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CUTFEM METHOD FOR STEFAN--SIGNORINI PROBLEMS WITH
APPLICATION IN PULSED LASER ABLATION\ast 

SUSANNE CLAUS\dagger , SAMUEL BIGOT\dagger , AND PIERRE KERFRIDEN\dagger 

Abstract. In this article, we develop a cut finite element method for one-phase Stefan problems
with applications in laser manufacturing. The geometry of the workpiece is represented implicitly
via a level set function. Material above the melting/vaporization temperature is represented by a
fictitious gas phase. The moving interface between the workpiece and the fictitious gas phase may
cut arbitrarily through the elements of the finite element mesh, which remains fixed throughout the
simulation, thereby circumventing the need for cumbersome remeshing operations. The primal/dual
formulation of the linear one-phase Stefan problem is recast into a primal nonlinear formulation using
a Nitsche-type approach, which avoids the difficulty of constructing inf-sup stable primal/dual pairs.
Through the careful derivation of stabilization terms, we show that the proposed Stefan--Signorini--
Nitsche CutFEM method remains stable independently of the cut location. In addition, we obtain
optimal convergence with respect to space and time refinement. Several 2D and 3D examples are
proposed, highlighting the robustness and flexibility of the algorithm, together with its relevance to
the field of micromanufacturing.
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1. Introduction. The simulation of phase changes requires tracking the evo-
lution of solid/liquid and liquid/gas interfaces, which is numerically challenging. In
the context of the finite element method (FEM), two main approaches for interface
tracking can be distinguished. The first family of approaches smooths the transition
between phases, allowing for the existence of a mushy region in space where both
phases coexist (i.e., the enthalpy method [62, 25, 3, 24] and the phase field method
[57, 64]). The width of this region may be thought of as a trade-off between computa-
tional cost, which is lower for fatter transition zones, and modeling accuracy, whereby
the ``true"" model corresponds to an infinitely thin transition zone. The second ap-
proach describes the interface between phases as a sharp surface in 3D or a line in
2D. Although this may seem to be the ``natural"" approach to interface tracking, the
sharp interface approach is difficult to handle within a finite element context. Indeed,
either the mesh needs to conform to this interface, leading to a class of moving mesh
algorithms such as ALE, or special finite element methods need to be developed so
as to allow the interface to cut through the element. The latter family of methods
are the so-called implicit boundary methods (see, for instance, [47, 6, 7, 31, 37, 10]),
which are of prime interest in this paper.

The XFEM method was proposed in [47] and relies on a partition-of-unity enrich-
ment to represent embedded kinks and discontinuities. The XFEM method has been
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applied to the simulation of two-phase Stefan problems in, e.g., [45, 15, 63, 28, 53, 4,
22, 44, 39]. In this case, the interface between solid and liquid moves through a regular
background mesh, which may be refined around the interface for accuracy purposes,
but does not need to conform to it. XFEM methods offer increased efficiency and ro-
bustness as they do not require the cumbersome remeshing operations that are used
in mesh-moving algorithms to prevent the development of prohibitively large mesh
deformations. As an alternative to XFEM, the CutFEM approach [36, 37, 10] also
enriches elements in order to allow for the representation of embedded discontinu-
ities. However, the enrichment is obtained by an overlapping domain-decomposition
strategy (i.e., a ``fictitious domain"" approach). The strength of CutFEM lies in its
stability, which is provided by the so-called ghost-penalty regularization [9]. As far as
we are aware, CutFEM has never been applied to Stefan problems.

In this paper, we are interested in a particular subclass of phase change problems
with sharp interface representation: the one-phase Stefan problem. In this particular
setting, only one of the phases is represented and the other phase is replaced by a
fictitious material with zero specific heat. Subsequently, the fictitious phase does not
contribute to the energy balance. The interface between the represented phase and the
fictitious phase is moved so that the flux at the boundary of the represented domain is
balanced by a latent heat term. It is possible to include a nonzero energy flux applied
locally at the phase change interface. This is routinely done in laser manufacturing to
simulate the irradiation of the ablated material (see [58]). The boundary conditions
of the one-phase Stefan problem are ambiguous and can be treated mathematically
using the same tools that are used to formulate unilateral contact in solid mechanics.
Mathematical considerations relative to the Stefan--Signorini problem can be found
in [30, 40, 60].

Very few implicit boundary methods have been developed for one-phase Ste-
fan problems. One exception is the elegant Stefan--Signorini formulation proposed
in [50] for the simulation of thermal plasma cutting, associated with an implicit
representation of the domain boundary through the evolution of a level-set func-
tion. However, unilateral contact problems have been extensively studied in XFEM
[26, 42, 52, 29, 32, 48] and CutFEM [21, 12]. Typical embedded interface formulations
of contact laws include the penalty method, the Lagrange multiplier approach, and
the Nitsche-contact formulation, which was recently proposed in [17]. Lagrange mul-
tiplier approaches are usually solved by either the augmented Lagrangian algorithm
[61, 51, 13], the Uzawa algorithm, or the LaTIn approach [41, 1, 21], all of them
being some form of proximal algorithm. Alternatively, the Nitsche-contact formula-
tion reformulates the KKT primal/dual contact problem as a purely primal nonlinear
problem that can be solved by Newton algorithms [14, 17, 18, 16]. The Nitsche-
contact algorithm promises consistency, while circumventing the cumbersome choice
of an inf-sup stable pair for the primal and dual finite element spaces.

In this paper, we present the first CutFEM algorithm for phase-change problems
with sharp embedded representation of moving interfaces. The proposed algorithm is
highly flexible owing to the implicit description of the domain geometry by a level-set
function. The most novel part of the algorithm resides in rewriting the primal/dual
condition associated with the interface of the one-phase Stefan--Signorini problem
using a dedicated Nitsche reformulation, inspired by [14, 17] and presented in sections
2 and 3. Noteworthily, we provide the expression of the tangent operator required
to deploy the Newton algorithm. In addition, our derivation of the Nitsche--Signorini
formulation of the Stefan problem departs from those proposed in [16, 14] and provides
new insights into this emerging approach. Consistently with the CutFEM paradigm,
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Fig. 1. Schematics of a one-phase Stefan problem with energy flux I heating material \Omega at \Gamma .

cut elements are regularized using ghost penalties [9], which are carefully adapted to
the context of the one-phase Stefan--Signorini problem. We pay particular attention to
the mathematical scaling of all stabilization terms so as to obtain the optimal trade-
off between stability and accuracy. This is described in section 4. Our numerical time
integration procedure is relatively classical: we use an implicit Euler algorithm to
solve the unsteady temperature equation. At every time step, the interface is moved
by advecting the level-set function using the velocity field delivered by the Nitsche--
Signorini algorithm and extended to the entire domain using the fast-marching method
[56]. The advection of the level-set function is stabilized by the streamline upwind
Petrov--Galerkin (SUPG) method [8]. This is detailed in section 5. An alternative
approach where the authors use an upwind finite-difference scheme to update the
level-set can be found in [27].

Our formal developments are accompanied by a high-performance computer im-
plementation. The core of our implementation is the finite element C++/Python
library FEniCS [2, 35], which, in particular, proposes a range of high-level tools to
rapidly developed finite element solvers. The CutFEM C++ library, LibCutFEM,
partially described in [10], defines additional tools that are specific to unfitted finite
elements. This library forms the basis for the CutFEM Stefan--Signorini code used in
this article.

Several 2D and 3D examples are presented in section 6, with particular relevance
to engineers interested in the simulation of laser micromilling. We first derive a
new 2D manufactured analytical solution for the one-phase Stefan--Signorini problem,
which we use to validate our numerical algorithm and show optimal convergence. In
particular, we show that the convergence of the proposed algorithm is optimal: order
two in space and order one in time. We then move to the 2D simulation of a pulsed
laser ablation process, where we compare the effect of different pulse frequencies on
the finishing quality of the ablated surface. Our first 3D example is the simulation of
a laser drilling operation, where the laser irradiates the material. Finally, we present a
3D example of laser milling, where material is removed by the laser through a complex
path, following a layer-by-layer removal strategy.

2. The Stefan--Signorini problem. Let us assume that an energy flux I(x, t)
(laser beam) heats a piece of material occupying domain \Omega (t) in \BbbR d (d = 2 or 3) in
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the time interval t \in [t0, tf ]. Here, t0 is the initial time and tf is the final time. The
boundary of \Omega (t), denoted by \partial \Omega (t), is decomposed into a Dirichlet part \partial \Omega D and a
Neumann part \partial \Omega N as well as a moving boundary \Gamma (t) (see Figure 1). The boundary
\Gamma (t) can be interpreted as an interface between a heated material and the fictitious
fluid and gas phase, which will not be represented explicitly. Instead we assume that
material above the melting temperature is instantaneously removed, latent heat being
consumed in the process.

The Stefan--Signorini problem describing the heat conduction and removal of ma-
terial can then be formulated as follows: For all t \in [t0, tf ], find the temperature
T : \Omega (t) \rightarrow \BbbR such that

(2.1) \rho c
\partial T

\partial t
 - k\Delta T = f in \Omega (t)

with boundary conditions

(2.2)
T = TD on \partial \Omega D(t),

k\nabla T \cdot n\Omega = qN on \partial \Omega N (t) ,

together with the evolution equation for interface \Gamma (t) between the fictitious material
and the heated material

(2.3) I(x, t) \cdot n\Gamma  - k\nabla T \cdot n\Gamma =  - \rho L (v(x, t) \cdot n\Gamma ) on \Gamma (t)

and the associated Signorini conditions

(2.4)

k\nabla T \cdot n\Gamma  - I \cdot n\Gamma \leq 0 on \Gamma (t),

T  - Tm \leq 0 on \Gamma (t),

(k\nabla T \cdot n\Gamma  - I \cdot n\Gamma ) \bot (T - Tm) on \Gamma (t),

and the initial condition

(2.5) T (x, t0) = T0 in \Omega (t0),

where T0 is a specified initial temperature with T0 < Tm. Here, \rho is the mass density,
c is the heat capacity, k is the thermal conductivity, f is a volumetric heat source, TD

is a given temperature, qN is a given heat flux, L is the latent heat, v is the velocity
of the phase boundary \Gamma (t), Tm is the melting temperature, and I is the prescribed
heat flux given by the profile

(2.6) I(x, t) = A(x, t) eray(x, t),

where A is the amplitude of the laser beam and eray is the direction of the beam.

Remark 2.1. The Signorini conditions (2.4) ensure that material is only removed
if it reaches melting temperature and that material is only removed and not added.
It can be interpreted as enforcing either

(a) T = Tm and \rho L v(x, t) \cdot n\Gamma \leq 0, i.e., the material is heated to melting tem-
perature and material is removed in the normal direction to the interface with speed
v(x, t),

or
(b) T < Tm and \rho L v(x, t) \cdot n\Gamma = 0, i.e., the material does not reach melting

temperature and hence no material is removed.
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3. Signorini--Nitsche reformulation of the one-phase Stefan problem.

3.1. Primal/dual weak formulation of the Stefan--Signorini problem.
The weak formulation of the Stefan--Signorini problem reads as follows: For all t \in 
[t0, tf ], find T \in H1

D(\Omega (t)) such that, for all \delta T \in H1
0 (\Omega (t)),

(3.1)

\rho c

\biggl( 
\partial T

\partial t
, \delta T

\biggr) 
\Omega (t)

+ (k\nabla T, \nabla \delta T )\Omega (t) = (f, \delta T )\Omega (t) + (k\nabla T \cdot n\Gamma , \delta T )\Gamma (t) + (qN , \delta T )\partial \Omega N (t) ,

together with (2.3), (2.4), and (2.5). Here,

H1
D(\Omega (t)) = \{ T \in H1(\Omega (t)) : T = TD on \partial \Omega D(t)\} ,

H1
0 (\Omega (t)) = \{ T \in H1(\Omega (t)) : T = 0 on \partial \Omega D(t)\} .(3.2)

In order to facilitate the treatment of Signorini conditions (2.4), we introduce a slack
variable

(3.3) \sigma := k\nabla T \cdot n\Gamma  - I \cdot n\Gamma ,

which yields the weak form

\rho c

\biggl( 
\partial T

\partial t
, \delta T

\biggr) 
\Omega (t)

+ (k\nabla T, \nabla \delta T )\Omega (t) = (f, \delta T )\Omega (t) + (qN , \delta T )\partial \Omega N (t)

+ (\sigma , \delta T )\Gamma (t) + (I \cdot n\Gamma , \delta T )\Gamma (t)(3.4)

with the modified Signorini conditions

(3.5)

\sigma \leq 0 on \Gamma (t),

T  - Tm \leq 0 on \Gamma (t),

\sigma \bot (T - Tm) on \Gamma (t).

We define bilinear form

(3.6) a(T, \delta T ) := \rho c

\biggl( 
\partial T

\partial t
, \delta T

\biggr) 
\Omega (t)

+ (k\nabla T, \nabla \delta T )\Omega (t)

and linear form

(3.7) l(\delta T ) := (f, \delta T )\Omega (t) + (qN , \delta T )\partial \Omega N (t) + (I \cdot n\Gamma , \delta T )\Gamma (t) .

The weak formulation of the Stefan--Signorini problem then reads as follows: For all
t \in [t0, tf ], find T \in H1

D(\Omega (t)) such that, for all \delta T \in H1
0 (\Omega (t)),

(3.8) a(T, \delta T ) - (\sigma , \delta T )\Gamma (t) = l(\delta T )

with the Signorini law (3.5) and (2.3) and initial conditions (2.5). Existence and
uniqueness of the Stefan--Signorini problem are discussed in [30, 49].

3.2. Nonlinear Nitsche reformulation. First, following [23, 18, 14], let us
reformulate the Signorini law (3.5) as

(3.9) \sigma =  - 1

\gamma 
[(T  - Tm) - \gamma \sigma ]+ ,
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where \gamma is a positive penalty parameter and [\cdot ]+ denotes the positive part of a scalar
quantity x \in \BbbR , i.e.,

(3.10) [x]+ =

\Biggl\{ 
x if x > 0,

0 otherwise.

Remark 3.1. The equivalence of (3.9) and (3.5) can be proved by enumeration.
Let us first show that (3.9) implies (3.5). Consider the following two complemen-

tary cases.
Case 1: [(T  - Tm)  - \gamma \sigma ] \geq 0 \Rightarrow \sigma =  - 1

\gamma ((T  - Tm)  - \gamma \sigma ) \Rightarrow T  - Tm = 0.

Now, returning to the first statement, [0  - \gamma \sigma ] \geq 0 also indicates that \sigma \leq 0. As
\sigma \cdot (T  - Tm) = \sigma \cdot 0 = 0, the Signorini law (3.5) is satisfied in case 1.

Case 2: [(T  - Tm) - \gamma \sigma ] \leq 0 \Rightarrow \sigma = 0. Now, returning to the previous statement,
[(T  - Tm) - \gamma 0] \leq 0 means that quantity T  - Tm, which can be nonzero, is necessarily
negative. Finally \sigma \cdot (T  - Tm) = 0 \cdot (T  - Tm) = 0, and therefore Signorini law (3.5) is
satisfied in case 2. These two cases are illustrated in Figure 2.

Let us now show that (3.5) implies (3.9). Consider the following three cases.
Case 1: \sigma < 0. Owing to the consistency condition, this can only happen when

T  - Tm = 0. Therefore, we can write \sigma =  - 1
\gamma ( - \gamma \sigma ) =  - 1

\gamma [0 - \gamma \sigma ]+ =  - 1
\gamma [T  - Tm  - 

\gamma \sigma ]+.
Case 2: T  - Tm < 0. This can only happen when \sigma = 0. Therefore, we can write

that \sigma = 0 =  - 1
\gamma [T  - Tm]+ =  - 1

\gamma [T  - Tm  - \gamma \sigma ]+.
Case 3: The last possible scenario is \sigma = T  - Tm = 0. In this case, we can write

that \sigma = 0 =  - 1
\gamma [0]+ =  - 1

\gamma [T  - Tm  - \gamma \sigma ]+.

T � Tm

�

1

�

case 1

case 2

Fig. 2. Illustration of the different formulations of the Signorini law.

A Nitsche formulation of the Stefan--Signorini problem (3.8) is obtained by re-
placing slack variable \sigma by its expression as a function of the primal variable T ,

(3.11) \sigma (T ) =  - 1

\gamma 
[(T  - Tm) - \gamma (k\nabla T \cdot n\Gamma  - I \cdot n\Gamma )]+ .

A penalty term enforcing this expression weakly can be formulated as follows:

(3.12) s\heartsuit (T, \delta T ) :=
\int 
\Gamma (t)

((k\nabla T \cdot n\Gamma  - I \cdot n\Gamma ) - \sigma (T )) (\theta 1\delta T  - \theta 2\gamma k\nabla \delta T \cdot n\Gamma ) d\Gamma ,
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where the choice of \theta 1 \in \{ 0, 1\} and \theta 2 \in \{  - 1, 0, 1\} leads to a family of different meth-
ods as detailed below. Finally, the proposed Stefan--Signorini--Nitsche formulation
reads

(3.13) a(T, \delta T ) - (k\nabla T \cdot n\Gamma  - I \cdot n\Gamma , \delta T )\Gamma (t) + s\heartsuit (T, \delta T ) = l(\delta T ) .

To simplify the notation, let us define

(3.14) P\gamma (T ) := (T  - Tm) - \gamma (k\nabla T \cdot n\Gamma  - I \cdot n\Gamma )

and the parametrized variation of this quantity, which we define as

(3.15) P \delta 
\theta \gamma (\delta T ) := \theta 1\delta T  - \gamma \theta 2 k\nabla \delta T \cdot n\Gamma .

Using these notations, the penalty term s\heartsuit reads as

(3.16) s\heartsuit (T, \delta T ) =
\int 
\Gamma (t)

\biggl( 
(k\nabla T \cdot n\Gamma  - I \cdot n\Gamma ) +

1

\gamma 
[P\gamma (T )]+

\biggr) 
P \delta 
\theta \gamma (\delta T )d\Gamma .

And the proposed Nitsche formulation can be expressed as a sum of linear and non-
linear terms,
(3.17)
a(T, \delta T )+

\bigl( 
k\nabla T \cdot n\Gamma , P

\delta 
\theta \gamma (\delta T ) - \delta T

\bigr) 
\Gamma (t)

+\scrN (T, \delta T ) = l(\delta T )+
\bigl( 
I \cdot n\Gamma , P

\delta 
\theta \gamma (\delta T ) - \delta T

\bigr) 
\Gamma (t)

,

where

(3.18) \scrN (T, \delta T ) =
1

\gamma 

\Bigl( 
[P\gamma (T )]+ , P \delta 

\theta \gamma (\delta T )
\Bigr) 
\Gamma (t)

.

We emphasize the fact that \scrN is nonlinear in its first argument.
Three interesting Nitsche formulations are obtained by choosing particular values

for the (\theta 1, \theta 2) pair, as follows.
\bullet \theta 1 = 1 and \theta 2 = 1, \gamma > 0: Symmetric Nitsche method.
\bullet \theta 1 = 1 and \theta 2 =  - 1, \gamma > 0: Nonsymmetric Nitsche method. A closely re-
lated formulation was proposed in [18] to solve problems of unilateral contact
between deformable solids. It was shown that, as opposed to the symmetric
Nitsche formulation, the stability of this nonsymmetric variant is preserved
irrespectively of the value of Nitsche parameter \gamma .

\bullet \theta 1 = 1 and \theta 2 = 0, \gamma > 0: Consistent penalty formulation as described in
[23].

\bullet \theta 1 = 0 and \theta 2 =  - 1: Semi penalty-free Nitsche method. A closely related for-
mulation was derived in the context of Signorini--Poisson problems in [14]. In
this setting, the method is stable irrespectively of \gamma . The term ``penalty-free""
indicates that condition T = Tm is enforced with the penalty-free Nitsche
method (i.e., nonsymmetric Nitsche method without penalty term). How-
ever, \gamma is the scaling of a penalty term that enforces the Neumann interface
condition when T < Tm.

In this article, we focus on the (semi) penalty-free Nitsche method. Our motivation is
that, at least in the context of equality constraints, the penalty-free Nitsche method
yields better interface fluxes than the symmetric and nonsymmetric Nitsche method,
as was shown in [5]. Interface fluxes are of particular importance in the Stefan--
Signorini problem because they drive the motion of the interface when T = Tm.
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4. Stabilized cut finite element formulation. In this section, we introduce
the spatial and temporal finite element discretization of problem (3.17).

4.1. Discretization in space.

4.1.1. Background mesh and fictitious domain. First, let us introduce im-
portant background mesh quantities and the definition of the evolving fictitious do-
main. Let \Omega (t0) be our domain in \BbbR d (d = 2, 3) at time t = t0 with Lipschitz boundary
\partial \Omega and let \~\scrT h be a quasi-uniform tesselation that covers the domain \Omega (t0). We define
a background domain

(4.1) \Omega b =
\bigcup 

K\in \~\scrT h

K

associated with our fixed tesselation \~\scrT h. The background mesh \~\scrT h will stay fixed in
time while the interface \Gamma (t) will move through this background mesh. For t \in [t0, tf ],

we denote the elements in the background mesh \~\scrT h that have at least a small part in
domain \Omega (t) as

(4.2) \scrT h(t) = \{ K \in \~\scrT h : K \cap \Omega (t) \not = \emptyset \} ,

which we call active mesh (see the gray and green shaded elements in Figure 3; color
available online). In contrast to the background mesh, the active mesh changes in
time. We denote the union of all elements in \scrT h(t) as

(4.3) \Omega \ast (t) =
\bigcup 

K\in \scrT h(t)

K.

\Omega \ast (t) is called the fictitious domain.
In addition to these time-evolving domains and meshes, we have edge stabilization

quantities that change in time. For each active mesh at time t \in [t0, tf ], we will
distinguish between the following different sets of faces, i.e., edges in 2D and faces in
3D. The exterior faces, \scrF e(t), are the faces that belong to one element only in the
background mesh and that have an intersection with the active mesh. The interior
faces, \scrF i(t), are faces that are shared by two elements with K \cap \Omega (t) \not = \emptyset .

To prevent ill-conditioning, we will apply stabilization terms to the elements which
are intersected by the boundary \Gamma (t), i.e.,

(4.4) Gh(t) = \{ K \in \scrT h(t) : K \cap \Gamma (t) \not = \emptyset \} .

These stabilization terms will be applied to so-called ghost-penalty faces defined as

(4.5) \scrF \Gamma (t) = \{ F \in \scrF i(t) : K+
F \cap \Gamma (t) \not = \emptyset \vee K - 

F \cap \Gamma (t) \not = \emptyset \} .

Here, K+
F and K - 

F are the two elements sharing the interior face F \in \scrF i(t). The set
of faces \scrF \Gamma (t) is illustrated by the dark green edges shown in Figure 3. To ensure that
the boundary \Gamma (t) is reasonably resolved by \scrT h, we make the following assumptions:

\bullet G1: The intersection between \Gamma (t) and a face F \in \scrF i(t) is simply connected;
that is, \Gamma (t) does not cross an interior face multiple times.

\bullet G2: For each element K intersected by \Gamma (t), there exist a plane SK and a
piecewise smooth parametrization \Phi : SK \cap K \rightarrow \Gamma (t) \cap K.
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Γ(t)

Ω∗(t)

Fig. 3. Schematics of the domain \Omega (t) covered by a fixed and regular background mesh \~\scrT h and
the fictitious domain \Omega \ast (t) consisting of all elements in \~\scrT h with at least one part in \Omega (t).

\bullet G3: We assume that there is an integer N > 0 such that for each element
K \in Gh(t) there exist an element K \prime \in \scrT h(t) \setminus Gh(t) and at most N elements
\{ K\} Ni=1 such that K1 = K, KN = K \prime , and Ki\cap Ki+1 \in \scrF i(t), i = 1, . . . N - 1.
In other words, the number of faces to be crossed in order to ``walk"" from a
cut element K to a noncut element K \prime \subset \Omega (t) is uniformly bounded.

Similar assumptions were made in [36, 11].

4.1.2. Nonconforming spatial discretization of the Stefan--Signorini prob-
lem. Using the sets of mesh elements and faces defined above, we can formulate the
discrete Stefan--Signorini problem. First, we introduce the continuous linear finite
element space on the active mesh

\scrV h(t) =
\bigl\{ 
vh \in C0(\Omega \ast (t)) : vh| K \in \scrP 1(K)\forall K \in \scrT h(t)

\bigr\} 
(4.6)

for the temperature.
Second, we define a stabilization operator on the faces \scrF \Gamma (t) for the temperature

T to prevent ill-conditioning in the case of intersections of \Gamma (t) near a node or face of
elements as

(4.7) sT (Th, \delta Th) =
\sum 

F\in \scrF \Gamma (t)

\gamma T k h (J\nabla ThKn , J\nabla \delta ThKn)F .

Here, J\nabla xKn denotes the normal jump of the quantity x over the face, F , defined
as J\nabla xKn = \nabla x| T+

F
nF  - \nabla x| T - 

F
nF , where nF denotes a unit normal to the face F

with fixed but arbitrary orientation, and \gamma T is a positive penalty parameter to be
determined later. We refer to the term sT (Th, \delta Th) as ghost-penalty stabilization [9].
Using the definitions above, we are now in the position to formulate our stabilized
cut finite element method for the one-phase Stefan--Signorini problem. The proposed
discretization scheme reads as follows: For all t \in [t0, tf ], find Th \in \scrV h(t) such that
for all \delta Th \in \scrV h(t)

(4.8) A(Th, \delta Th) +\scrN (Th, \delta Th) = L(\delta Th) ,
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where
(4.9)

A(Th, \delta Th) = a(Th, \delta Th) + abc(Th, \delta Th) + sT (Th, \delta Th) +
\Bigl( 
k\nabla Th \cdot n\Gamma , P

\delta 
\theta \gamma (\delta Th) - \delta Th

\Bigr) 
\Gamma h(t)

,

L(\delta Th) = l(\delta Th) + lbc(Th, \delta Th) +
\Bigl( 
I \cdot n\Gamma , P

\delta 
\theta \gamma (\delta Th) - \delta Th

\Bigr) 
\Gamma h(t)

,

\scrN (Th, \delta Th) =
1

\gamma 

\Bigl( 
[P\gamma (Th)]+ , P \delta 

\theta \gamma (\delta Th)
\Bigr) 
\Gamma h(t)

,

with

a(Th, \delta Th) =\rho c

\biggl( 
\partial Th

\partial t
, \delta Th

\biggr) 
\Omega h(t)

+ (k\nabla Th, \nabla \delta Th)\Omega h(t) ,

(4.10)

l(\delta Th) = (f, \delta Th)\Omega h(t) + (qN , \delta Th)\partial \Omega N (t) + (I \cdot n\Gamma , \delta Th)\Gamma h(t) ,
(4.11)

abc(Th, \delta Th) = - (k\nabla Th \cdot n\Omega , \delta Th)\partial \Omega D(t)  - (k\nabla \delta Th \cdot n\Omega , Th)\partial \Omega D(t) +
k\gamma b
h

(Th, \delta Th)\partial \Omega D(t) ,

(4.12)

lbc(Th, \delta Th) = - (k\nabla \delta Th \cdot n\Omega , TD)\partial \Omega D(t) +
k\gamma b
h

(TD, \delta Th)\partial \Omega D(t) .

(4.13)

Here, the positive penalty constant \gamma b arises from the weak enforcement of Dirichlet
boundary conditions through Nitsche's method and h = maxK\in \scrT h

hK is the maximum
mesh size, where hK denotes the diameter of K. The penalty parameter \gamma is now
scaling as \gamma = \^\gamma h with \^\gamma > 0 chosen to be sufficiently small.

The discretized Stefan--Signorini problem is completed with initial conditions

(4.14) Th(x, t0) = \^\scrI (T0) in \Omega h(t0),

and the condition on the normal velocity of the boundary \Gamma (t),

(4.15) v \cdot n\Gamma =
k\nabla Th \cdot n\Gamma  - I \cdot n\Gamma 

\rho L
,

whose discretization will be discussed in detail in section 5. In (4.14), \^\scrI is the standard
finite element nodal interpolation operator. Note that it is implicitly assumed that
field T0 is analytically available in the entire fictitious domain.

4.2. Discretization in time. We decompose the time interval [t0, tf ] into nt

time steps, and we seek a sequence of solutions \{ T (tn)\} n\in J0 nt - 1K =: \{ Tn\} n\in J0 nt - 1K.
The reference time t0 is chosen to be equal to 0. We assume that times \{ tn\} n\in \{ 0,..., nt - 1\} 
are uniformly spaced, which allows us to define the time step \Delta t = t1 - t0(= t2 - t1 =
. . .). We apply a backward Euler scheme to the system (4.8) and evaluate integrals
over the domain \Omega h(tn) and the boundary \Gamma h(tn). This time discretization yields the
fully discrete system of equations at time step n + 1: Find Tn+1 \in \scrV h(tn) such that
for all \delta T \in \scrV h(tn)

(4.16) A\sharp (T
n+1
h , \delta T ) +\scrN (Tn+1

h , \delta T ) = L\sharp (\delta T ) ,
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where

(4.17)

A\sharp (T
n+1
h , \delta Th) = a\sharp (T

n+1
h , \delta Th) + abc(T

n+1
h , \delta Th)

+sT (T
n+1
h , \delta Th) +

\bigl( 
k\nabla Tn+1

h \cdot n\Gamma , P
\delta 
\theta \gamma (\delta Th) - \delta Th

\bigr) 
\Gamma h(tn)

,

L\sharp (\delta Th) = L(\delta T ) + \rho c

\biggl( 
Tn
h

\Delta t
, \delta Th

\biggr) 
\Omega h(tn)

with

a\sharp (T
n+1
h , \delta Th) =\rho c

\biggl( 
Tn+1
h

\Delta t
, \delta Th

\biggr) 
\Omega h(tn)

+ (k\nabla Th, \nabla \delta Th)\Omega h(tn)
.(4.18)

4.3. Newton--Raphson algorithm. We solve the previous system (4.16) us-
ing a semismooth Newton--Raphson algorithm. We linearize the semilinear form \scrN 
around a finite element reference temperature T  \star 

h \in \scrV h(tn). This is done by writing
the Taylor expansion, for any \delta T \in \scrV h(tn),

(4.19) \scrN (Th, \delta T ) = \scrN (T  \star 
h , \delta T ) +D\scrN (Th  - T  \star 

h , \delta T ;T
 \star 
h ) ,

where Th \in \scrV h(tn) and \scrD \scrN is the G\^ateaux-derivative of \scrN , which is defined, for any
finite element field dTh \in \scrV h(tn), by

(4.20) \scrD \scrN (dTh, \delta T ;T
 \star 
h ) = lim

z\rightarrow 0

1

z
(\scrN (T  \star 

h + z dTh, \delta T ) - \scrN (T  \star 
h , \delta T )) .

Identifying the temperature increment dTh = Th  - T  \star 
h \in \scrV h(tn), we find that

(4.21) \scrD \scrN (dTh, \delta T ;T
 \star 
h ) =

1

\gamma 

\bigl( 
\scrD G(dTh;T

 \star 
h ), P

\delta 
\theta \gamma (\delta T )

\bigr) 
\Gamma (tn)

,

where \scrD G( . ;T  \star 
h ) is the G\^ateaux-derivative of G(T ) := [P\gamma (T )]+ at T  \star 

h , which is given
by

(4.22) \scrD G(dTh;T
 \star 
h ) = H(P\gamma (T

 \star 
h )) (dTh  - \gamma k\nabla dTh \cdot n\Gamma ) ,

where H is the Heaviside function

(4.23) H(P\gamma (T
 \star 
h )) =

\Biggl\{ 
1 if P\gamma (T

 \star 
h ) > 0,

0 otherwise.

Using these derivations, the Newton predictor for the (k+1)th iterate T k+1
h of Tn+1

h ,
for any k \in \BbbN + and for all \delta T \in \scrV h(tn), is given by

(4.24) A\sharp (dTh, \delta T ) +\scrD \scrN (dTh, \delta T ;T
k
h ) = r(\delta T ;T k

h ) ,

where the Newton increment is defined as dTh := T k+1
h  - T k

h and the residual r of
iterate T k

h is such that for any \delta T \in \scrV h(tn)

(4.25) r(\delta T ;T k
h ) = L\sharp (\delta T ) - 

\bigl( 
A\sharp (T

k
h , \delta T ) +\scrN (T k

h , \delta T )
\bigr) 
.

5. Description of the domain movement. In this section, we describe how
domain \Omega (t) is discretized and evolved in time. For each time-step, t \in [t0, tf ], we first
solve (4.16) to obtain the temperature Tn+1

h , with which we determine the normal
velocity on \Gamma (tn), i.e.,

(5.1) vn+1 \cdot n\Gamma =
k\nabla Tn+1 \cdot n\Gamma  - I \cdot n\Gamma 

\rho L
on \Gamma (tn).

Then, this normal velocity on \Gamma (tn) is used to move a level-set function as detailed
below.
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5.1. Level-set description of the moving domain and level-set advec-
tion. We track the motion of the boundary \Gamma (t) using a continuous level-set function
\phi : \Omega b \times [t0, tf ] \rightarrow \BbbR , whose zero level-set describes the location of the boundary
\Gamma (t) = \{ x \in \Omega b : \phi (x, t) = 0, t \in [t0, tf ]\} . The material domain \Omega (t) is implicitly
defined by \phi (x, t) < 0, and the fictitious domain by \phi (x, t) > 0.

To satisfy (5.1), the zero level-set contour is required to move with vn+1 \cdot n\Gamma .
Furthermore, as the level-set function is defined over the entire background domain
\Omega b, the velocity at the interface (5.1) needs to be extended to the remainder of the
domain (or at least to a band around the zero isoline of the level-set) to evolve the
level-set function. We denote this extension of the velocity with vext.

Then, the level-set function is moved by solving the advection problem

(5.2)
\partial \phi 

\partial t
+ vext \cdot \nabla \phi = 0

with initial condition \phi (x, 0) = \phi 0. Here, \phi 0 is a given initial level-set description of
the domain \Omega (t0). We discretize the level-set function using a continuous quadratic
finite element space defined on the entire background mesh \~\scrT h denoted by

(5.3) \scrW h :=
\Bigl\{ 
vh \in C0(\Omega b) : vh| K \in \scrP 2(K)\forall K \in \~\scrT h

\Bigr\} 
.

To solve the advection equation (5.2), we use a \theta -scheme in time and streamline
diffusion (SUPG) in space. The discretized advection problem reads as follows: Find
\phi n+1
h \in \scrW h, such that for all \delta \phi \in \scrW h

(5.4) a\phi (\phi 
n+1
h , \delta \phi ) = l\phi (\delta \phi )

with

(5.5)

a\phi (\phi 
n+1
h , \delta \phi ) =

\biggl( 
\phi n+1
h

\Delta t
+ \theta vn+1

ext \cdot \nabla \phi n+1
h , \delta \phi + \tau SD(vn+1

ext \cdot \nabla \delta \phi )

\biggr) 
\Omega b

,

l\phi (\delta \phi ) =

\biggl( 
\phi n
h

\Delta t
+ (1 - \theta )vnext \cdot \nabla \phi n

h, \delta \phi + \tau SD(vn+1
ext \cdot \nabla \delta \phi )

\biggr) 
\Omega b

with the streamline diffusion parameter (see [38])

(5.6) \tau SD = 2

\biggl( 
1

\Delta t2
+

vext \cdot vext
h2

\biggr)  - 1
2

and initial condition \phi 0
h = \phi 0. Throughout this contribution, \theta is set to 0.5.

5.2. Description of the geometry. The quadratic level-set function is used to
define the geometry of our problem including the discretized material domain \Omega h(t),
the discretized interface \Gamma h(t), and the normal n\Gamma (t). In the rest of this section we
choose a fixed time t and suppress the time dependence to ease the notation.

Normal computation. The normal pointing from the domain \Omega (t) into the ficti-
tious material at the interface \Gamma (t) can be obtained from the level-set function using

(5.7) n\Gamma (x, t) =
\nabla \phi (x, t)

\| \nabla \phi (x, t)\| .

In this contribution, we determine the normal n\Gamma from the level-set function through
an L2-projection onto the continuous piecewise linear space

(5.8) \scrX d
h :=

\Bigl\{ 
vh \in [C0(\Omega b)]

d : vh| K \in \scrP 1(K)\forall K \in \~\scrT h
\Bigr\} 
.
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Ωh

Γh

Γ

Fig. 4. Illustration of linear approximation of interface \Gamma and domain \Omega on the refined mesh
\~\scrT h/2 with respect to the mesh \~\scrT h.

Here, d = 2, 3 is the geometrical dimension. We determine the normal by finding
n\Gamma \in \scrX d

h such that for all \delta n\Gamma \in \scrX d
h

(5.9) (n\Gamma , \delta n\Gamma )\Omega b
=

\biggl( \nabla \phi 

| \nabla \phi | , \delta n\Gamma 

\biggr) 
\Omega b

.

Discrete geometrical domains. To define our discrete domains \Omega h and \Gamma h, we use
a two-grid solution proposed by [33, 34] which is outlined in the following. First, we
interpolate the piecewise quadratic level-set function onto a piecewise linear function,
\scrI (\phi h), on a regularly refined mesh \~\scrT h/2, such that

(5.10) \scrI (\phi h(v)) = \phi h(v) for all nodes v in \~\scrT h/2.

We then use this piecewise linear interpolation to determine the intersection between
\scrI (\phi h) with the refined grid to obtain the piecewise linear approximation of \Omega h and
\Gamma h as illustrated in Figure 4.

5.3. Interface velocity smoothing and bulk extension. To enable a smooth
domain movement, we construct a continuous piecewise linear normal velocity ap-
proximation in the vicinity of the interface in the following way. We first recover a
smoothed gradient of the temperature using the following stabilized projection: Find
Gh

T \in \scrV d
h(t) such that for all \delta GT \in \scrV d

h(t)\bigl( 
Gh

T , \delta GT

\bigr) 
\Omega h

+ sGT
(Gh

T , \delta GT ) = (\nabla Tn+1
h , \delta GT )\Omega h

,(5.11)

sGT
(Gh

T , \delta GT ) =
\sum 

F\in \scrF \Gamma (t)

\gamma GT
h
\bigl( q
\nabla Gh

T

y
n
, J\nabla \delta GT Kn

\bigr) 
F
,(5.12)

where

\scrV d
h(t) =

\bigl\{ 
vh \in [C0(\Omega \ast (t))]d : vh| K \in \scrP 1(K)\forall K \in \scrT h(t)

\bigr\} 
(5.13)

is the vector-valued space of continuous piecewise linear functions on the fictitious
domain with d = 2, 3. Here, \gamma GT

> 0 is a positive penalty parameter to recover a con-
tinuous piecewise linear temperature gradient over patches of elements in the interface
region from the piecewise constant temperature gradient \nabla Tn+1

h . The normal velocity
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is then determined from the following L2 projection: Find vhn := vn+1
h \cdot n\Gamma \in \scrV h(t)

such that for all \delta vn \in \scrV h(t)
(5.14)\bigl( 
vhn, \delta vn

\bigr) 
\Omega \ast = H(P\gamma (T

n+1
h ))

\biggl[ \biggl( 
(kGh

T  - I) \cdot n\Gamma 

\rho L
, \delta vn

\biggr) 
\Omega \ast 

 - \theta 1
\gamma \rho L

(Tn+1
h  - Tm, \delta vn)\Gamma h

\biggr] 
.

We extend this normal velocity field onto the entire background domain \Omega b using
a fast-marching scheme as detailed in [46, 43, 34]. The principle of this technique
relies on two steps: a near-field step and a far-field step. In the near-field step, all
nodes of elements which are intersected by the interface obtain the normal velocity
value determined by a closest point projection onto the discretized interface \Gamma h, i.e.,
vextn (v) = vn(PW (v)), where v is an element node and PW is the closest point projec-
tion onto p\Gamma (v) \in \Gamma h given by the shortest distance between v and \Gamma h. In the far-field
step the information of the intersected elements is propagated through evaluation of
known extended velocity function values. For a detailed description see [46, 43, 34].

This extended normal velocity field, vextn , is then used to obtain the vectorial
extended velocity field as

(5.15) vext = vextn \cdot n\Gamma ,

which is then used to propagate the level-set function using (5.5).

Remark 5.1. This extended velocity field enables the transport of the level-set
function in a way that prevents a large deviation of the level-set away from a signed
distance function. Therefore reinitialization of the level-set is rarely required. How-
ever, in examples with strong interface deformation reinitialization may become nec-
essary. In these rare cases, we use a fast-marching redistancing technique described in
[34, 33], which relies on a fast-marching scheme of the linearly interpolated level-set
function on the regularly refined grid \~\scrT h/2.

Algorithm 1 summarizes the CutFEM Stefan--Signorini algorithm presented in
the previous sections.

6. Numerical results. In this section, we present numerical results for a man-
ufactured solution, and for several thermal ablation problems in 2D and 3D. The
penalty parameters are set to \gamma GT

= 10 - 3, \gamma T = 10 - 1, \^\gamma = 1, and \gamma b = 100, and we
choose the penalty-free, nonsymmetric Nitsche method, i.e., \theta 1 = 0, \theta 2 =  - 1 in all
the presented results.

6.1. Manufactured solution: Convergence analysis. We have constructed
a 2D manufactured solution inspired by the manufactured solution of a two-phase
Stefan problem in [46]. We consider a rectangular domain \Omega with a circular hole. The
circular hole gets heated by a heat flux I(x, t). We choose Tm =  - 0.01, \rho = c = k =
1.0, L = 1.0. We consider an analytical temperature distribution given by

(6.1) Tex(x, t) =  - er(x) + cos

\biggl( 
\pi r(x)

2 log (\alpha (t))

\biggr) 
 - Tm + \alpha (t).

Here, r(x) =
\sqrt{} 
x2 + y2 and

(6.2) \alpha (t) =
3

2 - 3t
.
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Algorithm 1 CutFEM Stefan--Signorini Algorithm.

1: Set t = t0, T
0
h = T0, \phi 

0
h = \phi 0.

2: while t \leq tf do  \triangleleft tf is the final time
3: Determine \Omega h and \Gamma h through intersection computations of zero level-set with

background mesh.
4: Compute normal n\Gamma using (5.9).
5: procedure Stefan--Signorini--Nitsche(Tn

h )
6: Solve (4.16) using Newton--Raphson algorithm.
7: return Tn+1

h .
8: end procedure
9: procedure Velocity(Tn+1

h )
10: Compute smoothed temperature gradient GT using (5.12).
11: Determine normal velocity on \Gamma h using (5.14).
12: Extend normal velocity to obtain vext.
13: return vext.
14: end procedure
15: procedure Level-Set Advection(vext)
16: Solve advection problem (5.4) for level-set.
17: return \phi n+1

h .
18: end procedure
19: t = t+\Delta t, \phi n

h = \phi n+1
h , Tn

h = Tn+1
h .

20: end while

At r(x) = R(t) with

(6.3) R(t) = log(\alpha (t))

the analytical solution is at melting temperature T = Tm. For t = 0, we obtain the
initial condition with \alpha (0) = 3

2 as

(6.4) T0 =  - er(x) + cos

\biggl( 
\pi r(x)

2 log(1.5)

\biggr) 
+

3

2
 - Tm.

The volume source term f can now be determined from Tex.
1 A level-set describing

the location of the melting temperature is given by

(6.5) \phi (x, t) = R(t) - r(x).

This level-set describes the motion of the circular hole, and the normal velocity of the
hole is given by

(6.6) v(x, t) \cdot n\Gamma =  - \partial R(t)

\partial t
=  - \alpha (t).

The expression for the beam at \Gamma (t) can now be determined from (2.3), which yields

(6.7)

Iex(x, t) = Aex(t)eray,ex(x),

Aex(t) =  - 
\biggl[ 
(\rho L+ 1)\alpha (t) +

\pi 

2R(t)

\biggr] 
,

eray,ex(x) =  - n\Gamma ,ex =
1

r(x)

\biggl( 
x
y

\biggr) 
.

1The corresponding symbolic derivation using an IPython notebook can be found in [19].
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Th = Tex

I

(a) Schematics. (b) t = 0.

(c) t = 0.1. (d) t = 0.2.

Fig. 5. Schematics of the manufactured solution and numerical solution at time t = \{ 0, 0.1, 0.2\} 
for h = 1/40.

To test our numerical scheme, we set the temperature T = Tex on \partial \Omega and apply the
heat flux expression (6.7) on \Gamma (t). Figure 5 shows the numerical solution at time
t = 0, 0.1, 0.2 and shows the removal of material with time. We test convergence
with mesh refinement and with time-step refinement. We evaluate the error of our
numerical solution with respect to the analytical solution in the following relative
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error norms. For each time-step, tn \in t0, . . . , tnt
, we determine

(6.8)

eL2(\Omega h)(u, tn) :=
| | uh  - uex| | L2(\Omega h(tn))

| | uex| | L2(\Omega h(tn))
=

\sqrt{} \int 
\Omega h(tn)

(uh  - uex)2 dx\sqrt{} \int 
\Omega h(tn)

(uex)2 dx
,

eH1(\Omega h)(u, tn) :=
| | uh  - uex| | H1(\Omega h(tn))

| | uex| | H1(\Omega h(tn))
=

\sqrt{} \int 
\Omega h(tn)

(uh  - uex)2 + (\nabla (uh  - uex))2 dx\sqrt{} \int 
\Omega h(tn)

(uex)2 +\nabla u2
ex dx

,

eL2(\Gamma h)(u, tn) :=
| | uh  - uex| | L2(\Gamma h(tn))

| | uex| | L2(\Gamma h(tn))
=

\sqrt{} \int 
\Gamma h(tn)

(uh  - uex)2 dx\sqrt{} \int 
\Gamma h(tn)

(uex)2 dx
.

Here, uh is the numerical solution and uex is the analytical solution, which in the
following will be the temperature, the radius, or the interface velocity. To average the
error over time, we define the l2 error norm over the time interval as

(6.9) | | e(u)| | l2[t0,tf ] =

\sqrt{}    1

nt

nt\sum 
i=0

e(u, ti)2.

Here, e(u) is any of the error measures defined in (6.8).
We compute the numerical solution in the time interval t \in [0, 0.1] for time-step

sizes \Delta t = \{ 10 - 4, 10 - 5\} . Figure 6 shows the convergence of the temperature to the
analytical solution with mesh refinement and the convergence of the temperature
with time-step refinement. As can be seen in Figure 6, we obtain optimal convergence
orders of second order for the L2-norm and of first order for the H1-norm in space
and first order convergence in the L2-norm in time for the temperature. For the
convergence of velocity and radius of the circular hole, we obtain a convergence rate
of second order. The convergence rates for the L2 errors in temperature, velocity, and
radius show a slight improvement for the time-step \Delta t = 10 - 5 in comparison to time-
step \Delta t = 10 - 4 for finer meshes. This is to be expected as the discretization error
in time is starting to dominate the total error for finer meshes and is impacting the
convergence rate. Figure 7 shows the averaged computed velocity and the averaged
computed radius and their analytical expression. The average is computed for all
tn \in t0, . . . , tnt as

(6.10)

vavg(tn) =

\int 
\Gamma h(tn)

vhn ds\int 
\Gamma h(tn)

ds
,

ravg(tn) =

\int 
\Gamma h(tn)

\sqrt{} 
x2 + y2 ds\int 

\Gamma h(tn)
ds

.

It is clear that both the velocity and radius approach the exact solution as the mesh
is refined. The convergence in position seems to be monotonic, at any time of the
analysis, while the instantaneous convergence in velocity appears to be much more
erratic, which is to be expected given the fact that the velocity is the time derivative
of the position.
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Fig. 6. Convergence rates for L2 and H1 errors with mesh refinement and with time-step
refinement.

6.2. Thermal ablation using a moving laser beam. In this section, we will
set up several numerical examples describing a laser beam heating a workpiece along-
side a predefined machining path. We define the intensity of the spatially Gaussian-
distributed beam as

(6.11)

I(x, t) =  - Ap(\theta )f(x, t)eray,

f(x, t) = fx(x, t) ft(t) := Aamp
1\surd 

2\pi d - 1\sigma 2
e

 - p(x,t)\cdot p(x,t)

2\sigma 2 ft(t),

p(x, t) = (x - F (t)) - ((x - F (t)) \cdot eray) eray,

where \sigma is the width of the beam, Aamp is the amplitude of the beam, and F (t) is the
focal point of the beam that describes the path of the laser beam. In the following,
we choose the direction of the beam, eray, to be constant in time. The beam is scaled
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(a) Velocity. (b) Velocity.

(c) Radius. (d) Radius.

Fig. 7. Computed average velocity and average radius versus analytical solution for \Delta t = 10 - 5.

with the absorption coefficient [55, 59, 54] given by

(6.12) Ap(\theta ) =

\Biggl\{ 
1 - 2 cos(\theta )2 - 2\varepsilon cos(\theta )+\varepsilon 2

2 cos(\theta )2+2\varepsilon cos(\theta )+\varepsilon 2 , cos(\theta ) > 0,

0 otherwise ,

where the angle of incidence \theta of the laser beam with respect to the inside sur-
face normal  - n\Gamma appears in the equation through trigonometric function cos(\theta ) =
 - n\Gamma (x, t) \cdot eray. Here, \varepsilon is a material-dependent quantity, which we choose as \varepsilon = 1.
We choose to represent a pulsed laser beam whose periodic on/off behavior can be
described by using the pulse function

(6.13) ft(t) =

\Biggl\{ 
1 if t - 

\Bigl\lfloor 
t
P0

\Bigr\rfloor 
P0 \leq P0

2 ,

0 else,

where \lfloor \rfloor denotes the floor operation, and P0 is the total period, which is the sum of
an ``on"" phase of duration tON and an ``off"" phase of duration tOFF during which the
workpiece does not receive any energy from the thermal ablation device.

In the following sections, we consider rectangular workpieces for which the top
boundary is the moving boundary \Gamma (i.e., thermally ablated surface). Homogeneous
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Dirichlet boundary conditions, i.e., T | \partial \Omega D
= 0, will be applied to the bottom bound-

ary, and homogeneous Neumann boundary conditions will be applied to the remaining
sides (see Figure 1).

6.2.1. Pulsed thermal ablation in 2D. Consider a rectangular background
domain \Omega b = (0, 3) \times (0, 1.2) and a time interval t \in [0, 1.6]. We consider an initial
level-set of \phi (x, 0) = y - 1.0 leaving a rectangular block of material \Omega h = (0, 3)\times (0, 1).
The workpiece \Omega h is heated by a laser beam described by (6.11) with width \sigma = 0.1,
amplitude Aamp = 2, and beam direction eray = (0, - 1). The time evolution of the
laser beam is described by the path of focal point F (t), which is defined for all times
\{ tn\} n\in J0nt - 1K by

(6.14) F (tn+1) = F (tn) + vF (t)\Delta t

with initial beam focal point F0 = (0.5 1)T and initial velocity vF (t) = (5 0)T .
Velocity vF conserves its magnitude throughout the simulation, but changes direction
every tchange = 0.4 units of time. Changing the sign of the velocity vector causes
the laser beam to pass over the block of material four times. We choose the material
parameters as Tm = 0.1, L = 1, \rho = 1, k = 1, c = 1. We choose two different
pulse periods P0 \in \{ 0.1, 0.01\} and compare the corresponding results. We choose a
fixed time-step of \Delta t = 5 \cdot 10 - 4 and a fixed mesh size h = 0.048. Figure 8 shows the
temperature contour at times t = 0.4, 0.8, 1.2, 1.6. The short pulsed beam (P0 = 0.01)
removes material in an even manner, leaving no visible crater on the surface of the
workpiece, while the long pulsed beam (P0 = 0.1) leaves a wavy surface with visible
craters. For these two simulations, the amplitude and spatial distribution of the
energy are the same, and the ratios between the on and off times are also equal. As
a result, the average power received by the workpiece over one period is the same
in both cases, which explains why the depths of the resulting cavities are similar
(see Figure 9). Note however that there is no theoretical reason for a strict equality
between the volumes removed during the process as the amount of energy lost through
the Dirichlet conditions and the quantity of thermal energy remaining in the workpiece
at the end of the simulation may differ (slightly) in the two examples.

6.2.2. Laser beam in 3D. In this section, we consider two 3D examples. The
first example describes the formation of a single crater, for a spatially fixed laser
beam, while the second example describes a complex ablation process designed to
manufacture a rectangular cavity through the continuous motion of the laser beam.

Single crater formation. We compute the formation of a single crater considering
a rectangular background domain \Omega b = ( - 0.5, 0.5) \times ( - 0.5, 0.5) \times ( - 0.5, 0.01) with
an initial level-set \phi (x, 0) = y in a time interval t = [0, 0.2]. We fix the time-step size
to \Delta t = 0.005 and the mesh size to h = 0.029. We choose the material parameters as
Tm = 0.01, L = 1, \rho = 1, k = 1, c = 1. The focal point of the laser beam is fixed in
time, F (t) = (0, 0, 0), and we set eray = (0, 0, - 1), Aamp = 3, and \sigma = 0.1. The laser
beam is switched on over the entire time period. Figure 10 shows the crater profile,
together with several temperature isolines, at time t = 0.2. The laser beam causes
the formation of a single deep crater in a cone shape.

Complex 3D machining path. We consider a complex machining path specified as
shown in Figure 11. We aim to form a rectangular cavity, using a machining strategy
that is typical of what could be generated by a CAM software featuring thermal milling
capabilities. The background domain is set to \Omega b = ( - 1, 1)\times ( - 1.5, 1.5)\times ( - 0.6, 0.01)
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(a) t = 0.4, P0 = 0.01. (b) t = 0.4, P0 = 0.1.

(c) t = 0.8, P0 = 0.01. (d) t = 0.8, P0 = 0.1.

(e) t = 1.2, P0 = 0.01. (f) t = 1.2, P0 = 0.1.

(g) t = 1.6, P0 = 0.01. (h) t = 1.6, P0 = 0.1.

Fig. 8. Pulsed laser beam for periods P0 = 0.01 on the left and P0 = 0.1 on the right for time
t = 0.4, 0.8, 1.2, 1.6.

with an initial level-set of \phi (x, 0) = z. We set the time-step to \Delta t = 0.005 and the
mesh size to h = 0.06. The ablation strategy is described through the motion of
the focal point F (t) in time interval t \in [0, 3]. The top layer is machined first, and
deeper layers as represented in Figure 11 are applied subsequently. The remaining
parameters of the laser beam are set to eray = (0, 0, - 1), Aamp = 3, and \sigma = 0.1.
We choose the material parameters as Tm = 0.01, L = 1, \rho = 1, k = 1, c = 1.
For this particular example, function ft(t) is always equal to one (i.e., the laser fires
continuously). As shown in Figure 12, the manufacturing process creates the expected
rectangular cavity. The cylinder displayed in Figure 12 represents the contour line
I = 2 of the laser beam. As the workpiece receives energy in a continuous way, no
crater is formed. However, we can clearly see the streaks left by the laser beam, owing
to a rather large hatch distance (i.e., distance between two consecutive straight lines
of the machining path, within one particular layer).

The results of this simulation can be played by paraview, using the .vtk files
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Fig. 9. Background mesh and cut-meshes at final time t = 1.6 for pulsed beam P0 = \{ 0.01, 0.1\} .

Fig. 10. One crater formed by a laser beam at a fixed spatial location, and the distribution of
temperature computed at t = 0.2 units of time.

archived on https://zenodo.org/ by the authors [20].

7. Conclusions. We have presented the first CutFEM algorithm dedicated to
the solution of unsteady, one-phase Stefan--Signorini problems. The geometry of the
domain is represented implicitly through the negative values of a continuous, piece-
wise linear, level-set function defined using a regular, fixed finite element mesh. The
boundary of the thermally ablated material can move arbitrarily and cut through
the bulk of the elements, which circumvents the need for any remeshing operation
during the simulation of phase change. We showed that the primal/dual formulation
of the one-phase thermal ablation problem could be reformulated as a purely pri-
mal, nonlinear problem, using the Nitsche--Signorini idea, which avoids the need to
introduce a Lagrange multiplier field for the interface velocity and circumvents the
need to design an inf-sup stable primal/dual discretization strategy. Through the
addition of stabilization terms associated with the cut region, we proved that the
method remains stable independently of the cut location. In addition, by carefully
h-weighting several terms of the weak form associated with the proposed Stefan--
Signorini--Nitsche method, we obtained optimal convergence with respect to spatial
and temporal refinement. As a further contribution, we developed a 2D benchmark to
test the convergence of numerical methods for one-phase Stefan problems. We hope

https://zenodo.org/
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Fig. 11. Prescribed path of the focal point of a laser beam designed to create a rectangular
cavity. The depth is not significant here as the laser beam is invariant in the z direction.

(a) t = 0. (b) t = 1.

(c) t = 2. (d) t = 3.

Fig. 12. Laser beam going through the machining path shown in Figure 11 to create the desired
rectangular cavity. The results correspond to analysis times t = [0, 1, 2, 3].

that the new manufactured solution will be of use to researchers in the future.
The robustness and versatility of the proposed algorithm were demonstrated

through several representative examples in 2D and 3D. Although the method is gen-
eral, our example section targeted realistic applications in laser micromanufacturing,
including the simulation of laser drilling and laser milling operations.



A CutFEM METHOD FOR STEFAN--SIGNORINI PROBLEMS B1467

REFERENCES

[1] O. Allix, P. Kerfriden, and P. Gosselet, On the control of the load increments for a proper
description of multiple delamination in a domain decomposition framework, Internat. J.
Numer. Methods Engrg., 83 (2010), pp. 1518--1540.

[2] M. Aln{\ae}s, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,
J. Ring, M. Rognes, and G. Wells, The FEniCS project version 1.5, Arch. Numer.
Softw., 3 (2015), pp. 9--23.

[3] Y. Belhamadia, A. Kane, and A. Fortin, An enhanced mathematical model for phase change
problems with natural convection, Int. J. Numer. Anal. Model, 3 (2012), pp. 192--206.

[4] M. K. Bernauer and R. Herzog, Optimal control of the classical two-phase Stefan problem
in level set formulation, SIAM J. Sci. Comput., 33 (2011), pp. 342--363, https://doi.org/
10.1137/100783327.

[5] T. Boiveau, E. Burman, and S. Claus, Penalty-free Nitsche Method for Interface Problems,
in Geometrically Unfitted Finite Element Methods and Applications, Springer, New York,
2017, pp. 183--210.

[6] S. Bordas and B. Moran, Enriched finite elements and level sets for damage tolerance as-
sessment of complex structures, Engrg. Fracture Mech., 73 (2006), pp. 1176--1201.

[7] S. Bordas, T. Rabczuk, J. Rodenas, P. Kerfriden, M. Moumnassi, and S. Belouettar,
Recent advances towards reducing the meshing and re-meshing burden in computational
sciences, Comput. Tech. Rev., 2 (2010), pp. 51--82.

[8] A. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations,
Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199--259.

[9] E. Burman, Ghost penalty, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 1217--1220.
[10] E. Burman, S. Claus, P. Hansbo, M. Larson, and A. Massing, CutFEM: Discretizing ge-

ometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104 (2015),
pp. 472--501.

[11] E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II.
A stabilized Nitsche method, Appl. Numer. Math., 62 (2012), pp. 328--341.

[12] E. Burman and P. Hansbo, Deriving robust unfitted finite element methods from augmented
Lagrangian formulations, in Geometrically Unfitted Finite Element Methods and Applica-
tions, Springer, Cham, 2017, pp. 1--24.

[13] E. Burman, P. Hansbo, and M. Larson, Augmented Lagrangian Finite Element Methods for
Contact Problems, preprint, https://arxiv.org/abs/1609.03326, 2016.

[14] E. Burman, P. Hansbo, and M. G. Larson, The penalty-free Nitsche method and noncon-
forming finite elements for the Signorini problem, SIAM J. Numer. Anal., 55 (2017),
pp. 2523--2539, https://doi.org/10.1137/16M107846X.

[15] J. Chessa, P. Smolinski, and T. Belytschko, The extended finite element method (XFEM)
for solidification problems, Internat. J. Numer. Methods Engrg., 53 (2002), pp. 1959--1977.

[16] F. Chouly, M. Fabre, P. Hild, R. Mlika, J. Pousin, and Y. Renard, An overview of recent
results on Nitsche's method for contact problems, in Geometrically Unfitted Finite Element
Methods and Applications, Springer, Cham, 2017, pp. 93--141.

[17] F. Chouly and P. Hild, A Nitsche-based method for unilateral contact problems: Numeri-
cal analysis, SIAM J. Numer. Anal., 51 (2013), pp. 1295--1307, https://doi.org/10.1137/
12088344X.

[18] F. Chouly, P. Hild, and Y. Renard, Symmetric and non-symmetric variants of Nitsche's
method for contact problems in elasticity: Theory and numerical experiments, Math.
Comp., 84 (2015), pp. 1089--1112.

[19] S. Claus, S. Bigot, and P. Kerfriden, Dataset: CutFEM/Signorini, Zenodo, July 2018,
https://doi.org/10.5281/zenodo.1311829.

[20] S. Claus, S. Bigot, and P. Kerfriden, Vtk files: Thermal ablation using CutFEM, Zenodo,
Apr. 2018, https://doi.org/10.5281/zenodo.1213279.

[21] S. Claus and P. Kerfriden, A stable and optimally convergent LaTIn-CutFEM algorithm
for multiple unilateral contact problems, Internat. J. Numer. Methods Engrg., 113 (2018),
pp. 938--966.

[22] A. Cosimo, V. Fachinotti, and A. Cardona, An enrichment scheme for solidification prob-
lems, Comput. Mech., 52 (2013), pp. 17--35.

[23] A. Curnier and P. Alart, A generalized Newton method for contact problems with friction,
J. M\'ec. Th\'eor. Appl., 7 (1988), pp. 67--82.

https://doi.org/10.1137/100783327
https://doi.org/10.1137/100783327
https://arxiv.org/abs/1609.03326
https://doi.org/10.1137/16M107846X
https://doi.org/10.1137/12088344X
https://doi.org/10.1137/12088344X
https://doi.org/10.5281/zenodo.1311829
https://doi.org/10.5281/zenodo.1213279


B1468 SUSANNE CLAUS, SAMUEL BIGOT, AND PIERRE KERFRIDEN

[24] I. Danaila, R. Moglan, F. Hecht, and S. Le Masson, A Newton method with adaptive finite
elements for solving phase-change problems with natural convection, J. Comput. Phys., 274
(2014), pp. 826--840.

[25] A. Date, Novel strongly implicit enthalpy formulation for multidimensional Stefan problems,
Numer. Heat Transfer B Fundamentals, 21 (1992), pp. 231--251.

[26] J. Dolbow, N. Mo\"es, and T. Belytschko, An extended finite element method for modeling
crack growth with frictional contact, Comput. Methods Appl. Mech. Engrg., 190 (2001),
pp. 6825--6846.

[27] R. Duddu, Numerical modeling of corrosion pit propagation using the combined extended finite
element and level set method, Comput. Mech., 54 (2014), pp. 613--627.

[28] R. Duddu, S. Bordas, D. Chopp, and B. Moran, A combined extended finite element and
level set method for biofilm growth, Internat. J. Numer. Methods Engrg., 74 (2008), pp. 848--
870.

[29] T. Elguedj, A. Gravouil, and A. Combescure, A mixed augmented Lagrangian-extended
finite element method for modelling elastic--plastic fatigue crack growth with unilateral
contact, Internat. J. Numer. Methods Engrg., 71 (2007), pp. 1569--1597.

[30] A. Friedman and L. Jiang, A Stefan-Signorini problem, J. Differential Equations, 51 (1984),
pp. 213--231.

[31] T. Fries, A. Zilian, and N. Mo\"es, Extended finite element method, Internat. J. Numer.
Methods Engrg., 86 (2011), pp. 403--403.

[32] A. Gravouil, E. Pierres, and M. C. Baietto, Stabilized global--local X-FEM for 3D non-
planar frictional crack using relevant meshes, Internat. J. Numer. Methods Engrg., 88
(2011), pp. 1449--1475.

[33] S. Gro{\ss}, V. Reichelt, and A. Reusken, A finite element based level set method for two-phase
incompressible flows, Comput. Vis. Sci., 9 (2006), pp. 239--257.

[34] S. Gro{\ss} and A. Reusken, Numerical Methods for Two-Phase Incompressible Flows, Springer,
New York, 2011.

[35] J. Hale, L. Li, C. Richardson, and G. Wells, Containers for portable, productive, and
performant scientific computing, Comput. Sci. Eng., 19 (2017), pp. 40--50.

[36] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche's method, for
elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5537--
5552.

[37] A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak
discontinuities in solid mechanics, Comput. Methods Appl. Mech. Engrg., 193 (2004),
pp. 3523--3540.

[38] P. Hansbo, M. Larson, and S. Zahedi, A cut finite element method for coupled bulk-surface
problems on time-dependent domains, Comput. Methods Appl. Mech. Engrg., 307 (2016),
pp. 96--116.

[39] M. Jahn and A. Luttmann, Solving the Stefan Problem with Prescribed Interface Using an
XFEM Toolbox for FEniCS, Technical Report 16-03, ZeTeM, Bremen, Germany, 2016.

[40] L. Jiang, Remarks on the Stefan-Signorini problem, in Free Boundary Problems: Applications
and Theory, Vol. III, A Bossavit, A. Damlamian, and M. Premond, eds., Res. Notes in
Math. 120, Pitman, Boston, MA, 1985, pp. 13--19.

[41] P. Kerfriden, O. Allix, and P. Gosselet, A three-scale domain decomposition method for
the 3D analysis of debonding in laminates, Comput. Mech., 44 (2009), pp. 343--362.

[42] A. Khoei and M. Nikbakht, Contact friction modeling with the extended finite element method
(X-FEM), J. Materials Process. Tech., 177 (2006), pp. 58--62.

[43] T. K. M. Jahn, A Level Set Toolbox Including Reinitialization and Mass Correction Algorithms
for FEniCS, Tech. report, Universit\"at Bremen, Bremen, Germany, 2016.

[44] D. Martin, Multiphase Modeling of Melting: Solidification with High Density Variations Using
XFEM, Ph.D. thesis, Universit\'e Laval, Quebec, Canada, 2016.

[45] R. Merle and J. Dolbow, Solving thermal and phase change problems with the extended finite
element method, Comput. Mech., 28 (2002), pp. 339--350.

[46] J. Mischa and T. Klock, Numerical Solution of the Stefan Problem in Level Set Formulation
with the Extended Finite Element Method in FEniCS, Tech. report, Universit\"at Bremen,
Bremen, Germany, 2017.

[47] N. Mo\"es, J. Dolbow, and T. Belytschko, A finite element method for crack growth without
remeshing, Internat. J. Numer. Methods Engrg., 46 (1999), pp. 131--150.

[48] D. Mueller-Hoeppe, P. Wriggers, and S. Loehnert, Crack face contact for a hexahedral-
based XFEM formulation, Comput. Mech., 49 (2012), pp. 725--734.

[49] A. Narimanyan, Stefan-Signorini Moving Boundary Problem Arisen from Thermal Plasma
Cutting: Mathematical Modelling, Analysis and Numerical Solution, Ph.D. thesis, 2006.



A CutFEM METHOD FOR STEFAN--SIGNORINI PROBLEMS B1469

[50] A. Narimanyan, Unilateral conditions modelling the cut front during plasma cutting: FEM
solution, Appl. Math. Model., 33 (2009), pp. 176--197.

[51] J. M. Navarro-Jim\'enez, M. Tur, J. Albelda, and J. J. R\'odenas, Large deformation fric-
tional contact analysis with immersed boundary method, Comput. Mech., (2017), pp. 1--18.

[52] R. Ribeaucourt, M.-C. Baietto-Dubourg, and A. Gravouil, A new fatigue frictional con-
tact crack propagation model with the coupled X-FEM/LATIN method, Comput. Methods
Appl. Mech. Engrg., 196 (2007), pp. 3230--3247.

[53] L. Salvatori and N. Tosi, Stefan problem through extended finite elements: Review and
further investigations, Algorithms, 2 (2009), pp. 1177--1220.

[54] W. Schulz, M. Nie{\ss}en, U. Eppelt, and K. Kowalick, Simulation of laser cutting, in The
Theory of Laser Materials Processing, Springer, New York, 2017, pp. 25--72.

[55] W. Schulz, G. Simon, H. Urbassek, and I. Decker, On laser fusion cutting of metals, J.
Phys. D Appl. Phys., 20 (1987), pp. 481--488.

[56] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computa-
tional Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge
University Press, Cambridge, UK, 1999.

[57] I. Steinbach, Phase-field models in materials science, Model. Simul. Materials Sci. Engrg., 17
(2009), 073001.

[58] M. Storti, Numerical modeling of ablation phenomena as two-phase Stefan problems, Internat.
J. Heat Mass Transfer, 38 (1995), pp. 2843--2854.

[59] J. Stratton, Electromagnetic Theory, Internat. Ser. Pure Appl. Phys., McGraw--Hill, New
York, 1941.

[60] B. Ton, A Stefan-Signorini problem with set-valued mappings in domains with intersecting
fixed and free boundaries, Boll. Un. Mat. Ital. B (7), 8 (1994), pp. 231--249.

[61] M. Tur, J. Albelda, J. Navarro-Jimenez, and J. Rodenas, A modified perturbed Lagrangian
formulation for contact problems, Comput. Mech., 55 (2015), pp. 737--754.

[62] V. Voller, An implicit enthalpy solution for phase change problems: With application to a
binary alloy solidification, Appl. Math. Model., 11 (1987), pp. 110--116.

[63] N. Zabaras, B. Ganapathysubramanian, and L. Tan, Modelling dendritic solidification with
melt convection using the extended finite element method, J. Comput. Phys., 218 (2006),
pp. 200--227.

[64] Y. Zhao, C. Zhao, and Z. Xu, Numerical study of solid-liquid phase change by phase field
method, Comput. \& Fluids, 164 (2017), pp. 94--101.


	Introduction
	The Stefan–Signorini problem
	Signorini–Nitsche reformulation of the one-phase Stefan problem
	Primal/dual weak formulation of the Stefan–Signorini problem
	Nonlinear Nitsche reformulation

	Stabilized cut finite element formulation
	Discretization in space
	Background mesh and fictitious domain
	Nonconforming spatial discretization of the Stefan–Signorini problem

	Discretization in time
	Newton–Raphson algorithm

	Description of the domain movement
	Level-set description of the moving domain and level-set advection
	Description of the geometry
	Interface velocity smoothing and bulk extension

	Numerical results
	Manufactured solution: Convergence analysis
	Thermal ablation using a moving laser beam
	Pulsed thermal ablation in 2D
	Laser beam in 3D


	Conclusions
	References

