

been recognized by the proposed B4M because the more faults occurred the more 

complex data for the classification system to discriminate between the fault correctly. 

Furthermore, most of various studies about fault diagnosis were generally concerned 

about only one or few faults using current signal, but this study defeats a gap in fault 
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diagnosis literature by diagnosing all possible induction motor faults with new 

proposed classification algorithm. In other word, the current signal was very helpful 

for diagnosing either electrical or mechanical motor faults by proposed B4M, which 

could prevent the motor from failure by detecting the faults at an early stage. As can 

be seen in table 9-9, the classification percentage is varying based on the selected 

features, which means that some features have affected critically on the classification 

accuracy.  

In terms of number of rules, the proposed B4M produces very small number of rules 

for diagnosing the motor fault. This is another advantage that the B4M has low number 

of rules. To put it simply, the lower the number of rules, the less time consumption to 

detect the fault for new incoming data (unseen data). Moreover, the sequential feature 

selection (SFS) method has been adopted for motor fault diagnosis as it has the highest 

classification accuracy with low number of rules but not the lower. 

Consequently, the proposed B4M has been successfully applied for detecting the 

induction motor faults based on the current signal. All extracted features from the 

current signal by DWT have very helpful information for sensing the faults by the 

classification system as shown in table 9-9.   

Table 9-10 shows the confusion matrix of the proposed B4M based on current signal 

using the SFS feature selection method.  
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Table 9-10: Confusion matrix of the proposed B4M for the current signal dataset. 

 Predicted Class 
True Class Healthy Ball 

bearing 
Inner 
race 

Outer 
race 

One 
bar 

Four 
bars 

Eight 
bars 

Healthy 600 10 16 0 20 4 0 

Ball bearing  32 520 40 40 10 8 0 

Inner race  55 38 407 95 45 10 0 

Outer race  10 95 120 408 17 0 0 

One bar  27 0 10 18 580 15 0 

Four bars  0 0 5 5 35 585 20 

Eight bars  0 0 0 28 48 52 522 

The confusion matrix describes the way of how the B4M classifying the data: 

 The most important part of the confusion matrix is the diagonal elements, 

because all the elements that are classified correctly have been placed in the 

diagonal. The healthy motor class has been classified correctly by diagnosing 

600 elements out of 650, which indicates that the B4M has been able to classify 

more than 90% of all healthy features. However, the misclassified instances 

have been spread in all other motor faults but the highest was with one bar fault 

since its current signal was very similar to the healthy signal. 

 For the bearing faults, the ball bearing fault achieved 520 correct sample out 

of 650 (only 130 samples have been misclassified), which is the lowest 

comparing to other bearing faults. While 234 samples have been misclassified 

for the inner race bearing fault (407 correct out of 650 samples). Furthermore, 

408 samples out of 650 have been classified correctly for the outer race bearing 

fault. Consequently, the results show that the proposed classification system 

has been able to detect and discriminate between the induction motor faults 

correctly. Additionally, the induction motor bearing faults have been obtained 
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the lowest correct sample out of 650 samples since the current signals for these 

faults (ball, inner race, outer race) have been overlapped in some elements and 

it may effect on the classification accuracy. 

 The classifications results for the rotor faults were very good as can be seen in 

table 9-10. In this case, the correctly classified elements have been the higher 

than bearing faults. For one rotor bar fault, 580 elements out of 650 elements 

have been classified correctly, which means only 70 elements have been 

misclassified and most of them have been recorded as healthy. As stated earlier 

the reason was the signal similarity between the healthy and one bar fault. 

Besides, for four bars rotor fault, 585 elements out 650 elements have been 

classified correctly, which is slightly more than one rotor bar faults. 

Furthermore, the eight bars rotor fault have obtained 522 correct sample out of 

650, which is the lowest among all the rotor bar faults due to mentioned 

reasons. 

Accordingly, the proposed classification system (B4M) has been successfully applied 

for diagnosing the induction motor faults based on current signal with the help of DWT 

and feature selection methods. The extracted features by DWT were very supportive 

to make the raw current signal clearer to be distinguished among all the motor faults. 

In addition to this, the feature selection methods have been played a crucial role in the 

classification process by selecting the most strongest features to be used as input for 

the classification system, as some features have negative impact on the system fault 

diagnosis.  

Most studies in the field of condition monitoring have only focused on the current 

signal for detecting either rotor or bearing faults, while in this research the current 
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signal has been adopted for detecting both the rotor and bearing faults together with 

different types of faults and conditions. Since the current signal having much more 

information about the behaviour the motor rotor, it is also helpful for bearing faults as 

it changes the motor balance during heavy load. The classification accuracies of the 

proposed B4M were reasonable, as the dataset were very large and complex. As 

mentioned earlier that in the field of the machine learning, these classification 

accuracy are acceptable because they are obtained 80% approximately, which is good 

for new released classification system without any improvements. One reason why the 

proposed B4M has classification accuracy less than 90% is that the dataset has 

overlapped in some elements, which may lead the B4M to misclassify some classes. 

Furthermore, the proposed B4M produces low number of rules, which is another 

advantage as the number of rules could effect on the processing time for classifying a 

new incoming data. Consequently, the proposed B4M classification algorithm has 

been able to detect the induction motor faults based on the current signal and produced 

satisfactory results. 

9.2.4 Comparison of B4M Performance with other Classification Algorithms 

The current dataset have been used with other eight classification algorithms (Decision 

Table, JRIP, OneR (One Rule), PART (Projective Adaptive Resonance Theory), J48, 

LMT (Logistic Model Tree), Naïve Bayes tree and Random Tree) with the purpose of 

comparing their performances with the proposed classification method (B4M) 

performance. Similarly, the WEKA software has been used to run all the mentioned 

classification systems. 100-fold cross validation was used for all classifiers in order to 

compare their performances at same conditions. In addition, the selected features have 

been used for these eight classifiers. 
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Most of the classification algorithms have been applied successfully as shown in  

figure 9-4. The proposed classification algorithm has been recorded as the higher in 

two-feature selection algorithms among all other classifiers, 79.62% and 77.81% for 

the sequential forward selection and sequential floating backward selection 

respectively. Thus, the proposed B4M classification algorithm has been used for motor 

fault detection successfully with very impressive results. Few classification systems 

have obtained very low classification accuracy, while some others acquired very 

acceptable results. For example, OneR classifier has achieved the lower accuracy, 

whereas the NB tree has reasonable results in most of dataset. The reason is that all 

classifiers depend on the dataset. If the dataset have clear and distinguishable features, 

the classification accuracy will be very high. Therefore, if the OneR obtained low 

classification accuracy, it does not mean that the classifier is not good, because it may 

obtain very accurate results by applying other dataset. So forth, the proposed 

classification algorithm, it may has very high classification accuracy based on the 

dataset itself.  

Figure 9-4: Comparison of the classification accuracy for different feature selection 

and classification algorithms based on current signal dataset. 
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In terms of rules, figure 9-5 shows the number of rules that are produced from all the 

applied classification systems. It can be seen that the proposed B4M has the lower 

number of rules among all the other classifiers. This advantage makes the proposed 

classification system more robust and less time consumer as the lower number of rules 

the less time consumption for classifying the new data as explained earlier. The 

number of rules has been varied for all other classifiers, some have many rules such 

as RT system and some have low rules such as JRIP system. The number of rules are 

also relying on system calculations and the dataset dimensionality because the 

complex and large samples of dataset could lead to produce more rules. Here the rule 

pruning is needed to reduce the number of rules and choose the most powerful rule for 

classifying the new data with less error as happened with the proposed B4M. The 

proposed B4M has a rule pruning strategy to remove all the unrelated rules from the 

rule set as explained in chapter 4 section 4.2.5. 

 

Figure 9-5: Comparison of the number of rules for different feature selection and 

classification algorithms based on current signal dataset. 

The induction motor fault detection based on the current signal using the proposed 

B4M classification algorithm has been discussed and the next section will describe the 

induction motor fault detection based on the motor vibration signal analysis. 
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9.3 B4M Classification based on Vibration Signal for Fault Detection 

9.3.1 Feature Extraction  

Similarly, the feature extraction procedure for the vibration signal is the same as in the 

current signal. The datasets consist of three load conditions (no-load, 50% load and 

100% load) with seven different faults (one bar rotor fault, four bars rotor faults, eight 

bars rotor faults, outer race bearing fault, ball bearing fault and inner race bearing 

fault). The 1-Dimentional DWT has been also applied for healthy and faulty conditions 

with same mother wavelet and decomposition level to extract the best features from 

the vibration signal. 10 features have been extracted from the raw vibration signal as 

the vibration signal itself are not clear enough for diagnosing the motor faults. These 

features have been splitted to 5 for DWT details coefficients and 5 for the DWT 

approximation coefficients. Thus, the dataset consists of 10 features for healthy and 

faulty conditions. Each fault has 750 samples for each feature. All datasets have been 

labelled accurately for each class to make them easy for the classification system to 

recognise the fault. Table 9-11 illustrates sample of the vibration dataset to be used for 

further processing. For full vibration signal, see Appendix B. 

 

 

 

 

 



C
h

ap
te

r 
9:

 R
es

u
lt

s 
an

d
 D

is
cu

ss
io

ns
 

 
 

 
P

ag
e 

| 2
24

  

T
ab

le
 9

-1
1:

 S
am

pl
e 

of
 v

ib
ra

ti
on

 s
ig

na
l d

at
as

et
 f

ea
tu

re
s.

 

D
et

ai
ls

 C
oe

ff
ic

ie
n

ts
 

A
p

p
ro

xi
m

at
io

n
 C

oe
ff

ic
ie

n
t 

C
la

ss
 

D
W

T
-L

1 
D

W
T

-L
2 

D
W

T
-L

3 
D

W
T

-L
4 

D
W

T
-L

5 
D

W
T

-L
1 

D
W

T
-L

2 
D

W
T

-L
3 

D
W

T
-L

4 
D

W
T

-L
5 

6.
01

E
-1

5 
0.

00
11

32
 

-0
.0

07
87

 
0.

02
06

54
 

-0
.0

05
42

 
0.

6 
0.

59
88

68
 

0.
60

67
38

 
0.

58
60

84
 

0.
59

15
 

V
_H

ea
lt

hy
 

-6
.0

1E
-1

5 
0.

00
12

 
-0

.0
08

13
 

0.
02

32
38

 
-0

.0
11

18
 

0.
6 

0.
59

88
 

0.
60

69
28

 
0.

58
36

9 
0.

59
48

68
 

V
_H

ea
lt

hy
 

-5
.5

1E
-0

6 
0.

00
04

79
 

-0
.0

06
36

 
0.

02
39

7 
-0

.0
16

93
 

0.
60

00
06

 
0.

59
95

27
 

0.
60

58
85

 
0.

58
19

15
 

0.
59

88
45

 
V

_H
ea

lt
hy

 
-2

.8
1E

-0
5 

-0
.0

01
57

 
-0

.0
01

5 
0.

02
20

04
 

-0
.0

22
33

 
0.

60
00

28
 

0.
60

16
 

0.
60

31
 

0.
58

10
95

 
0.

60
34

27
 

V
_H

ea
lt

hy
 

-3
.5

7E
-0

5 
-0

.0
04

42
 

0.
00

56
51

 
0.

01
73

83
 

-0
.0

27
23

 
0.

60
00

36
 

0.
60

44
6 

0.
59

88
09

 
0.

58
14

26
 

0.
60

86
54

 
V

_H
ea

lt
hy

 
4.

75
E

-0
5 

-0
.0

06
27

 
0.

01
23

86
 

0.
01

08
2 

-0
.0

31
58

 
0.

59
99

52
 

0.
60

62
25

 
0.

59
38

39
 

0.
58

30
19

 
0.

61
46

03
 

V
_H

ea
lt

hy
 

0.
01

07
29

 
0.

01
75

12
 

0.
04

09
57

 
0.

14
01

28
 

0.
19

77
73

 
-0

.6
10

73
 

-0
.6

28
24

 
-0

.6
69

2 
-0

.8
09

33
 

-1
.0

07
1 

V
_B

al
l 

-0
.0

24
61

 
0.

01
15

3 
0.

01
29

35
 

0.
16

06
74

 
0.

19
83

33
 

-0
.6

35
39

 
-0

.6
46

92
 

-0
.6

59
86

 
-0

.8
20

53
 

-1
.0

18
86

 
V

_B
al

l 
0.

02
10

83
 

-0
.0

03
62

 
-0

.0
17

11
 

0.
17

27
38

 
0.

19
71

2 
-0

.6
81

08
 

-0
.6

77
46

 
-0

.6
60

35
 

-0
.8

33
09

 
-1

.0
30

21
 

V
_B

al
l 

-0
.0

17
05

 
-0

.0
10

52
 

-0
.0

36
41

 
0.

17
09

32
 

0.
19

42
93

 
-0

.7
22

95
 

-0
.7

12
43

 
-0

.6
76

02
 

-0
.8

46
95

 
-1

.0
41

24
 

V
_B

al
l 

0.
01

82
21

 
-0

.0
08

45
 

-0
.0

41
44

 
0.

15
38

22
 

0.
18

97
39

 
-0

.7
58

22
 

-0
.7

49
77

 
-0

.7
08

33
 

-0
.8

62
15

 
-1

.0
51

89
 

V
_B

al
l 

-0
.0

20
18

 
-0

.0
07

49
 

-0
.0

42
 

0.
12

85
29

 
0.

18
31

23
 

-0
.7

99
82

 
-0

.7
92

34
 

-0
.7

50
34

 
-0

.8
78

87
 

-1
.0

61
99

 
V

_B
al

l 
-0

.0
01

1 
-0

.0
03

53
 

-0
.0

03
52

 
-0

.0
07

32
 

-0
.0

15
53

 
-0

.4
06

9 
-0

.4
03

38
 

-0
.3

99
86

 
-0

.3
92

54
 

-0
.3

77
01

 
V

_I
nn

er
 

0.
00

34
3 

-0
.0

02
32

 
-0

.0
01

22
 

-0
.0

08
47

 
-0

.0
12

72
 

-0
.4

03
43

 
-0

.4
01

11
 

-0
.3

99
89

 
-0

.3
91

42
 

-0
.3

78
7 

V
_I

nn
er

 
-0

.0
02

87
 

0.
00

16
48

 
0.

00
08

57
 

-0
.0

09
 

-0
.0

09
75

 
-0

.3
97

13
 

-0
.3

98
78

 
-0

.3
99

64
 

-0
.3

90
63

 
-0

.3
80

88
 

V
_I

nn
er

 
0.

00
25

94
 

0.
00

22
4 

0.
00

21
14

 
-0

.0
08

6 
-0

.0
06

8 
-0

.3
94

59
 

-0
.3

96
83

 
-0

.3
98

95
 

-0
.3

90
34

 
-0

.3
83

54
 

V
_I

nn
er

 
-0

.0
04

44
 

0.
00

02
27

 
0.

00
21

24
 

-0
.0

07
25

 
-0

.0
03

94
 

-0
.3

95
56

 
-0

.3
95

79
 

-0
.3

97
91

 
-0

.3
90

66
 

-0
.3

86
72

 
V

_I
nn

er
 

0.
00

32
15

 
-0

.0
00

5 
0.

00
21

58
 

-0
.0

05
24

 
-0

.0
01

14
 

-0
.3

95
22

 
-0

.3
94

72
 

-0
.3

96
88

 
-0

.3
91

64
 

-0
.3

90
5 

V
_I

nn
er

 
0.

02
30

78
 

0.
00

70
02

 
0.

01
11

55
 

0.
03

71
18

 
-0

.0
79

11
 

5.
49

69
22

 
5.

48
99

2 
5.

47
87

65
 

5.
44

16
48

 
5.

52
07

59
 

V
_O

ut
er

 
-0

.0
46

83
 

-0
.0

00
5 

0.
00

72
42

 
0.

04
29

55
 

-0
.0

87
3 

5.
48

68
28

 
5.

48
73

27
 

5.
48

00
85

 
5.

43
71

3 
5.

52
44

31
 

V
_O

ut
er

 
0.

04
99

38
 

-0
.0

11
54

 
0.

00
16

44
 

0.
04

67
62

 
-0

.0
94

86
 

5.
47

00
62

 
5.

48
15

99
 

5.
47

99
55

 
5.

43
31

92
 

5.
52

80
52

 
V

_O
ut

er
 

-0
.0

22
45

 
-0

.0
11

06
 

-0
.0

04
09

 
0.

04
73

31
 

-0
.1

01
37

 
5.

46
24

47
 

5.
47

35
11

 
5.

47
76

 
5.

43
02

7 
5.

53
16

39
 

V
_O

ut
er

 
-0

.0
26

75
 

0.
00

30
6 

-0
.0

09
24

 
0.

04
43

35
 

-0
.1

06
58

 
5.

46
67

54
 

5.
46

36
94

 
5.

47
29

34
 

5.
42

85
99

 
5.

53
51

77
 

V
_O

ut
er

 
0.

04
74

43
 

0.
01

88
39

 
-0

.0
13

73
 

0.
03

91
62

 
-0

.1
10

35
 

5.
47

25
57

 
5.

45
37

18
 

5.
46

74
44

 
5.

42
82

83
 

5.
53

86
3 

V
_O

ut
er

 
0.

00
02

08
 

0.
00

07
85

 
-0

.0
00

47
 

-0
.0

06
26

 
0.

00
04

21
 

-0
.7

12
21

 
-0

.7
12

99
 

-0
.7

12
53

 
-0

.7
06

27
 

-0
.7

06
69

 
V

_O
ne

 B
ar

 
-0

.0
00

27
 

0.
00

18
52

 
-0

.0
00

63
 

-0
.0

07
07

 
0.

00
03

08
 

-0
.7

11
73

 
-0

.7
13

58
 

-0
.7

12
95

 
-0

.7
05

88
 

-0
.7

06
19

 
V

_O
ne

 B
ar

 
-0

.0
00

89
 

0.
00

22
65

 
-0

.0
00

46
 

-0
.0

07
5 

0.
00

01
91

 
-0

.7
11

11
 

-0
.7

13
37

 
-0

.7
12

91
 

-0
.7

05
41

 
-0

.7
05

6 
V

_O
ne

 B
ar

 
0.

00
05

64
 

-0
.0

00
33

 
-5

.8
6E

-0
5 

-0
.0

07
31

 
7.

99
E

-0
5 

-0
.7

12
56

 
-0

.7
12

23
 

-0
.7

12
18

 
-0

.7
04

86
 

-0
.7

04
94

 
V

_O
ne

 B
ar

 



C
h

ap
te

r 
9:

 R
es

u
lt

s 
an

d
 D

is
cu

ss
io

ns
 

 
 

 
P

ag
e 

| 2
25

  

0.
00

20
1 

-0
.0

03
97

 
0.

00
06

33
 

-0
.0

06
45

 
-2

.2
1E

-0
5 

-0
.7

14
01

 
-0

.7
10

04
 

-0
.7

10
67

 
-0

.7
04

22
 

-0
.7

04
19

 
V

_O
ne

 B
ar

 
-0

.0
01

97
 

-0
.0

02
5 

0.
00

11
89

 
-0

.0
05

25
 

-0
.0

00
12

 
-0

.7
10

03
 

-0
.7

07
53

 
-0

.7
08

72
 

-0
.7

03
47

 
-0

.7
03

36
 

V
_O

ne
 B

ar
 

0.
00

31
08

 
0.

00
68

06
 

-0
.0

00
45

 
-0

.0
02

81
 

-0
.0

01
31

 
-0

.6
51

11
 

-0
.6

57
91

 
-0

.6
57

47
 

-0
.6

54
66

 
-0

.6
53

35
 

V
_4

 B
ar

s 
-0

.0
06

82
 

0.
00

06
28

 
-9

.3
9E

-0
5 

-0
.0

03
26

 
-0

.0
01

38
 

-0
.6

57
18

 
-0

.6
57

8 
-0

.6
57

71
 

-0
.6

54
45

 
-0

.6
53

07
 

V
_4

 B
ar

s 
0.

00
37

06
 

-0
.0

10
23

 
0.

00
02

79
 

-0
.0

03
54

 
-0

.0
01

43
 

-0
.6

67
71

 
-0

.6
57

47
 

-0
.6

57
75

 
-0

.6
54

21
 

-0
.6

52
78

 
V

_4
 B

ar
s 

-0
.0

01
29

 
-0

.0
05

71
 

0.
00

04
79

 
-0

.0
03

55
 

-0
.0

01
47

 
-0

.6
62

71
 

-0
.6

57
 

-0
.6

57
48

 
-0

.6
53

92
 

-0
.6

52
46

 
V

_4
 B

ar
s 

-0
.0

00
22

 
0.

00
85

98
 

0.
00

04
86

 
-0

.0
03

26
 

-0
.0

01
49

 
-0

.6
47

78
 

-0
.6

56
37

 
-0

.6
56

86
 

-0
.6

53
6 

-0
.6

52
11

 
V

_4
 B

ar
s 

-0
.0

01
11

 
0.

00
86

75
 

0.
00

04
63

 
-0

.0
02

81
 

-0
.0

01
49

 
-0

.6
46

89
 

-0
.6

55
57

 
-0

.6
56

03
 

-0
.6

53
22

 
-0

.6
51

73
 

V
_4

 B
ar

s 
0.

00
97

92
 

0.
00

54
94

 
-0

.1
09

98
 

-0
.1

86
1 

-0
.0

59
97

 
0.

99
02

08
 

0.
98

47
14

 
1.

09
46

95
 

1.
28

08
 

1.
34

07
68

 
V

_8
 B

ar
s 

-0
.0

06
87

 
-0

.0
18

12
 

-0
.0

55
14

 
-0

.2
05

62
 

-0
.0

67
44

 
1.

00
68

66
 

1.
02

49
87

 
1.

08
01

26
 

1.
28

57
51

 
1.

35
31

92
 

V
_8

 B
ar

s 
-0

.0
37

79
 

-0
.0

46
68

 
0.

00
54

52
 

-0
.2

13
47

 
-0

.0
74

37
 

1.
03

77
91

 
1.

08
44

69
 

1.
07

90
17

 
1.

29
24

84
 

1.
36

68
55

 
V

_8
 B

ar
s 

0.
06

43
02

 
-0

.0
14

95
 

0.
05

15
9 

-0
.2

02
44

 
-0

.0
80

3 
1.

13
56

98
 

1.
15

06
47

 
1.

09
90

57
 

1.
30

14
97

 
1.

38
17

98
 

V
_8

 B
ar

s 
-0

.0
69

74
 

0.
05

25
62

 
0.

07
47

81
 

-0
.1

70
7 

-0
.0

85
 

1.
26

97
42

 
1.

21
71

8 
1.

14
23

99
 

1.
31

30
96

 
1.

39
80

95
 

V
_8

 B
ar

s 
0.

04
75

83
 

0.
05

92
88

 
0.

09
51

77
 

-0
.1

29
56

 
-0

.0
88

34
 

1.
35

24
17

 
1.

29
31

29
 

1.
19

79
52

 
1.

32
75

17
 

1.
41

58
53

 
V

_8
 B

ar
s 

*V
: V

ib
ra

ti
on

 s
ig

na
l. 

    



Chapter 9: Results and Discussions 

 

                     Page | 226  

9.3.2 Feature Selection  

Four feature selection methods (Sequential Forward Selection (SFS), Sequential 

Backward Selection (SBS), Sequential Floating Forward Selection (SFFS) and 

Sequential Floating Backward Selection (SFBS)) have been used for selecting the 

most helpful features, as the feature selection have been used for reducing the data 

dimensionality to increase the classification system accuracy (as mentioned earlier). 

MATLAB “R2015a” has been used for running the feature selection methods. 

After applying feature selection methods, the selected features of DWT-based 

vibration signal have been illustrated in table 9-12. 

It can be seen from table 9-12 that the feature selection methods have disregard some 

features and kept some others, as these features may overlapped with each other, which 

may lead to have many misclassified data. The selected features have been used as 

input data for the proposed B4M classification method in order to classify induction 

motor faults.  

Table 9-12: The selected features for the vibration signal dataset. 

 Feature Selection Method 
 SFS SBS SFFS SFBS 

D
et

ai
ls

 
C

oe
ff

ic
ie

n
ts

 DWT-L1 x DWT-L1 x DWT-L1 x DWT-L1 √ 
DWT-L2 x DWT-L2 √ DWT-L2 √ DWT-L2 √ 
DWT-L3 √ DWT-L3 √ DWT-L3 x DWT-L3 x 
DWT-L4 x DWT-L4 √ DWT-L4 x DWT-L4 x 
DWT-L5 x DWT-L5 √ DWT-L5 √ DWT-L5 x 

A
p

p
ro

xi
m

at
io

n 
C

oe
ff

ic
ie

n
t DWT-L1 √ DWT-L1 x DWT-L1 √ DWT-L1 √ 

DWT-L2 √ DWT-L2 x DWT-L2 √ DWT-L2 √ 
DWT-L3 √ DWT-L3 √ DWT-L3 √ DWT-L3 √ 
DWT-L4 x DWT-L4 √ DWT-L4 x DWT-L4 x 
DWT-L5 x DWT-L5 x DWT-L5 √ DWT-L5 √ 
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9.3.3 Classification Results 

The vibration dataset is ready to be used as input for the proposed B4M classification 

algorithm. The dataset has been divided into training and testing sets. 100-folds cross 

validations have been applied for this dataset to check the classification system 

performance. Similarly, the dataset has been labelled from 1 to 7 to be used for the 

proposed and other classification systems. Table 9-13 shows the vibration dataset 

description for all induction motor faults.  

Table 9-13: Vibration signal dataset description. 

Machine Condition 
Class 
Label 

No. of  
samples  

No. of 
Training 

No. of 
Testing 

Healthy 1 750 650 100 

Ball bearing 2 750 650 100 

Bearing Inner race 3 750 650 100 

Bearing outer race  4 750 650 100 

One bar rotor  5 750 650 100 

Four bars rotor  6 750 650 100 

Eight bars rotor  7 750 650 100 

Total Samples 5250 4550 700 

The proposed B4M classification algorithm have been applied with the same 

parameters, which are already chosen as described in (chapter 4 - section 4.3.2). Five 

different datasets have been fed to the B4M as stated below: 

 Datasets without feature selection (Full). 

 Datasets with Sequential Forward Selection (SFS). 

 Datasets with Sequential Backward Selection (SBS). 

 Datasets with Sequential Floating Forward Selection (SFFS). 

 Datasets with Sequential Floating Backward Selection (SFBS) 
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All the above datasets have been used as input for B4M classification algorithm with 

100-folds cross validation. By applying the B4M classification method, the proposed 

system accuracy of 10 given features has been demonstrated in table 9-14. 

The proposed B4M classification algorithm has obtained good outcomes in some 

datasets and poor in others. Perhaps the most serious disadvantage of this classification 

is that it needs to reset its parameters (by increasing or reducing the number of 

iterations or number of bees, etc.) or needs more than one run to obtain the best results. 

In this research, the parameters of the proposed B4M have been kept the same for all 

the motor condition in order to be compared with other condition monitoring 

approaches and check the strength and the weakness of the proposed classification 

algorithm. As a result, all the results will be compared based on two main things, either 

on the feature selection method or on the dataset. Here the proposed B4M has obtained 

very good results by relying on the SFS and SFBS feature selection methods with very 

low number of rules, while it has obtained very poor results with other feature selection 

methods. Thus, the DWT features that are obtained from the vibration signal have been 

very cooperative for detecting the induction motor faults correctly and the proposed 

B4M has been successfully applied for the detecting induction motor faults based on 

the vibration signal. 

Table 9-14: The proposed B4M classification results. 

Dataset type No. of rules Classification accuracy (%) 

Full 9  60.00 

SFS 7  80.50 

SBS 7  45.75 

SFFS 12  48.75 

SFBS 7  70.68 
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Table 9-15 shows the confusion matrix for the proposed B4M based on vibration 

signal using the SFS feature selection method.  

The confusion matrix describes the way of how the B4M classifying the vibration 

dataset: 

 As stated previously, the diagonal elements are the most important part in the 

confusion matrix because they show the correct classification elements among 

all the features that are belong to specific class or correctly classified. 

 In terms of the healthy conditions, the proposed B4M has classified 543 

samples out of 650 (only 107 samples are misclassified), which means that the 

B4M has recognized the healthy motor among six fault conditions.  

 In terms of bearing fault, the proposed B4M has obtained the highest correct 

elements in ball bearing defect than all other faults (596 out of 650), while the 

inner race fault has achieved the second highest than other bearing faults (556 

out of 650). In addition, the outer race-bearing fault has obtained about 545 

correct samples. Consequently, despite of the classification accuracy and the 

Table 9-15: Confusion matrix of the proposed B4M for the vibration signal dataset. 

 Predicted Class 
True Class Healthy Ball 

bearing 
Inner 
race 

Outer 
race 

One 
bar 

Four 
bars 

Eight 
bars 

Healthy 543 4 23 78 2 0 0 

Ball bearing 6 596 20 28 0 0 0 

Inner race 20 25 556 42 3 4 0 

Outer race 19 20 38 545 20 8 0 

One bar 52 12 12 32 522 20 0 

Four bars 23 0 0 33 64 487 43 

Eight bars 0 62 12 34 41 88 413 
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number of misclassification samples, the proposed B4M has good attitude to 

classify the bearing faults correctly without any further implementation or 

improving in the objective function. 

 In terms of rotor bars fault, the correct classification elements were lower than 

the bearing faults as the vibration signal is more suitable for the bearing faults 

than the rotor faults. Thus, 522 samples of one rotor bar fault out of 650 have 

been classified correctly by the proposed B4M, whereas 487 samples have 

been classified correctly to detect the four bars rotor fault. In addition, 413 

correct samples have been classified as eight rotor bars fault by the proposed 

B4M. Since the dataset has very large number of data in each class, there is no 

doubt that the misclassification could be happened in such dataset. Many 

reasons for the misclassification or low classification accuracy that might be 

happened. First, the complex the dataset is, the higher possibility of 

misclassification samples can occurred. Second, the dataset overlapped with 

each other, which may lead the classification system to miss the correct class 

for these data. 

In view of that, the proposed classification algorithm (B4M) has obtained good results 

for discriminating and detecting the motor faults in an early stage based on the 

vibration signal. The DWT features have positive outcome as they have extracted the 

important information from the raw vibration signal, as well as the feature selection 

methods that have been used for reducing the data dimensionality and select the best 

features.  

As mentioned earlier that most studies have focused on current signal for detecting 

either the rotor or bearing faults, while in the vibration signal also has concentrated 
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for detecting the mechanical faults only, whereas in this research the vibration signal 

has been used for detecting the mechanical and electrical fault simultaneously. 

Moreover, the results show that the vibration signal could also be used for detecting 

the rotor faults as the rotor fault has negative impact on the motor balance, which may 

lead to change the motor vibration behaviour. The number of rules that are produced 

from the B4M are very acceptable comparing to the dataset size because the higher 

number of rules, the longer time for classification system needed to classify the new 

data. Therefore, the proposed classification algorithm is capable to detect the induction 

motor faults. 

9.3.4 Comparison of B4M Performance with other Classification Algorithms 

Similarly, eight classification algorithms (Decision Table, JRIP (Repeated 

Incremental Pruning), One R (One Rule), PART (Projective Adaptive Resonance 

Theory), J48, LMT (Logistic Model Tree), Naïve Bayes tree and Random Tree) have 

been applied for the vibration dataset in order to compare the performance of the 

proposed B4M classification algorithm. The same dataset has been used for all these 

classifiers. The dataset has been divided into training and testing sets as mentioned 

above. In order to validate the classification performance 100-folds cross validation 

have been applied for these classifiers.  

The classification systems have been successfully applied for all different datasets 

(full, SFS, SFFS, SBS and SFBS). The proposed B4M have obtained good results in 

two datasets (SFS and SFBS) with 80.5% and 70.68% classification accuracy 

respectively as shown in figure 9-6. Figure 9-6 shows that the proposed B4M has 

ranked the first among all the classification algorithms with sequential feature 
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selection method, while it classified as the second after random tree algorithm with 

the sequential floating backward feature selection method.  

 

Figure 9-6: Comparison of the classification accuracy for different feature selection 

and classification algorithms based on the vibration signal dataset. 

On the other hand, the proposed B4M has achieved less than 50% accuracy in both the 

sequential floating forward selection and sequential backward selection algorithms by 

48.75% and 45.93% accuracy respectively. There are several possible explanation for 

this result. This inconsistency may due to the vast overlapping between the features or 

the attributes, as the vibration signal was very sensitive and sometimes the 

classification systems have difficulties to discriminate between the data classes. The 

other contradictory result may be due to the feature selection algorithm, as the feature 

selection method may fails to choose the best features since the feature selection 

methods play a vital role in classification accuracy results. 

Additionally, figure 9-7 illustrates the number of rules for all classification algorithms. 

As shown in figure 9-7, the proposed B4M obtained the lower number of rules among 
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all 8 classification algorithms. As mentioned above, the number of rules relying on the 

classification system calculations and the dataset dimensions. The proposed B4M has 

produced the lower number of rules as it has rule pruning strategy, which is different 

from other classifiers. The rule pruning is responsible to remove the unrelated rules 

from the rule set and keep the better rules that cover all data samples as explained in 

chapter 4 - section 4.2.5. 

 

Figure 9-7: Comparison of the number of rules for different feature selection and 

classification methods based on the vibration signal dataset. 

9.4 GA-B4M 

For improving the proposed B4M classification algorithm, the GA has been adapted 

for selecting the best feature in addition to the previous feature selection methods. The 

GA has been used widely in the field of optimization, clustering, classification and 

feature selection. It has been successfully applied and it has positively effects on the 

classification accuracy for many classification algorithms. 

The selected features for thermal image, current and vibration signals datasets by the 

GA have been illustrated in table 9-16. 
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After applying the GA for feature selection, the new selected features have been 

applied for the same classification algorithms (Decision Table, JRIP, OneR, PART, 

J48, LMT, Naïve Bayes tree and Random Tree) along with the proposed B4M method.  

9.4.1 Classification Results 

The classification systems have been applied with the same parameters and conditions 

as in the previous systems. The results were very good and there are improvements in 

the classification accuracy for not only the proposed B4M but also for other 

classification algorithms as shown in figures 9-8, 9-9 and 9-10. 

In terms of thermal image features, the results of the proposed B4M have been ranked 

as the highest classification system among all other systems (DT, Jrip, PART, J48 and 

NB tree). There are two likely causes for the differences between the results with the 

full, SFS, SBS, SFFS, SFBS feature selection methods and the results with feature 

selection based on the genetic algorithm. The first one is that the features became very 

Table 9-16: The selected features for all condition monitoring dataset 
based on GA. 

Dataset Features 
Thermal Current Vibration 
MSE √ DWT-L1 x DWT-L1 √ 

PSNR x DWT-L2 x DWT-L2 √ 

Mean x DWT-L3 x DWT-L3 x 

Variance x DWT-L4 x DWT-L4 x 

SD x DWT-L5 x DWT-L5 √ 

Skew √ DWT-L1 √ DWT-L1 x 

Kurtosis √ DWT-L2 √ DWT-L2 x 

DWT-L1 √ DWT-L3 √ DWT-L3 x 

DWT-L2 x DWT-L4 x DWT-L4 x 

DWT-L3 x DWT-L5 x DWT-L5 x 
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few as only 4 feature out of 10 have been used for classification since some algorithms 

does not have the ability to classify such a dataset with small number of features, as 

system calculation itself has not been able to calculate the best rules or classify the 

dataset. The second is might be because of the dataset have overlapping in the selected 

features. However, eight classification algorithms have been able to classify the 

thermal image dataset successfully with very good classification accuracy as shown in 

figure 7-8. 

 

Figure 9-8: The comparison of classification and number of rules for different 

classification methods based on the thermal image dataset. 

In terms of current signal, all the classification algorithms have been successfully 

applied and have obtained very good results as illustrated in figure 9-9. The 

classification accuracy has been raised up in some classification systems and went 

down for some others. Nevertheless, the proposed B4M has achieved very competitive 

result comparing to other classification algorithms. For example, the classification 

accuracy for the proposed B4M was 79.74% with 16 rules, which is ranked the 6 out 

of 9 classification systems. While the highest classification accuracy was recorded by 

the LMT algorithm (81.31%) with 47 rules. Thus, still the proposed B4M algorithms 
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has the lowest number of rules among all other classification algorithms as shown in 

figure 9-9.  

 

Figure 9-9: The comparison of classification accuracy and number of rules for 

different classification methods based on the current signal dataset. 

Similarly, dealing with the vibration signal, the highest classification accuracy and the 

lowest number of rules have been recorded by the proposed classification algorithm 

(B4M), which is 98.74% and 7 rules as shown in figure 9-10.  

 

Figure 9-10: The comparison of classification accuracy and number of rules for 

different classification algorithms based on the vibration signal dataset.  
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9.5 Classification Results for Testing Dataset based on B4M 

After obtaining the classification accuracy for the training dataset, the following 

results have explained the classification test accuracy for the test dataset based 

classification accuracy of training dataset relying on the SFS feature selection method. 

Figure 9-11 illustrates the classification test accuracy of the thermal image test dataset. 

It was clearly from the figure below that the proposed classification algorithm (B4M) 

has obtained the highest classification accuracy comparing to other classifiers. These 

results have indicated that the proposed algorithm has been able to detect, classify and 

predict the motor faults correctly better than other classifier. The reason of having 

good results is that the features that are extracted for the thermal images make the 

classifier able to discriminate between the motor faults with less misclassification 

percentage. Another reason is that the feature selection method has select the most 

helpful attributes among all other features. However, the DT and OneR classifiers have 

obtained 100% classification accuracy for the training dataset as mentioned above, 

while the classification test accuracy were the lower for both 76.36% and 52.20% 

respectively. One reason why these classifiers results have declined is that they may 

consider the new data as noisy data which make them unable to classify the data 

correctly, or the new data may overlapped between each other which may assigned to 

the incorrect class. Thus, it now understood that the dataset plays an important role in 

the classification accuracy.  
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Figure 9-11: Classification accuracy for test dataset of thermal image. 

In terms of current signal, the proposed B4M has achieved 76.35% classification test 

accuracy based on the current test dataset, which was the second highest classifier after 

NB tree (76.70%) as shown in  

figure 9-12. The most likely causes of low classification test accuracies among all the 

classifiers are the data overlapping and data similarity. Furthermore, the feature 

selection method is an important factor for reducing or increasing the classification 

accuracy based on the clarity of dataset. The other classifiers have obtained similar 

accuracy, which were between 70.00% to 76.33%. While the DT and the OneR 

classifiers have obtained 63.02% and 52.20% respectively, due to the reasons above. 

Figure 9-12: Classification accuracy for test dataset of current signal. 
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In terms of vibration signal, the proposed B4M has acquired 93.85% classification test 

accuracy based on the vibration test dataset, which was the forth-highest classifier 

after NB tree (95.00%), OneR (95.00%) and PART (93.99%) as illustrated in 

figure 9-13. As mentioned above the dataset and the feature selection method are 

important driving factors of reducing and increasing the classification system 

accuracy. The dataset is generally seen as factor strongly related to the classification 

accuracy as the more accurate the dataset, the more accurate classification system. The 

same issue for other classifiers, this is why that there is no single study exist shows 

that there is one best technique for all kind of classifications. 

 

Figure 9-13: Classification accuracy for test dataset of vibration signal. 
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classifiers as it has increased their classification accuracies better than without GA as 

explained above. The proposed B4M has obtained 98.92% classification accuracy, 

which was the highest comparing to other classifiers. In addition, the test classification 

accuracy of the DT and OneR classifiers have increased to 90.10% and 79.60% 

comparing to the test classification accuracy without GA. Consequently, the GA is a 

significant contributory factor to the development of classification accuracy not only 

for the proposed B4M but also for other well-known classifiers. 

 

Figure 9-14: Classification accuracy of thermal image test dataset based on GA-
B4M. 

Figure 9-15 shows the classification test accuracy for the current dataset based on GA-

B4M. The results show that the proposed classification method (B4M) has achieved 

82.88% accuracy, which is counted as the third highest classifier after J48 (89.76%) 

and PART (85.39%). Similarly, the classification test accuracy for all classifiers has 

been increased based on GA as the GA has the ability to choose and reduce the data 

dimensionality by selecting the best features to be used to fed the classification 

systems.  
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Figure 9-15: Classification accuracy of current test dataset based on GA-B4M. 

In terms of vibration test dataset, figure 9-16 demonstrates the classification test 

accuracy based on the GA-B4M. The proposed B4M has achieved the second highest 

accuracy after OneR (98.56%) which is 98.36%. the results have indicated that the 

proposed B4M has been able to detect, classify and predict by achieving good 

accuracy and at the same time produce less number of rules. Furthermore, the results 

show that it was not only effective and more robust, but also more efficient, making it 

at least as good as other methods. 

 

Figure 9-16: Classification accuracy of vibration test dataset based on GA-B4M. 
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CONCLUSIONS AND FUTURE WORK 

 

 

 

“This chapter illustrates contribution to knowledge. It summarises the achievements 

of this research and explains how the objectives stated in chapter one were achieved. 

The chapter concludes the study findings and suggests some aspects for future work”. 
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10.1 Overview 

The purpose of this research was to advance the field of condition monitoring and fault 

diagnosis for three-phase induction motors. The wide usage of the induction motors in 

the industrial applications have increased the need for the condition monitoring to keep 

the motor working safely. The literature review has presented and summarized the 

state of the art for most condition monitoring techniques that are related to the 

proposed methods. Fault diagnosis based on the artificial intelligence is the focus of 

this research. Previously, the condition monitoring was relying on the traditional 

methods like monitoring the stator current waveform or vibration signals based on the 

basic devices, but due to advance in science and technology, digital signal processing 

based techniques and artificial intelligence approaches, which were not known before, 

have recently been introduced to condition monitoring for induction motor protection. 

These techniques provide the means to enhance the classical protection principles to 

be faster, more secure, low cost and reliable protection for the induction motors. In 

addition, the advance techniques have improved the time consumption of fault 

detection that have an effect on the production line. All this will change the practice 

for the induction motor protection. 

Recently, the most common artificial intelligence techniques for the condition 

monitoring and fault diagnosis of induction motors are ANN, FLS, GA and many 

others in combination with data mining, which are used for classifying the motor faults 

in early stage. These techniques have been applied for a very complex and non-linear 

systems. However, it was possible to conclude from the review that no single approach 

would suffice for both classification and diagnosis. Furthermore, it is increasingly 

recognised that most individual artificial intelligence techniques suffer from specific 
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drawbacks, for that reason a new classification methods and hybrid approach are 

needed in most practical situations. Besides, most of the machine learning algorithms 

(optimization algorithms) have been converted to a classification algorithm based on 

data mining for the purpose of reducing the data dimensionality and make the machine 

learning algorithms more robust for analysing the complex (experimental data) data. 

Finally, the classification algorithms based on data mining are still used in the 

differential condition monitoring although they have some disadvantages as 

mentioned in the literature. Each method mentioned in the literature was trying to 

overcome the disadvantages of previous methods. The proposed classification 

methods are also doing the same but the challenge of these methods are having 

simplicity in algorithm design, producing less number of rules and good classification 

accuracy for discriminating between the induction motor faults. This makes the 

proposed new methods a competitive alternative to existing methods. 

10.2 Conclusions 

This research has proposed a novel framework for condition monitoring and fault 

diagnosis of small induction motors. The DWT has been performed on the thermal 

image, current and vibration signals in order to extract the data (feature extraction) 

with more information related to the fault. In addition to this, the four feature selection 

methods (Sequential Forward Selection (SFS), Sequential Backward Selection (SBS), 

Sequential Floating Forward Selection (SFFS) and Sequential Floating Backward 

Selection (SFBS)) have been applied to the extracted features with purpose of 

choosing the most helpful features that are assisted the classification systems to obtain 

more accurate results for fault detection. 
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Additionally, this research has answered the primary aims which can be summarised 

as: addressing whether the Bees Algorithm based on data mining is suitable for 

induction motor fault diagnosis system, improving sensitivity to incipit faults in 

comparison to a conventional approach, implementing and evaluating a framework to 

condition monitoring and fault diagnosis for induction motor and accurately 

diagnosing results.  

The research work carried out in this thesis included a number of important aspects 

that were novel and not previously implemented by other researchers or practitioners 

in a similar manner. These aspects of novelty are summarized below: 

1- In Terms of Machine Learning 

a) This research proposes a novel tool known as “Bee for Mining” (B4M) 

for classification tasks, which enables the Bees Algorithm (BA) to 

discover rules automatically. In the proposed B4M, two parameters 

namely quality-weight and coverage-weight have been added to the BA 

to avoid any ambiguous situations during the prediction phase. The 

contributions of the proposed B4M algorithm are two-fold:  

 The first novel contribution is in the field of swarm intelligence, 

using a new version of BA for automatic rule discovery. 

 The second novel contribution is the formulation of a weight 

metric based on quality and coverage weight of the rules 

discovered from the dataset to carry out Meta-Pruning and 

making it suitable for any classification problem in the real 

world.  
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b) The proposed algorithm was implemented and tested using five 

different benchmark datasets: Iris, Wine, Soybean, Breast Tissue and 

Image Segmentation from University of California, at Irvine (UCI 

Machine Learning Repository) and was compared with other well-

known classification algorithms. The results obtained using the 

proposed B4M show that it was capable of achieving better 

classification accuracy and at the same time reduce the number of rules 

in four out of five UCI datasets. Furthermore, the results show that it 

was not only effective and more robust, but also more efficient, making 

it at least as good as other methods such as C5.0, C4.5, Jrip and other 

evolutionary algorithms, and in some cases even better. 

2- In Terms of Condition Monitoring 

a) The proposed novel method (B4M) has been successfully applied in three 

main induction motor faults detection scheme such as thermal, current and 

vibration condition monitoring. 

b) The proposed B4M classification based on the induction motor thermal 

images has obtained very good results for diagnosis the IM faults correctly 

with minimum number of rules. The thermal images have been captured 

from different machine conditions with different types of faults including 

the healthy condition (reference signal). The classification accuracy of the 

proposed B4M has achieved competitive results comparing to other 

classification algorithms with very low number of rules. Furthermore, the 

proposed image processing technique (Sobel, Prewitt, Roberts, Canny, 

LoG and Otsu) with the help of feature selection methods have 
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significantly assisted in improving classification accuracy of B4M for 

classifying the induction motor faults correctly. 

c) The new classification algorithm has been applied to induction motor faults 

detection based on the motor current signature analysis (MCSA). The 

MCSA has been collected from three different motor conditions (no load, 

50% load and 100% load) with seven different types of faults (one rotor 

bar, four rotor bars, eight rotor bars, outer race bearing, ball bearing and 

inner race bearing fault) including the healthy condition (reference signal). 

The proposed classification algorithm has obtained very good results by 

using the current signal coefficients that are extracted by Discrete Wavelet 

Transform (DWT) and feature selection methods.  

d) The new proposed classification algorithm has been also applied to 

induction motor fault detection based on the vibration signal with the same 

condition of DWT as in the current signal. The B4M acquired very 

satisfying results compared to other classification algorithms. 

The new proposed method is not like other methods for induction motor faults 

detection. For instance, some methods detect the fault based on the load conditions as 

they have divided the faults relying on the motor load. In this case, some faults does 

not appear during low load or have difficulties to be detected by the classification 

system. However, the proposed algorithm is not depending on the motor load 

condition because all the different load conditions have been combined together as 

one fault or one package. Therefore, there is no need to wait for the motor to be loaded 

to detect the faults because if the faults are happened and the motor does not loaded, 

the motor could be fail to run. Consequently, the motor faults detection based on B4M 
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have overcome this problem and become very sensitive for any changing in the motor 

signals behaviour to detect and diagnose the most common induction motor faults 

correctly. 

3- In Terms of Machine Learning Hybrid System 

a) A new hybrid system has been proposed which is a combination between 

the Genetic Algorithm and B4M classification algorithm. The purpose of 

this system was to use the GA as feature selection method. Two important 

reasons of creating this system, the first one is to reduce the data 

dimensionality, and the second one is to increase the classification system 

accuracy. Then, the selected features were fed to the proposed B4M 

algorithm to detect the motor fault correctly.  

b) The proposed hybrid system has been applied to three induction motor 

condition approaches; thermal image, current and vibration signals. The 

system achieved very competitive results comparing to other classification 

algorithms. The Genetic Algorithm based feature selection has positive 

impact in supporting the classification system to gain very good 

classification accuracy. 

In general, the research has presented a new competitive methods over those 

mentioned in the literature particularly classification algorithm, which is still 

dependable and widely used in condition monitoring up to now. The competition was 

based on two factors, the classification accuracy and the number of rules. 

Simultaneously, the improvement of these factors was not at the cost of lower 

reliability and security. The proposed methods have shown a very high accuracy in all 
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the tests performed on the induction motor. The efficiency and effectiveness of these 

methods were proved by both simulation in MATLAB software and practical 

experiments. In simulation, the proposed B4M has been validated based on the UCI 

datasets. While practically, the data have been collected experimentally from the 

induction motors with different load conditions and types of faults. 

10.3 Future Work 

The purpose of the work presented in this thesis was to advance the research in the 

two fields: machine learning and induction motor condition monitoring for faults 

diagnosis. After this objective has been achieved, there is generally still much work to 

implement this new knowledge into widespread applications. Nevertheless, there is 

still additional work required to apply this new classification system scheme in 

industry. Suggestions for future research directions are summarised below: 

1- In Terms of Machine Learning  

a) Find out other optimization algorithms and study their abilities to be 

converted to classification algorithm based on data mining rule discovery, 

since each algorithm has different calculations and it may help rise the 

capability of the artificial intelligence to solve the real world problems 

properly. 

b) Develop a new hybrid classification system to obtain very high 

classification accuracy. 

c) Generalize the proposed classification algorithm to other types of motors, 

or apply it in other application such as engine, surface crack (concrete), 

and many others. 
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2- In Terms of Condition Monitoring 

a) Apply the proposed method on other induction motors (different size) to 

see the effect of the motor rates on the classification accuracy. 

b) Simulate and seed other types of common failure mode, for instance, stator 

fault, air gap eccentricity fault etc. In this research, each fault was 

simulated individually (one fault at a time). Future work could explore 

simultaneous faults and faults combining e.g. phase imbalance and rotor 

bar together, or two bearing faults together (outer race and ball bearing). 

c) In using a wavelet transform, different wavelets have different impacts in 

revealing fault features. It would be more complementary if some criteria 

could be established, with regard to which types of wavelets are more 

suitable for certain types of non-stationary events. One type of wavelet has 

been studied in this work. Therefore, enhancement of fault features in 

wavelet analysis should be investigated by using different mother wavelet 

analysis. 

d) Apply empirical mode decomposition level based techniques for different 

types of induction motor faults. 

e) Investigate the effectiveness of other image processing technique. 

f) The analysis carried out in this research was “offline” condition 

monitoring. Future work should be developed and concentrated on 

“online” condition monitoring. 
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APPENDIX A - THERMAL IMAGE ANALYSIS 

 

Figure A-1: Thermal image analysis for healthy motor with no load. 

 

Figure A-2: Thermal image analysis for healthy motor with 50% load. 
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Figure A-3: Thermal image analysis for healthy motor with 100% load. 

 

Figure A-4: Thermal image analysis for one bar fault with no load. 



Appendix A – THERMAL IMAGE ANALYSIS 

                     Page | 273  

 

Figure A-5: Thermal image analysis for one bar fault with 50% load.

 

Figure A-6: Thermal image analysis for one bar fault with 100% load. 
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Figure A-7: Thermal image analysis for eight bars fault with no load.

 

Figure A-8: Thermal image analysis for eight bars fault with 50% load. 
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Figure A-9: Thermal image analysis for eight bars fault with 100% load.

 

Figure A-10: Thermal image analysis for ball bearing fault with no load. 
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Figure A-11: Thermal image analysis for ball bearing fault with 50% load. 

 

Figure A-12: Thermal image analysis for ball bearing fault with 100% load. 
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Figure A-13: Thermal image analysis for inner race bearing fault with no load. 

 

Figure A-14: Thermal image analysis for inner race bearing fault with 50% load. 



Appendix A – THERMAL IMAGE ANALYSIS 

                     Page | 278  

 

Figure A-15: Thermal image analysis for inner race bearing fault with 100% load. 

 

Figure A-16: Thermal image analysis for outer race bearing fault with no load. 
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Figure A-17: Thermal image analysis for outer race bearing fault with 50% load. 

 

Figure A-18: Thermal image analysis for outer race bearing fault with 100% load. 
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APPENDIX C – MATLAB CODE 
1- MATLAB code for the proposed B4M 

 
Clear all 
clc 
[num,txt,raws] = xlsread('Dataset.xlsx'); 
% import numerical data: 
X = num; 
[N,M] = size(X); 
% calculate the minimum and maximum for each variables 
Xmin = min (X); 
Xmax = max(X); 
% import category names: 
category = txt(2:end,end); 
categ = unique(category,'stable'); 
K = size(categ,1); 
% convert category to group from 1 to k 
[tf,group] = ismember(category,categ); 
% calculate the minimum and maximum for each variables and for each categories 
XmaxK = zeros(K,M); 
XminK = zeros(K,M); 
for i = 1:K 
    XmaxK(i,:) = max(X(group==i,:)); 
    XminK(i,:) = min(X(group==i,:)); 
end; 
XmaxK = reshape(XmaxK',1,K*M); 
XminK = reshape(XminK',1,K*M); 
%%%%%%Setting Parameter for the Bees Algorithm %%%%% 
tic; 
n   = 100;   % number of scout bees (e.g. 40-100) 
itr = 10;  % number of iterations (e.g. 1000-5000) 
m   = 10;   % number of best selected patches (e.g. 10-50) 
e   = 10;   % number of elite selected patches (e.g. 10-50) 
n1  = 20;   % number of recruited bees around best selected patches (e.g. 10-50) 
n2  = 70;   % number of recruited bees around elite selected patches (e.g.10-50) 
ngh = 0.0000000000234; 
%%%%%Scoutbees: random search (only once)%%%%%% 
U = ones(n,1)*XmaxK + 2*ngh*(-rand(n,K*M)); 
L = ones(n,1)*XminK + 2*ngh*(rand(n,K*M));  
Group = group*ones(1,n); 
Par_Q = sortrows([U, L, fitnessfun(Group,categori(X,U,L))],-2*K*M-1); 
XXXX=categori(X,U,L); 
clear U L Best 
%%%%%%Iterations of the algorithm %%%%%% 
for k=1:itr     
    for j = 1:e         % number of elite selected patches  
        for i = 1:n2    % number of bees around elite patches 
            U = beedance(ngh, Par_Q(j,1:K*M)); 
            LL = reshape((ones(K,1)*Xmin)',K*M,1)'; 
            L = LL + rand(1,K*M).*(U-LL); 
            if fitnessfun(group,categori(X,U,L))> Par_Q(j,2*K*M+1) 
                Par_Q(j,:)=[U, L, fitnessfun(group,categori(X,U,L))]; 
            end 
        end 
    end
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for j = e+1:m       % number of best selected patches 
        for i = 1:n1    % number of bees around best patches 
            U = beedance(ngh, Par_Q(j,1:K*M)); 
            LL = reshape((ones(K,1)*Xmin)',K*M,1)'; 
            L = LL + rand(1,K*M).*(U-LL); 
            if fitnessfun(group,categori(X,U,L))> Par_Q(j,2*K*M+1) 
                Par_Q(j,:)=[U, L, fitnessfun(group,categori(X,U,L))]; 
            end 
        end 
    end 
% Rule Pruning 
    U = ones(n-m,1)*XmaxK + 2*ngh*(-rand(n-m,K*M)); 
    L = ones(n-m,1)*XminK + 2*ngh*(-rand(n-m,K*M));  
    Group = group*ones(1,n-m); 
    Par_Q(m+1:n,:) = sortrows([U, L, fitnessfun(Group,categori(X,U,L))],-2*K*M-1); 
    Par_Q = sortrows(Par_Q,-2*K*M-1); 
    Best(k,:) = Par_Q(1:15,2*K*M+1)'; 
    if mod(k,1)==0 
        disp(sprintf('Interation Number: %02.0f',k)); 
    end; 
end 
Xmax; 
Xmin; 
U = Par_Q(1,1:K*M); 
L = Par_Q(1,K*M+1:2*K*M); 
Lower = reshape(L,M,K)'; 
Upper = reshape(U,M,K)'; 
% Rules before optimization 
disp('') 
disp('Rules before optimization:') 
disp('') 
for i = 1:K 
    str = ['if ']; 
    for j = 1:M 
    str = [str '( x_' num2str(j) ' < ' num2str(Upper(i,j)) ' ) and ']; 
   end   
    str = str(1:end-5); 
    str = [str ' then class ''' categ{i} '''']; 
    disp(str) 
end    
% Rules after optimization 
Lower = reshape(L,M,K)'; 
Upper = reshape(U,M,K)'; 
disp('') 
disp('Prunning Rules:') 
disp('') 
for i = 1:K 
    str = ['if ']; 
    for j = 1:M 
        if Lower(i,j)>=Xmin(j) 
            str = [str '( x_' num2str(j) ' >= ' num2str(Lower(i,j)) ' ) and ']; 
        end; 
    end; 
    str = str(1:end-5); 
    str = [str ' then class ''' categ{i} '''']; 
    disp(str) 
end; 
% Testing the test data 
[numb,txtt,rawss] = xlsread('test.xlsx'); 
XX = numb; 
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[MM,NN]=size(XX); 
X1 = numb; % use all data for fitting 
Y1 = category; 
Conf_Mat = confusionmat(group,categori(X,U,L)) 
x = sum (diag(Conf_Mat)); 
y = sum (sum (Conf_Mat)); 
Accurancy = x/y*100   
correctly  = Accurancy * N /100 
misclassified = N-correctly 
toc; 
 
2- MATLAB code for the all the proposed feature selection methods 
 
function varargout = DEMO(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @DEMO_OpeningFcn, ... 
                   'gui_OutputFcn',  @DEMO_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
 if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
 return 
 % --- Executes just before DEMO is made visible. 
function DEMO_OpeningFcn(hObject, eventdata, handles, varargin) 
global FSSettings StopByUser 
 FSSettings.ErrorEstMethod      = 'SFS'; 
FSSettings.FSMethod            = 'SFS'; 
%------- Classifier Settings ------- 
FSSettings.GammaParam          = 0.025; 
FSSettings.ConfMatSwitch       = 0;  
FSSettings.PercTest            = 10;  
%-- Sequential Selection Settings ----- 
FSSettings.MahalInfoLossMethod = 'on'; 
FSSettings.TotalNStepsThres    = 250; 
FSSettings.LogViewOfIntStep    = 1; 
%------------- ReliefF -------------- 
FSSettings.NCorePatterns  = 250; 
FSSettings.NHits          = 10; 
%------------------------------------ 
 handles.output = hObject; 
StopByUser = 0; 
axes(handles.YelLinesAxes); set(gca, 'Visible', 'off'); 
handles.SliderValue = 10; 
warning off all 
guidata(hObject, handles); 
% --- Outputs from this function are returned to the command line. 
function varargout = DEMO_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
varargout{1} = handles.output; 
 % -----------------Data Load and View ----------------------------- 
function OpenDataFile_ClickedCallback(hObject, eventdata, handles) 
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handles.file = uigetfile('*.*'); 
 global StopByUser 
 if handles.file~=0 
    % Only for viewing purpose 
    [Patterns, Targets] = DataLoadAndPreprocess(handles.file); 
    handles.PatternsToRunFS = Patterns; 
    handles.TargetsToRunFS  = Targets; 
    StopByUser = 0; 
     [NPatterns, KFeatures] = size(Patterns); 
    axes(handles.FeatSelCurve);cla reset; 
    axes(handles.ClassResAxes); cla reset; 
    axes(handles.ClassesLegendAxes); cla reset; 
    set(gca,'Visible','off'); 
    axes(handles.YelLinesAxes); set(gca, 'Visible', 'off'); 
    axis manual 
    axes(handles.PatternsFeaturesAxes);cla reset; 
    title(handles.file); 
    colorbar; 
         set(findobj(gcf,'Tag','ListSelFeats'), 'String','Press Start to select features'); 
    guidata(hObject, handles); 
end 
return 
 % ----------------------------------------------------------------- 
function RunFeatSelection_ClickedCallback(hObject, eventdata, handles) 
global StopByUser  FSSettings 
 set(findobj(gcf,'Tag','ListSelFeats'), 'String', []); 
axes(handles.FeatSelCurve); cla reset; 
axes(handles.YelLinesAxes); cla reset; set(gca,'Visible','off', 'YDir','reverse');  
StopByUser = 0; 
guidata(hObject, handles); 
 FSSettings.FSMethod 
 if strcmp(FSSettings.FSMethod,'SFS')|| strcmp(FSSettings.FSMethod,'SFFS') 
[ResultMat, ConfMatOpt, Tlapse, handles.OptimumFeatureSet, OptimumCCR]= ForwSel_main(handles.file, 
FSSettings, handles); 
elseif strcmp(FSSettings.FSMethod,'ReliefF') 
[FeatureWeightsOrdered, FeaturesIndexOrdered, handles.OptimumFeatureSet] = ReliefF(handles.file, 
FSSettings,handles); 
elseif strcmp(FSSettings.FSMethod,'SBS') || strcmp(FSSettings.FSMethod,'SFBS') 
[ResultMat, ConfMatOpt, Tlapse, handles.OptimumFeatureSet, OptimumCCR]= BackSel_main(handles.file, 
FSSettings, handles); 
end 
handles.OptimumFeatureSet = sort(handles.OptimumFeatureSet); 
guidata(hObject, handles);                          
 % ----------------------------------------------------------------- 
function StopFeatSelButton_ClickedCallback(hObject, eventdata, handles) 
global StopByUser 
StopByUser = 1; 
guidata(hObject, handles); 
return 
%------------------------------------------------------------------ 
function ListSelFeats_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')); 
    set(hObject,'BackgroundColor','white'); 
end 
set(hObject,'String','None Selected yet'); 
 %------------------------------------------------------------------ 
function LoadAndClassifyButton_ClickedCallback(hObject, eventdata, handles) 
 handles.fileToClassify = uigetfile('*.mat'); 
PatternsToClassify = DataLoadAndPreprocess(handles.fileToClassify); 
 handles.PatternsToClassify = PatternsToClassify(:, handles.OptimumFeatureSet); 
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 NPatternsToClassify = size(PatternsToClassify,1);        
 if NPatternsToClassify >= 10    
 set(findobj(gcf,'Tag','ClassResSlider'), ... 
                 'Max', NPatternsToClassify,... 
                 'Min', 10, ... 
                 'Value', 10, ... 
       'SliderStep',[1 1]/(NPatternsToClassify-10),'Enable', 'on'); 
else                                     
  set(findobj(gcf,'Tag','ClassResSlider'), 'Enable', 'off'); 
end 
  handles.SliderValue = 10; 
 guidata(hObject, handles);                                     
DEMO('ClassifyAndPlot',guidata(gcbo)); 
guidata(hObject, handles); 
 %------------------------------------------------------------------ 
function ClassResSlider_Callback(hObject, eventdata, handles) 
handles.SliderValue = get(hObject,'Value'); 
guidata(hObject, handles); 
DEMO('ClassifyAndPlot',guidata(gcbo)); 
guidata(hObject, handles); 
 %------------------------------------------------------------------ 
function ClassResSlider_CreateFcn(hObject, eventdata, handles) 
if isequal(get(hObject,'BackgroundColor'), ... 
                          get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 %------------------------------------------------------------------ 
function ClassifyAndPlot(handles) 
PatternsToRunFS = handles.PatternsToRunFS(:, handles.OptimumFeatureSet); 
ProbsClass = BayesClassValidationSet(PatternsToRunFS, handles.TargetsToRunFS,   
handles.PatternsToClassify); 
NPatternsToClassify = size(ProbsClass,1);             
SumProbsClass       = sum(ProbsClass,2);        
for IndexPatterns = 1:NPatternsToClassify 
    ProbsClass(IndexPatterns,:) = ProbsClass(IndexPatterns, :) /SumProbsClass(IndexPatterns); 
end 
[Dummy, PredictionClass] = max(ProbsClass, [], 2); 
[NPatterns, CClasses]    = size(ProbsClass); 
axes(handles.ClassResAxes); cla reset;  
set(gca,'YDir','reverse','Color',[.925 .914 .847]); 
axis([-0.5 1.5 0.5 10.5]); 
CumProbsClass = [zeros(NPatterns,1) cumsum(ProbsClass,2)]; 
ColorsToUse   = 'rgbycmk'; 
YLocat        = 0; 
handles.SliderValue = 10 + NPatterns - ceil(handles.SliderValue); 
for IndexPattern = (handles.SliderValue-9):handles.SliderValue 
    YLocat = YLocat + 1; 
    if IndexPattern <= NPatterns 
        for IndexClass = 1:CClasses 
            hold on 
            text(-0.15, YLocat, num2str(IndexPattern), 'HorizontalAlignment', 'right'); 
            plot(CumProbsClass(IndexPattern, IndexClass:(IndexClass+1)),  Y  Locat*ones (1,2), 
ColorsToUse(IndexClass), 'LineWidth', 5); 
        end 
    end 
end 
text(-0.9  ,0.5,'Pattern #'); 
text(0.2   ,0.5,'P(x|\Omega_i)'); 
text(1     ,0.5,'Predict'); 
axis([-0.5 1.5 0.5 10.5]); 
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set(gca,'Visible','off'); 
drawnow 
axes(handles.ClassesLegendAxes); 
for IndexClass = 1:CClasses 
    text(0.1, IndexClass*0.5, ['Class ' num2str(IndexClass)], 'Color', ColorsToUse(IndexClass)); 
end 
axis([0 1.5 0.5 5])     
% ------------- Menu Functions ------------------------------------ 
function OpenDataMenu_Callback(hObject, eventdata, handles) 
DEMO('OpenDataFile_ClickedCallback',gcbo,[],guidata(gcbo)); 
function RunFsMenu_Callback(hObject, eventdata, handles) 
DEMO('RunFeatSelection_ClickedCallback',gcbo,[],guidata(gcbo)); 
function StopFSMenu_Callback(hObject, eventdata, handles) 
DEMO('StopFeatSelButton_ClickedCallback',gcbo,[],guidata(gcbo)); 
function StandardCrossMenu_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.ErrorEstMethod = 'Standard'; 
set(hObject,'Checked','on'); 
set(findobj(gcf,'Tag','ResubMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','ProposedACrossMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','ProposedABCrossMenu'),'Checked','off'); 
guidata(hObject, handles); 
function ProposedACrossMenu_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.ErrorEstMethod = 'ProposedA'; 
set(hObject,'Checked','on'); 
set(findobj(gcf,'Tag','ResubMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','ProposedABCrossMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','StandardCrossMenu'),'Checked','off'); 
guidata(hObject, handles); 
function ProposedABCrossMenu_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.ErrorEstMethod = 'ProposedAB'; 
set(hObject,'Checked','on'); 
set(findobj(gcf,'Tag','ResubMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','ProposedACrossMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','StandardCrossMenu'),'Checked','off'); 
guidata(hObject, handles); 
function ResubMenu_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.ErrorEstMethod = 'Resubstitution'; 
set(hObject,'Checked','on'); 
set(findobj(gcf,'Tag','ProposedABCrossMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','ProposedACrossMenu'),'Checked','off'); 
set(findobj(gcf,'Tag','StandardCrossMenu'),'Checked','off'); 
guidata(hObject, handles); 
%---------------- FS Menu Functions ------------------------------- 
function SFS_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.FSMethod  =  'SFS'; 
FS_Method_ClearAllChecks(hObject, handles) 
set(hObject,'Checked','on'); 
guidata(hObject, handles); 
function SFFS_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.FSMethod  = 'SFFS'; 
FS_Method_ClearAllChecks(hObject, handles) 
set(hObject,'Checked','on'); 
guidata(hObject, handles); 
function ReliefF_Callback(hObject, eventdata, handles) 
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global FSSettings 
FSSettings.FSMethod  = 'ReliefF';            
FS_Method_ClearAllChecks(hObject, handles) 
set(hObject,'Checked','on'); 
guidata(hObject, handles); 
function SBS_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.FSMethod  =  'SBS'; 
FS_Method_ClearAllChecks(hObject, handles) 
set(hObject,'Checked','on'); 
guidata(hObject, handles); 
function SFBS_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings.FSMethod  = 'SFBS';  
FS_Method_ClearAllChecks(hObject, handles) 
set(hObject,'Checked','on'); 
guidata(hObject, handles); 
function FS_Method_ClearAllChecks(hObject, handles) 
set(findobj(gcf,'Tag','ReliefF'),'Checked','off'); 
set(findobj(gcf,'Tag','SFFS'),'Checked','off'); 
set(findobj(gcf,'Tag','SFS'),'Checked','off'); 
set(findobj(gcf,'Tag','SFBS'),'Checked','off'); 
set(findobj(gcf,'Tag','SBS'),'Checked','off'); 
guidata(hObject, handles); 
%------------------------------------------------------------------ 
function SettingsMenu_Callback(hObject, eventdata, handles) 
global FSSettings 
FSSettings = SettingsMenuFig; 
 
3- MATLAB code for GA-based feature selection  
 
function Feat_Index =  Genetic_Algorithm 
clear all 
% global Data  
Data  = load('Dataset.mat'); % This is available in Mathworks 
GenomeLength =8; % This is the number of features in the dataset 
tournamentSize = 2; 
options = gaoptimset('CreationFcn', {@PopFunction},... 
                     'PopulationSize',50,... 
                     'Generations',100,... 
                     'PopulationType', 'bitstring',...  
                     'SelectionFcn',{@selectiontournament,tournamentSize},... 
                     'MutationFcn',{@mutationuniform, 0.1},... 
                     'CrossoverFcn', {@crossoverarithmetic,0.8},... 
                     'EliteCount',2,... 
                     'StallGenLimit',100,... 
                     'PlotFcns',{@gaplotbestf},...   
                     'Display', 'iter');  
rand('seed',1) 
nVars = 8; %  
FitnessFcn = @FitFunc_KNN;  
[chromosome,~,~,~,~,~] = ga(FitnessFcn,nVars,options); 
Best_chromosome = chromosome; % Best Chromosome 
Feat_Index = find(Best_chromosome==1); % Index of Chromosome 
end 
%%% POPULATION FUNCTION 
function [pop] = PopFunction(GenomeLength,~,options) 
pop = (rand(options.PopulationSize, GenomeLength)> RD); % Initial Population 
end 
%%% FITNESS FUNCTION   You may design your own fitness function here 
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function [FitVal] = FitFunc_KNN(pop) 
% global Data 
Data  = load('vvv.mat'); 
FeatIndex = find(pop==1); %Feature Index 
X1 = Data.X;% Features Set 
Y1 = grp2idx(Data.Y);% Class Information 
X1 = X1(:,[FeatIndex]); 
NumFeat = numel(FeatIndex); 
Compute = ClassificationKNN.fit(X1,Y1,'NSMethod','exhaustive','Distance','euclidean');  
Compute.NumNeighbors = 3; % kNN = 3 
FitVal = resubLoss(Compute)/(34-NumFeat); 
end 


