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Abstract The paper starts by giving a motivation for this research and jus-
tifying the considered stochastic diffusion models for cosmic microwave back-
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expansion to a hyperbolic diffusion equation on the unit sphere. The Cauchy
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expansion. The upper bounds for the convergence rates of the approximation
errors are derived. Smoothness properties of the solution and its approxima-
tion are investigated. It is demonstrated that the sample Hölder continuity of
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microwave background data are presented to illustrate the theoretical results.
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1 Introduction

The linear telegraph equation was introduced in the 1880s in Heaviside’s model
of transmission lines (see, e.g. [8]). Since then, the same linear partial differen-
tial equation has arisen in several quite different contexts. In the 1950s, Cat-
taneo [13] introduced the hyperbolic heat equation that has a bounded speed
of propagation of temperature disturbances, unlike the classical parabolic heat
equation that has an unbounded propagation speed. A bounded speed of prop-
agation also prohibits the generation of new cosmic structures that are cor-
related over space-like separated regions. The large-scale coherent structures
that are observed in the cosmic microwave background, are understood to be
remnants of acoustic waves in the plasma universe, seeded by a very short
inflationary period of superluminal expansion (e.g. [14], [35]). Restricting the
post-inflation propagation of disturbances to sub-luminal speeds is guaranteed
by choosing the parameter c in the hyperbolic heat equation to be less than
or equal to the speed of light. This has some rationale in relativistic geometry,
and it maintains the second law of thermodynamics [3].

In Section 2, we add another application of the same equation. When c is
chosen to be the speed of light, the hyperbolic heat equation is indeed equiv-
alent, by choosing an appropriate material coordinate system with conformal
time coordinate, to the general relativistically covariant scalar Klein-Gordon
equation, minimally coupled to an expanding space-time. In that coordinate
system, the material radius of the expanding universe is constant.

Our focus in later sections is on the hyperbolic diffusion of random dis-
turbances on the surface or interior of a sphere. In all of the aforementioned
applications, this may be viewed as a canonical initial value problem on a com-
pact manifold, as expressed in the classic texts such as [12]. However, unlike
the classic texts, we are interested more in random initial conditions that in-
clude structures that cannot be causally connected. The evolution of fields and
their correlations, under speed-limited diffusion, is of primary interest. In the
case of the cosmic microwave temperature, typically with relative fluctuations
of the order of 10−4, the currently available data are indeed represented on a
spherical surface, with little reference to a radial coordinate, see [1], [2],[29].

Recent years have witnessed an enormous amount of attention, in the astro-
physical and cosmological literature, on investigating spherical random fields.
The empirical motivation for these studies comes from the current cosmologi-
cal research. The NASA satellite mission WMAP and the ESA mission Planck,
see [1], [2], probe Cosmic Microwave Background radiation (CMB) to an un-
precedented accuracy. Figure 1 shows measurements of the CMB temperature
intensity from Planck 2015 results used as an illustration in this paper. Fig-
ure 2 plots the corresponding best-fit scaled angular power spectrum. CMB
can be viewed as a signature of the distribution of matter and radiation in the
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very early universe, and as such it is expected to yield very tight constraints
on physical models for the Big Bang and subsequent phase transitions and
nucleosynthesis. For the density fluctuations of this field, the highly popu-
lar inflationary scenario predicts a Gaussian distribution, whereas alternative
cosmological theories, such as topological defects or non-standard inflationary
models, predict otherwise.

Fig. 1 SMICA CMB intensity map at
Nside = 1024 with 10 arcmin resolution

Fig. 2 Best-fit LCDM CMB power spectra
from the baseline Planck

The seminal work of Applegate et. al. [6] showed that neutron-rich regions
due to the longer mean free path of neutrons compared to protons, could
strongly influence the distribution of helium and deuterium during nucleosyn-
thesis. When the temperature cooled to allow weak nuclear re-combination and
freeze-out, ( 3

2kT < 800 keV), the neutron diffusion length was around 0.08 pc
or 0.3 light-years [25]. Some basic considerations on diffusion length are given
in Appendix A. After allowing for neutron back-diffusion to proton-rich re-
gions where neutrons have been further depleted by fusion [34], the observed
distribution of elements and temperature variations constrains the parameters
of heterogeneous models [7], [21].

Fluctuations in CMB observations may also have a non-physical origin,
i.e. they might be generated by systematic errors in the CMB map, such as
noise which has not been properly removed, contamination from the galaxy
or distortions in the optics of the telescope. A proper understanding of the
density distributions of fluctuations is also instrumental for correct inference
on the physical constants which can be estimated from CMB radiation.

From a mathematical point of view, properties of random fields defined by
SPDE on Euclidean spaces is a well studied area, see, for example, [4] and
the references therein. However the known results in the literature are not
directly translatable to manifolds. Therefore, the problems of approximating
and studying sample regularity of random fields on the sphere have attracted
much recent attention, see, for example, [5], [27], [29], [26] and the references
therein. It was shown that the convergence rate of approximation schemes
based on truncated series expansions of such fields is often related to the
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decay of the angular power spectrum. Another line of investigations started in
the paper [24]. It studied approximations of Gaussian isotropic random fields
on the sphere, but used different models and types of convergence. In this
research we continue these investigations for spherical random fields generated
by stochastic hyperbolic diffusion equations.

The discussion in the paper and the obtained results give some indication
that the considered stochastic hyperbolic diffusion equation on the sphere can
be used to capture important statistical and spectral properties of the CMB.
The current research uses a different approach and a stochastic model com-
paring to [5],[24], [27], and [26]. As the approach yields the explicit solution in
terms of series of elementary functions it could be very useful for various quali-
tative and numerical studies. The numerical studies suggest that the proposed
approximations to solutions have an optimal order of convergence.

The paper is organised as follows. Section 2 and Appendix A provide phys-
ical motivation and detailed justification for stochastic models studied in the
paper. Basic results and definitions about spherical isotropic random fields and
their spectral and covariance representations are given in Section 3. Section 4
first derives the solution of the non-random hyperbolic diffusion equation on
the sphere. Then, it gives the main results about solutions of the hyperbolic
diffusion equation with random initial conditions. The convergence rates of
truncated solutions to the exact solution are derived in Section 5. Smoothness
properties of the solution and its approximation are studied in the next sec-
tion. Section 7 and Appendix C present numerical studies and applications to
CMB data. Short conclusions and future directions are discussed in Section 8.
All proofs are given in Appendix B.

All numerical computations and simulations in this paper were performed
using the software R version 3.5.3 and Python version 3.6.7. The results were
derived using the HEALPix representation of the CMB data, see [18] and
http://healpix.sourceforge.net. In particular, the R package rcosmo [16],
[17] was used for accessing the CMB data, computations and visualisations of
the obtained results. The Python package healpy was used for fast spherical
harmonics transformations of CMB maps. The R and Python code used for
numerical examples in Section 7 are freely available in the folder ”Research ma-
terials” from the website https://sites.google.com/site/olenkoandriy/

2 Derivation of hyperbolic diffusion equations

This section presents physical motivation and detailed justification for math-
ematical and stochastic models considered in the following sections. It also
discusses and provides values of the model parameters for numerical studies
in Section 7.

Conduction of heat results from energy transfer during collisions of con-
stituent particles or, in rigid lattices, the transfer of photons of vibrational
energy from one lattice site to another. These transfer processes have a typical
time delay τ0, leading to a relaxation time τ0 in a continuum dynamical model.

http://healpix.sourceforge.net
https://sites.google.com/site/olenkoandriy/
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For example, particles in a Boltzmann gas of hard spheres of radius r0 have
mean kinetic energy 1

2mv
2 = 3

2kBu and mean free path is ` = kBu/4
√

2πr20p
where kB is Boltzmann’s constant, u(x, t) is absolute temperature, v(x, t)2 is
mean squared velocity and p(x, t) is pressure [33]. This means that the average
time before a given particle collides is τ0 = `/v. Before this time, the temper-
ature gradient has no effect on the energy flux. This would lead to a delayed
PDE but as demonstrated by Cattaneo [13], it is convenient to approximate
a delayed differential equation by a higher-order differential equation that is
local in time. From the lag between instantaneous heat flux density q(x, t) and
the gradient of instantaneous temperature u(x, t), there follows a higher-order
correction to Fourier’s law simply by Taylor expansion:

q(x, t+ τ0) ≈ τ0
∂q(x, t)

∂t
+ q(x, t) = −k∇u(x, t), (1)

where q(x, t),x ∈ R3, t > 0, is a vector field, u(x, t),x ∈ R3, t > 0, is a scalar
field, τ0 and k are constants.

This is a two-parameter generalisation of Fourier’s law, wherein k is the

thermal conductivity. Then by the local conservation of heat energy, ρC ∂u(x,t)
∂t =

−∇ ·q(x, t), where ρ is density of the medium and C is specific heat capacity.
This leads directly to Cattaneo’s hyperbolic heat/diffusion equation,

1

c2
∂2u(x, t)

∂t2
+

1

D

∂u(x, t)

∂t
= ∇2u(x, t), (2)

where D = k/Cρ and c =
√
D/τ0, which is the least upper bound for the speed

of propagation. This can easily be seen by constructing attenuated travelling
sinusoidal wave solutions by separation of variables.

The simplest relativistic extension of the non-relativistic Schrödinger mat-
ter wave equation for a particle of mass m is the Klein-Gordon equation in
flat Minkowski space,

1

c2
∂2ϕ(x, t)

∂t2
−∇2ϕ(x, t) +

m2c2

~2
ϕ(x, t) = 0,

which describes a spin-zero matter field [36] such as a Higgs scalar Boson [19].
In standard physics notation, ~ = h/2π, where h is Planck’s constant. The
Klein-Gordon equation agrees with the Schrödinger equation at low energies
(e.g. [10]). The scalar field ϕ = ϕ(x, t),x ∈ R3, t > 0, has an interpretation
in quantum field theory after second quantisation when it is regarded as an
operator rather than a classical function [32].

Now consider a scalar field minimally coupled to a spatially flat de Sitter
universe, with expansion factor a(t), depending on cosmic time t. The space-
time metric is

ds2 = gµνdx
µdxν = c2dt2 − a2(t)

3∑
i=1

dxidxi

= a2(η)

(
c2dη2 −

3∑
i=1

dxidxi

)
.
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Here, xi are material coordinates. For example, these would remain constant
at the centre of mass of a typically moving galaxy, where t is the proper time.
η is the conformal time coordinate, η =

∫
[1/a(t)]dt, the adoption of which

renders the metric to be conformal to the Minkowski metric. In this coordinate
system gµν is a diagonal matrix with entries g00 = c2a2 and gjj = −a2 for
j = 1, 2, 3. When adapted to the more general space-time, the scalar covariant
Klein-Gordon wave equation is (e.g. [9])

gµν∇µ∇νϕ(x, t) +

(
m2c2

~2
+ ξR

)
ϕ(x, t) = 0, (3)

where ∇µ is the covariant derivative with respect to xµ and gµν is the matrix
inverse of gµν .

We consider the case of negligible quantum particle mass m, and zero
coupling (ξ = 0) to the Ricci scalar R, in (3). This case is still called ”minimal
coupling” because the space-time metric influences the covariant derivative
and the Laplace-Beltrami operator. In [11], it was convenient to analyse the
unattenuated field aϕ(x, t). In the current context, we retain as the field of
interest, ϕ(x, t) which is attenuated as the universe expands.

It is well known (e.g. [9]) that the Laplace-Beltrami operator, which is the
second-order operator acting in the first term of (3), can be expressed more
conveniently in terms of the determinant of the metric tensor, det g = det[gµν ].
Then (3) is equivalent to

|det g|−1/2 ∂

∂xµ

[
|det g|1/2gµν ∂ϕ(x, t)

∂xν

]
+

(
m2c2

~2
+ ξR

)
ϕ(x, t) = 0. (4)

For the expanding spherically symmetric universe with det g = −c2a8, a direct
calculation gives

1

c2

[
2a′(η)

a

∂ϕ(x, t)

∂η
+
∂2ϕ(x, t)

∂η2

]
−

3∑
i=1

∂2ϕ(x, t)

∂xi∂xi
= 0. (5)

Near some time t = t1 in the past, the expansion factor may be approximated
by a linear function a = a1 + c1(t− t1)/R0, where R0 is the current radius and
c1 is the speed of expansion at time t1. In that case,

η = η1 +
R0

c1
ln

(
1 +

c1[t− t1]

a1R0

)
,

a = a1[1 + ec1(η−η1)/R0 ],

and a′(η)/a = c1
2R0

at t = t1. The covariant Klein-Gordon equation is approx-
imated by the relativistic diffusion equation, which is the same as the hyper-
bolic diffusion equation (2) with D = c2R0/c1. Up to the present time, CMB
data is represented on a 2-sphere, with little reference to radial variation. This
prompts one to take a volume average along the radial direction in a spherical
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sector with fixed small differential increment of solid angle, throughout (5).
Defining

ϕ̄(R, θ, φ, η) =
3

R3

∫ R

0

r2ϕ(r, θ, φ, η)dr,

where (r, θ, φ) are material polar coordinates, (5) implies

1

c2

[
2a′(η)

a

∂

∂η
+

∂2

∂η2

]
ϕ̄(R, θ, φ, η)−

{
1

R2 sin(θ)

∂

∂θ

[
sin(θ)

∂

∂θ

]

+
1

R2 sin2(θ)

∂2

∂φ2

}
ϕ̄(R, θ, φ, η) =

3

R

∂ϕ(R, θ, φ, η)

∂R

+
2

R3

∫ R

0

(
1

sin(θ)

∂

∂θ

[
sin(θ)

∂ϕ̄(r, θ, φ, η)

∂θ

]
+

1

sin2(θ)

∂2ϕ̄(r, θ, φ, η)

∂φ2

)
dr

− lim
r→0

( r
R

)3{ 1

r2 sin(θ)

∂

∂θ

[
sin(θ)

∂ϕ̄(r, θ, φ, η)

∂θ

]
+

1

r2 sin2(θ)

∂2ϕ̄(r, θ, φ, η)

∂φ2

}
.

The two limits on the right hand side sum to − limr→0

(
r
R

)3 1
r2∆S2ϕ, where

r−2∆S2ϕ is the surface Laplacian on a sphere of vanishingly small radius. Since
the Laplacian is not expected to be more singular than O(r−2), this limit is
zero. The free boundary condition of zero mass-energy-flux across the expand-
ing maximal radius a(η)R, reduces in material coordinates to ∂ϕ

∂r = 0 at r = R.
This annuls the first term on the right hand side of the above. The remaining
integral term is 2/3 times the sector radially doubly averaged divergence of
∇ϕ. The sector average is weighted towards values at large r. Double averages
are weighted even more towards values at large r. Doubly averaged fluctua-
tions in ϕ are expected to be small compared to singly averaged fluctuations.
As an indicative study of a scalar field, we set the right hand side of (2) to
zero. Then near η = η1, the equation for ϕ̄ reduces to

1

c2
∂2ϕ̄(R, θ, φ, η)

∂η2
+

c1
c2R0

∂ϕ̄(R, θ, φ, η)

∂η
=

1

R2
0

∆S2 ϕ̄(R, θ, φ, η). (6)

Note that R−20 ∆S2 is the Laplace-Beltrami operator on a spherical surface of
radius R0. In the material coordinate system, the material radius is constant
R0 at all times. There is a unique rescaling of variables that further reduces
(6) to normalised form,

∂2ϕ̄(R, θ, φ, η̂)

∂η̂2
+
∂ϕ̄(R, θ, φ, η̂)

∂η̂
=

1

R̂2
∆S2 ϕ̄(R, θ, φ, η̂),

η̂ = η/ηs = ηc2/D = ηc1/R0 ; R̂ = R0/`s = R0c/D = c1/c.

The single remaining parameter R̂ involves the expansion rate at time t1
which is related to the Hubble parameter. In particular, we are interested
in a time t1 when the cosmic electromagnetic radiation began to propagate
through a transparent recombined atomic medium, whose properties may still
be inferred.
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The cosmic background electromagnetic radiation became free for unim-
paired propagation into the distant future, around the narrow band of time of
atomic recombination. Seemingly by coincidence, this narrow period was close
to the time of equality of matter density and radiation density expressed in
the same units (e.g. [20]). Henceforth, subscript zero will denote a parameter
value measured at the current time in history whereas a subscript e will de-
note its value at the time of equality. At the present time, the Hubble constant
is measured to be H0 = ȧ(t)/a(t) = 0.7 km/s/Mpc and the Hubble time is
1/H0 = 1.4× 1010 yr. From the Friedman equation, the Hubble ‘constant’ H
actually depends on time according to

H2 = H2
0 (ΩΛ +Ωma(t)−3 +Ωγνa(t)−4 +Ωκa(t)−2).

The various components ΩJ are fractions of current total energy that are dark
energy ΩΛ, mass density Ωm, radiation energy density Ωγν and curvature en-
ergy density Ωκ. Within experimental error, the universe is spatially flat (e.g.
NASA WMAP website [31]), so the total mass-energy is the critical energy for
the universe to be spatially flat. The present estimates, with a(t) = 1, have
dark energy ΩΛ = 0.714, and matter Ωm=0.286 consisting of dark matter
(0.240) and baryons (0.046). The component Ωκ due to spatial curvature is
measured to be zero and the component due to combined photon and neutrino
radiation (Ωγν) is negligible at the current time. However at other times, the
components of mass-energy, relative to the current critical mass-energy, are
multiplied by various powers of a(t). For example around the age of 370,000
years after the big bang, within the short period of atomic recombination,
the radiation and matter components Ωma(t)−3 and Ωγνa(t)−4 were equal
and the other components were negligible. This occurs at expansion factor
ae = Ωγν/Ωm = 4.15× 10−5. Consequently,

He = (2Ωm)1/2a−3/2e H0, ce = ȧe aeR0, D =
c2Re
ce

=
c2

Heae
.

The conformal time scale appearing above is ηs = D/c2 = Re/ce = 1/He,
which is exactly the Hubble time at t = te. This is approximately 9×10−8/H0,
where 1/H0 is the current Hubble time. The material length scale evaluates

to `s = 4.153/2

2×5.721/2 × 10−7c/H0. This is approximately 0.02 times the radius of
the universe at recombination time.

3 Isotropic random fields

This section introduces basic notations and background by reviewing some
results in the theory of spherical random fields from the monograph [37] (see,
also [22], [27], [28], [29]).

We will use the symbol C to denote constants which are not important for
our exposition. Moreover, the same symbol may be used for different constants
appearing in the same proof.
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Consider a sphere in the three-dimensional Euclidean space

S2 =
{
x ∈ R3 : ‖x‖ = 1

}
⊂ R3

with the Lebesgue measure (the area element on the sphere)

σ̃(dx) = σ(dθ, dϕ) = sin θdθdϕ, (θ, ϕ) ∈ [0, π)× [0, 2π).

A spherical random field on a complete probability space (Ω,F ,P), denoted
by

T = {T (θ, ϕ) = Tω(θ, ϕ) : 0 ≤ θ < π, 0 ≤ ϕ < 2π, ω ∈ Ω} ,

in the spherical coordinate system, or T̃ = {T̃ (x) , x ∈ S2} in the Cartesian
coordinates, is a stochastic function defined on the sphere S2.

We consider a real-valued second-order spherical random field T that is
continuous in the mean-square sense. Note that [30] proved that the covariance
function of a measurable finite-variance isotropic random field on the sphere
is necessarily everywhere continuous.

Under these conditions, the field T can be expanded in the mean-square
sense as a Laplace series (see, [37], p. 73, [28], p. 33, or [30], p.123):

T (θ, ϕ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, ϕ), (7)

where {Ylm(θ, ϕ)} represents the complex spherical harmonics. The spectral
representation (7) can be viewed as a Karhunen-Loève expansion, which con-
verges in the Hilbert space L2(Ω × S2, sin θdθdϕ), that is,

lim
L→∞

E

∫
S2

(
T (θ, ϕ)−

L∑
l=0

l∑
m=−l

Ylm(θ, ϕ)alm

)2

sin θdθdϕ

 = 0.

According to the Peter-Weyl theorem (see [30], p.69), the expansion (7) also
converges in the Hilbert space L2(Ω), for every x ∈ S2, that is, for each x ∈ S2,

lim
L→∞

E

(
T̃ (x)−

L∑
l=0

l∑
m=−l

Ỹlm(x)alm

)2

= 0,

where {Ỹlm(x)} represents the complex spherical harmonics of the Cartesian
variable x.

Recall that for −l ≤ m ≤ l it holds

Ỹlm(x) = Ylm(θ, ϕ) = dlm exp(imϕ)Pml (cos θ),

dlm = (−1)m
[

(2l + 1)(l −m)!

4π(l +m)!

]1/2
,
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where Pml (·) denotes the associated Legendre polynomial with the indices l
and m, and Pl(·) is the l-th Legendre polynomial, i.e.

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x), Pl(x) =

1

2ll!

dl

dxl
(x2 − 1)l. (8)

The spherical harmonics have the following properties∫ π

0

∫ 2π

0

Y ∗lm(θ, ϕ)Yl′m′(θ, ϕ) sin θdϕdθ = δl
′

l δ
m′

m ,

Y ∗lm(θ, ϕ) = (−1)mYl(−m)(θ, ϕ), (9)

Ylm(π − θ, ϕ+ π) = (−1)lYlm(θ, ϕ),

Ỹl0(0) =

√
2l + 1

4π
Pl(1) =

√
2l + 1

4π
, (10)

where δl
′

l is the Kronecker delta function and the symbol * means the complex
conjugation. The random coefficients alm in the Laplace series (7) can be
obtained through inversion arguments in the form of mean-square stochastic
integrals

alm =

∫ π

0

∫ 2π

0

T (θ, ϕ)Y ∗lm(θ, ϕ) sin θdθdϕ. (11)

As T is real-valued, then, by the property (9), it holds

alm = (−1)mal−m, l ≥ 1, −l ≤ m ≤ l. (12)

The field T̃ (x) is called isotropic (in the weak sense) on the sphere S2 if

ET̃ (x)2 <∞ and its first and second-order moments are invariant with respect
to the group SO(3) of rotations in R3, i.e.

ET̃ (x) = ET̃ (gx), ET̃ (x)T̃ (y) = ET̃ (gx)T̃ (gy),

for every g ∈ SO(3) and x,y ∈ S2. This is equivalent to saying that the
mean ET (θ, ϕ) = c = constant (without loss of generality we assume that
c = 0), and that the covariance function ET (θ, ϕ)T (θ′, ϕ′) depends only on
the angular distance Θ = ΘPQ between the points P = (θ, ϕ) and Q = (θ′, ϕ′)
on S2.

The field is isotropic if and only if

Ealma
∗
l′m′ = δl

′

l δ
m′

m Cl, −l ≤ m ≤ l, −l′ ≤ m′ ≤ l′.

Thus, E|alm|2 = Cl, m = 0,±1, ...,±l. The series {C1, C2, ..., Cl, ...} is called
the angular power spectrum of the isotropic random field T (θ, ϕ).

From (7) and (11) we deduce that the covariance function of an isotropic
random fields has the following representation

Γ (cosΘ) = ET (θ, ϕ)T (θ′, ϕ′) =
1

4π

∞∑
l=0

(2l + 1)ClPl(cosΘ),
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where
∞∑
l=0

(2l + 1)Cl <∞. (13)

If T (θ, ϕ) is an isotropic Gaussian field, then the coefficients alm, m = −l, . . . , l,
l ≥ 1, are complex-valued independent Gaussian random variables if m 6= −m′,
with

Ealm = 0, Ealma
∗
l′m′ = δm

′

m δl
′

l Cl, (14)

if Cl > 0, or degenerate to zero if Cl = 0.

4 Solution for stochastic spherical hyperbolic diffusion

First this section derives solutions of non-random hyperbolic diffusion equa-
tions. Then the obtained results are used in to obtain solutions of diffusion
equations with random initial conditions.

Consider the following hyperbolic diffusion equation, also known as the
telegraph equation (see [23]) or relativistic diffusion equation on sphere

1

c2
∂2p̃(x, t)

∂t2
+

1

D

∂p̃(x, t)

∂t
= k2∆S2 p̃(x, t), t ≥ 0, (15)

with the initial conditions

p̃(x, t)|t=0 = δ(x),
∂p̃(x, t)

∂t

∣∣∣∣
t=0

= 0, (16)

where x = (x1, x2, x3) ∈ S2, c > 0, D > 0, and k are some constants, and ∆S2

is the Laplace operator on the sphere S2 and δ(x) is the Dirac delta-function.
Note, that in the unit spherical coordinates equation (15) takes the form

1

c2
∂2p(θ, ϕ, t)

∂t2
+

1

D

∂p(θ, ϕ, t)

∂t
= k2∆(θ,ϕ) p(θ, ϕ, t),

θ ∈ [0, π), ϕ ∈ [0, 2π), t > 0,

where

∆(θ,ϕ) =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
(17)

is the Laplace-Beltrami operator on the sphere.
It is known (see, i.e., [30], p.72) that the eigenvalue problem for Laplace

operator on the sphere has the following exact solution

∆S2 Ỹlm(x) = −l(l + 1)Ỹlm(x), l = 0, 1, 2, . . . , m = −l, . . . , l, (18)

where {Ỹlm(x)} is the system of spherical harmonics. Therefore, it is natural
to seek a solution of the problem (15)-(16) in the form of the series

p̃(x, t) =

∞∑
l=0

l∑
m=−l

blm(t) Ỹlm(x), (19)
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where

blm(t) =

∫
S2
p̃(x, t) Ỹ ∗lm(x) σ̃(dx), (20)

σ̃(dx) = sin θdθdϕ.
The proof of the following result is given in Appendix B.

Theorem 1 The solution p̃(x, t) to the hyperbolic diffusion point-source initial
value problem (15)-(16) is given by the series

p̃(x, t) = exp

(
− c

2t

2D

) ∞∑
l=0

Ql(x)

([
cosh (tKl) +

c2

2DKl
sinh (tKl)

]

×1{
l≤
√
D2k2+c2−Dk

2Dk

} +

[
cos (tK ′l) +

c2

2DK ′l
sin (tK ′l)

]
1{

l>

√
D2k2+c2−Dk

2Dk

}
)
,

where 1{·} denotes the binary indicator function,

Kl =

√
c4

4D2
− c2l(l + 1)k2, K ′l =

√
c2l(l + 1)k2 − c4

4D2
,

Ql(x) =

l∑
m=−l

Ỹ ∗lm(0) Ỹlm(x). (21)

Now we use the results of Theorem 1 to derive solutions of diffusion equa-
tions with random initial conditions. The random field u(θ, ϕ, t) is defined by
the following hyperbolic diffusion equation on the sphere

1

c2
∂2u(θ, ϕ, t)

∂t2
+

1

D

∂u(θ, ϕ, t)

∂t
= k2∆(θ,ϕ) u(θ, ϕ, t), (22)

θ ∈ [0, π), ϕ ∈ [0, 2π), t > 0,

where ∆(θ,ϕ) is the Laplace-Beltrami operator on the sphere given by (17).
Now, the random initial conditions are determined by the Gaussian iso-

tropic random field on the sphere

u(θ, ϕ, t)
∣∣
t=0

= T (θ, ϕ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, ϕ), (23)

∂u(θ, ϕ, t)

∂t

∣∣∣∣
t=0

= 0, (24)

where alm, m = −l, . . . , l, l ≥ 0, are complex-valued independent Gaussian
random variables satisfying (12) and (14).
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Theorem 2 If the angular power spectrum {Cl, l = 0, 1, 2, ...} of the random
field T (θ, ϕ) from the initial condition (23) satisfies assumption (13), then the
random solution u(θ, ϕ, t) of the initial value problem (22)-(24) is given by the
convergent in the Hilbert space L2(Ω × S2, sin θdθdϕ) random series

u(θ, ϕ, t) = exp

(
− c

2t

2D

) ∞∑
l=0

l∑
m=−l

Ylm(θ, ϕ)ξlm(t), t ≥ 0, (25)

where

ξlm(t) =

√
4π

2l + 1
almỸ

∗
l0(0)[Al(t) +Bl(t)] (26)

are stochastic processes with

Al(t) =

[
cosh (tKl) +

c2

2DKl
sinh (tKl)

]
1{

l≤
√
D2k2+c2−Dk

2Dk

} (27)

and

Bl(t) =

[
cos (tK ′l) +

c2

2DK ′l
sin (tK ′l)

]
1{

l>

√
D2k2+c2−Dk

2Dk

}. (28)

Moreover, its covariance function is given by

Cov(u(θ, ϕ, t), u(θ′, ϕ′, t′)) = (4π)−1 exp

(
− c2

2D
(t+ t′)

)

×
∞∑
l=0

(2l + 1)ClPl(cosΘ)[Al(t)Al(t
′) +Bl(t)Bl(t

′)], (29)

The proof of Theorem 2 is given in Appendix B.

5 Convergence study of approximate solutions

The results in Section 4 provide a series representation of the random field
u(θ, ϕ, t). To investigate contributions of different terms in the representation
it is important to study their finite cumulative sums. In this section it is
done by analysing truncated series expansions of the solution u(θ, ϕ, t) of the
initial value problem (22)-(24). We demonstrate the role of the decay rate
of the angular power spectrum. These results are also important for various
numerical studies. In particular, they can be used to determine the required
number of terms in the truncated series to get a specified accuracy of the
approximate solutions.

The approximation uL(θ, ϕ, t) of truncation degree L ∈ N to the solution
u(θ, ϕ, t) in (25) is defined by

uL(θ, ϕ, t) = exp

(
− c

2t

2D

) L∑
l=0

l∑
m=−l

Ylm(θ, ϕ)ξlm(t),
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for θ ∈ [0, π), ϕ ∈ [0, 2π), t > 0.
The following theorem gives the convergence rate of the approximation

uL(θ, ϕ, t) to the solution u(θ, ϕ, t). The order of the convergence rate is de-
termined by the high frequency magnitudes of the angular spectrum.

Theorem 3 Let u(θ, ϕ, t) be the solution to the initial value problem (22)-(24)
and uL(θ, ϕ, t) be the approximation of truncation degree L ∈ N of u(θ, ϕ, t).

Then, for t > 0 the truncation error is bounded by

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C
∞∑
l=L

(2l + 1)Cl.

Moreover, for L >
√
D2k2+c2−Dk

2Dk it holds

‖u(θ, ϕ, t)−uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp

(
− c

2t

2D

)( ∞∑
l=L

(2l + 1)Cl

)1/2

, (30)

where the constant C depends only on the parameters c, D and k.

The proof of Theorem 3 is given in Appendix B and does not depend on θ
and ϕ. Therefore, the statement also holds in L2(Ω) norm over the sphere S2.
Hence, we obtain the following results.

Corollary 1 Uniformly over θ ∈ [0, π), ϕ ∈ [0, 2π) the results of Theorem 3
are also valid for the mean squared truncation error

MSE(u(θ, ϕ, t)− uL(θ, ϕ, t)) = Var (u(θ, ϕ, t)− uL(θ, ϕ, t))

= ‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖2L2(Ω).

Corollary 2 Let the angular power spectrum {Cl, l = 0, 1, 2, ...} of the random
field T (θ, ϕ) from the initial condition (23) decay algebraically with order α >
2, that is, there exist constants C > 0 and l0 ∈ N such that Cl ≤ C · l−α for
all l ≥ l0.

Then, the approximation uL(θ, ϕ, t) converges to the solution u(θ, ϕ, t) of
the initial value problem (22)-(24) and

(i) for L > max(l0,
√
D2k2+c2−Dk

2Dk ) the truncation error is bounded by

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp

(
− c

2t

2D

)
L−

α−2
2 ,

(ii) for any ε > 0 it holds

P
(
|u(θ, ϕ, t)− uL(θ, ϕ, t)| ≥ ε

)
≤
C exp

(
−c2t/D

)
Lα−2ε2

,

(iii) for all θ ∈ [0, π), ϕ ∈ [0, 2π) and t > 0 the truncation error is asymptoti-
cally almost surely bounded by

|u(θ, ϕ, t)− uL(θ, ϕ, t)| ≤ L−β P− a.s.,

where β ∈
(
0, α−32

)
and α > 3.

The proof of Corollary 2 is given in Appendix B.
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6 Hölder continuity of solutions and their truncated
approximations

In this sections we investigate properties of the solution u(θ, ϕ, t) of the initial
value problem (22)-(24) and its approximation uL(θ, ϕ, t). We show that they
are Hölder continuous fields. It is demonstrated how the decay of the angular
power spectrum is related to the Hölder continuity in mean square of the
corresponding random field.

It follows from [30] that the field u(θ, ϕ, t) is mean square continuous.
However, obtaining sample Hölder continuity of this field requires stronger
assumptions on the decay of the angular power spectrum of T (θ, ϕ) than (13).

Theorem 4 Let u(θ, ϕ, t) be the solution to the initial value problem (22)-(24)
and the angular power spectrum {Cl, l = 0, 1, 2, ...} of the random field T (θ, ϕ)
from the initial condition (23) satisfies the assumption

∞∑
l=0

(2l + 1)3Cl <∞.

Then there exists a constant C such that for all t > 0 it holds

‖u(θ, ϕ, t+ h)− u(θ, ϕ, t)‖L2(Ω×S2) ≤ Ch, when h→ 0+,

where the constant C depends only on the parameters c, D and k.

Replacing
∑∞
l=0 by

∑∞
l=L in the proof of Theorem 4 in Appendix B we

obtain the Hölder continuity of the approximations to the solution.

Corollary 3 Let the assumptions of Theorem 4 hold true. Then there exists
a constant CL such that for all t > 0 it holds

‖uL(θ, ϕ, t+ h)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ CLh, when h→ 0+,

where the constant CL depends only on the parameters c, D and k.

The following result is proven in Appendix B. It provides an upper bound
on pth moments of the solution increments in time.

Corollary 4 Let the assumptions of Theorem 4 hold true. Then, for each
p > 0, there exists a constant C such that for all t > 0 it holds

‖u(θ, ϕ, t+ h)− u(θ, ϕ, t)‖Lp(Ω×S2) ≤ Ch, when h→ 0+,

where the constant C depends only on the parameters p, c, D and k.

Finally, we present continuity properties of the solution at time t with
respect to the geodesic distance on the sphere.
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Corollary 5 Let u(θ, ϕ, t) be the solution to the initial value problem (22)-
(24) and the angular power spectrum {Cl, l = 0, 1, 2, ...} of the random field
T (θ, ϕ) from the initial condition (23) satisfies the assumption

∞∑
l=0

(2l + 1)1+2γCl <∞, γ ∈ [0, 1].

Then, there exists a constant C such that for all t > 0 it holds

MSE(u(θ, ϕ, t)− u(θ′, ϕ′, t)) ≤ C
∞∑
l=0

Cl (2l + 1)
1+2γ

(1− cosΘ)γ ,

where Θ is the angular distance between (θ, ϕ) and (θ′, ϕ′) and the constant C
depends only on the parameters c, D and k.

7 Numerical studies

In this section, we present detailed numerical studies of the solution u(θ, ϕ, t)
of the initial value problem (22)-(24) and its approximation uL(θ, ϕ, t). We
investigate the convergence rates of the approximation to the solution and
evolutions of the solution, the covariance function and its power spectrum
over time.

We use the data with measurements of the CMB temperature intensity
from Planck 2015 results, see [1] and [2]. Figure 1 shows the CMB map pro-
duced from the SMICA (a component separation method for CMB data pro-
cessing) pipeline data at Nside = 1024 at 10 arcmin resolution with 12, 582, 912
HEALPix points. Figure 2 plots the best-fit LCDM scaled angular power spec-
trum Dl = l(l + 1)Cl/(2π), l = 2, ..., 2508, of the CMB map at the recombi-
nation time. The scaled CMB angular power Dl is shown as a function of the
harmonic number l. It begins at l = 2 as for l = 0 and 1 it can not be reliably
estimated using only 2l + 1 values.

We use the coefficients alm and the angular power spectrum of CMB tem-
perature intensities in Figures 1 and 2 as the initial condition of the Cauchy
problem (22)-(24). For numerical studies and R computations in this section
we assume that the angular spectrum of the random field T (θ, ϕ) is vanished
if l is greater than 2508. Thus, we use uL0

(θ, ϕ, t) with L0 = 2508 as a sub-
stitution of the solution u(θ, ϕ, t). Also, as the temperature of the ensemble
of decoupled photons has continued to diminish and now shows very small
variability in the range 2.7260 ± 0.0013 K, in plots we use the same colour
scheme but different scales compared to the intensity map in Figure 1 that
corresponds to time t = 0 in the model (22)-(24). It helps better visualise the
solutions and their approximation errors.
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7.1 Evolution of solutions

Study of the evolution of CMB field is critical to unveil important prop-
erties of the present and primordial universe [1], [14]. The CMB map can be
modelled as a realization of the random field u(θ, ϕ, t) on S2. We demonstrate
its evolution due to the model (22)-(24). For the following numerical examples
we will use the random field T (θ, ϕ) with the angular power spectrum of CMB
temperature intensities given in Figure 2.

In the case of the model (22)-(24) it follows from (25) and (26) that the an-
gular spectrum evolution over time is determined by the multiplication factor
exp

(
−c2t/2D

)
[A2
l (t) + B2

l (t)]. Since the attenuation factor is exp(−c2t/2D)
the dimensionless time t′ = c2t/2D will be used in all following plots. Figure 3
shows the original scaled angular power spectrum Dl in red and the angular
power spectra at time t′ = 0.02 and 0.04 in green and blue respectively. It is
observed that Dl changes little from the original values over short periods. The
deviations increase with increasing l which is consistent with the changes of
the multiplication factor shown in Figure 4 and cosmological theories showing
that higher multipoles are changing faster.

Fig. 3 Scaled CMB angular power spectra
for c = 1, D = 1 and k = 0.01 at time t′ = 0,
0.02 and 0.04.

Fig. 4 Multiplication factors for scaled
CMB angular power spectra for c = 1,
D = 1 and k = 0.01 at time t′ = 0.02 and
0.04.

Figure 5 displays the covariance Cov(u(θ, ϕ, 0), u(θ′, ϕ′, t′)) defined by
(29). Three lines depict covariances at the time lags t′ = 0, 0.02, and 0.04 as
functions of the angular distance Θ. To further understand the impact of time
and the angular distance on the covariance we produce 3d-plots showing the
covariance as a function of the time lag t′ and the angular distance Θ, see Fig-
ure 6. The plots in Figures 5 and 6 are normalised by dividing each value by the
variance at time 0 and the angular distance 0, i.e. by Cov(u(0, 0, 0), u(0, 0, 0)).
It is observed that the covariance decays very rapidly. It changes very little
over short time periods, except Θ values close to 0. As the angular power
spectrum decreases very quickly only its values at small multipoles have the
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Fig. 5 Three almost identical covari-
ances at the time lags t′ = 0, 0.02 and
0.04 at angular distances Θ for c = 1,
D = 1 and k = 0.01.

Fig. 6 Covariance for c = 1, D = 1 and k = 0.01
at time lag t′ and angular distance Θ.

principal impact on covariances. Relative large changes of Dl at high frequen-
cies (see Figure 3) do not substantially change the covariance function. It is
evidenced from Figure 5 where the three lines almost coincide. Hence, it would
not be reasonable to use the covariance function to characterise fine changes
in CMB maps over short periods of time. However, as the correlations change
little over time it can help in studying the CMB at earlier epochs.

Fig. 7 Difference of u(θ, ϕ, t′) at time t′ = 0
and 0.04 for c = 1, D = 1 and k = 0.01.

Fig. 8 Difference of u(θ, ϕ, t′) at time t′ = 0
and 0.04 for c = 1, D = 1 and k = 0.01 in a
small sky window.

We investigated realisations of the solution that correspond to scaled an-
gular power spectra for c = 1, D = 1 and k = 0.01 at early conformal times.
Their temperature maps were rather similar to the original map in Figure 1
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that corresponds to time t′ = 0. The temperature field becomes smoother
and its range narrows when time increases. Figure 7 depicts differences of the
temperature intensities at time t′ = 0 and 0.04. The fine structure of changes
is shown in Figure 8 that visualises a small triangular ”equatorial” region
around the Milky Way galaxy. No regions with extreme changes compare to
other locations can be seen in the both figures.

Figure 9 shows a realisation of the solution that corresponds to the case
c = 1, D = 1 and k = 0.05 at time t′ = 0.04. The temperature intensity
differences between the solution fields with k = 0.01 and k = 0.05 (Figure 9)
at time t′ = 0.04 are visualised in Figure 10. As expected the higher value 0.05
of the diffusivity parameter k results in a ”blurred” realisation of the map with
k = 0.01. The difference field does not exhibit any specific spatial pattern.

Fig. 9 The realization of u(θ, ϕ, t′) for c = 1,
D = 1 and k = 0.05 at t′ = 0.04.

Fig. 10 Difference of u(θ, ϕ, t′) for k = 0.01
and 0.05 when c = 1, D = 1 and t′ = 0.04.

7.2 Convergence rates of approximations to solutions

Now we analyse approximations to solutions and corresponding approxi-
mation errors depending on the truncation degree L.

We analysed the spatial error fields u(θ, ϕ, t′) − uL(θ, ϕ, t′) of approxi-
mations u200(θ, ϕ, 0.04) and u400(θ, ϕ, 0.04) to the solution u(θ, ϕ, 0.04) with
c = 1, D = 1 and k = 0.01 at time t′ = 0.04. The approximation error field
for the case L = 200 was rather similar to the true map which indicates that
more terms are required to reconstruct fine details of the temperature intensity
fields. For the case L = 400 the error field did not exhibit any specific spatial
pattern. An increase in the approximation accuracy was also evidenced by the
decrease of the mean squared error from 5.988295 · 10−09 to 4.075033 · 10−09.

Figure 11 shows the difference of the mean L2(Ω × S2) truncation errors∥∥∥u(θ, ϕ, t′)− uL(θ, ϕ, t′)
∥∥∥
L2(Ω×S2)

and their upper bounds (30) in Theorem 3

on a natural logarithmic scale. The case of the SPDE (22) with c = 1, D = 1
and k = 0.1 at t′ = 10 is considered. The difference is plotted as a function
of L. The plot confirms that both the error and its upper bound asymptotically
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vanish when L increases. Moreover, the convergence rates of the error and its
upper bound are of the same order and differ only by a constant multiplication
factor. Thus, the approximations to the solutions achieve an optimal order of
convergence. Figure 11 also suggests that the convergence rate is faster than
the power one.

Fig. 11 Logarithms of the mean L2(Ω × S2)-errors
and their upper bound (30) for c = 1, D = 1 and
k = 0.1 at t′ = 10.

Some additional numerical studies of the dependence on time and the pa-
rameters are given in Appendix C. The code in the folder ”Research materials”
from https://sites.google.com/site/olenkoandriy/ can be used to ob-
tain maps of realisations for different parameters that were not included in
this section or to experiment with other combinations of the parameters.

8 Conclusions and future work

This research provides physical motivation and justification for stochastic dif-
fusion models in CMB studies. The Cauchy problem with random initial con-
ditions for hyperbolic diffusion equations on the unit sphere was considered.
Properties of exact and approximate solutions were investigated. The numer-
ical studies illustrated the obtained results and examined the sensitivity of
solutions to parameters using the CMB data. They indicated that the model
is flexible enough to capture some of the statistical properties of the CMB.

It was shown that properties of the solutions are determined by the decay
of the angular power spectrum. The analysis of the CMB covariance revealed
that dependencies between CMB observations rapidly decrease with angular
distance between their locations. The numerical studies demonstrated that the
CMB evolution under this SPDE model results in most significant changes of
CMB temperature spectrum at the high frequency range in the first place. At
the same time relatively large changes of Dl at high CMB frequencies have

https://sites.google.com/site/olenkoandriy/
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little impact on the covariance functions and CMB maps that remain almost
unchanged. The contribution of high frequency components to the CMB field
is decreasing with l at a faster rate than a power-law.

The sensitivity analysis to parameters at the lower frequency spectrum
range demonstrated that changes in time and the parameters c and D have a
substantial impact on the error, while k showed almost no effect.

It would be interesting to extend the obtained results and

(1) apply this model to backward studies of CMB;
(2) compare this model with other possible evolution scenarios;
(3) investigate 3-dimensional SPDEs as the next generation CMB experiment,

CMB-S4, will be collecting 3D spatial data;
(4) explore applications to other spherical data in physics and earth sciences.
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Appendix A: Diffusion length of a local disturbance.

Consider a density disturbance u of total mass Q originating at the origin. The
well-known point source solution to linear diffusion in three space dimensions
is given by

u =
1

8[πDt]3/2
e−r

2/4Dt.

The density level set at some low significance value u is at

r = 2[Dt]1/2 ln1/2

(
Q

u[8πDt]3/2

)
,

so

dr

dt
= (D/t)1/2

ln
(

Q
u[8πDt]3/2

)
− 3/2

ln1/2
(

Q
u[8πDt]3/2

) .

The level set reaches its maximum extent when dr
dt = 0, implying t = (Q/u)2/3

8eπD ,
so the diffusion length is

rD =
1

2

(
3

πe

)1/2(
Q

u

)1/3

≈ 0.296

(
Q

u

)1/3

.

For example, for a mass disturbance the size of a solar mass, and a neutron
diffusion length of 0.3 light-year at the temperature of neutrino dissociation
from weak nuclear interactions, estimated from [6] and [25], the marginal dis-
turbance density u is around 1 solar mass per cubic light year. This is meant
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to have occurred at a time when the cosmological expansion factor a(t) was
less than 10−3, so after expansion to the current level, the equivalent marginal
density would be less than one nucleon mass per cubic metre, around the
current mean density of the universe.

Appendix B: Proofs.

Proof of Theorem 1. By substituting (19) into equation (15) and using (18),
we obtain

∞∑
l=0

l∑
m=−l

[
1

c2
d2blm(t)

d t2
+

1

D

d blm(t)

d t
+ l(l + 1)k2blm(t)

]
Ylm(x) = 0. (31)

To find particular solutions of (31), we need to solve the ordinary differential
equation

1

c2
d2blm(t)

d t2
+

1

D

d blm(t)

d t
+ l(l + 1)k2blm(t) = 0. (32)

The initial conditions for this equation can be determined from (20) and (16)
and they are

blm(t)|t=0 = Ỹ ∗lm(0),
d blm(t)

d t

∣∣∣∣
t=0

= 0. (33)

The characteristic equation of (32) is 1
c2 z

2 + 1
D z + l(l + 1)k2 = 0, with the

roots z1,2 = −c2/(2D) ±Kl. Therefore, the general solution of equation (32)
is given by the formula:

blm(t) = M1e
z1t +M2e

z2t,

where M1,M2 are some constants. From the initial conditions in (33) we obtain

M1 =

(
1

2
+

c2

4DKl

)
Ỹ ∗lm(0), M2 =

(
1

2
− c2

4DKl

)
Ỹ ∗lm(0).

Thus, the solution of the Cauchy problem (32)-(33) is given by

blm(t) =

(
1

2
+

c2

4DKl

)
Ỹ ∗lm(0) exp

[
−t
(
c2

2D
−Kl

)]

+

(
1

2
− c2

4DKl

)
Ỹ ∗lm(0) exp

[
−t
(
c2

2D
+Kl

)]
.

Returning now to (19), we obtain the solution of the Cauchy problem (15)-
(16) in the form

p̃(x, t) =

∞∑
l=0

Ql(x)

((
1

2
+

c2

4DKl

)
exp

[
−t
(
c2

2D
−Kl

)]

+

(
1

2
− c2

4DKl

)
exp

[
−t
(
c2

2D
+Kl

)])
. (34)
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Note that the multiplier of Ql(x) on the right-hand side of (34) equals

exp

(
− c

2t

2D

){
cosh (tKl) +

c2

2DKl
sinh (tKl)

}
.

By substituting this expression into (34), we get

p̃(x, t) = exp

(
− c

2t

2D

) ∞∑
l=0

Ql(x)

{
cosh (tKl) +

c2

2DKl
sinh (tKl)

}
.

Finally, using K ′l and rewriting the Green function we obtain the statement
of the theorem.

Proof of Theorem 2. The solution of the initial value problem (22) - (24)
can be written as a spherical convolution of the Green function p(θ, ϕ, t) from
Section 4 and the random field T (θ, ϕ), if the corresponding Laplace series
converges in the Hilbert space L2(Ω × S2, sin θdθdϕ).

Let the two functions f1(·) and f2(·) on the sphere S2 belong to the space
L2(S2, sin θdθdϕ) and have the Fourier-Laplace coefficients

a
(i)
lm =

∫
S2
fi(θ, ϕ)Y ∗lm(θ, ϕ) sin θdθdϕ, i = 1, 2.

Recall (see, i.e., [15]) that their non-commutative spherical convolution is de-
fined as the Laplace series

[ f1 ∗ f2](θ, ϕ) =

∞∑
l=0

l∑
m=−l

a
(∗)
lm Ylm(θ, ϕ) (35)

with the Fourier-Laplace coefficients given by

a
(∗)
lm =

√
4π

2l + 1
a
(1)
lma

(2)
l0 ,

provided that the series (35) converges in the corresponding Hilbert space.
Thus, the random solution u(θ, ϕ, t) of equation (22) with the initial values

determined by (23) and (24) can be written as a spherical random field with
the following Laplace series representation

u(θ, ϕ, t) = [ T ∗ pt](θ, ϕ) =

∞∑
l=0

l∑
m=−l

a
(t)
lmYlm(θ, ϕ), (36)

provided that this series is convergent in the Hilbert space L2(Ω×S2, sin θdθdϕ),
where pt = p(θ, ϕ, t) is given by Theorem 1 and T is given by (23). The complex

Gaussian random variables a
(t)
lm are given by

a
(t)
lm =

√
4π

2l + 1
alma

(pt)
l0 ,
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where a
(pt)
l0 = Y ∗l0(0)dl(θ, ϕ, t) and

dl(θ, ϕ, t) = exp

(
− c

2t

2D

){[
cosh (tKl) +

c2

2DKl
sinh (tKl)

]

×1{
l≤
√
D2k2+c2−Dk

2Dk

} +

[
cos (tK ′l) +

c2

2DK ′l
sin (tK ′l)

]
1{

l>

√
D2k2+c2−Dk

2Dk

}}.
It gives the first statement of the theorem.

By the addition formula for spherical harmonics (see, i.e., [30], p.66)

l∑
m=−l

Ylm(θ, ϕ)Y ∗lm(θ′, ϕ′) =
2l + 1

4π
Pl(cosΘ), (37)

where Pl(·) is the l-th Legendre polynomial (see (8)), and cosΘ is the angular
distance between the points (θ, ϕ) and (θ′, ϕ′) on S2.

Using (10) we obtain that the random field u(θ, ϕ, t) is isotropic if and only
if the covariance structure of the solution (25) can be written in the form

Cov(u(θ, ϕ, t), u(θ′, ϕ′, t′)) = exp

(
− c2

2D
(t+ t′)

)

×
∞∑
l=0

l∑
m=−l

Ylm(θ, ϕ)Y ∗lm(θ′, ϕ′)Eξlm(t)ξ∗lm(t′),

which gives the result in (29) provided the series (29) converges for every fixed
t and t′, that is

∞∑
l=0

(2l + 1)ClPl(cosΘ)[Al(t)Al(t
′) +Bl(t)Bl(t

′)] <∞. (38)

Noting that |Pl(cosΘ)| ≤ 1, only a finite number of terms Al is non-zero,
and there is a constant C such that supt≥0 |B(t)| < C, we obtain that condition
(38) follows from (13). This condition on the angular spectrum Cl, l ≥ 0,
guarantees the convergence of the series (36) in the Hilbert space L2(Ω ×
S2, sin θdθdϕ).

Proof of Theorem 3. The approximation uL(θ, ϕ, t) is a centered Gaussian
random field, i.e. EuL(θ, ϕ, t) = 0 for all L ∈ N, θ ∈ [0, π), ϕ ∈ [0, 2π), and
t > 0. Therefore,∥∥∥u(θ, ϕ, t)− uL(θ, ϕ, t)

∥∥∥
L2(Ω×S2)

= exp

(
− c

2t

2D

)

×

( ∞∑
l=L

l∑
m=−l

Ylm(θ, ϕ)Y ∗lm(θ, ϕ)Eξlm(t)ξ∗lm(t)

)1/2
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=
1

2
√
π

exp

(
− c

2t

2D

)( ∞∑
l=L

(2l + 1)Cl · [A2
l (t) +B2

l (t)]

)1/2

. (39)

By (27) and (28) we get

|Al(t)| ≤ C exp

(
c2t

2D

)
and sup

t≥0
|Bl(t)| ≤ C. (40)

Hence, for all L ∈ N it holds

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C

( ∞∑
l=L

(2l + 1)Cl

)1/2

.

For l >
√
D2k2+c2−Dk

2Dk it follows from (27) that Al(t) ≡ 0. Therefore, by
(39) and (40) we obtain

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp

(
− c

2t

2D

)( ∞∑
l=L

(2l + 1)Cl

)1/2

.

Proof of Corollary 2. The statement (i) immediately follows from (30) and
the estimate

∞∑
l=L

(2l + 1)Cl ≤ C
∞∑
l=L

l−(α−1) = CL−(α−2).

Then, applying Chebyshev’s inequality, we get the upper bound in (ii).
Finally, (iii) follows from statement (ii) and the Borel–Cantelli lemma as

∞∑
l=L

1

Lα−2L−2β
<∞.

Proof of Theorem 4. Let h belong to a bounded neighbourhood of the origin.
It follows from (14), (26), (27), (28) and (37) that

∥∥∥u(θ, ϕ, t+ h)− u(θ, ϕ, t)
∥∥∥
L2(Ω×S2)

=

∥∥∥∥∥exp

(
−c

2(t+ h)

2D

) ∞∑
l=0

l∑
m=−l

Ylm(θ, ϕ)

× ξlm(t+ h)− exp

(
− c

2t

2D

) ∞∑
l=0

l∑
m=−l

Ylm(θ, ϕ)ξlm(t)

∥∥∥∥∥
L2(Ω×S2)

=
1

2
√
π

exp

(
− c

2t

2D

)( ∞∑
l=0

(2l + 1)Cl

[(
exp

(
−c

2h

2D

)
Al(t+ h)−Al(t)

)2

+

(
exp

(
−c

2h

2D

)
Bl(t+ h)−Bl(t)

)2
])1/2

. (41)
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We start by showing how to estimate the first summand in (41). By (27),
for the case l = 0 we obtain(

exp

(
−c

2h

2D

)
A0(t+ h)−A0(t)

)2

=

(
exp

(
−c

2h

2D

)
exp

(
c2(t+ h)

2D

)
− exp

(
c2t

2D

))2

= 0.

For l > 0 we will use the upper bound(
exp

(
−c

2h

2D

)
Al(t+ h)−Al(t)

)2

=

(
exp

(
−c

2h

2D

)
(Al(t+ h)−Al(t))

−
(

1− exp

(
−c

2h

2D

))
Al(t)

)2

≤ 2 (Al(t+ h)−Al(t))2

+2

(
1− exp

(
−c

2h

2D

))2

A2
l (t).

By properties of cosh(·) and sinh(·) we get

cosh(x)− cosh(y) =
exp (x)

2
(1− exp (−(x+ y))) (1− exp (−(x− y))) ,

sinh(x)− sinh(y) =
exp (x)

2
(1 + exp (−(x+ y))) (1− exp (−(x− y))) .

Then, applying (27) and noting that only a finite number of Al is non-

vanished (namely, only if l ∈
[
0,
√
D2k2+c2−Dk

2Dk

]
) we obtain the following esti-

mates

(Al(t+ h)−Al(t))2 ≤
exp (2(t+ h)Kl)

2

[
(1− exp (−(t+ h/2)Kl))

2

× (1− exp (−hKl/2))
2

+
c4

4D2K2
l

(1 + exp (−(t+ h/2)Kl))
2

× (1− exp (−hKl/2))
2
]
≤ C exp (2hKl) exp (2tKl)

× (1− exp (−hKl/2))
2 ≤ C exp (2tKl)h

2,(
1− exp

(
−c

2h

2D

))2

A2
l (t) ≤

c4

4D2
h2A2

l (t) =
c4

8D2
h2 exp (2tKl)

×
[

(1 + exp (−2tKl))
2

+
c4

4D2K2
l

(1− exp (−2tKl))
2
]
≤ C exp (2tKl)h

2.

Now we estimate the second summand in (41) as(
exp

(
−c

2h

2D

)
Bl(t+ h)−Bl(t)

)2

≤
(

exp

(
−c

2h

2D

)
(Bl(t+ h)−Bl(t))
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−
(

1− exp

(
−c

2h

2D

))
Bl(t)

)2

≤ 2 (Bl(t+ h)−Bl(t))2

+2

(
1− exp

(
−c

2h

2D

))2

B2
l (t).

Using (40) and applying the inequalities | cos(x)−cos(y)| ≤ 2
∣∣sin (x−y2 )∣∣ ≤

|x− y| and | sin(x)− sin(y)| ≤ |x− y| we obtain

(Bl(t+ h)−Bl(t))2 ≤ 2

(
(K ′l)

2 +
c4

4D2

)
h2,(

1− exp

(
−c

2h

2D

))2

B2
l (t) ≤

(
1− exp

(
−c

2h

2D

))2(
1 +

c2

2D

)2

≤ Ch2.

Note that for all l ≥ 0 it holds

Kl ≤
c2

2D
and K ′l ≤ C(2l + 1).

Applying the above estimates to (41) we obtain∥∥∥u(θ, ϕ, t+ h)− u(θ, ϕ, t)
∥∥∥
L2(Ω×S2)

≤ C exp

(
− c

2t

2D

)( ∞∑
l=0

(2l + 1)Cl

×
[

exp (2tKl) + (K ′l)
2 + C

])1/2
h ≤ C

( ∞∑
l=0

(2l + 1)3Cl

)1/2

h,

which completes the proof.

Proof of Corollary 4. Note that u(θ, ϕ, t) is a centered Gaussian random
field and for any centered Gaussian random variable X it holds

E|X|p =
2p/2Γ

(
p+1
2

)
√
π

(
E|X|2

)p/2
.

Applying this result to the statement of Theorem 4 we obtain

‖u(θ, ϕ, t+h)−u(θ, ϕ, t)‖Lp(Ω×S2) = C‖u(θ, ϕ, t+h)−u(θ, ϕ, t)‖L2(Ω×S2) ≤ Ch.

Proof of Corollary 5. By(29) it holds

Var (u(θ, ϕ, t)− u(θ′, ϕ′, t)) = Var (u(θ, ϕ, t))

+Var (u(θ′, ϕ′, t))− 2 Cov(u(θ, ϕ, t), u(θ′, ϕ′, t))

= C exp

(
−c

2t

D

) ∞∑
l=0

Cl (2l + 1)
(
A2
l (t) +B2

l (t)
)

(1− Pl(cosΘ)).

Applying the next property of Legendre polynomials (see, for example,
[27], p.16) |1−Pl(x)| ≤ 2|1−x|γ(l(l+ 1))γ , γ ∈ [0, 1], and the upper bounds
(40), we obtain that uniformly in t ≥ 0

Var (u(θ, ϕ, t)− u(θ′, ϕ′, t)) ≤ C
∞∑
l=0

Cl (2l + 1)
1+2γ

(1− cosΘ)γ .
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Appendix C: Sensitivity to parameters.

To further understand the impact of time and the model parameters on the
difference of the mean L2(Ω × S2)-errors and their upper bound (30) we pro-
duced 3d-plots showing the difference as a function of the truncation degree
L and each parameter provided that other parameters are fixed. These plots
are displayed in Figures 12, 13, 14, and 15.

Fig. 12 Difference of the mean L2(Ω × S2)-
errors and their upper bound (30) for c = 1,
D = 1 and k = 0.1.

Fig. 13 Difference of the mean L2(Ω × S2)-
errors and their upper bound (30) for D = 1
and k = 0.1 at t′ = 10.

Fig. 14 Difference of the mean L2(Ω × S2)-
errors and their upper bound (30) for c = 1
and k = 0.1 at t′ = 10.

Fig. 15 Difference of the mean L2(Ω × S2)-
errors and their upper bound (30) for c = 1
and D = 1 at t′ = 10.

In all cases the difference between the error and its upper bound asymp-
totically vanish when L increases. Figure 12 demonstrates that the difference
is a decreasing function of time t′, which is expected as the series representa-
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tion (25) of the solutions u(θ, ϕ, t′) has the multiplication factor exp (−t′) =
exp

(
−c2t/(2D)

)
exponentially decaying in time. The differences are extreme

at the origin and decrease when time or the parameter c increases, see Fig-
ure 13. For the parameter D the situation depicted in Figure 14 is opposite
and the difference is increasing in D which is expected as the multiplication
factor is exponentially decaying in D−1. Finally, Figure 15 suggests that the
parameter k seems have no substantial impact on the difference.
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