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Summary 

Various genetic factors increase the risk of developing a psychiatric disease like 

schizophrenia. This includes large deletions or duplications known as copy number variants 

(CNVs). Genetic investigations have converged on specific pathways, implicating them in the 

development of schizophrenia. These key pathways include synaptic functioning, post-

synaptic density (PSD), and glutamatergic functioning. The PSD is important for synaptic 

plasticity, a process thought to represent the molecular basis of learning and memory. As such 

many of the cognitive impairments observed in schizophrenia are proposed to occur as a 

result of abnormal synaptic plasticity. 

CNVs affecting Discs large homolog 2 (DLG2) have been associated with psychiatric disease 

in human genetic studies. DLG2 is an important part of the PSD involved in the regulation of 

glutamatergic functioning through interaction with glutamatergic receptors NMDA and AMPA. 

Previous deficits were observed in a knock out (KO) Dlg2 mouse model in complex cognitive 

processes involving flexibility. Similar phenotypes were observed in humans carrying DLG2 

CNVs. 

Research into Dlg2 mutation is still limited, especially its behavioural impact. This thesis aimed 

to characterise two different rodent models (mouse and rat) of Dlg2 heterozygosity. In both 

models basic molecular characterisation was conducted on the impact of the genetic lesion. 

In the mouse model, Dlg2tm1a(EUCOMM)Wtsi , a range of basic behavioural tasks were used that 

had not previously reported in the strain, discovering two specific learning phenotypes: 

deficient motor learning, and reduced acoustic startle response and habituation. Impaired 

habituation to a context was also observed during a locomotor activity task. Further 

investigation was conducted into the motor learning phenotype across multiple days. From 

this it was determined that the deficit was most apparent during the earliest phase of motor 

learning. Cellular investigation partially implicated reduced neuronal activity in a brain region 

important for motor learning, M1, in this phenotype. The impact Dlg2 mutation on adult 

neurogenesis was also examined, which has previously been proposed as a synaptic risk 

convergent phenotype. In contrast to previous studies in other risk models no changes were 

found.  

Finally, anxiety and motor learning were investigated in the rat. Like the mouse no anxiety 

phenotypes were found, but in contrast no motor learning impairment was found. Associative 

learning was probed using a contextual fear conditioning paradigm. No differences were 

found, including extinction learning, in contrast to the previously reported deficit. A big 

advantage of the rat over the mouse is the reduced expression of Dlg2 in the hippocampus 

and PFC, as opposed to just the PFC. This better mimics the dysfunctional network observed 

in schizophrenia and can be capitalised on to study behaviours reliant on these regions.  
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1 General Introduction 

Psychiatric disorders accounted for 7% of the world’s disease burden in 2016 (Rehm 

and Shield, 2019). With the advances in genetic investigation of these diseases 

(discussed in more detail in 1.1) uncovering overlap between disorders interest in the 

shared aetiology has increased, and has led some to consider these disorders to be 

on a spectrum, as opposed to being completely independent (Lobo and Agius, 2012; 

Adam, 2013). These studies have also brought into sharp focus the inadequacies of 

current boundaries between the diseases and the criteria currently used for diagnosis, 

given the shared genetic risk. The genetic approach to studying these disorders has 

also highlighted important pathways that are susceptible, more so in some diseases 

than others. Of most relevance to this thesis is the particular susceptibility of the post-

synaptic density (PSD) and synaptic functioning in increasing risk of developing 

schizophrenia (Network and Pathway Analysis Subgroup of Psychiatric Genomics 

Consortium, 2015a). There is also evidence implicating the importance of the PSD in 

bipolar disorder (BPD), although this is currently more limited in comparison to 

schizophrenia (Akula et al., 2016). 

Schizophrenia affects around 1% of the global population, whilst BPD has a lifetime 

risk ranging from 1-4% (Kessler et al., 2005). Schizophrenia is widely considered to 

be a disorder of abnormal neurodevelopment (Murray and Lewis, 1987; Owen et al., 

2011). This is largely due to the association between complications during pregnancy 

and risk of developing schizophrenia (Gupta and Kulhara, 2010), difference in brain 

structure sizes in first episode schizophrenia patients (Shenton et al., 2001), and 

foetal gene expression. It was found genes associated with schizophrenia and ASD, 

but not BPD, were preferentially expressed during foetal life (Jaffe et al., 2015), and 

additionally that many of the schizophrenia GWAS risk loci directly influence the 

placenta and can predict presence of pregnancy complications (Ursini et al., 

2017).Whilst this hypothesis is initially at odds with the fact the general age of onset 

is during adolescence it has been argued that the brain is still undergoing 

development at this point. For example the importance at this age of synaptic pruning, 

and that any predisposition (ie genetics, smaller brain regions) may negatively interact 

with the environment and manifesting as the disease (Davis et al., 2016).  By contrast 

in the current literature BPD is not generally described as a neurodevelopmental 

disorder, as those neurodevelopmental mechanisms, implicated in schizophrenia, are 
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thought to only apply to a subset of BPD patients, if at all (Valli, Fabbri and Young, 

2019). 

Both diseases fall towards the more severe end of the proposed psychiatric disease 

spectrum (Adam, 2013), with psychotic symptoms prevalent in both. However, BPD 

is predominately a disorder of mood whereas schizophrenia has symptoms falling to 

three clusters; positive (psychotic), negative (changes in affect) and cognitive. The 

cognitive impairments fall under several domains, including attention, working 

memory, executive function and verbal learning and memory (Bowie and Harvey, 

2006). These deficits often occur much earlier than positive symptoms in those who 

go on to be diagnosed with schizophrenia (Häfner et al., 1992) and can be considered 

a maker for the disease (Rund, 1998). Given this unmet need and potential earlier 

identification of the disease there is much interest in investigating plausible factors 

involved in the cognitive dysfunction, such as the role of synaptic functioning.  

Current treatments have very little effect on cognitive or negative symptoms of 

schizophrenia (Tripathi, Kar and Shukla, 2018). Schizophrenia, like BPD, can be a 

life-long chronic condition, which often reduces life expectancy and results in serious 

impairment in many domains of daily life such as employment, social relationships 

and independence. These symptoms are often still present in the absence or 

remission of psychosis.  

Many factors are thought to contribute to schizophrenia, with its development being 

a complex interplay of biological, environmental and social factors. Factors such as 

migration (Cantor-Graae and Selten, 2005), childhood adversity or abuse (Matheson 

et al., 2013), and maternal infection during the first and second trimester of gestation 

(Boksa, 2008) all increase risk of developing schizophrenia. The disease is 

considered highly heritable, with heritability estimates (the portion of the variance 

explained by genetic factors) of around 80% (Gejman, Sanders and Duan, 2010). A 

close genetic relationship to someone with schizophrenia increases the risk of 

developing the disease  (Figure 1) (Gottesman, 1991). Epigenetic mechanisms, such 

as DNA methylation, might explain the 52% discordance in monozygotic twins (Mill et 

al., 2008), and have been proposed to mediate the impact of environmental factors 

(Brown and Susser, 2008; Ellman and Susser, 2009).  
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Figure 1. The closer the genetic similarity of an individual to someone diagnosed with schizophrenia the 

greater their risk of also developing the disease (Gottesman, 1991). 

High heritability is also seen in other psychiatric conditions, including BPD which has 

heritability estimates between 60-85% (Smoller and Finn, 2003), and autism (ASD) 

which has a heritability estimate of 90% (Tick et al., 2016). This shared genetic 

aetiology has been demonstrated between these psychiatric disorders, as well as 

major depression and attention deficit hyperactivity disorder (ADHD), implying there 

are common pathophysiologies affected (Cross-Disorder Group of the Psychiatric 

Genomics Consortium et al., 2013). Diagnosis of these psychiatric diseases is still 

largely subjective, based on symptomatic criteria in the DSM-V and ICD-11. There 

can be overlap in symptom presentation, and often co-morbidity of these disorders, 

which makes distinct diagnosis challenging (Murray et al., 2004). However, there are 

also differences in phenotypes, such as brain structure, and risk factors between the 

diseases. For example, enlarged ventricles and reduced brain volume have been 

consistently found in brain imaging studies of schizophrenia (Nelson et al., 1998; 

Wright et al., 2000; DeCarolis and Eisch, 2010; Arnold et al., 2015), and more recently 

common genetic risk variants are associated with reduced hippocampal (Harrisberger 

et al., 2016) and white matter volume (Oertel-Knöchel et al., 2015). Additionally 

complications in pregnancy increase the risk of developing schizophrenia (Geddes et 

al., 1999; Ursini et al., 2018). None of these, however, are the case for BPD (Verdoux 

and Bourgeois, 1993; Hoge, Friedman and Schulz, 1999; Ranlund et al., 2018). This 

led some to propose a susceptibility to a spectrum of psychiatric diseases, with 
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different risk factors potentially pushing disease trajectory down certain pathways 

(Figure 2) (Adam, 2013).   

 

Figure 2. Susceptibility to developing psychiatric diseases can be considered on a spectrum of 

increasing severity and age of onset, with some overlapping risk factors and symptomology (Adam, 

2013).   

1.1 Genetic approaches to investigating psychiatric diseases 

Various approaches to investigating the genetic influence in risk of developing these 

disorders have been used. Initially linkage analysis was conducted in samples from 

affected families and sibling pairs to determine key genomic regions. Linkage analysis 

involved examining the degree of co-segregation between phenotypic traits and 

genetic markers, allowing estimates of linkage between the disease and genomic loci 

to be determined (Lander and Kruglyak, 1995). Although there were positive findings 

these proved difficult to replicate (Farrell et al., 2015). Focus then shifted to a 

candidate gene approach. The targets investigated were selected due to position 

(from linkage analysis) or function, such as association with dopaminergic function in 

schizophrenia studies. Overall this approach was also underwhelming, with the 

pathogenic potential of some major schizophrenia candidate genes such as DISC1 

and COMT still being debated (Farrell et al., 2015), and a lack of consistency 

surrounding candidate genes in BPD (Seifuddin et al., 2012)  

1.1.1 Common variants 

One major hindrance to exploring psychiatric diseases, using these approaches is the 

polygenic nature of the diseases (Gejman, Sanders and Duan, 2010). More recently 

genome wide association studies (GWAS) have replaced hypothesis-driven 

candidate gene studies, instead using case-control comparison studies with 

thousands of samples to examine single nucleotide polymorphisms (SNPs). This 

approach facilitates empirical investigation of association between common genomic 

variants and disease (van der Sijde, Ng and Fu, 2014). These variants are, as the 

name implies, commonly occurring (a minor allele frequency between 1-5% (Neale 

and Sklar, 2015a) but have fairly low penetrance for developing a disease. This is in 
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contrast to rare variants which do not occur regularly but have a higher penetrance 

(see below). The reasoning behind GWAS studies is that more frequent occurrence 

of specific allele variants in patients compared to controls is indicative of a genetic 

association (Henriksen, Nordgaard and Jansson, 2017). A major study combining all 

available schizophrenia GWAS samples found 108 risk loci, of which 83 were novel, 

and implicated not only the dopaminergic system through dopamine receptor D2, but 

also the glutamatergic system, synaptic plasticity and the immune system (Ripke et 

al., 2014). This has since been expanded to 145 loci (Pardiñas et al., 2018).  

Subsequently similar studies were conducted in BPD uncovered 30 risk loci using a 

GWAS approach (Stahl et al., 2017). The smaller number found likely reflects the 

smaller cohort size compared to schizophrenia studies. 

Building upon the GWAS approach pathway analysis studies were employed to 

uncover molecular pathways underlying the genetic risk implicated by these variants. 

A key study examined five disorders (schizophrenia, BPD, ASD, major depression 

and ADHD). Three major pathways were implicated: synaptic functioning, histone 

modification and the immune system (Figure 3). Effected pathways were shared 

across BPD, schizophrenia and depression, again reinforcing the hypothesis of 

increased susceptibility to multiple psychiatric diseases through common factors 

(Adam, 2013; Network and Pathway Analysis Subgroup of Psychiatric Genomics 

Consortium, 2015b). Interestingly however there was divergence between the 

diseases in the prominence of the different pathways. Histone methylation was more 

strongly implicated in BPD than for schizophrenia, where the synapse and post-

synaptic functioning was predominate.   



6 
 

 

Figure 3. Pathway analysis conducted on GWAS data for five psychiatric diseases uncovered three key 

pathways affected by pathogenic variation (Network and Pathway Analysis Subgroup of Psychiatric 

Genomics Consortium, 2015b) 

Whilst GWAS studies are useful, the penetrance conferred by the mutations in 

common variation is very low, with odd ratios of <1.2 (Neale and Sklar, 2015a). 

Common variants have been estimated to account for between a quarter to a half of 

the genetic liability in schizophrenia, but not all (Cross-Disorder Group of the 

Psychiatric Genomics Consortium et al., 2013). Additionally, the majority of 

schizophrenia associated SNPs were found in non-coding regions, making it more 

challenging to uncover the biological basis of the association (Neale and Sklar, 

2015a). Therefore, other approaches were also required to understand the complex 

genetics of psychiatric disorders.  

1.1.2 Rare variants  

As well as common variants much rarer (< 1% minor allele frequency) but highly 

penetrant mutations also confer disease risk, including copy number variants (CNVs), 

rare single nucleotide variants (SNVs) and small insertions and deletions (indels) 

(Neale and Sklar, 2015b). CNVs are deletions or duplications in the genome that 

range in size from one kilobase (kb) to several megabases (Mb) and can involve 

multiple genes, although some only affect one gene such as NRXN1 coding for 

neurexin (Rujescu et al., 2009).  Multiple CNVs have been identified which confer 

increased risk for developing schizophrenia and have much greater odds ratios than 
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common variants (2.7 to >26), and although none are sufficient to cause 

schizophrenia alone (Mowry and Gratten, 2013) carriers risk of developing 

schizophrenia is between 5-30% depending on the CNV (Forsingdal et al., 2018). The 

CNV conveying greatest risk are deletions within 22q11.2, with approximately 25% of 

carriers developing psychosis (Sebat, 2013). By comparison whilst still contributing 

to risk the impact of CNVs in BPD is less than for schizophrenia (Craddock and Sklar, 

2013). Some CNVs are inherited (Harrison, 2015), whilst others occur de novo (Xu et 

al., 2008; Malhotra et al., 2011; Kirov et al., 2012). The burden of pathogenic CNVs 

is greater in people with schizophrenia than controls (Stone et al., 2008; Walsh et al., 

2008).  

As well as CNV analysis exome sequencing facilitates interrogation of DNA variants 

in the protein coding regions of the genome at a single base resolution (Henriksen, 

Nordgaard and Jansson, 2017).  Whilst 13 genes were found in a study examining 

BPD the study failed to reach the exome-wide threshold for association, again likely 

due to smaller sample sizes than in schizophrenia studies (Husson et al., 2018). A 

polygenic burden of rare (<1 in 1000) SNVs and indels across many genes was found 

in schizophrenia (Purcell et al., 2014). As found in  GWAS studies (Glessner et al., 

2010; Ripke et al., 2014), and de novo CNV studies (Kirov et al., 2012; Fromer et al., 

2014), there was an enrichment of mutations affecting components of the post-

synaptic density (PSD, see section 1.3), with SNVs and indels affecting proteins 

important in glutamatergic signalling, including Arc (activity-regulated cytoskeleton-

associated protein) and N-methyl-D-aspartate receptor (NMDAR) protein complexes 

(Fromer et al., 2014). The recent convergence of genetic findings implicating 

glutamatergic functioning further supported the glutamatergic hypothesis of 

schizophrenia, providing an alternative to the dominant dopaminergic hypothesis. 

This hypothesis is beyond the scope of this introduction so for a detailed review of 

the dopaminergic hypothesis of schizophrenia see Howes and Kapur, 2009. As the 

glutamatergic hypothesis is intricately linked with synaptic functioning it is discussed 

in more detail in the following section. Additional interest in the glutamatergic 

hypothesis comes from its potential to provide alterative targets for antipsychotic drug 

development. 

1.2 Glutamatergic hypothesis of schizophrenia 

The dopaminergic hypothesis has been unable to explain many aspects of 

schizophrenia so investigation was expanded to other affected systems, including the 

glutamatergic system. The glutamatergic hypothesis postulates that many of the 
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abnormalities observed in schizophrenia stem from dysfunctional glutamatergic 

functioning (Stone, Morrison and Pilowsky, 2007; Javitt, 2010). It was initially 

proposed following studies investigating the effect of a non-competitive NMDA 

antagonist ketamine in healthy people. Ketamine was found to induce 

psychotomimetic affects in studies during the 1960’s (Howes and Kapur, 2009).Since 

the 1990’s more studies have confirmed that the administration of ketamine, and other 

NMDA antagonists like PCP, increased positive, negative and cognitive symptoms in 

both healthy people and those with schizophrenia (Javitt, 1987, 2010; Javitt and 

Zukin, 1991). The exacerbation of symptoms in those already diagnosed with 

schizophrenia implies these NMDAR antagonists are affecting an already vulnerable 

system (Javitt, 2010). The transitory reproduction of psychotic symptoms following 

administration of these compounds lead to the development of an alternative to the 

dopaminergic hypothesis of schizophrenia, instead focusing on dysfunction and 

dysregulation of NMDA receptor mediated glutamatergic transmission (Tsai et al., 

1998). Interestingly, in healthy volunteers whilst both ketamine and the dopaminergic 

antagonist amphetamine induced positive symptoms, only ketamine produced the 

perceptual changes, negative symptoms and disruptions in delayed recall and 

working memory similar to those observed in schizophrenia (Krystal et al., 2005). 

Additionally amphetamine administration to patients it did not exacerbate their 

cognitive impairments but in fact may actually improve them (Barch and Carter, 2005) 

There is convergent genetic evidence implicating glutamatergic functioning, including 

GRIN2A, which codes NMDAR subunit GluN2A in risk for developing schizophrenia 

(Ripke et al., 2014). Additionally, other studies in rodents and humans support the 

dysfunction of glutamatergic system in schizophrenia. In rodents NMDAR antagonist-

induced neurotoxicity in prefrontal cortical areas resulted in persistent anxiety 

phenotypes often associated with schizophrenia  (Coleman et al., 2009). A single 

photon emission tomography (SPET) study found a reduction in NMDAR binding in 

the hippocampus in unmedicated schizophrenia patients compared to controls 

(Pilowsky et al., 2006).  

Dysfunction of the glutamatergic system has also been proposed as an upstream 

cause of dopaminergic dysfunction characteristic of schizophrenia (Lisman et al., 

2008; McGuire et al., 2008). Dopaminergic neurons are sensitive to alterations in 

glutamatergic signalling, as they are regulated by glutamatergic projections to 

midbrain dopamine nuclei (Miller and Abercrombie, 1996). One influential model 

reconciles glutamatergic, GABAergic and dopaminergic dysfunction in the 

development of schizophrenia (Lisman et al., 2008). Fast-spiking interneurons are a 
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component of a homeostatic feedback mechanism that stabilises glutamatergic 

pyramidal neuronal activity. Lisman et al (2008) argue this is mediated through 

NMDAR on the interneurons sensing glutamatergic activity, and if for any reason 

there is hypofunction of NMDAR this would be misinterpreted as reduced activity of 

the pyramidal neurons. This faulty reading would trigger the normal homeostatic 

response to perceived inactivity to compensate and return levels to normal. This is 

achieved via reduced synthesis of GAD67, which means that less GABA is produced. 

This reduction in GABA is maladaptive in this context and it erroneously leads to over-

activation of glutamatergic signalling. In turn this leads to disinhibition of the 

hippocampal region, and hyper-activation of dopaminergic neurons in the ventral 

tegmental area (VTA), resulting in an overactive mesolimbic dopaminergic pathway 

and the hyperdopaminergia characteristic of schizophrenia (Lodge and Grace, 2007; 

Lisman et al., 2008).  

The hyperactive glutamatergic system over-activating the GABAergic interneurons in 

the VTA may underlie the negative and cognitive symptoms, whilst over-inhibition of 

the mesocortical dopamine pathway reduces dopamine supply to the PFC thus 

causing hypofrontality (Ellaithy et al., 2015). 

A dysfunctional glutamatergic system may be the result of direct mutation of proteins 

important for its function, such NMDAR or AMPAR, but also indirectly through 

mutations in interacting proteins contained within PSD.  

1.3 The post-synaptic density 

The excitatory PSD is a protein dense region found at the plasma membrane of 

excitatory synapses. The PSD of individual synapses has been estimated to contain 

thousands of different component proteins (Sheng & Hoogenraad, 2007; Selimi et al., 

2009), many of which are vital to synaptic plasticity – the process that brings about  

change in the strength of synaptic transmission between neurons (Zheng et al., 2011). 

The presence of the PSD facilitates regulation of synaptic plasticity through post 

synaptic mechanisms in excitatory synapses. 

The PSD is highly organised structure defined by the interaction of various proteins 

and the cytoskeleton, resulting in specific localisation of proteins which determines 

functional microstructures important for synaptic transmission (Colgan and Yasuda, 

2014a). 
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Figure 4. Organisation of the PSD. The receptors and ion channels reside closest to the post synaptic 

membrane. They are anchored by various scaffolding proteins which lie perpendicularly to the 

membrane. These proteins are then connected to Shank and GKAP family proteins, which themselves 

interact with the actin cytoskeleton.   Image from Feng and Zhang, 2009. 

The first layer of PSD, closest to the post-synaptic membrane, contains the ion 

channels, membrane receptors and transmembrane cell adhesion molecules (Figure 

4). Also within this layer are two key glutamate receptors, N-methyl-D-aspartate 

(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Both 

AMPAR and NMDAR are key receptors for synaptic plasticity. AMPAR form ion 

channels which primarily conduct sodium and potassium, but depending on subunit 

composition can also be permeable to calcium (Gouaux, 2004). NMDAR are ligand-

gated and voltage-dependant ion channels permeable to calcium, and are considered 

coincidence detectors, requiring both binding of glutamate and depolarisation of the 

membrane to release the magnesium ion (Mg2+) blocking the channel pore 

(Dingledine et al., 1999). AMPAR tend to be more laterally distributed in the PSD 

whereas NMDAR are more centralised (Kharazia and Weinberg, 1997).  

Scaffolding proteins are enriched in the second layer of the PSD (Feng and Zhang, 

2009a). The largest group of these are the membrane-associated guanylate kinases 

(MAGUKs) (discussed later in this section), which includes postsynaptic density 

protein 95/disc large homolog 4 (PSD-95/DLG4), often cited as the fundamental 

building block of the PSD (Cho, Hunt and Kennedy, 1992; Chen et al., 2011). These 

scaffolding proteins lie perpendicularly to the PSD membrane and interact directly 
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and indirectly with the receptors and ion channels in layer one (Figure 4). There is 

often shared structure between scaffolding proteins, such as the protein-protein 

interaction PDZ domains (Kim and Sheng, 2004a; Funke, Dakoji and Bredt, 2005). 

The name is derived from the common structure found in PSD-95, Discs Large and 

Zona Occludens 1 proteins. 

Below these proteins lies the third layer of the PSD. Here the SH3-GK domains of the 

scaffolding proteins in layer two bind to SH3 and multiple ankyrin repeat domains 

protein (Shank) and guanylate kinase-associated protein (GKAP) family proteins, 

which run parallel to the PSD membrane (Feng and Zhang, 2009a). In turn these 

proteins are connected to the actin cytoskeleton. Other cytoplasmic proteins and 

enzymes are then able to bind to the protein framework created by the interacting 

membrane receptors and scaffolding proteins.    

A hierarchal assembly of complexes can form as a result of these protein-protein 

interactions. Individual proteins are starting components, which aggregate into 

complexes, which in turn associate together to form supercomplexes (Frank et al., 

2016; Frank and Grant, 2017).  Significantly these supercomplexes can form between 

scaffolding proteins and glutamatergic receptor. NMDAR complexes, for example, are 

comprised of NMDAR subunits which form receptor tetramers; tri-heterotetramers 

contain GluN2A-GluN2B-GluN1, whereas di-heterotetramers contain GluN2A-GluN1 

or GluN2B-GluN1 (Frank et al., 2016; Frank and Grant, 2017). These NMDAR 

complexes then form supercomplexes with two key scaffolding proteins from the 

MAGUK family, DLG4 and related protein DLG2 (Frank et al., 2016; Frank and Grant, 

2017). Both DLG4 and DLG2 are discussed in more detail later (1.3.1). DLG4 forms 

part of many supercomplexes, some with NMDAR and some without. Aggregation of 

these supercomplexes occurs as a result of high DLG4 concentration, resulting in 

sub-synaptic structures referred to as nanodomains (MacGillavry et al., 2013; 

Broadhead et al., 2016). 

For the NMDAR supercomplexes to form both DLG4 and DLG2 are required, despite 

the more prominent role of DLG4, on its own it was not sufficient to induce 

supercomplex formation, nor was DLG2 alone sufficient (Frank et al., 2016). This 

prerequisite of the presence of all three components is referred to as the ‘tripartite 

rule’ (Frank et al., 2016; Frank and Grant, 2017). By contrast the supercomplex 

assembled between a key plasticity protein, Activity-regulated cytoskeleton-

associated protein (Arc), and the inwardly rectifying potassium channel Kir2.3 

requires DLG4 but not DLG2 (Frank et al., 2017). This illustrates the possibility a 
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mechanism regulating the specificity in composition and type of supercomplex may 

be in part genetically mediated, as despite the large functional overlap between 

DLG2, and DLG4 the aforementioned supercomplex does not involve DLG2  (Frank 

and Grant, 2017).  

The structure of the PSD is dynamic, both during development (Feng and Zhang, 

2009a) and  in response to neuronal stimuli, with PSD proteins assembly or 

disassembly being associated with different types of synaptic plasticity (Zeng et al., 

2018).  

Two major forms of plasticity are Hebbian and homeostatic plasticity. Hebbian 

plasticity is considered to be the mechanism through which information is encoded 

and retained in synapses and is fundamental to learning and memory (Colgan and 

Yasuda, 2014b). Homeostatic plasticity is the ability of neurons to regulate their own 

firing relative to the network in order to maintain a baseline, acting as a safeguard 

against unregulated excitation or inhibition (Turrigiano, 2011).  

The fluidity of the molecular make-up and organisation of the PSD is best illustrated 

by the changes which occur following different types of Hebbian plasticity - Long-

Term Potentiation (LTP) and Long-Term Depression (LTD) (Huganir and Nicoll, 2013; 

Bosch et al., 2014; Araki et al., 2015), both of which result in long term changes to 

synaptic strength. Some estimates have suggested at least 2% of the PSD 

proteasome changes following induction of LTP, although this is probably an 

underestimation (Zhang, Neubert and Jordan, 2012). LTP has been demonstrated to 

induce loss or recruitment of different PSD proteins including DLG4, Shank, RNA 

binding proteins and CaMKII (Yoshimura et al., 2002). Additional AMPAR are 

incorporated stably into the post synaptic membrane as a result of the PSD 

remodelling in response to LTP (Malenka, 2003; Nicoll and Roche, 2013). Calcium 

influx through NMDAR triggers synaptic excitation which activates CaMKII, which 

relocates into the spine due to its association with GluN2B, and mediates the 

remodelling of the PSD through phosphorylation of PSD proteins, including AMPAR, 

NMDAR, DLG4 and Stargazin (Yoshimura et al., 2002). Phosphorylation facilitates 

movement and can alter binding possibilities between the proteins. For example 

DLG4 is phosphorylated at serine-73 by CaMKII, which triggers dissociation of 

binding with Shank, and results in a significant proportion of DLG4 transiently 

dissociating from the synapse, indicative of PSD remodelling (Steiner et al., 2008). 

DLG4, and DLG2, are important for the regulation of LTP and LTD (discussed in 

1.3.1) due to their interaction with vital glutamatergic receptors, AMPAR and NMDAR. 
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Both receptors play key roles in LTP and LTD. The induction of LTP occurs following 

sustained high level activation of AMPAR facilitating depolarisation of the 

postsynaptic membrane, thus removing the Mg2+ block from NMDAR, allowing influx 

of calcium (Bi and Poo, 2001).  This influx then leads to downstream changes in gene 

expression, and activity-dependant changes in AMPAR trafficking which increase 

recruitment of AMPAR to the plasma membrane (Bredt and Nicoll, 2003; Huganir and 

Nicoll, 2013). LTD occurs when prolonged weaker activation induces signalling 

cascades which result in removal of AMPAR from the plasma membrane. Initially the 

idea activation of NMDAR and subsequent calcium influx can lead to two opposing 

processes (LTP and LTD) was confusing. However, manipulation of the relative timing 

of pre- and postsynaptic activation emphasised the importance of the temporal 

pattern of calcium release in determining the direction of synaptic response (Bi and 

Poo, 2001).  

AMPAR are additionally vital for homeostatic plasticity, a negative feedback process 

which prevents chronic over or under activity. This maintains the excitation/inhibition 

balance in the brain, which is often dysfunctional in neurological diseases including 

schizophrenia (Wondolowski and Dickman, 2013). If neurons are induced to fire more 

than normal within hours firing is returned to baseline, and conversely compensation 

occurs if activity is reduced for any prolonged period time, eventually restoring 

baseline firing. There are many mechanisms through which this process is achieved; 

for example some act at a ‘local’ scale only affecting small groups or individual 

synapses (Yu and Goda, 2009), and others ‘globally’ affecting all the neuron’s 

synapses (Turrigiano, 2008). One vital process is synaptic scaling, the adjustment of 

postsynaptic strength in order to compensate for activity input (Chowdhury and Hell, 

2018). There are multiple mechanisms through with synaptic scaling is achieved 

including phosphorylation of the GluA1 subunit (Oh et al., 2006; Man, Sekine-Aizawa 

and Huganir, 2007; Joiner et al., 2010), switching between calcium permeable and 

impermeable AMPARs (Chowdhury and Hell, 2018), and interactions with PSD 

proteins like Stargazin and DLG4, GRIP1/PICK1, and immediate early genes 

Homer1A and Arc. These mechanisms can increase or decrease AMPAR at the 

membrane, alter the AMPAR subunit composition or both (Chowdhury and Hell, 

2018).  

Synaptic plasticity is considered the cellular basis of learning and memory (Hebb, 

1949; Bliss and Lømo, 1973; Whitlock et al., 2006; Takeuchi, Duszkiewicz and Morris, 

2014). As discussed above PSD proteins are important for the expression of LTP and 

LTD. Impairments in LTP have been proposed to underlie cognitive dysfunction in 
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schizophrenia (McGlashan, 2005; Peled, 2005; Salavati et al., 2015; Bhandari et al., 

2016). Therefore it is plausible that mutations affecting PSD proteins, like the 

glutamatergic receptors and scaffolding proteins already associated with 

schizophrenia, may be contributing to cognitive dysfunction through abnormal LTP 

(Harrison and Weinberger, 2005; Frantseva et al., 2008). The importance of the 

glutamatergic system to this process may also partially explain the lack of 

effectiveness of current antipsychotics on the cognitive symptoms, given that all 

current drugs principally target the dopaminergic system (Snyder et al., 1970; Roth et 

al, 2004; Stone, 2011; Comai et al., 2012), although some atypical antipsychotics 

additionally target the 5HT receptor (Seeman, 2002).  

As with schizophrenia there is convergence of genetic evidence implicating the PSD 

and abnormal synaptic plasticity to BPD (Pennington et al., 2008; Föcking et al., 2015; 

Akula et al., 2016), and ASD (van de Lagemaat and Grant, 2010; Chung, Tao and 

Tso, 2014; Leblond et al., 2014).  This implies abnormal functioning of the PSD is a 

shared risk factor for multiple psychiatric diseases. For example mutations in 

SHANK3, an important scaffolding protein (Kim and Sheng, 2004b), have been linked 

to schizophrenia, ASD and BDP (Zhou et al., 2016).  Shank3 mutant mice exhibit 

impaired LTP but normal LTD indicating altered synaptic transmission (Bozdagi et al., 

2010; Yang et al., 2012), in addition to impaired social interactions, delayed motor 

learning and impaired novel object recognition; phenotypes associated with autism 

and schizophrenia (Yang et al., 2012). De novo mutations in Shank3 have been found 

in patients with ASD (Durand et al., 2007; Gauthier et al., 2009), duplications have 

been found in BDP diagnosed patients (Han et al., 2013), and different de novo 

mutations found in patients with schizophrenia (Gauthier et al., 2010). 

1.3.1 The Discs large homolog (DLG) protein family  

The DLG protein family come under the MAGUK superfamily. MAGUKs are defined 

by the presence of PDZ, SRC homology 3 (SH3) and catalytically inactive guanylate 

kinase-like (GUK) domains (Godreau et al., 2004). MAGUKs play vital roles in the 

PSD, anchoring and stabilising glutamatergic receptors to the membrane and 

coupling their activity to intracellular signalling cascades, therefore through these 

interactions MAGUKs can potentially regulate synaptic activity strength (Gardoni, 

Marcello and Di Luca, 2009). MAGUKs interact with other PSD proteins, such as 

guanylate kinase associated protein (GKAP), encoded by DLGAP1 (Kim et al., 1997; 

Naisbitt et al., 1997). GKAP in turn interacts with other scaffolding proteins including 

Shank and Homer (Tu et al., 1999), both of which interact with actin associated 
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proteins, thus linking the PSD to the actin system in the cytoplasm of dendritic spines 

(Sala et al., 2001).  

The PSD-95 protein family is a group of MAGUKs consisting of four members; DLG1 

(SAP97), DLG2 (PSD-93), DLG3 (SAP102), DLG4 (PSD-95) (Elias et al 2006; Kim & 

Sheng 2004b). In vertebrates these genes are paralogs of the Drosophila tumour 

suppressor gene, Discs large homolog (Dlg) (Woods and Bryant, 1991). Invertebrates 

only possess Dlg, which codes for two proteins (Mendoza-Topaz et al., 2008). 

However vertebrates underwent gene duplication around 581-1141 mya, resulting in 

four paralogs (Dlg1-4), of which Dlg1 is the homolog of Dlg, that have accumulated 

mutations which diversified their structure and function (Ryan and Grant, 2009). The 

ancestral importance of Dlg is conserved across evolution, as Dlg1 null animals are 

embryonically lethal, whereas all Dlg paralogs are homozygotically viable (Caruana 

and Bernstein, 2001). DLG4 is a core component of the PSD (Gao, Tronson and 

Radulovic, 2013) and the number of DLG4 molecules has been found to determine 

PSD size (Gray et al., 2006). 

DLG2 and DLG4 are highly enriched in the PSD whereas DLG1 and DLG3 are found 

abundantly both at synapses and in the cytoplasm (El-Husseini et al., 2000a). There 

are also different temporal expression patterns between the DLGs (Oliva et al., 2012). 

DLG1 and DLG3 expression is highest embryonically and in early post-natal life 

before decreasing throughout adulthood (Müller et al., 1996; Cai et al., 2008). In 

comparison, both DLG2 and DLG4 exhibit low expression during early post-natal 

stages before increasing into adulthood (Sans et al., 2000). Therefore, it appears 

DLG1, and possibly DLG3, are important for nervous system development and DLG2 

and DLG4 less so. DLG2, DLG3, and DLG4 are predominately expressed post-

synaptically whilst DLG1 is expressed pre and post-synaptically (Aoki et al., 2001). 

All four DLGs contain a variable N-terminal followed by three PSD-95/discs 

large/zone occludens-1 (PDZ) domains, a Src-homology (SH3) domain and finally a 

guanylate kinase (GK) domain (Kuhlendahl et al., 1998). The PDZ domains bind to 

the C-terminal or internal  finger motifs of interacting partners such as receptors, ion 

channels or enzymes (Lee and Zheng, 2010). The SH3-GK domain have been 

proposed to mediate oligomerisation of DLGs (Funke, Dakoji and Bredt, 2005; Zheng 

et al., 2011; Zhu, Shang and Zhang, 2016). There are multiple isoforms of each DLG 

resulting from alternative transcription start sites and alternative splicing (Zheng et 

al., 2011) (Figure 5). The isoforms likely have different functions across development, 

regulating neuronal trafficking and some altering AMPAR functioning whilst others 
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regulate synaptic transmission in an activity-dependant manner (Kruger et al., 2013). 

For DLG2 and DLG4 the α isoform, which contains a putative palmitoylation motif of 

N-terminal cysteines, is the primary isoform (El-Husseini et al., 2000b). The β isoform, 

is the primary form of DLG1. This isoform in DLG1, DLG2,  and DLG4 contains a 

putative L27 domain (Feng et al., 2004). DLG2 exhibits the most variable N-terminal, 

with six variations described so far in humans: two palymitoylated isoforms (α), L27 

containing domain isoforms (β) and three others (ε, δ, γ) (Parker et al., 2004; Kruger 

et al., 2013; Reggiani et al., 2017). Further variation in DLG2 isoforms is achieved by 

alternative splicing of exons encoding the linker region between the SH3 and GK 

domains (Zheng et al., 2011; Kruger et al., 2013). Dependant on the splice variant 

the interaction partners able to bind may vary (Kim et al., 1996; Zheng et al., 2011).  

Due to the presence of multiple isoforms it is plausible there are important functional 

differences, which is supported by the finding that some isoforms were associated 

with neurodevelopmental disorder (Reggiani et al., 2017). The role of the 

palmitoylated isoforms is better understood for DLG4 than DLG2; the process is 

important for interaction with AMPAR and receptor internalisation (El-Husseini et al., 

2002). Palmitoylated isoforms of DLG2 in non-neuronal cells appeared to influence 

ion channel clustering (El-Husseini et al., 2000b) but were not required for synaptic 

targeting of either DLG2 isoform in neurons (Firestein, Craven and Bredt, 2000a).  

 

Figure 5. Graphical illustration of the various domains found within key isoforms of the different DLGs. 

The binding to interacting proteins varies between the DLGs. DLG3 is able to bind to 

the NMDA subunit GluN2B via any of its PDZ domains (Müller et al., 1996). By 

comparison binding to GluN2B is only possible to the first or second PDZ domains of 

DLG2 and DLG4 (Brenman et al., 1996; Kim et al., 1996). Both GluN2A and GluN2B 
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contain a conserved C terminal PDZ ligand binding motif, ESDV, which regulates this 

binding. Deletion of the ESDV site in GluN2B disrupts surface and synaptic 

expression of NMDAR (Lau and Zukin, 2007). In addition to Glun2B inwardly rectifying 

K+ channels can bind to PDZ 1 and 2 of DLG2 (Ali et al., 2018). The synaptic 

functioning of NMDAR is regulated by neuroligins and the Src tyrosine kinase Fyn 

which bind to the third PDZ domain of DLG2 (Sato et al., 2008; Won et al., 2017). 

Binding to AMPA receptors is also variable; DLG1 binds directly to the GluR1 subunit 

(Leonard et al., 1998), whereas the other DLGs interact indirectly through 

transmembrane AMPAR regulatory proteins (TARPS) such as stargazin (Chen et al., 

2000; Schnell et al., 2002; Dakoji et al., 2003). DLG1 is able to rescue deficits in 

AMPAR currents following DLG2/DLG4 double knockout, but has no effect on 

transmission if deleted itself (Howard et al., 2010a). The lack of an effect when DLG1 

when is deleted further demonstrates that the DLGs do have different roles but that 

there is capacity for functional compensation between them.  

1.4 Functional roles of the DLGs 

1.4.1 The DLGs and disease 

The DLGs have been associated with various diseases. Mutations in DLG1 are 

associated with Crohn’s disease (Xu et al., 2014), it is a candidate gene for 3q29 

microdeletion syndrome (Willatt et al., 2005), which is also a risk CNV for 

schizophrenia (Mulle et al., 2010). DLG3 is implicated in X-linked mental retardation 

(Tarpey et al., 2004). Mutations in DLG4 are implicated in Williams-Beuren syndrome 

(Feyder et al. 2010), Alzheimer’s disease (Leuba et al., 2008; Bustos et al., 2017) and 

mice lacking Dlg4 exhibit phenotypes relevant to autism (Feyder et al. 2010).  

DLG2 was first associated with increased risk of developing schizophrenia through 

de novo CNV studies (Kirov et al., 2012). This approach compares rare variants in 

trios of schizophrenia patients and their parents, and the study identified likely 

pathogenic CNVs in DLG2.  In comparison to other CNV risk genes for schizophrenia, 

such as the 15q11.2 deletion, the CNVs identified only affected DLG2 and did not 

span multiple genes. Additionally, exome sequencing studies identified de novo SNVs 

which resulted in loss of function mutations in DLG2 associated with schizophrenia 

(Fromer, et al., 2014; Purcell et al., 2014). Reduced Dlg2 expression was also 

discovered in the hippocampus of a NMDAR hypofunction rat model of psychosis 

(Ingason et al., 2015). In post mortem brains from schizophrenia patients DLG2 

expression was increased in the anterior cingulate cortex but protein expression was 

decreased, implying abnormal translation and/or accelerated protein degradation 
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(Kristiansen et al., 2006). Mutations in DLG2 have since been implicated in risk of 

developing BPD (Noor et al., 2014) and ASD (Egger et al., 2014; Xing et al., 2016).  

Mutations in the DLGs produce different phenotypes. In mice acute knockdown of 

Dlg1 in slice cultures impairs LTP (Nakagawa et al., 2004), whilst conditional Dlg1 

knockout mice exhibit normal LTP (Howard et al., 2010b), suggesting Dlg1 is not 

essential for LTP but may be involved in its regulation. Knockout of Dlg3 does not 

affect basal, nor presynaptic function – as might be expected from its postsynaptic 

localisation, but does impair spatial learning in mice (Cuthbert et al., 2007). Dlg2 and 

Dlg4 share the most overlap in function and localisation of the Dlgs, however 

knockout models exhibit divergent phenotypes, which will be discussed in following 

paragraphs. 

One proposed interaction through which mutations in DLG2 are increasing risk for 

psychiatric disorders, particularly schizophrenia, is through its interaction with the 

glutamatergic signalling and influences on synaptic plasticity. Acute knockdown of 

Dlg2 or Dlg4, with short-hairpin RNA (shRNA) resulted in a ~50% reduction AMPAR 

mediated synaptic transmission in neuronal cultures (Elias, et al, 2006). A greater 

reduction (75%) was found following double knockdown of Dlg2 and Dlg4  (Elias, et 

al, 2006). However, in hippocampal slices from mice with a genetic knockout of Dlg2 

and Dlg4, reduced AMPAR mediated plasticity was only observed in double, not 

single, knockouts. Additionally, expression of Dlg3 was increased in the double 

knockouts. Taken together these findings suggest that that DLG2 and DLG4 proteins 

account for the majority of AMPAR trafficking to the synapse, which is required for 

synaptic plasticity, and that there is compensatory functional redundancy in mice 

lacking one or more Dlgs from birth (Elias, et al, 2006). Further supporting the 

proposed functional redundancy between DLG2 and DLG4 was the effect of knockout 

on synaptic scaling, an important form of homeostatic plasticity (Sun and Turrigiano, 

2011). Both DLG2 and DLG4 are important for scaling up of AMPAR at the synaptic 

membrane in in vitro cortical neurons, but scaling down was only impaired in Dlg4 

knockdown neurons (Sun and Turrigiano, 2011). DLG2 was not able to compensate 

the loss of DLG4 in scaling up in ‘older’ neurons, which had been cultured for longer. 

Taken together these results imply that there is functional redundancy between the 

Dlgs but this does not appear to be consistent across all ages, or for all types of 

plasticity (i.e. the reliance for downscaling is solely on DLG4).  

Given this apparent redundancy, particularly between Dlg2 and Dlg4, it is therefore 

intriguing that mutations affecting DLG2 seem to influence risk for schizophrenia, and 
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other diseases. There are, however, other findings demonstrating despite the 

functional overlap there are divergent roles for DLG2 and DLG4. In hippocampal 

slices basal AMPAR-mediated synaptic transmission in CA1 was normal in Dlg2 KO 

mice but impaired in Dlg4 KO mice (Carlisle et al., 2008). This contrasts with Elias et 

al. (2006) who found KO of Dlg4 did not affect AMPAR-mediated synaptic 

transmission. Protocols probing NMDAR-dependent LTP found differential effects in 

Dlg2 and Dlg4 KO slices. Dlg2 KO hippocampal CA1 slices exhibited impaired LTP 

but normal LTD, by comparison in slices from  Dlg4 KO mutants impaired LTD and 

facilitated LTP  was exhibited (Carlisle et al., 2008). This suggests a selective role for 

Dlg4 in LTD and opposing roles for Dlg2 and Dlg4 in LTP. The divergence in LTP 

phenotypes between the KO suggests that under normal conditions Dlg2 couples 

NMDAR to MAGUK associated signalling complexes (MASCs) which facilitate LTP, 

whilst MASCs coupled to NMDAR by Dlg4 suppress LTP induction (Carlisle et al., 

2008). As has been discussed above (1.3), the formation of NMDA receptor 

supercomplexes, important for postnatal development and synapse maturation, 

require both DLG2 and DLG4 (Frank et al., 2016). This implies that Dlg2 and Dlg4 

have independent functions and are not fully functionally redundant, and they can 

function interdependently.  

DLG2 plays an important role in plasticity and has been investigated in vitro using 

both genetic KO cell culture and transient knockdown models. Reduction in Dlg2 

expression perturbed network activity measured by multi-electrode array in mouse 

primary hippocampal neurons following transient (1 week) siRNA knockdown 

(MacLaren et al., 2011). An increase in bursting rate and bursting average was 

observed, implicating Dlg2 in regulation of normal neuronal network function. This 

study illustrates differences in observed phenotypes can depend on methodology; 

reduction in Dlg2 through acute in vitro knockdown demonstrated deficits whereas 

chronic genetic manipulations did not. This is likely attributable to the opportunity in 

genetic KO models for compensatory mechanisms to take over throughout 

development and buffer the effect of any mutations, which is not possible in the 

shorter time frame of acute knockdown studies. The extent to which compensation is 

occurring in heterozygous Dlg2 rodent models, which more closely mimic humans 

carrying mutations, is unclear. The different findings of the in vitro studies of DLG2 

reduction are summarised in Table 1. 

Study Model Method Effect 

MacLaren et al 
2011 

Primary culture siRNA knockdown ↑ burst rate & 
bursting average 
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Elias et al 2006 Primary culture shRNA knockdown 
(DLG2 only) 

Double DLG2 & 
DLG4 KO 

~50% ↓ AMPAR 
currents 

~75% ↓ AMPAR 
currents 

Elias et al 2006 Slices Genetic KO  
(DLG2 only) 

Double DLG2 & 
DLG4 KO 

= AMPAR currents 
 

↓ AMPAR currents 

Carlisle et al 2008 Slices Genetic KO = AMPAR currents 
↓ LTP / = LTD  

Sun and Turrigiano 
2011 

Primary culture Genetic KO Can mediate 
scaling up but not 
down of AMPAR 

Frank et al 2016 Primary culture Genetic KO Failure of NMDAR 
supercomplex 

formation 

Zhang et al 2010 
 

Primary culture Genetic KO ↓ NMDAR 
mediated 

neurotoxicity 
↓ calcium influx 
through NMDAR 
↓ NR2A/NR2B in 

synaptosomal 
fractions 

McGee et al 2001 Cerebellum 
sections 

Genetic KO = NMDAR subunit 
localisation 

Table 1. A summary of key findings from in vitro studies examining the impact of DLG2 reduction, 

primarily focused on the impact on synaptic plasticity. 

The importance of the interaction of DLG2 with NMDAR has been further 

demonstrated in cortical neuronal cultures where knockout of Dlg2 attenuated 

NMDAR-mediated neurotoxicity, and reduced calcium influx through NMDAR (Zhang 

et al., 2010a). The lack of complete abolishment of neurotoxicity again implies 

developmental compensatory mechanisms between Dlgs. Dlg2 KO cultures were 

examined to determine whether NMDAR numbers or localisation was affected by the 

loss of Dlg2. These KO cultures did not show any reduction in total numbers of 

NMDAR subunits NR2A or NR2B, but did show reduced numbers in synaptosomal 

fractions, suggesting altered distribution of NMDAR in the neurons (Zhang et al., 

2010a). The altered localisation of NMDAR was also observed in the spinal cord and 

PFC (Liaw et al., 2008). When numbers of NMDAR and their localisation  were 

investigated in the cerebellum of Dlg2 KO mice no differences were found, either for 

total numbers or synaptosomal fractions (McGee et al., 2001). This indicates not only 

was there no change in NMDAR numbers but that receptor localisation was normal, 

as opposed to studies in vitro. Dlg2 is the only MAGUK expressed in the cerebellum, 

thus functional redundancy and compensation between the Dlgs is unable to account 

for unaffected localisation of NMDAR. The importance of the Dlg2 interaction with 
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NMDAR has also been demonstrated in vivo in a chronic pain model. Dlg2 KO mice 

exhibited loss of morphine analgesic tolerance and jumping activity, a withdrawal 

behaviour, both of which are NMDAR-dependant (Liaw et al., 2008).  

It should be noted that in addition to interactions with NMDAR and AMPAR, Dlg2 

associates with several other key proteins involved in excitatory signalling, such as 

the inward rectifying potassium channel Kir2.1 (Leyland and Dart, 2004) and ERK2 

(Guo et al., 2012).  Other interactors of DLG2 have also been associated with 

schizophrenia. These include neuronal nitric oxide synthase (nNOS) (Brenman et al., 

1996), which is increased is post-mortem patient brains (Karson et al., 1996; 

Nasyrova et al., 2015), as well as ErbB4 (Garcia, Vasudevan and Buonanno, 2000), 

another gene for which rare variants have been associated with risk for schizophrenia 

(Walsh, et al., 2008). Dlg4 also interacts with ErbB4, with a substantial increase in 

interaction between the two found in post-mortem schizophrenia patient brains (Hahn 

et al., 2006). Further investigation is required to examine the neuronal and 

physiological roles of DLG2 interactors, particularly in relation to these less well 

studied targets. This expanded knowledge will also increase understanding into the 

role of DLG2 in normal brains, as well as disease states such as schizophrenia.  

1.4.1.1 DLG2 and cognition 

To date less research has examined effects of Dlg2 mutation in vivo. Abnormalities 

in structure and function of the cerebellum of Dlg2 KO mice has been investigated in 

mouse models (McGee et al., 2001). Investigations focussed on the cerebellum due 

to the inability of other MAGUKs to compensate the loss of Dlg2. In the cerebellum 

the synaptic architecture (morphology and dendritic arborization of Purkinje neurons, 

general layer structure) in Dlg2 KO mice was found to be normal (McGee et al., 2001). 

The cerebellum is an important structure for motor learning and co-ordination (Costa, 

Cohen and Nicolelis, 2004), but motor co-ordination was found to be normal in Dlg2 

KO mice (McGee et al., 2001). In direct contrast to this initial study a more recent one 

using the same mutant Dlg2 strain found a severe motor learning deficit in Dlg2 KO 

mice (Winkler et al., 2018). This phenotype was also observed in the heterozygotic 

mice to a less severe extent. The reason for this discrepancy is unclear, although it 

may be methodological. The mice tested in McGee et al (2001) underwent three 2 

minute training sessions on a set speed rotarod before progressing to an accelerating 

rotarod. Whether the mice in Winkler et al (2018) also had this training period is 

unclear, as multiple papers with variations in method, including McGee et al (2001), 

are referenced for rotarod methodology, making it hard to compare between the two. 
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Additionally, the impact of this training period on the learning process is unclear. 

Motoric phenotypes are associated with ASD but impaired motor learning may also 

be predictive of later development of psychosis (Isohanni et al., 2001), therefore 

addressing this discrepancy is important to understanding the role in Dlg2 in this 

process. Additionally, homozygous, but not heterozygous male Dlg2 KO mice 

demonstrated hypersociability compared to WT mice, in contrast the hyposociability 

typically observed in mouse models carrying synaptic mutations associated with 

monogenetic autism (Winkler et al., 2018).  

Most relevant to schizophrenia was a landmark study which found comparable 

cognitive impairments in both Dlg2 KO mice and humans with CNVs in Dlg2 

measured using analogous tasks using touchscreens on the Cambridge 

Neurophysiological Test Automated Battery (CANTAB) (Nithianantharajah et al., 

2013). Three knockout mouse models, Dlg2, Dlg3 and Dlg4, and a heterozygotic Dlg1 

mouse were tested on a battery of increasingly complex cognitive tasks. The Dlg1 

mouse model was heterozygotic due to the embryonic lethality of a full knockout, 

nevertheless it was shown that one copy of Dlg1 was sufficient for normal cognition. 

On the contrary, simple associative learning tasks were impaired in Dlg4 KO mice, 

whereas Dlg2 and Dlg3 KOs performed normally. However, on more complicated 

cognitive tasks such as the object-location paired association task, and those that 

require cognitive flexibility, reversal learning and extinction, Dlg2 KO mice exhibited 

deficits in comparison to WT mice. On these same tasks the Dlg3 KO mice 

demonstrated improved performance compared to WT mice. The divergent 

phenotypes between the Dlg mutants, and the opposite phenotypes observed in Dlg2 

and Dlg3 KO mice, reflect the importance of this evolutionary expansion of this family 

of MAGUKs to more complex behaviours seen in mammals (Nithianantharajah et al., 

2013). DLG4 is associated with more synaptic functions than other members of the 

family, therefore phenotypes associated with its loss are thus perhaps not surprisingly 

more extreme. Most interestingly cognitive deficits exhibited by Dlg2 KO mice were 

also observed in humans carrying DLG2 mutations. Of the CNVs carried by the four 

patients three were exon disrupting, intronically located deletions, and one person 

carried multiple exon disrupting duplications (Nithianantharajah et al., 2013). All but 

one patient had a diagnosis of schizophrenia. Consistent with the Dlg2 KO mouse 

model, the humans with DLG2 CNVs made more errors than healthy controls in 

acquisition of visual discrimination and tasks of cognitive flexibility, visuo-spaital 

learning and memory, and demonstrated decreased accuracy of sustained attention 

(Nithianantharajah et al., 2013). It is important to note that the people carrying DLG2 
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mutations are heterozygotic, in comparison to the full KO mice, therefore it would be 

important to examine whether heterozygotic rodent models, more reflective of human 

disease, also exhibit these phenotypes.  

1.5 Disease relevant phenotypes 

As discussed above, in vitro studies implicate Dlg2 in synaptic functioning, and in vivo 

studies implicate Dlg2 in cognitive function in both rodent models and in humans 

carrying mutations affecting DLG2. However, research into the impact of Dlg2 

mutation is still fairly limited. In particular the effects of Dlg2 heterozygosity in rodents 

which reflect the haploinsufficiency seen in patients with schizophrenia. Therefore, it 

is important to utilise heterozygotic rodent models to expand upon the initial findings 

primarily in homozygotes, to uncover psychiatric disease-relevant phenotypes. 

Both Dlg2 KO mice and humans carrying DLG2 mutations demonstrated impaired 

extinction and delayed reversal learning, processes that require flexibility of cognition 

(Nithianantharajah et al., 2013). Extinction is an associative learning process 

observed following classical or operant conditioning (Pavlov 1927; Eisenberg et al. 

2003; Suzuki et al. 2004). Classical conditioning involves the pairing of a neutral 

stimulus (conditioned stimulus, CS) with a biologically relevant stimulus 

(unconditioned stimulus, US), either an appetitive (e.g. food) or an aversive stimulus 

(e.g. mild food shock) such that re presentation of the neutral stimulus, the CS, results 

in similar response (conditioned response, CR) to US (Skinner, 1938). Operant 

conditioning involves reward or punishment to modify the strength of a specific 

behaviour (Skinner, 1938). Extinction, measured as a reduction of the CR, occurs 

when either the CS is repeatedly presented in the absence of the US or the CS is 

presented for a prolonged period of time. Dysfunctional associative learning has been 

considered a hallmark of schizophrenia (Bleuler, 1911; Peralta and Cuesta, 2011) 

and may underlie the development of psychosis (Kapur, 2003b). Impaired associative 

learning has also been implicated in other psychiatric diseases such as MDD (Mills 

et al, 2015; Harel et al., 2016). Recently CNVs in patients with schizophrenia were 

found to be enriched for genes expressed in the CA1 of the hippocampus during the 

extinction of contextual fear memory in rats, but not the consolidation or retrieval  of 

fear memory that does not result in extinction (Clifton et al., 2017). Aversive (fear) 

conditioning is the form of associative conditioning that is consistently impaired in 

humans with schizophrenia (Ax et al., 1970; Ax, 1990; Jensen et al., 2008b). Rodent 

models have demonstrated aversive conditioning and extinction is dependent on 

NMDAR activation in the amygdala and hippocampus (LeDoux, 2003a). These data 

are consistent with a role for selective role for DLG2 in extinction processes of 
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associate fear learning and memory, potentially mediated through the interaction 

between Dlg2 and NMDAR. Whether this phenotype is also present in a heterozygous 

model, or when employing aversive rather than appetitive protocols needs 

investigation as heterozygous models better replicate the DLG2 mutations in 

schizophrenia than homozygous models. 

  

The delayed reversal learning observed in Dlg2 KO mice and human CNV carriers 

(Nithianantharajah et al., 2013) indicates cognitive inflexibility; a reduced ability to 

behaviourally adapt to environmental stimuli (Armbruster et al., 2012). Cognitive 

flexibility is a core executive function and its dysfunction has been demonstrated in 

rodent models and patients with schizophrenia (Morice, 1990; Brigman, Graybeal and 

Holmes, 2010), BDP (Morice, 1990; O’Donnell et al., 2017) and ASD (South et al, 

2012).  This rigidity in responding to the environment may also manifest in other 

disease relevant phenotypes which involve adaption to the stimuli, such as 

habituation or sensorimotor gating. Habituation is a simple form of non-associative 

learning where an organism’s response to a stimulus decreases with prolonged 

exposure (Groves & Thompson 1970; Harris 1943; Thompson & Spencer 1966). 

When habituation is impaired the stimulus retains its novelty drawing attention which 

could lead to the formation of abnormal associations (Kapur, 2003b; Martinelli et al., 

2018). Habituation deficits have been observed with schizophrenia (Holt et al., 2005; 

Williams et al., 2013) and ASD (Vivanti et al., 2018). Sensorimotor gating is a process 

which filters out irrelevant environmental stimuli, preventing information overload and 

facilitating focus on salient stimuli (Braff and Geyer, 1990). A deficiency in this filtering 

ability is found in people with schizophrenia Walters & Owen 2007; Gottesman & 

Gould 2003), BPD (Perry et al., 2001; Kohl et al., 2013) and ASD (Perry et al., 2007; 

Kremer et al., 2013; Kohl et al., 2014a). In schizophrenia is has been proposed that 

impaired habituation and a persistent focus on irrelevant stimuli, due to an inability to 

filter it out, may lead to the formation of abnormal associations, and eventually the 

development of psychosis (Kapur, 2003b; Jensen et al., 2008b). 

 

1.6 Experimental Aims  

There is convergence of genetic risk for schizophrenia and other psychiatric disorders 

and this shared aetiology suggests common affected pathways and pathophysiology 

between disorders (Cross-Disorder Group of the Psychiatric Genomics Consortium 

et al., 2013). Particularly prominently affected gene sets and pathways are synaptic 

functioning and the glutamatergic system. DLG2 is an important scaffolding protein 
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found in the PSD and plays a vital role in synaptic plasticity such as LTP, through 

mediation of NMDAR and AMPAR functioning (Elias et al., 2006; Carlisle et al., 2008; 

MacLaren et al., 2011; Sun and Turrigiano, 2011). Abnormal synaptic plasticity is 

associated with schizophrenia and other related disorders McGlashan, 2005; Peled, 

2005; Salavati et al., 2015; Bhandari et al., 2016). Dysfunctional LTP at the molecular 

level may underpin some cognitive deficits seen in schizophrenia as synaptic 

plasticity is considered the cellular basis of learning and memory (Hebb, 1949; Bliss 

and Lømo, 1973; Whitlock et al., 2006; Takeuchi, Duszkiewicz and Morris, 2014). In 

Dlg2 KO mouse models abnormalities of synaptic plasticity were found in vitro and 

specific cognitive deficits were observed during behavioural tasks. DLG2 KO mice 

exhibited deficits in multiple tasks which require cognitive flexibility: reversal learning, 

extinction (Nithianantharajah et al., 2013), and motor learning (Winkler et al., 2018). 

Genetic studies in humans found association between CNVs in DLG2 and 

schizophrenia (Kirov et al., 2012; Fromer , et al., 2014), as well as BPD (Noor et al., 

2014) and ASD (Egger et al., 2014; Xing et al., 2016). When tested on translationally 

relevant tasks humans carrying DLG2 CNVs demonstrated similar cognitive 

impairments to the mouse model (Nithianantharajah et al., 2013). However, the vast 

majority of research into Dlg2 mutation in mice has been conducted in full KOs rather 

than heterozygotic models which more appropriately reflect the human condition. 

Studying heterozygotic models will provide more insight into the role of Dlg2 in the 

cognitive processes which are dysfunctional in schizophrenia. With the advances in 

genetic engineering, particularly CRISPR, it is now possible to generate CNV rat 

models. Rats offer multiple advantages over mouse models, such as closer 

physiology to humans (Ellenbroek and Youn, 2016), the opportunity to study more 

complex cognitive behaviours and less time required training for these tasks 

(Colacicco et al., 2002; Jaramillo and Zador, 2014). Additionally, CRISPR allows more 

control over the mutation generated resulting in a genetic lesion that more closely 

mimics those observed in humans.  

In this thesis I will conduct an initial characterisation of our heterozygous Dlg2 mouse 

model, on which no research has yet been published, and our completely novel 

heterozygous Dlg2 rat model. I will then investigate the impact of a heterozygotic 

mutation in Dlg2 on more complex cognitive tasks that probe processes known to be 

dysfunctional in schizophrenia. Therefore, my aims were as follows: 

 Basic molecular characterisation was conducted in both the novel 

heterozygous Dlg2 mouse and rat model. In both models it was predicted that 

there would be a selective decrease in Dlg2 mRNA expression, but not in any 
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other Dlg, in brain regions important in schizophrenia (the PFC and 

hippocampus) and a control region (the cerebellum). 

 

 Basic behavioural phenotyping was conducted in the heterozygotic Dlg2 

mouse and rat models. Current behavioural literature for Dlg2 mutation is 

limited and confined to one mouse strain. Therefore a battery of tasks, 

including more basic assessments, such as motoric function and anxiety, as 

well as tasks more associated with schizophrenia, including those involving 

simple cognition and sensorimotor gating were employed. It was anticipated 

that the heterozygotes would not be universally impaired, but rather would 

display specific deficits, on tasks involving elements of cognition. 

 

 Adult neurogenesis was investigated in the mouse model. Dysfunctional adult 

neurogenesis is a potentially convergent phenotype in synaptic risk models 

and no research has to date investigated the impact of mutation in any Dlg on 

the process.  

 

 Fear learning and extinction were investigated in the rat model. Extinction 

learning requires cognitive flexibility and deficits have previously been found 

in Dlg2 KO mice and humans carrying DLG2 CNVs. Additionally, there is a 

specific association between schizophrenia risk genes and extinction (Clifton 

et al., 2017). The heterozygotic Dlg2 rats were predicted to exhibit deficient 

extinction of fear memories.  
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2 General Materials and Methods 

2.1 Animals 

2.1.1 Ethics  

All procedures were conducted in line with Animals (Scientific Procedures) Act 

(ASPA) (1986) under UK Home Office project license PPL 30/3135 and PIL 

131AE7D42.  

2.1.2 Housing 

WT and Dlg2+/- mice were housed with up to 5 littermates of the same sex in standard 

cages (48cm (L) x 15cm (W) x 13cm (H)). WT and Dlg2+/- rats were housed in groups 

of 2-4 dependant on weight in standard cages (38cm (W) x 56cm (L) x 22cm (H). Both 

species were housed on a 12:12 hour light/dark cycle (light phase 8am – 8pm) with 

ad libtum access to standard food (standard chow: mouse (RM3 E) and rat (RM1), 

Special Services Diet, Lillico, UK) and water. Cages were lined with wood shavings 

with cardboard tubes and wooden sticks provided as environmental enrichment. 

Holding rooms were maintained at 45-60% humidity and 19-22°C. Any alternation 

from standard conditions is described on an individual experimental basis. At the end 

of experimentation mice were sacrificed via schedule one (cervical dislocation) or 

perfusion fixation. Rats were sacrificed by either a rising concentration of CO2 in a 

home cage culling chamber (Clinipath Equipment Limited, Hull, UK) or by anaesthetic 

overdose (Euthatal (200mg/ml), Merial, Harlow, UK). 

Only breeding of mice was conducted in house. WT x HET pairs and trios were mated, 

pairs housed in conventional cages and trios in larger cages (45cm (L) x 25cm (W) x 

13cm (L)).   

2.1.3 Genotyping - DNA extraction 

Model design is discussed in Chapter 3 (mouse) and Chapter 6 (rat). For genotyping 

and for both species ear punches were taken during initial animal identification post 

weaning. Further tail tip biopsies were taken post-mortem for confirmation. All 

samples stored at -20°C.  The Qiagen DNeasy Blood and Tissue Kit (Qiagen, 

Manchester, UK) was used as per the standard manufacturer’s instructions to extract 

genomic DNA. Either 1 single ear-punch or approximately 0.6cm of tail tissue was 

lysed overnight at 56oC  in 180 μl ATL buffer and 20 μl proteinase K. 200 μl of AL 

buffer and 96-100% ethanol were added then all liquid was transferred to a spin 

column and centrifuged at 8000 rpm for 1 minute. The membrane was washed with 
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AW1 and AW2 buffers and then the column was centrifuged at 14,000 rpm for 3 

minutes to dry the membrane. 200 μl AE buffer was added directly to the membrane 

and incubated at room temperature for 1 minute. A final centrifugation step at 8000 

rpm for 1 minute eluted the DNA, which was then stored at -20oC. Polymerase chain 

reaction (PCR) is described separately for each species in Chapters 3 (mouse) and 

Chapter 6 (rat).   

2.1.4 Ketamine solution and injection 

In Chapter 5 a ketamine-induced hyperlocomotion challenge study was conducted. 

Ketamine hydrochloride 100mg/ml solution (Ketavet®, Zoetis, UK) was diluted in 

saline under a sterile hood to 5mg/ml, 10mg/ml and 20mg/ml and was stored at RT 

until needed. In line with Cardiff University Drug Policy all ketamine was disposed of 

as directed 30 days after opening. For injection mice were restrained and ketamine 

solution administered via intraperitoneal (IP) injection. The mice were then transferred 

to the locomotor activity box, as described in Chapter 5.  

2.1.5 Perfusion 

Quick and uniform fixation of brain tissue was achieved using transcardial perfusion 

via the left ventricle. In Chapter 4 and 5 perfusion was used for some experiments in 

the mouse model. 

The perfusion pump was set up and a 15-gauge blunted perfusion needle attached. 

Mice were anaesthetised with 1ml of Euthatal (200mg/ml, IP) injection (Merial, 

Harlow, UK). The tip of the tail was taken for post mortem genotyping. Transcardial 

perfusion was then conducted: first 1X phosphate buffered saline (PBS) was flushed 

through the system until it was clear of blood (approximately 2 minutes), then the 

solution was switched to cold 4% paraformaldehyde (PFA in PBS) (Sigma-Aldrich, 

Dorset, UK) (w/v) and perfusion continued until the animal became rigid 

(approximately 3-5 minutes). Perfusion was then stopped, the brain was dissected 

out and transferred to fresh 4% PFA for post fixing (either 4-6 hrs at room temperature 

(RT) or 24 hrs at 4°C). Brains were then transferred to 30% sucrose solution (diluted 

in ddH20) for several days, before being embedded in OCT (ThermoFisher Scientific, 

UK) and stored at -80°C. 

2.1.6 Dissection 

Tissue for RT-qPCR was collected from mice that were sacrificed via cervical 

dislocation or from rats were sacrificed via rising CO2 concentration. Brains were 
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removed and the cerebellum, hippocampus and PFC micro-dissected and flash 

frozen on dry ice. Dissected tissue was stored at -80°C until required.  

2.2 Behaviour 

With the exception of experiments presented in Chapter 7, all behaviour was 

conducted during the light phase. The basic setup for each behavioural test is 

described in this section, but full experimental training protocol, manipulations and 

analysis are described in the appropriate sections of each results chapter. With the 

exception of experiments discussed in Chapter 7, animals were moved to behavioural 

testing rooms in their home cages as soon as possible after testing.  

2.2.1 Mouse behaviour 

2.2.1.1 Rotarod 

Motor learning and motor function were assessed using multiple rotarod paradigms 

discussed in Chapter 3 and Chapter 4. The rotarod (47600, Ugo Basile, Italy) consists 

of five 3cm drums with a grippable rubber surface with six flanges dividing into five 

5.7cm lanes facilitating simultaneous running of up to 5 mice. The fall height is 16cm. 

A tray in the bottom each of lane records when a mouse falls from the rod. The speed 

of the rod can be set to remain consistent (4-50 rpm) or increase across the trial. The 

latency (s) to the mice falling into the tray or to clinging onto the rod for one full rotation 

was recorded manually by the experimenter.   

2.2.1.2 Locomotive activity boxes 

Locomotor activity was analysed in two different experiments described in Chapter 3 

and Chapter 4. Twelve clear perspex activity boxes (21cm (L), 36cm (B), 20cm (H)) 

are stacked in a 3 x 4 layout. Each box was fitted with 2 infrared beams, 1 cm above 

the floor and 3 cm from either end of the box (CeNeS Cognition, Cambridge, UK). 

Thus up to twelve mice can be monitored simultaneously. Beam breaks are recorded 

as an activity measure using a custom BBC BASIC V6 programme with additional 

ARACHNID interfacing (Campden Instruments, UK). Beam breaks refers to a mouse 

breaking one beam in the activity box.  

2.2.1.3 Acoustic startle and pre-pulse inhibition (PPI) 

Acoustic startle and PPI response were investigated in mice using a SR-Lab™ Startle 

Response System (San Diego Instruments, CA). The 30 minute program is described 

in Chapter 3 in detail. 
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An isolation chamber contains a clear plexiglass cylinder (35 mm diameter) which is 

positioned onto of a piezoelectric pressure-sensitive accelerometer sensor. The 

cylinder is designed to minimise restraint stress by allowing individually placed 

animals to turn without altering readings by adjusting the sensor. Movement of the 

mouse breaks the sensor circuit and is recorded. Animals awaiting testing were held 

in a separate procedure room and after testing animals were held in a separate cage 

from their home cage until all animals in that cage had been tested.  

2.2.1.4 Elevated plus maze (EPM) 

Anxiety behaviours were investigated using two methods the EPM and open field 

tasks. The EPM was constructed from white Perspex in a cross formation 

arrangement of four arms: the two diametrically opposing ‘open’ arms with no walls 

and two ‘closed’ arms, 175 mm (L) x 78 mm (W), with 50 mm high walls (Figure 9). 

The maze was elevated 300 mm off the floor and illuminated at 15 lux. A computer 

running Ethovision Observer XT software (Noldus Information Technologies 3.0.15, 

Netherlands) was connecting to a camera mounted above the maze to record 

exploratory behaviour. The experimenter was present in the room during the task and 

manually scored a number of behaviours detailed in Chapter 3. The Ethovision 

software tracked the mouse’s position in the EPM and calculated analysis of time 

spent in predefined ‘zones’ within the maze, set up prior to testing by the experimenter 

and maintained across all trials.  

2.2.1.5 Open field 

Full description of the protocol measurements are described in Chapter 3 methods. 

The open field apparatus consisted of a black Perspex floor (750 mm x 750 mm) with 

white Perspex walls (800 mm high), which was dimly illuminated (15 lux). A camera 

above the arena was connected to a computer running Ethovision Observer XT 

(Noldus Information Technologies 3.0.15, Netherlands) software recorded the 

animal’s position (17 frames/s). The software subdivided the arena into a central zone 

(400 x 400 mm in arena centre) and an outer zone, within 350 mm of the walls.  

2.2.2 Rat behaviour 

2.2.2.1 Rotarod 

As with the mouse model a rotarod task was employed to measure motor learning 

and function with the full description of the protocol in Chapter 6. The rotarod (47750, 

Ugo Basile, Italy) consists of four 6cm drums with a grippable rubber surface with five 

49cm flanges dividing into four 8.8cm lanes facilitating simultaneous running of up to 
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4 rats. The height to fall is 30cm. A tray in the bottom each of lane records when a rat 

falls from the rod. The speed of the rod can be set to remain consistent or increase 

across the trial (4-50 rpm). As with the mice, the latency (s) to fall into this tray, or 

clinging onto the rod for one full rotation, was recorded manually by the experimenter.   

2.2.2.2 Open field 

The open field task was conducted in a black wooden 1 m2 arena with 50 cm high 

walls with dimmed lighting (70 lux). A camera was mounted centrally above the arena, 

which recorded the movement of each animal and was linked up to a computer 

running EthoVision XT 2.1 software (Noldus, VA). The arena was divided into ‘outer’ 

and ‘centre’ zones. The centre zone was defined as the central 70 cm2 of the arena, 

with the outer zone the perimeter of this zone to the wall of the arena. Full description 

of measurements analysed are described in Chapter 6. 

2.2.2.3 Contextual fear conditioning  

Contextual fear conditioning experiments were conducted in two standard rat modular 

test chambers (Med Associates Inc., Vermont, USA). The interior of the chamber 

measured 30.5 cm (L) x 24.1 (W) x 21.0 (H), with clear polycarbonate door and rear 

panel and aluminium side walls (Med Associates Inc., Vermont, USA). A 0.5 mA or 

0.7 mA scrambled footshock was delivered via a grid made up of 19 equally spaced 

bars 1.6 cm above a removable floor tray. A stand-alone aversive 

stimulator/scrambler (Med Associates Inc.,Vermont, USA) controlled the delivery of 

the footshocks. The boxes were housed inside sound attenuating chambers 55.9 cm 

(L) x 55.9 cm (W) x 35.6 (H) (Med Associates Inc.,Vermont, USA). Session 

programmes were controlled using Med-PC (Version IV) research control and data 

acquisition system (Med Associates Inc.,Vermont, USA). Infra-red cameras (JSP 

Electronics Ltd, China) suspended centrally above chambers digitally recorded 

behaviour and viewed using Numeroscope software (Viewpoint, France) for offline 

analysis. Recording began prior to placement of rats in the chambers. The chambers 

were cleaned and dried between animals with 50% ethanol to mask odour cues. The 

manipulations employed to investigate different aspects of contextual fear 

conditioning, and are described in full in Chapter 7. 

2.3 Laboratory Techniques 

2.3.1 Quantitative polymerase chain reaction (qPCR) 

RT-qPCR is a technique facilitating quantitative mRNA expression analysis through 

combining PCR amplification and detection.  
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2.3.1.1 Primer design and validation 

FASTA gene sequences from NCBI (http://ncbi.nlm.nih.gov) for mouse and rat were 

inputted into NCBI Primerblast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

Primers were designed to meet the following criteria: be approximately 20 base-pairs 

(bp) long, resulting product ~200 bp, low self-complementation and no potential 

hairpin generation. Two primer pairs were selected per gene and then tested for 

homology elsewhere in the genome via BLAST 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi). Primers were then commericially 

synthesised by Sigma-Aldrich (Dorset, UK). Primer stocks were stored at -20°C and 

working solution aliquots (10 µm) were used to minimise freeze-thaw cycles. Primer 

validation was then conducted to assess amplification efficiency and simple amplicon 

specificity (detailed 2.3.1.3).  

2.3.1.2 RNA isolation, DNase treatment and cDNA synthesis 

For both species flash frozen PFC, hippocampus and cerebellum samples from 

dissected brains were removed from the -80 °C and kept on dry ice. ≤30 mg sample 

was processed using Qiagen’s RNeasy kit. 14.3 M ß-Mercaptoethanol was added to 

the supplied RLT buffer (1:100) and 550 µl of resulting solution added to the sample 

in a ribotube (MP Biomedicals, UK). The ribotube containing the sample was placed 

in a ribolyser (Bio-Rad Laboratories Inc., USA) and tissue homogenised using the fast 

prep homogeniser for 2 x 5 second blasts until the tissue was completely lysed. 

Samples were then centrifuged for 3 minutes at 14,000rpm for 3 minutes. The solution 

was then transferred to a 1.5ml Eppendorf, before then centrifuged again for 3 

minutes at 14,000rpm to form the pellet. The resulting supernatant was dissolved in 

500µl 70% ethanol and 500µl of the supernatant/ethanol mix and loaded into a 

RNeasy spin column in a collection tube. This column was then centrifuged for 15 

seconds at 10,000rpm. The flow through was discarded and this step repeated with 

the remaining 500µl supernatant. 250µl of buffer RLT + ß-Mercaptoethanol was then 

added to the pellet and centrifuged for three minutes at 10,000rpm. The supernatant 

was once again extracted, mixed with 250µl 70% ethanol and added to the same 

RNeasy column, and again centrifuged for 15 seconds at 10,000 rpm and the flow 

through discarded. The column was then incubated at RT for 5 minutes. Following 

this the column was washed by adding 700µl Buffer RW1 to the column and 

centrifuging for 15 seconds at 10,000rpm and discarding flow through. 500µl Buffer 

RPE was then added, centrifuged for 15 seconds at 10,000rpm and flow through 

discarded. Another 500µl RPE was added to the spin column and the column 

http://ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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centrifuged for five minutes at 10,000rpm to thoroughly wash the membrane. The 

column was then placed in a new collection tube and span at 14,000rpm for 1 minute 

to eliminate any possible carryover of Buffer RPE. The spin column was then placed 

into a 1.5ml collection tube. 30µl of RNase-free water (Ambion Life Technologies, UK) 

was added directly to the column membrane and incubated for 10 minutes at RT. To 

elute the RNA, the column was centrifuged at 10,000rpm for 1 minute. RNA content 

was then measured on a NanoDrop spectrophotometer (Thermo Fisher Scientific, 

Delaware, USA) to determine concentrations were a suitable level (between 100-

10,000ng/ul). RNA purity was then determined by confirmation that the A260/A280 

was below 2.  A minimum concentration of 75 ng/µl was required for cDNA synthesis.  

To remove any contaminating DNA the RNA samples were DNase treated with an 

Ambion TURBO DNA-free™ Kit (ThermoFisher Scientific, Delaware, USA). 5 µl 10x 

TURBO DNAse buffer and 1 µl TURBO DNAse were added to each sample and 

mixed. Samples were then incubated at 37°C for 30 minutes. 5.5 µl DNAse TURBO 

Inactivation Reagent was then added to each sample and mixed. Samples were 

incubated at RT for 5 minutes then centrifuged at 13, 000 rpm for one minute. The 

supernatant was then transferred to a new tube.  

The eluted RNA was then used to generate cDNA. To achieve a reaction volume of 

20 μl the volume of eluted RNA required for 1.5 ng/µl was calculated and added to 

random primer cDNA synthesis tubes (Takara Clontech, France) with RNAse free 

water (Ambion Life Technologies, UK) making up the volume. Samples were then 

placed in a thermal cycler (Bio-Rad Laboratories S100, USA) on an optimised cDNA 

synthesis program: 42°C for 75 mins, 80°C for 15 minutes and infinite sample holding 

at 8°C. 20 µl cDNA was added to 480 µl qPCR grade water for a 1:15 dilution. 

Samples were stored at -20°C.  

2.3.1.3 Standard Curves 

A 1:5 serial dilution series across 6 points of known concentration template cDNA for 

each species in each brain region investigated (PFC, hippocampus, cerebellum) was 

used to generate a standard curve for each primer pair for each gene. Each run 

included measuring the expression of two validated house-keeping genes 

(Hypoxanthine-guanine phosphoriobosyltransferase – Hprt, Glyceraldehyde 3-

phosphate dehydrogenase – Gapdh, Polyubiquitin-C - Ubc) (See Table 2 for 

sequences). The primer sequences of the genes of interest (Dlg1 – Dlg4) are detailed 

in the appropriate Chapters (mouse – Chapter 3 3, rat –Chapter 6). 
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Gene Species Forward Reverse 

Gapdh Rat TCTCTGCTCCTCCCTGTT

CT 

TACGGCCAAATCCGTTCAC

A 

Hprt Rat TCCTCCTCAGACCGCTT

TTC 

ATCACTAATCACGACGCTG

GG 

Gapdh Mouse 
GAACATCATCCCTGCAT

CCA 
CCAGTGAGCTTCCCGTTCA 

Ubc Mouse 
CCAGTGTTACCACCAAG

AAGGT 

CCATCACACCCAAGAACAA

GC 

Table 2. Primer sequences for validated qPCR probes in both species. 

To generate standard curves each well of a 96 well plate contained 15 μl reaction 

mixture (1.9 μl sterile RNase free water, 0.3 μl 10 μM forward primer, 0.3 μl 10 μM 

reverse primer, 7.5 μl SensiMix (Bioline) and 5 μl cDNA or water (for no template 

control). After loading, plates were centrifuged at 3,000 rpm for approximately 10-20 

seconds before being transferred to Real-Time PCR instrument (Applied Biosystems) 

on a standard run: 95°C for 10 minutes, followed by 45 cycles of 95°C (15 seconds) 

and 60°C (1 minute) to allow for duplex denaturing and  annealing and elongation, 

respectively. Finally a melt curve was obtained. Samples were heated to 55°C for one 

minute and 95°C for 15 seconds. This final stage allowed assessment of single 

amplicon specificity – when the resulting dissociation curves were visualised as a 

single peak the primers are considered specific to the target cDNA. The Ct values 

measured were plotted against initial input amounts on a semi-log10 plot, fitted to a 

straight line and a gradient generated. This gradient was then inputted into the 

Thermoscientific efficiency calculator. 

(https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecular-

biology/molecular-biology-learning-center/molecular-biology-resource-

library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html). Primers with 

efficiencies between 90-110% were considered valid and any primers with abnormal 

melt curves, low efficiency or vastly differing efficiency across regions were 

redesigned. 

2.3.1.4 RT-qPCR Experiments 

Each well of a 96-well plate contained 15μl reaction mixture (1.9 μl sterile RNAase 

free water, 0.3 μl 10 μM forward primer, 0.3 μl 10 μM reverse primer, 7.5 μl SensiMix 

(Bioline, London, UK)) and 5 μl cDNA or water). Only primer pairs previously validated 

https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
https://www.thermofisher.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
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were used. The gene of interest values were normalised to the housekeeping gene 

controls (Gapdh Ubc). After loading plates were centrifuged at 3,000 rpm for 

approximately 10-20 seconds before being transferred to the q-PCR machine.  

2.3.1.5 RT-qPCR Analysis 

The cycle threshold (Ct), the value reflects the number of cycles it took for the 

detection of cDNA signal above the background fluorescence, is outputted by the 

qPCR machine. There is a negative correlation between the amount of cDNA in the 

sample and the Ct values. The threshold levels were set at the beginning of the 

exponential phase and conserved across plates. Quantification  was conducted using 

the comparative Ct method (2-ΔΔCt method) to produce fold changes in control and 

Dlg2 heterozygotes (Schmittgen and Livak, 2008). The 2-ΔΔCt method involves 

subtracting the average housekeeping gene from the gene of interest (Δ Ct = Ct target 

– Ct reference). The geometric mean of two housekeeping genes was used throughout 

this thesis.  ΔΔ Ct is then calculated by subtracting the experimental group from the 

control group (ΔΔ Ct = ΔCt test – ΔCt control) and incorporating standard deviations into 

the fold change.  

2.3.2 Immunohistochemistry 

2.3.2.1 Sectioning  

Perfused brains were embedded in OCT and frozen. Prior to sectioning they were 

removed from the -80°C and placed in the cryostat (Leica Microsystems CM1860UV) 

for 20-30 minutes to warm to temperature (normally between -20°C to -25°C). All 

brains were coronally sectioned at 40 µm. Co-ordinates for the start and end of the 

brains regions of interest are detailed in appropriate Chapters (4 and 5). Free floating 

sections were placed into 1x PBS in 12 well plastic plates and stored at 4°C.  

2.3.2.2 Immunohistochemical staining 

Sections were blocked in 500 μl phosphate buffered saline with 1% Tween 20 (PBST) 

containing 3% normal donkey serum (S30-100ML, Millipore, Hertfordshire, UK) at RT 

with agitation for 2 hours. Primary antibodies (described in Chapter 4 and 5 methods) 

were diluted in 500 μl 0.1% PBST with 0.2% normal donkey serum (v/v) and incubated 

overnight with agitation at 4°C. Sections were washed 3 times for 10 minutes in 1x 

PBS. Alexa Fluor® secondary antibodies (ThermoFisher Scientific,UK) were diluted 

(1:1000) in 500 μl 0.1% PBST with 0.2% normal donkey serum. Sections were 

protected from light and incubated at RT with agitation for 2 hours. Sections were 

incubated with the nucleus DNA stain 4′,6-diamidino-2-phenylindole (DAPI) (1:1000, 
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D9542-10MG, Sigma-Aldrich, Dorset, UK) in 500 μl 1x PBS at RT with agitation for 5 

minutes, then washed 2 x 10 minute in 1 x PBS. Sections were mounted in a 

counterbalanced manner with 20 μl Mowiol® (4-88, Sigma-Aldrich, Dorset, UK) added 

per slide and glass cover-slipped and stored at 4°C. Image acquisition, and data 

sampling and analysis for each experiment is detailed in Chapters 4 and 5.  

2.4  Statistics 

Data was analysed using SPSS 23 (IBM Corporation, New York), with an alpha level 

of P < 0.05 was regarded as significant throughout. All data was tested for normality 

using the Shapiro-Wilks test, and distribution assessed via visual inspection of 

histograms. Instances of non-normality are detailed in individual chapters, as well as 

any transformations applied or outliers removed where appropriate. Outliers were 

examined by both visual inspection of boxplots and/or studentized residuals of >±3 

(https://statistics.laerd.com/). Unless otherwise stated analysis was conducted on 

untransformed data. In instances of non-normality where no outliers were found, the 

data is reported untransformed if transformations were attempted but did not result in 

transformation to normality.  

Data was analysed by unpaired two-tailed t-test, one-way-ANOVA or mixed ANOVA. 

For ANOVA where Mauchly’s assumption of sphericity was violated, the Greenhouse-

Geisser correction was reported and the degrees of freedom corrected. The 

assumptions of homogeneity of variances and covariances were assessed using 

Levene’s and Box’s M tests, respectively and instances of violation are described 

where found in the results chapters. For t-tests that violate homogeneity of variances, 

Welch’s t test is used.  

Throughout this thesis Laerd Statistics was used as a reference for statistics    

(https://statistics.laerd.com).  
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3 Validation of genetic mutation and 

basic behavioural investigation in 

the mouse model  

3.1 Introduction 

To date there is limited exploration of Dlg2 mutations in vivo. The majority of previous 

findings are from primary cell cultures, and there are currently only three studies 

examining any behaviour. Reported behavioural data in mice primarily derives from 

one strain, with most data from homozygote knock outs (KO).  

The first mouse model with a Dlg2 mutation was generated by McGee et al (2001). 

Given that DLG2 is the only MAGUK in cerebellar Purkinje neurons, and to avoid 

issues of Dlg family compensation, the study examined cerebellar structural 

architecture and functioning. Heterozygocity in this model resulted in a ~50% 

reduction in mRNA via Northern blot, and a very weak band seen in homozygous 

mutants that was attributed to alternative splicing skipping the deleted exon. The 

levels of Dlg1, Dlg3, and Dlg4 were not altered in the brains of Dlg2 KO mice, 

suggesting a lack of compensation at the protein level. There were no reported 

molecular abnormalities of synaptic architecture, distribution of interacting proteins or 

impairments of gait or motor coordination measured on a rotarod. The authors argue 

that although compensation by other Dlg family members cannot occur in the 

cerebellar Punkinje neurons it may occur via other PDZ domain-containing proteins. 

Given the lack of phenotypes observed the authors proposed that DLG2 was not 

involved in baseline synaptic signalling in the cerebellum, but rather it may be 

specialised to plasticity and learning, or extreme physiological situations, although the 

reason for this interpretation is not clear 

A later study using the same mouse model does demonstrate the loss of Dlg2 has 

little impact on basic cognition examined but severely inhibited complex cognition. 

Nithianantharajah et al (2013) probed mice carrying mutations members of the Dlg 

family on cognitive tasks. On simpler cognitive tasks, such as visual discrimination, 

Dlg2-/- mice were comparable to WT. As tasks increased in complexity Dlg2-/- mice 

began demonstrating abnormalities. For more complex object-location paired 

association learning, Dlg2-/- mice performed at chance levels. Dlg2-/- mice also showed 

a significant impairment in reversal learning of visual stimuli, with the deficit becoming 



38 
 

increasingly severe as stimuli complexity increased. On an extinction task, Dlg2-/- 

mice displayed normal rates of learning during acquisition but impaired extinction. As 

with the McGee et al (2001) paper, the authors suggested that Dlg2 is fundamental 

for regulating flexibility of learned behaviour. Dlg2-/- mice also displayed impaired 

attentional processing, taking longer to reach performance stability and showing 

reductions in response accuracy and increases in premature responding with 

decreased duration of stimulus presentation. This study also examined humans with 

DLG2 mutations in comparable tests, and found the same pattern of impairments as 

observed in the mice, suggesting conservation of Dlg2 function across rodents and 

humans. 

Most recently a paper was published that predominately focused on Dlg4 mutant 

models, but that also conducted some behavioural testing in the McGee (2001) Dlg2 

mouse model (Winkler et al., 2018).  Both male and female Dlg4 KO and 

heterozygotes were examined but only male Dlg2 KO and heterozygotes. Similar to 

the behaviour observed in the Dlg4 mutants homozygous Dlg2 mice exhibited a 

hyper-social phenotype. As the heterozygous Dlg2 mice did not exhibit this phenotype 

the authors suggest that DLG2 plays a similar but less prominent role in social 

interaction than DLG4 (Winkler et al., 2018). No impairments of learning and memory 

were observed in Dlg2 mutants using a hole board paradigm or Morris water maze, 

or anxiety using a light/dark box were found, but deficient motor learning was 

observed on a rotarod task, with the impairment being more severe in the full KO. 

Interestingly increased DLG2 protein, but not mRNA expression, was found in the 

Dlg4 heterozygotes, suggesting that DLG2 may be partially compensating the loss of 

DLG4. The converse analysis in Dlg2 mutants was not reported. 

A homozygous KO mouse provides a useful model for understanding the functional 

roles of DLG2. However, in human psychiatric populations rare recurrent CNVs 

spanning the DLG2 gene loci are heterozygotic mutations resulting in altered 

expression levels as opposed to complete loss. Other Dlg family members may be 

differently dysregulated in a knockdown as opposed to a knock out Dlg2 model. For 

example, in a double knockout model of Dlg2 and Dlg4, Dlg3 expression is 

upregulated, but not for single knockouts (Elias et al 2006).  

All characterisation during this thesis will describe studies using Dlg2 heterozygotes, 

providing greater translation to the human condition. The model reported during this 

thesis is a different strain to that used in the studies discussed above.  
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The model characterised in this thesis, Dlg2tm1a(EUCOMM)Wtsi originates from, and is 

maintained on, a C56BL/6N background. The model was generated as part the 

European Conditional Mouse Mutagenesis Program (EUCOMM), aiming to provide 

knock out models for all protein coding genes. A critical exon common to all 

transcripts was identified that resulted in a frame shift mutation upon deletion. The 

genetic lesion in Dlg2tm1a(EUCOMM)Wtsi  targets exon 14, which encodes the SH3 domain. 

No papers have been published using this model to date. 

The mouse generated by McGee et al (2001) originated from a 129/Sv background, 

before being crossed with C56BL/6J, with the replacement of a single exon (6) 

encoding the second PDZ domain with a neomycin cassette.  

 

Figure 6. Schematic diagram demonstrating the difference in genetic lesion locations between the model 

described in this thesis (a) and the model generated by McGee et al (2001) (b). The transcript depicted 

corresponds to NM_011807.3. Image created using Ensembl Release 92 (Zerbino et al, 2018). 

The differential localisation of the mutation may influence any molecular or 

behavioural phenotypes identified (Figure 6). For example if the mutation is 

downstream of the PDZ domain, where NMDA receptors bind, then this interaction 

may not be disrupted and thus NMDAR dependant processes may not be affected. 

The different background strains also need taking into account when comparing 

findings. For example, C56BL6 strains are consistently reported to be most active in 

measures of locomotion and less anxious, whereas 129/Sv are more anxious and 

much less active (Abramov et al., 2008; Mandillo et al., 2008).  

Anxiety, responses to novelty or locomotive activity levels (Sousa, Almeida and 

Wotjak, 2006) can contribute to or confound behavioural measures of cognitive 

function. As the Dlg2tm1a(EUCOMM)Wtsi  has not been characterised previously it was 

important to assess baseline behaviours allowing better interpretation of future more 

complex experiments of cognitive function. This will include basic exploration of motor 

performance and co-ordination, locomotor activity, context discrimination, startle 

responses and pre-pulse inhibition, and anxiety. Equally important is the confirmation 

of reduced Dlg2 expression in key brain regions and the potential dysregulation of 

Dlg family member expression.   
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3.1.1 Aims 

1. Confirm a reduction of Dlg2 mRNA in brain regions important for behaviours 

affecting in schizophrenia (PFC and hippocampus) as well as a control region 

(cerebellum) in Dlg2+/- mice. 

2. Investigate any potentially compensatory changes in the mRNA expression of 

other Dlg family members (Dlg1, Dlg3, Dlg4) in these brain regions.   

3. To characterise the mouse model on basic behavioural tasks.  
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3.2 Materials and Methods 

3.2.1 Transgenic Dlg2 Mouse Model  

Dlg2tm1a(EUCOMM)Wtsi mice were generated (first germline transmission 2014) by the 

Wellcome Trust Sanger Institute, via insertion of the cassette upstream of the critical 

exon (14) on chromosome 7 on a C57BL/6N-Atm1Brd background (Figure 7). This 

resulted in a frame shift mutation. Both heterozygous and homozygous animals are 

viable. All procedures were conducted during the light phase of 12:12 hr light/dark 

cycle.  

 

Figure 7. A diagram of the vector used to generate the knock out first mouse (Skarnes et al., 2011), 

Dlg2tm1a(EUCOMM)Wtsi . The cassette was inserted at 92285553 on chromosome 7, upstream of exon 14. A 

conditional ready allele can be generated via flp recombinase expression, with subsequent cre 

expression resulting in the knockout mouse. This is the model used in this thesis. Cre expression in the 

absence of flp expression generates a reporter knockout mouse. Vector map taken from 

http://www.mousephenotype.org/data/genes/MGI:1344351.  

Experimental cohorts were bred through WT x HET crosses, with WT littermates used 

as controls. The background strain CB7BL/6NTac has been shown to carry the 

Crb1Rd8 mutation, resulting in a mild form of retinal degeneration affecting vision 

(Pritchett-Corning, 2012). Phenotypic onset is between 2 and 6 weeks of age 

(Pritchett-Corning, 2012) as the result of a recessive single base pair mutation in the 

Crb1 gene (Mehalow et al, 2003). All data reported in this chapter are from the pure 

Dlg2tm1a(EUCOMM)Wtsi strain. In subsequent chapters to prevent any potential influence 

of this vision issue experimental cohorts were crossed with C5BL6/J mice.   

3.2.2 Housing 

Mice were housed with up to 5 litter mates as previously described in 2.1.3, with ad 

libtum access to food and water, and environmental enrichment. For breeding, pairs 

or trios were housed together in conventional caging, as were WT x HET crosses.  

Separate cohorts were used for molecular and behavioural analysis. 
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3.2.3 Genotyping by Polymerase Chain Reaction (PCR) 

DNA was extracted post weaning as described in 2.1.3 from either ear or tail. The 

Wellcome Trust Sanger Institute provided primer sequences (Table 3) and a PCR 

cycling protocol for genotyping. A shared Tm for the WT and mutant PCR primers 

facilitated both simplex and multiplex reactions. Master mixes totalled 20 μl per 

reaction using the MyTaq™ DNA polymerase kit (Bioline, London, UK). For simplex 

reactions: 9.2 μl ddH20, 4 μl 5x reaction buffer, 0.8 μl each of forward and reverse 

primers, 0.2 μl MyTaq™ and 5 μl DNA. For multiplex reactions: 7.6 μl ddH20, 4 μl 5x 

buffer, 0.8 μl reverse primer 1 and 2, 1.6 μl forward primer, 0.2 μl MyTaq™ and 5 µl 

DNA template. 

Samples were run on a Biorad Thermal Cycler (T100 BioRad™, Herts, UK). 

Conditions for WT and mutant reactions were 94oC for 5 minutes, followed by 34 

cycles of 94oC for 30 seconds, 58oC for 30 seconds and 72oC for 45 seconds, with a 

final extension for 5 minutes at 72oC and held indefinitely at 4oC.  

Primer Reaction Sequence (5’ > 3’) Reaction 

Temp 

Expected 

band size 

(bp) 

Dlg2_42053_F Wild type CCAGAATGTACTTCAGCACCA 
 

58 312 

Dlg2_42053_R TGTGTGTATGTGTGGCTGTTT 
 

Dlg2_42053_F Mutant CCAGAATGTACTTCAGCACCA 222 

CAS_R1_Term TCGTGGTATCGTTATGCGCC 
 

Table 3 PCR primer sequences and reaction temperature for genotyping of Dlg2tm1a(EUCOMM)Wtsi 

provided by the Wellcome Trust Sanger Institute. 

A 2% agarose gel was made with 1% Tris-acetate-EDTA (TAE) buffer (w/v) and 

SYBR Safe Gel DNA Stain (1:1000, ThermoFisherScientific, UK). Analysis was 

conducted by gel electrophoresis at 95 V for 45 minutes, with 10 μl PCR product 

loaded per well. Gels were visualised using an Omega Lum™ G imaging system 

(Apglegen, San Francisco, USA). For simplex reactions the presence of separate WT 

(312 bp) and mutant (222 bp) bands indicated a heterozygous animal (Figure 8). For 

multiplex reactions, WT animals were identified by one band (312 bp) whilst 

heterozygotes animals were identified by two bands (312 bp and 222 bp). 

Homozygous animals were identified by a mutant (222 bp) but not WT (312bp) bands.   
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Figure 8. Example of genotyping for multiplex (a) and simplex (b) reactions to screen for WT and mutant 

bands in Dlg2+/- and WT mice. (a) Lanes 1 and 2 are reaction controls. Lanes 3, 4, 6 and 8 have two 

bands indicative of a heterozygote. Remaining lanes identify WT. (b) All extracted DNA has a WT band 

around 312bp. All but the last lane, indicated with a * have a lower molecular weight band around 222bp. 

The * demonstrates a WT animal due to the lack of a lower weight band. Lanes 1-5 and 6-10 represent 

the same animals, therefore 1-4 are HET due to the presence of both bands, and 5 is WT.   

 

3.2.4 Molecular Characterisation 

3.2.4.1 RT-qPCR Analysis 

The expression of mRNA was examined by RT-qPCR was in 8 week tissue in three 

brain regions: the cerebellum, hippocampus and PFC, extracted from 24 mice (12 

WT, 12 HET) performed as previously described in section 2.2.1. Whole region 

extracts from one hemisphere were used to generate cDNA. Both male and female 

tissue was processed and analysed. Validated primers for Dlg1 to Dlg4 were used to 

compare Dlg paralog expression between WT and Dlg2+/-mice (Table 4).  

Primer Forward Sequence Reverse Sequence 

Dlg2 TGCCTGGCTGGAGTTTACAG TTTTACAATGGGGCCTCCGC 

Dlg1 CGAAGAACAGTCTGGGCCTT GGGGATCTGTGTCAGTGTGG 

Dlg3 GAGCCAGTGACACGACAAGA GCGGGAACTCAGAGATGAGG 

Dlg4 GGGCCTAAAGGACTTGGCTT TGACATCCTCTAGCCCCACA 

Table 4. Primer pairs designed for each Dlg gene previously validated using cDNA from hippocampus, 

cerebellum and PFC in naïve mice.  

Quantitation using the comparative Ct method (2-ΔΔCt method) was used to measure 

changes in Dlg1-4 expression WT and Dlg2+/-mice. Data normality was assessed 

using Shapiro-Wilks test. Where possible appropriate transformations were 

attempted to correct normality. On examination of boxplots values considered 

extreme outliers were removed. If significance is changed by outliers being retained 

this is reported. Normally distributed data was analysed using t tests. Homogeneity 

of variances was assessed by Levene’s test. If this assumption was violated Welch’s 

t test was used. Where normality could not be corrected Mann Whitney U was used. 
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3.2.5 Behavioural Characterisation  

3.2.5.1 Animals 

A cohort of 46 males (27 WT, 19 HET) underwent the behavioural tasks described 

below in the order of completion, commencing when mice were ~10 weeks old. Two 

WT animals were euthanised during the course of experimentation on ill health 

grounds. Mice were handled daily for a week to habituate them to the experimenter 

prior to water restriction. Apparatus were cleaned between animals with either 1% 

acetic acid or ethanol wipes to mask odour cues. Mice were transported to testing 

rooms in their home cages, and were returned to them on task completion. All tasks 

were completed prior to daily water access and lights off (19:00).  

3.2.5.2 Water Restriction 

Water access was restricted to 4 hours daily for 2 days (10:00-14:00). Mice were 

weighed prior to and following access for several days, before further restriction to 2 

hours water access (17:00-19:00). Weighing continued daily for 3 weeks, then every 

other day. At weekends mice had ad libtum access to water unless behavioural tests 

were being conducted.  

3.2.5.3 Rotarod 

Task 

Each mouse received 5 training sessions on the rotarod (47600, Ugo Basile, Italy) 

which accelerated from 5-50rpm over 5 minutes. These sessions took place over 2 

consecutive days. Latency (s) to the first fall (fall from the rod or 1 full rotation) was 

recorded. Accelerating rotarod tasks are considered to assess motor learning. 

Following completion of the accelerating task motor function was tested using fixed 

speed trials. Two trials per speed were conducted (5-50 rpm in 5 rpm increments), 

with an inter-trial interval of 20-30 minutes 20-30 minutes during which mice were 

returned to home cages. Latency to first fall (s) was recorded, and no more than two 

speeds per day. 

Analysis 

The normal distribution of all data was assessed Shapiro-Wilks test. Where 

appropriate transformations were attempted to correct normality. Extreme outliers (±3 

studentized residuals) were removed. If their removal affected the significance when 

the outlier is retained this is reported. Homogeneity of covariances was assessed by 

Box’s M test and homogeneity of variances was assessed by Levene’s test. In 



45 
 

instances where the assumption of sphericity was violated the Greenhouse-Geisser 

correction was applied.  

The latency to fall for both accelerating and fixed rotarod tasks was assessed using 

mixed ANOVA. For fixed speed trials the mean latency to fall for two trials per speed. 

3.2.5.4 Habituation and Context Shift 

Task 

Testing was conducted in the locomotive activity boxes described in 2.2.1.1. 

Laminated sheets with either black squares or spots covered the boxes walls and 

doors with the pattern alternating by row. Mice were assigned one of the two contexts 

in a genotypically balanced manner. Mice were brought to the room for 5 minutes 

prior to the start of the task each day. For four days animals were placed in the same 

box and allowed to explore freely for 30 minutes. Time of day for experimentation was 

consistent across days for each group (10:00 – 14:30, lights on 07:00 and 19:00). On 

the fifth day mice underwent two 5 minute trials, one in the familiar context and the 

second in the novel. Initial testing context was counterbalanced for genotype. Beam 

breaks as an activity measure was measured using a custom BBC BASIC V6 

programme with additional ARACHNID interfacing (Campden Instruments, UK).  

3.2.5.5 Analysis 

Habituation  

The normal distribution of all data was assessed Shapiro-Wilks test. Where 

appropriate transformations were attempted to correct normality. Extreme outliers (±3 

studentized residuals) were removed. If their removal affected the significance when 

the outlier is retained this is reported. Homogeneity of covariances was assessed by 

Box’s M test and homogeneity of variances was assessed by Levene’s test. In 

instances where the assumption of sphericity was violated the Greenhouse-Geisser 

correction was applied.  

The total beam breaks per day were analysed by mixed ANOVA to assess 

intersession habituation. Changes in activity between day 1 and day 4 was analysed 

by t test (Day 4 BB total/(Day 1 BB total + Day 4 BB total). Each daily session was 

split into five 6 minute bins. Intrasession habituation was examined by analysing the 

30 minute daily sessions across these bins by mixed ANOVA with the following 

factors: genotype (WT and HET), 6 minute time bins or quantiles (1, 2, 3, 4, 5) and 

day (1, 2, 3 and 4).  The change in beam break (BB) activity each day between 
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quantile 1 and 5 (Q1 and Q5) was assessed by t test (Q1 BB total/(Q1 BB total + Q5 

BB total).  

Test Day 

For the test day the total bream beaks for the 5 minute session in both the novel and 

familiar contexts were analysed by mixed ANOVA.  

3.2.5.6 Acoustic Startle and Pre-Pulse Inhibition (PPI) 

Task 

Animals underwent a 30 minute program in a SR-Lab™ Startle Response System 

(San Diego Instruments, CA) described in 2.2.1.3. Animals awaiting testing were held 

in a separate procedure room and after testing animals were held in a separate cage 

from their home cage until all animals in that cage had been tested.. Each session 

began with a 5 minute habitation to the apparatus and scrambled white noise at 

background intensity (70 db). The session consists of three blocks of acoustic stimuli, 

initially 120dB, 105dB and then an increasing range of 80 to 120dB in 10dB 

increments. Pulse alone trials consisted of 40ms stimulus, whilst pre-pulse trials 

consisted of a 20ms pre-pulse at 4, 8 or 16dB above background, followed 70ms later 

by a 40ms stimulus at 120dB or 105dB. Blocks 1 and 2 consisted of 5 pulse alone 

trials followed by 5 blocks of 2 pulse alone trials, 1 no stimulus trial and 6 pre-pulse 

trials. The different intensity stimuli were presented pseudorandomly. Pulse alone 

stimuli of various intensities (80 – 120dB) were presented in block 3 pseudorandomly 

three times. Between blocks and post block 3 represented three no stimulus trials.  

The inhibition of response to the stimulus following pre-pulse presentation was 

recorded as the average startle response during a 65ms window from startle pulse 

onset. The first three pulses at 120 dB and 105 dB were averaged and analysed as 

an index of emotional reactivity, as it is prior to appreciable habituation (Geyer & 

Dulawa, 2003). To analyse of the habituation of startle response, responses to the 

first six pulse alone trials at each dB were measured. PPI does not require 

normalisation as it is a percentage reduction in startle response.  

Analysis  

Due to the measure of startle relying on deflection of the pressure sensitive 

accelerometer any weight differences between genotypes could influence results, so 

all startle data is normalised for body weight using Kleiber’s 0.75 mass exponent 

(Kleiber, 1932). The weight adjusted average response amplitude per trial (V avg) 

was used in all analysis by mixed ANOVA or t test.  
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Normality was assessed for all data using Shapiro-Wilks test. For data constancy all 

data were analysed untransformed, and only outliers found in multiple tests at each 

dB were removed from all tests. Homogeneity of covariances was assessed by Box’s 

M test and homogeneity of variances was assessed by Levene’s test. In instances 

where the assumption of sphericity was violated the Greenhouse-Geisser correction 

was applied.  

The average of the first three pulses at 120 dB and 105 dB were analysed by t test 

as an index of emotional reactivity as this is prior to appreciable habituation (Geyer & 

Dulawa, 2003). The first six pulse alone trials at 120 dB and 105 dB were analysed 

by mixed ANOVA to assess startle response habituation.  

3.2.5.7 Elevated Plus Maze 

Task 

The first task employed to examine anxiety behaviour was the elevated plus maze 

(EPM) task. The setup is described in 2.2.1.4. A computer running Ethovision 

Observer XT software (Noldus Information Technologies 3.0.15, Netherlands) was 

connected to a camera mounted above the maze tracking movement of the mouse 

during the trial. Mice were placed in the nearest closed arm to the experimenter and 

allowed to explore freely for 5 minutes. The following behaviours were manually 

scored by the experimenter: number of head dips (downward movement of the 

rodent’s head over the edge of an open arm), grooming and number of stretch attend 

postures (defined as an animal stretching forwards into the open arm whilst keeping 

its hindquarters in a closed arm) (Figure 9). This task is based on the rodent’s 

unconditioned fear of heights and preference for dark, enclosed spaces, and reflects 

the conflict between these preferences and their innate motivation to explore novel 

surroundings. Time spent in the closed arms is indicative of anxious behaviour.  

Analysis 

The normal distribution of all data was assessed Shapiro-Wilks test. Where 

appropriate transformations were attempted to correct normality. Extreme outliers (±3 

studentized residuals) were removed. If their removal affected the  significance when 

the outlier is retained this is reported. Homogeneity of covariances was assessed by 

Box’s M test and homogeneity of variances was assessed by Levene’s test. In 

instances where the assumption of sphericity was violated the Greenhouse-Geisser 

correction was applied.  
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Time spent in each maze zone, distance (m) and velocity (m/s), latency to first entry 

into an open arm (s), and ethological parameters (grooming, head dips, stretch attend 

postures) were assessed using t tests.  

 

Figure 9. Diagram of the elevated plus maze apparatus with dimensions. Image adapted from Cohen, 

Matar, & Joseph (2013). Drawing not to scale. 

 

3.2.5.8 Open Field 

Task 

The open field arena is described in 2.2.1.5 (Figure 10). Mice were consistently 

placed into the closest corner of the arena to the experimenter, consistently facing 

the same wall. Animals could freely explore for the duration of the session (10 

minutes). A camera above the arena was connected to a computer running Ethovision 

Observer XT (Noldus Information Technologies 3.0.15, Netherlands) software 

recorded the animal’s position (17 frames/s). Rodents tend to display thigmotaxis, 

remaining close to the outer walls of the arena.  

Analysis 

The main measures calculated were the duration of time spent in the central zone 

(the most exposed and therefore the most aversive part of the apparatus). The 
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velocity (m/s) and total distance travelled (m) were recorded as an indices of activity. 

All measures were assessed by t tests.  

 

Figure 10. Diagram of the zones in the open field arena. Not to scale.    
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3.3 Results   

3.3.1 RT-qPCR  

3.3.1.1 Reduced Dlg2+/- mRNA expression in the PFC of 8 week old 

heterozygotic mice. 

Cerebellum data was not normally distributed, but removal of two outliers (both HET) 

resulted in normality. There was no homogeneity of variances so Welch’s t test was 

used. Both hippocampal and PFC data was normally distributed and there was 

homogeneity of variances.  

The expression of Dlg2 mRNA was assessed via RT-qPCR (Figure 11). No reduction 

in expression of Dlg2 was found in Dlg2+/- mice in the cerebellum (Figure 11a), t 

(9.301) = 0.547, p = 0.597) or the hippocampus (Figure 11b), t (21) -0.238, p = 0.815. 

Dlg2+/-mice displayed reduced Dlg2+/- expression in the PFC (Figure 11c), t (15) = -

4.163, p = 0.001  

 

Figure 11. Dlg2 mRNA expression in 8 week old mouse cerebellum (a) hippocampus (b) and PFC (c). 

Only the PFC displayed a significant reduction in expression. n = Cerebellum 9 (WT) 8 (HET), 

hippocampus 12 (WT) 11 (HET) and PFC 8 (WT) 9 (HET). Data represent the mean ± SEM error bars. 

*** P = < 0.001. 

3.3.1.2 Dlg2+/- mice displayed no altered mRNA expression of Dlg family 

members at 8 weeks across brain regions 

All hippocampal data was normally distributed and met all assumptions, as did Dlg1 

and Dlg3 cerebellum data. Dlg4 cerebellum data was not normally distributed so 

Mann Whitney-U was conducted. No PFC data was normally distributed. Mann 

Whitney U was conducted in all instances.  

There was no difference in the expression of mRNA of any the Dlg family members, 

Dlg1 (Figure 12), Dlg3 (Figure 13) or Dlg4 (Figure 14) in the cerebellum, hippocampus 

or PFC of 8 week old mice, as assessed via RT-qPCR (Table 5).  
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Gene/Region  Test 

Dlg1 PFC U = 50.00, p = 0.219 

Dlg1 Hippocampus t (7.851) -1.557, p = 0.159, 

Dlg1 Cerebellum t (10.266) 0.642, p = 0.± 535 

Dlg3 PFC U = 45.00, p = 0.128 

Dlg3 Hippocampus t (15) -1.107, p = 0.286 

Dlg3 Cerebellum t (12.645) 0.936, p = 0.367 

Dlg4 PFC U = 48.00, p = 0.178 

Dlg4 Hippocampus t (15) -1.755, p = 0.100 

Dlg4 Cerebellum U = 43.00, p = 0.631 

Table 5. There were no differences in expression of other Dlg family members in any brain region 

between WT and Dlg2+/- mice.   

 

Figure 12. The fold change in Dlg1 mRNA expression levels assessed in 8 week old tissue by qPCR in 

the cerebellum (a) hippocampus (b) and PFC (c). n = Cerebellum 9 (WT) 10 (HET), Hippocampus 8 

(WT) 8 (HET) and PFC 12 (WT) 12 (HET). Data represent the mean ± SEM error bars.   
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Figure 13. The fold change in Dlg3 mRNA expression levels assessed in 8 week old tissue by qPCR in 

the cerebellum (a) hippocampus (b) and PFC (c). n = Cerebellum 9 (WT) 10 (HET), hippocampus 8 (WT) 

9 (HET) and PFC 12 (WT) 12 (HET). Data represent the mean ± SEM error bars.   

 

Figure 14. The fold change in Dlg4 mRNA expression levels assessed in 8 week old tissue by qPCR in 

the cerebellum (a) hippocampus (b) and PFC (c). n = cerebellum 10 (WT) 10 (HET), hippocampus 8 

(WT) 9 (HET) and PFC 12 (WT) 12 (HET). Data represent the mean ± SEM error bars.   

 

3.3.2 Behavioural Results 

All animals were weighed prior to each task and no differences were found. 

3.3.2.1 Dlg2+/- mice exhibit a deficit of motor learning deficit but not of motor 

function.  

All accelerating rotarod data was normally distributed, there was homogeneity of 

covariances, and homogeneity of variances except for Trial one.  

The latency to fall across five consecutive trials on an accelerating rotarod was 

analysed by mixed ANOVA (Figure 15). The assumption of sphericity was met for the 

accelerating data, X2 (9) 10.128, p = 0.341. There was an effect of trial, but not 

genotype on latency to fall (TRIAL: F (4, 168) 35.318, p = <0.001, GENOTYPE: F (1, 42) 

1.952, p = 0.170). There was an interaction between trial and genotype on latency to 

fall (TRIAL x GENOTYPE:  F (4, 168) 3.598, p = 0.008).  
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Figure 15. Latency to fall on accelerating rotarod tasks. The latency to the first fall, or full rotation of the 

rod, were recorded. Two trials were performed on day 1 and the remaining 3 (from the arrow onwards) 

were performed on day 2. Data represent the mean ± SEM error bars.  n = 25 (WT) 18 (HET). ** p = 

0.01. 

To pull apart this interaction, one way ANOVA was conducted between the genotypes 

at each trial. Dlg2+/-mice had a shorter latency to fall at Trial 2 than WT mice, (F (1, 42) 

9.102, p = 0.004). There was no difference between WT and Dlg2+/-mice for any other 

trial. 

Each genotype was also examined separately across the 5 trials using repeated 

measures ANOVA. The majority of data was normal, and all assumptions were met, 

including sphericity, X2 (9) 4.985, p = 0.837 and X2 (9) 8.075, p = 0.528 respectively. 

Pairwise comparisons were conducted and Bonferroni corrected. WT mice exhibited 

rapid improvement in latency to fall, as all trials were different to trial 1 but no other 

trials differed from each other (Table 6). 

Trials Mean Difference (s) ± 

SEM 

p  

1 and 2 -114.68 ± 157.77 < 0.001 

1 and 3 -110.52 ± 14.01 < 0.001 

1 and 4 -118.96 ± 14.48 < 0.001 

1 and 5 -123.72 ± 14.77 < 0.001 

Table 6. Post-hoc analysis following RM ANOVA determined latency to fall for WT mice was increased 

for each subsequent trial. Differences were only found between first and subsequent trials, no other trials 

were different to each other. Values are Bonferroni corrected.  
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In comparison, Dlg2+/-mice demonstrated a protracted period with a shorter latency 

to fall, with trial 1 differing from trial 3, 4 and 5, but not trial 2, and trial 2 differing from 

4 and 5. There were no differences between any other trials (Table 7).  

Trials Mean Difference (s) ± 

SEM 

p  

1 and 3 -84.63 ± 18.28 0.002 

1 and 4 -121.95 ± 15.49 < 0.001 

1 and 5 -125.95 ± 14.52 < 0.001 

2 and 4 -79.58 ± 17.23 0.002 

2 and 5 -83.58 ± 21.30 0.01 

Table 7. Post-hoc analysis following RM ANOVA determined latency to fall for Dlg2+/-mice was reduced 

for a protracted period. No other trials were different to each other. Values are Bonferroni corrected. 

The fixed speed trial data was not normally distributed. Transformations could not be 

conducted due to some data being positively skewed and some negatively skewed. 

One outlier (HET) was removed. There was homogeneity of variance for all trials 

except 5 and 10rpm but not homogeneity of covariances.  

The latency to fall was for fixed speed trials was analysed by mixed ANOVA (Figure 

16). The assumption of sphericity was violated, X2 (35) 103.684, p = < 0.001, and so 

the Greenhouse-Geisser correction was applied. Both genotypes exhibited a 

decrease in latency to fall across trials (TRIAL: F (5.696, 233.53) 120.649, p = < 0.001, 

GENOTYPE: F (1, 41) 0.147, p = 0.704, TRIAL x GENOTYPE: F (5.696, 233.53) 0.631, p = 

0.697. 
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Figure 16. Latency to fall on accelerating on the fixed speed rotarod tasks. The latency to the first fall, 

or full rotation of the rod, were recorded. The mean latency of two trials was reported for the fixed 

speed task. Data represent the mean ± SEM error bars.  n = 25 (WT) 18 (HET).  

In summary Dlg2+/- mice fell significantly earlier than WT and took longer to reach 

asymptotic performance on an accelerating rod, but performed comparably on fixed 

speed trials of motor function. For both genotypes latency to fall was reduced as 

rotation speed increased on fixed trials.  

3.3.2.2 Dlg2+/- mice exhibit within session habituation of locomotor activity to a 

novel environment and comparable responses to a novel context 

during a context shift task 

For analysis of both habituation and test days all data was normal, with the exception 

of WT familiar data on the test day. In all instances all assumptions were met, with 

the exception of sphericity, which is reported separately for each test.  

Total beam breaks across the four daily sessions were analysed by mixed ANOVA. 

The assumption of sphericity was violated, X2 (5) = 25.028, p = < 0.001, so the 

Greenhouse-Geisser correction was applied.  

Total beam break data was analysed to compare intersession habituation to a novel 

context across the first four days of training between the genotypes, shown in Figure 

17a. Despite Dlg2+/-mice appearing slightly more active no difference was found in 

locomotor activity between the genotypes, nor was there a difference in locomotion 

across the days (DAY: F (2.093, 87.925) 0.408, p = 0.676, GENOTYPE: F (1, 42) 0.643, p = 

0.427, DAY x GENOTYPE: F (2.093, 87.925), 0.590, p = 0.590).  

No difference was found between the genotypes when intersession habituation was 

assessed by t test for the change in activity between Day 1 and Day 4 (Figure 17 b), 
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Day 4 BB total/(Day 1 BB total + Day 4 BB total), WT 0.460 ± 0.076, HET 0.480 ± 

0.126, t (42), -.0645, p = 0.523. The activity change ratio for both genotypes is around 

0.5, demonstrating a lack of habituation. Habituation is reflected in a ratio closer to 0 

whilst a ratio closer to 1 suggests sensitisation (Bolivar 2010).  

 

Figure 17. Both genotypes exhibit comparable levels of intersession habituation across the four daily 30 

minute sessions (a). The activity change calculated as Day 4 BB total/(Day 1 BB total + Day 4 BB total 

is comparable between the genotypes (b). Both genotypes exhibit within session habituation for each 

day over the 30 minute session. Each quantile is the total beam breaks for 6 minutes. On day 1 (c) and 

day 4 (d) the genotypes are comparable but have begun to diverge slightly by day 4. Data represent the 

mean ± SEM error bars.  n = 25 (WT) 19 (HET).   

Intrasession habituation was examined by analysing the 30 minute daily sessions in 

five 6 minute quantiles by mixed ANOVA with the following factors: genotype (WT 

and HET), 6 minute time bin (Q1, Q2, Q3, Q4, Q5) and day (1, 2, 3 and 4) (Figure 

17c, d).   The assumption of sphericity was violated for day X2 (5) 45.230, p = <0.001, 

time bin X2 (9) 40.178, p = <0.001, and day*time bin X2 (77) 123.941, p = 0.001, so 

the Greenhouse-Geisser correction was applied in all instances. 

There was no effect of genotype or day, but there was a reduction in locomotive 

activity across the quantiles (DAY: F (1.812, 74.299) 0.504, p = 0.680, GENOTYPE: F (1, 

41) 0.324, p = 0.572, QUANTILE: F (2.557, 104.838) 77.073, p = < 0.01). There was no 
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interaction between day and genotype, (DAY x GENOTYPE: F (1.812, 74.299) 0.474, p = 

0.606), nor between quantile and genotype, (QUANTILE x GENOTYPE: F (7.246, 297.077) 

1.144, p = 0.335), nor for day*genotype*quantile, (DAY x GENOTYPE x QUANTILE: 

F (7.246, 297.077) 1.182, p = 0.312).  

No difference was found between the genotypes when daily intrasession habituation 

was assessed by t test as the change in activity between Q1 and Q5 on each day 

(Figure 18) Q5 BB total/(Q1 BB total + Q5 BB total) (Figure 18). 

 

Figure 18. The activity change between Q1 and Q5 on day 1 (a), day 2 (b), day 3 (c) and day 4 (d) is comparable 

between the genotypes. For each day the activity change ratio for both genotypes approaches 0.5, demonstrating a 

lack of habituation.  

Day t Test 

1 t (42) -0.440, p = 0.662 

2 t (42) 0.109, p = 0.914 

3 t (42) -0.050, p = 0.623 

4 t (42) -.064, p = 0.949 

Table 8: Comparison in mean change in total beam breaks as a measure of locomotive activity between Q1 and Q5 

on the four habituation days. There was no difference in the change in activity between the genotypes on any day.  



58 
 

For test day analysis a software malfunction resulted in the loss of some data (8 WT, 

3 HET).  

There was no difference in locomotor activity between the contexts for either 

genotype (Figure 19) (CONTEXT: F (1, 30) 0.687, p = 0.414, GENOTYPE: F (1, 30) 

0.023, p = 0.881, CONTEXT x GENOTYPE: F (1, 30) 0.183, p = 0.672).  

 

Figure 19. Cumulative beam breaks were measured on context shift test day (day 5). Both genotypes 

demonstrate no difference in activity between novel and familiar contexts. Data represent the mean ± 

SEM error bars.  n = 17 (WT) 15 (HET) 

3.3.2.3 Dlg2+/- startle significantly less than WT mice at 120dB, but exhibit 

normal PPI.  

For all startle response and PPI data at 120 dB 2 outliers were removed (both HET) 

and at 105 dB 1 WT was removed.  

Most increasing dB data was not normally distributed. There was homogeneity of 

variances for all data except P70, but there was not homogeneity of covariances. 

Incremental (10 dB) increases in pulse dB from background (70 dB) to 120 db 

assessed audio acuity of the mice (Figure 20a). The assumption of sphericity was 

violated for these incremental increases, X2 (14) = 255.911, p = < 0.001, so the 

Greenhouse-Geisser correction was applied. As the stimulus intensity increased so 

did the startle response of both genotypes, although the Dlg2+/-mice startled less than 

the WT (Figure 20b), (PULSE: F (1.903, 76.136) 54.450, p = < 0.001, GENOTYPE: F (1, 

40) 5.306, p = 0.027, PULSE x GENOTYPE: F (1.903, 76.136) 2.834, p = 0.068).  
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Figure 20. (a) At greater intensities the startle response between the genotypes begins to diverge with 

the HETs startling less (b) Graphical summary depicting all pulse alone trials at both startle amplitudes. 

(1) Startle pulses averaged as an index of emotional reactivity. (2) The first 6 pules at each amplitude 

are used to calculate habituation to the stimulus. (3) Following this the stimuli are interspersed with lower 

dB stimuli to assess PPI at each intensity. Data represent the mean ± SEM error bars.  n = 25 (WT) 17 

(HET).  All startle response values are weight adjusted using Kleiber’s (1932) 0.75 mass exponent. * p 

= 0.05 

The acoustic startle response was assessed at two stimulus intensities, 120 dB and 

105 dB (Figure 20b). The average of the first three pulses at 120dB and 105 dB were 

assessed as a marker of emotional reactivity and analysed using t tests (Figure 21 a, 

c). All 120 dB data was normal, but all 105 dB was non-normal. All data had 

homogeneity of variances.  For 120 dB Dlg2+/-mice startled less than WT mice (t (40) 

3.303, p = 0.004). No difference was found at 105 dB (t (41) 1.694, p = 0.098).  

Habituation of startle response was assessed over the first six pulse alone trials at 

120 dB and 105 dB using mixed ANOVA (Figure 21b and d). The majority of data for 

120 dB, and all 105 dB data, was non-normal. For 120 dB there was homogeneity of 

variances but not covariances, whilst 105 dB data met both assumptions. The 

assumption of sphericity was violated for 120 dB, X2 (14) 26.316, p = 0.024 so the 

Greenhouse-Geisser correction was applied, but was met for 105 dB, X2 (14) 15.574, 

p = 0.341. The reduced startle response in the Dlg2+/-mice compared to WT mice to 

120 dB stimulus persisted across the first six trials (TRIAL: F (3.825, 152,983) 0.803, p = 

0.520, GENOTYPE: F (1, 40) 7.441, p = 0.009, GENOTYPE x TRIAL: F (3.825, 152.983) 

1.250, p = 0.293). At 105 dB the genotypes were comparable, neither displaying 

habituation to the stimulus (TRIAL: F (5, 205) 1.975, p = 0.084, GENOTYPE: F (1, 41) 

1.471, p = 0.232, GENOTYPE x TRIAL: F (5, 205) 1.485, p = 0.196).  
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Figure 21. (a) The startle response to the first 3 pulses at 120 dB was averaged as an index of emotional 

reactivity. HETs startled less than WT mice. This difference in startle response persisted across the first 

6 pulses at 120 dB (b). HETs startle response is largely unchanged across the 6 pulses. Data represent 

the mean ± SEM error bars.  n = 25 (WT) 17 (HET).  (c) The startle response to the first 3 pulses at 105 

dB was averaged. There was no difference between the genotypes. (d) Neither genotype displayed a 

change in startle across the 6 trials to the 105 dB pulses. n = 24 (WT) 19 (HET). All startle response 

values are weight adjusted. * p = 0.05, ** p = 0.01 

The startle response on ‘pulse alone’ and ‘pre-pulse’ trials was assessed at 120 dB 

and 105 dB (Figure 22a, c). For pulse alone and pre-pulse trials at both 120 dB and 

105 dB most data was non-normal, and there is homogeneity of variances and co-

variances. For both 120 dB and 105 dB the assumption of sphericity was violated, X2 

(5) 56.770, p = <0.001 and X2 (5) 53.660, p = <0.001 respectively, so the 

Greenhouse-Geisser correction was applied. 

On the ‘pulse alone’ and ‘pre-pulse’ trials at 120dB there was an effect of both pulse 

type and genotype, but there was an interaction between the two factors (PULSE: F 

(1.742, 69.692) 5.791, p = 0.007, GENOTYPE: F (1, 40) 5.916, p = 0.020, PULSE x 

GENOTYPE: F (1.742, 69.692) 5.791, p = 0.007).  

To pull apart the interaction, one way ANOVA was conducted between the genotypes 

for each pulse type, where PPx denotes the dB above background (none, PP4P120, 

PP8P120, PP16P120). In the absence of a pre-pulse the startle response of Dlg2+/-
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mice was reduced compared to WT at 120 dB (PULSE: F (1, 40) 7.908, p = 0.0089), 

as well as following a minimal pre-pulse at 4dB above background (PULSE: F (1, 40) 

4.720, p = 0.036), but was comparable for moderate 8dB intensity pre-pulse  (PULSE: 

F (1, 40) 3.970, p = 0.053), or high intensity pre-pulse dB (16 dB above background), 

(PULSE: F (1, 40) 2.229, p = 0.143 (Figure 22a).  

For 105 dB the ‘pulse alone’ and ‘pre-pulse’ trials both genotypes exhibited a reduced 

startle response as the stimulus intensity increased (PULSE: F (1.660, 68.050) 49.730, p 

= < 0.001, GENOTYPE: F (1, 41) 2.143, p = 0.151, GENOTYPE x TRIAL: F (1.660, 68.050) 

2.219, p = 0.125) Figure 22c).  

The percentage inhibition in startle response to 120 dB and 105 dB was calculated 

(Figure 22b, d). For percentage PPI at 120dB most data was normal, whilst most 105 

dB was non-normal. There was homogeneity of variances, but not covariances, in 

both instances. The assumption of sphericity was violated for both 120 dB, X2 (2) 

6.618, p = 0.037, and 105 dB, X2 (2) 9.793, p = 0.007, so the Greenhouse-Geisser 

correction was applied.  

At 120 dB both genotypes demonstrated comparable increases in percentage 

inhibition as the pre-pulse stimulus intensity increased (Figure 22b) (GENOTYPE: F 

(1, 40) 1.704, p = 0.199, PULSE: F (1.730, 69.199) 123.350, p = <0.01, GENOTYPE x 

PULSE: F (1.730, 69.199) 0.238, p = 0.757). A similar affect was found at 105 dB (Figure 

23d) (PULSE: F (1.643, 67.370) 55.852, p = < 0.001, GENOTYPE: F (1, 41) 0.569, p = 0.455, 

PULSE x GENOTYPE: F (1.643, 67.370) 1.918, p = 0.162).  
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Figure 22. (a) Both genotypes startle less as the pre-pulse stimulus intensity increases in dB, but HETs 

startle less than WT mice in the absence of a pre-pulse (P120, pulse alone), or when the pre-pulse 

stimulus is only 4 dB (PP4P120) above background (70 dB). (b) There is no difference between the 

genotypes for percentage inhibition to an acoustic stimulus at 120 dB, both exhibit an increase in 

percentage startle response as the pre-pulse intensity increases. Data represent the mean ± SEM error 

bars.  n = 25 (WT) 17 (HET). (c) The startle response decreases for both genotypes to a 105 dB pulse 

as the pre-pulse intensity increases. (d) As with 120 dB both genotypes show increased percentage 

inhibition of startle response to 105 dB pulses with increasing intensity pre-pulses. n = 24 (WT) 19 (HET). 

All startle response values are weight adjusted. * p = 0.05, ** p = 0.01. 

3.3.2.4 Dlg2+/- mice do not display any anxiety phenotypes  

Elevated Plus Maze  

All zone data, except WT middle zone data, and velocity and distance data were 

normal.  Latency to first, head dips, stretch attends and grooming were non-normal 

so Mann Whitney U was used in these instances. There was homogeneity of 

variances for all measures except for distance and velocity, so Welch’s t test was 

used in these instances.  

Both genotypes were comparable in the time spent in each zone of the maze (Figure 

23). There is no difference in time spent in the open, t (42), = 0.780, p = 0.440, closed, 

t (42) = 0.146, p = 0.885, or middle, U = 156.50, p = 0.055 zones. The latency to first 
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entry into the open arms was not significantly different between the genotypes (24a), 

U = 191.50, p = 0.276.  

Both WT and Dlg2+/-mice travelled similar distances, at similar velocities during the 

task (t (36.4) = -0.471, p = 0.640 and t (36.32) = -0.445, p = 0.659 respectively (25b & c).  

There was no difference in the number of stretch attend postures, U = 191.50, p = 

0.275, periods of grooming, U = 185.50, p = 0.204 or the number head dips, U = 

193.50, p = 0.297 (Figure 24d, e & f). 

 

Figure 23. (a) The % total time spent in each zone of the maze during the 5 minute trial. (b) Merged heat 

maps for each genotype. Warmer colours indicate greater time spent in the maze zone. Data represent 

the mean ± SEM error bars.  n = 25 (WT) 19 (HET). Arrows indicate the closed arms. 

 

Figure 24. There were no differences between the genotypes for any of the other measures recorded 

during EPM trial. (a) The latency of mice to first enter an open arm of the elevated plus maze. (b) Total 

distance travelled during the 5 minute trial. (c) Velocity of movement during the 5 minute trial. There was 

no difference in number of head dips (d), stretch attends (e) or periods of grooming (f) between the 

genotypes. Data represent the mean ± SEM error bars.  n = 25 (WT) 19 (HET).  
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Open Field   

Only inner zone data was normal. Two outliers (1 WT, 1 HET) were removed, 

resulting in normality for all data. The assumption of homogeneity of variances was 

met in all instances. 

Compared to WT, the Dlg2+/- mice spent a similar times in the inner, (t (40) -0.388, p 

= 0.351) and outer zones (t (40) 0.388, p = 0.351) over the 10 minutes in the open field 

arena (Figure 25). There was no difference in activity levels as indicated by similar 

distance travelled, (t (40) 1.167, p = 0.243) or velocity, (t (40) 1.167, p = 0.241) between 

the two genotypes (Figure 25). 

 

Figure 25. There was no difference in any measure during the open field task. Both genotypes exhibited 

thigmotaxis, spending most time in the outer zone and corners of the open field. (a) The percentage time 

spent in each zone of the arena during the 10 minute trial. (b) Merged heat maps for each genotype. 

Warmer colours indicate greater time spent in the maze zone. (c) Total distance travelled during the 10 

minute trial. (d) Velocity of movement during the 10 minute trial. Data represent the mean ± SEM error 

bars. n = 25 (WT) 18 (HET). 
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3.4 Discussion 

A reduction in Dlg2 mRNA expression was only found in the PFC but not 

hippocampus or cerebellum of Dlg2+/- mice. No differences were found between the 

genotypes in any brain region for other Dlg family members (Dlg1, Dlg3, Dlg4). 

Dlg2+/- mice exhibited specific behavioural changes. Both WT and Dlg2+/- mice 

exhibited normal motor function but Dlg2+/- mice demonstrated impaired motor 

learning, as assessed by the accelerating rotarod. When context discrimination was 

probed using a locomotive task both genotypes demonstrated intrasession but not 

intersession habituation across four 30 minute daily sessions, and did not discriminate 

between a familiar and novel context. The startle response of Dlg2+/- mice was 

reduced in comparison to WT mice in response to a 120 dB, but not 105 dB, acoustic 

stimulus. However, no differences were found in percentage PPI response to either 

stimulus amplitude. On all measures of anxiety, across two different tasks, no 

differences were observed between Dlg2+/- mice and WT mice.  No differences in 

anxiety related behaviours were observed between WT and Dlg2+/- mice in two anxiety 

probing tasks. The regionally specific reduction in mRNA expression is reflected in 

the subtle differences in certain behaviours, as opposed to global impairments.  

3.4.1 Heterozygote mice have reduced Dlg2+/- expression in the PFC with no 

evidence of compensation from other Dlg family members.  

The mRNA expression of Dlg2 was compared between genotypes in three brain 

regions, the PFC and hippocampus, which are relevant to potential schizophrenia 

phenotypes, and the cerebellum (control region) by RT-qPCR. There was a selective 

reduction in expression of about 50% found in the PFC of Dlg2+/- mice.  No changes 

in mRNA expression of any other Dlg family member was found in the brain regions 

tested. The mutant Dlg2 mouse generated by McGee et al (2001) had reduced mRNA 

in brain tissue as assessed by Northern blot, although Dlg2-/- mice expressed a very 

weak band ~7.5 kb. This did not appear to translate into viable protein as Western 

blot analysis found reduced Dlg2 protein in the Dlg2+/-mice and complete absence in 

the Dlg2-/- mice. The presence of mRNA in the Dlg2-/- mice was likely attributable to 

alternative splicing that skips the deleted exon. The regional specificity of the mRNA 

reduction cannot be compared between models as the Dlg2 analysis reported was 

from whole brain extracts, as opposed to discrete regions. Protein analysis of Dlg1, 3 

and 4 was reported for forebrain and cerebellum extracts. 
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In order to determine whether there is truncated mRNA or transcripts that are 

unaffected by the mutation, and thus potentially still able to function normally, targeted 

primers designed to span the PDZ domains can be tested in homozygote tissue from 

key brain regions. The first and second PDZ domains are where currently available 

western blot antibodies bind, and are particularly important for binding between Dlg2 

and interactors such as NMDAR. Presence of a band would indicate the presence of 

mRNA expression upstream of the genetic lesion, suggesting a transcript potentially 

unaffected by the mutation, similar to the McGee et al (2001) model. The band could 

then be sequenced and predictive software used to determine the viability of the 

protein produced. 

The lack of a reduction in Dlg2 mRNA may correspond to normal protein levels in the 

hippocampus and cerebellum. This could mean biochemistry and behaviour 

examined which involve these regions may not be negatively affected in Dlg2+/- mice. 

However, evidence from human post mortem tissue previously reported differential 

expression changes, with increased DLG2 mRNA but decreased protein in 

schizophrenia patients (Kristiansen et al., 2006). Therefore it is plausible that whilst 

no changes are observed at mRNA level there may be alterations at the protein level.  

3.4.2 Reduced Dlg2 expression has no effect on motor function but results in 

impaired motor learning in rotarod tasks.   

A fixed speed rotarod was used to assess motor performance, whilst the accelerating 

rotarod probed motor learning. Both genotypes demonstrate a comparably reduced 

ability to remain on the rotarod as the speed increases in fixed increments (Mann and 

Chesselet, 2015), suggesting differences in motor function in Dlg2+/-mice. On the 

accelerating rod, Dlg2+/-mice eventually reach the same plateau of performance as 

WT mice but they show a slower trajectory. The Dlg2+/-mice do not display the sharp 

increase in latency to fall between their first and second trials observed in the WT 

mice, potentially demonstrating a slower acquisition in learning the requirement to 

alter their behaviour in response to the increasing rod speed. This is in contrast to 

McGee et al (2001) who found no differences in rotarod performance between WT, 

Dlg2+/- or Dlg2-/- mice, but is in line with the deficient motor learning observed by 

Winkler et al (2018). The variation in protocols and genetic lesions between the 

models needs to be considered. In comparison to the method reported in this thesis, 

McGee et al (2001) trained these mice on a fixed speed rod and tested on an 

accelerating rod for four minutes. The decrease in Dlg expression in the PFC and lack 

of change in Dlg2 mRNA expression in the cerebellum of the mouse model we used 
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suggests that the impairments of motor learning may stem from other cortical brain 

regions (motor cortex – M1 and M2, striatum, cingulate cortex) involved in the process 

(Costa, Cohen and Nicolelis, 2004). Therefore assessment of mRNA and protein 

expression in other regions important for motor learning is required.  

Impaired motor learning has previously been observed in other models carrying 

genetic mutations associated with synaptic function. Impaired performance on the 

accelerating rotarod and balance beam tasks were observed in Dlg4-/- mice (Feyder, 

et al. 2010a), as well as in mice carrying mutations in another scaffolding protein, 

SHANK3 (Yang et al, 2012). The severity of the impairment observed on the rotarod 

was greater in SHANK3 mutant males than females, which the authors suggest 

reflects the male:female ratio of autism observed in humans (Yang et al, 2012). 

Additionally, mice lacking a key Dlg4 and Dlg2 interactor NMDAR1, in the striatum 

demonstrated severely impaired performance on the accelerating rotarod. These 

mice displayed comparable performance to WT mice (Dang et al., 2006).  Given the 

similar phenotypes observed in Dlg2, Dlg4 and SHANK mutant mice, three proteins 

that contain PDZ and SH3 domains, there is the possibility that the impaired motor 

learning observed is the result of inability of interactors to bind normally to these 

domains. Interestingly, however, a study probing a Dlg4 knockin model where only 

the PDZ binding domains were altered to retain their structure but were unable to bind 

ligands, found no difference between WT and knockin (KI) mice on the accelerating 

rotarod (Nagura et al., 2012a). This could suggest that whilst NMDAR has been 

demonstrated to play an important role in motor learning (Dang et al., 2006), it is 

unlikely that the motor learning phenotypes observed in Dlg2 or Dlg4 heterozygotes 

previously, or in this thesis, result from abnormal interaction between Dlg2 or Dlg4 

and NMDAR through the PDZ domains.  

3.4.3 Both genotypes display intrasession but not intersession habituation and 

no discrimination between a novel and familiar context.  

Horizontal locomotion was examined across four daily sessions to one context, before 

mice were presented with both the familiar and a novel context on day 5. The repeated 

exposure to the context on days 1 to 4 should result in reduced locomotive activity as 

the animals habituate to the familiar environment (Bolivar, 2009). Neither genotype 

displayed intersession habituation of total beam breaks across the four habituation 

days. Daily intrasession habituation is demonstrated by both genotypes. On test day 

neither genotype is more active in the novel context compared to familiar, suggesting 

a lack of context discrimination (Terry, 1979). Altering an aspect of the previously 
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habituated context, such as the floor surface, has been show to invoke increased 

activity in multiple mouse strains, including C57BL/6J (Bolivar et al., 2000). The lack 

of discrimination observed in our experiment may stem from the contexts not being 

sufficiently different to induce greater exploration in the novel condition. When placed 

in a novel environment rodents will explore, acquiring an internal representation of 

that environment in the hippocampus that becomes increasingly complex with more 

investigation (O’Keefe & Nadel, 1978). The more similar two overlapping contexts are 

the less distinct the representations will be, resulting in greater difficultly in 

discriminating between them, potentially leading to a generalisation of the behavioural 

response (Rolls, 2016). If there was generalisation of context then there would be no 

need to explore the ‘novel’ one, given that an adequate representation of the area 

has been generated.  

Repeated exposure to the same context would be anticipated to result in reduced 

activity across the days, as the environment becomes less novel (Rankin et al., 2009). 

The lack of intersession habituation demonstrated by both genotypes may have 

resulted from inadequate initial exploration, requiring prolonged investigation in order 

to generate a suitable representation. However, the lack of habituation may also 

represent a strain affect. Greater variability in intersession habituation compared to 

intrasession habituation between mouse strains has been demonstrated, and 

suggested that intersession habituation may be more challenging for mice generally 

given the increased retention interval (Bolivar, 2009). C57BL/6J and C57BL/6Tac 

were similarly found to display higher levels of intra and intersession habituation when 

the environment was not overly complex (Bolivar, 2009). Short term intrasession 

habituation occurs over a single training period, whereas longer term intersession 

habituation across multiple sessions (Rankin et al., 2009). At its simplest, intrasession 

is suggested to measure adaptivity, as the learning element occurs in the absence of 

a retention interval, whereas intersession also probes memory of previous sessions 

and the environment (Müller et al., 1994).  

Overall Dlg2+/- mice do not demonstrate any differences in their within session 

adaption or between session habituation when compared to WT mice.  

3.4.4 Dlg2+/- mice startle less than WT to high intensity acoustic stimuli but 

exhibit normal PPI. 

Both genotypes startle more with increasing acoustic stimulus intensity, but begin to 

diverge at the higher auditory intensities, with Dlg2+/-mice startling less to the 120 dB 

pulses. The reason for this deviation is unclear. Although there is no evidence linking 
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Dlg2 to hearing, the Dlg2+/-mice might be exhibiting high frequency hearing loss, 

which can occur with maturation in the background strain, C5BL/6 mice (Willott et al, 

1994). At the time of acoustic startle testing the mice were 3.3 months old. Therefore, 

it is unlikely hearing was influenced by age (Willott et al, 1994) and even so it would 

have been unlikely to have manifested as a genotype difference. To conclusively 

discount this an auditory brain stem response test could be conducted, but this would 

be invasive and time consuming.  

The reduced startle response of Dlg2+/-mice persists across both the initial index of 

emotional reactivity and in their lack of habituation to the 120 dB pulses. The response 

of the WT mice gradually declined closer to that of the Dlg2+/-mice. There are several 

potential explanations for the lack of habituation observed in the Dlg2+/-mice.  

Many factors can influence startle response, such as attention, stress and anxiety 

(Ray et al. 2009; De la Casa et al. 2016). Previous work demonstrated attentional 

impairments in Dlg2-/- mice (Nithianantharajah et al, 2013), which was not addressed 

in the current model. Comparable results between the genotypes on two tests probing 

anxiety behaviours, discussed below (3.4.5), make it unlikely the differential startle 

response is due to anxiety levels.  

This differential reactivity may prevent accurate assessment of PPI response 

especially when a high intensity startle response is used. At lower pre-pulse 

intensities there was a marked difference using a 120dB startle response, with Dlg2+/-

mice startling less. Higher intensity pre-pulses elicited the same reduction in response 

in both genotypes. However, if PPI is taken as a percentage of the baseline startle, 

thus negating the differential baseline response, there was no difference in response 

between the genotypes. This approach reduces the variation associated with 

manipulation induced changes in startle response (Geyer and Dulawa, 2003). No 

differences in PPI response between the WT and Dlg2+/- mutants were also found for 

the 105 dB stimulus trials where there is no baseline difference in startle response. 

Therefore both when the genotypes are performance matched for their acoustic 

startle response (lower intensity, 105 dB) and when startle responses are expressed 

as a percentage of the pre pulse response (at both 120dB and low 105dB startle 

stimulus intensities), there were no changes in PPI in the Dlg2+/- mice compared to 

WT.   

A Dlg4 KI model, with abnormal PDZ 1/2 binding domains, displayed a similar pattern 

of response in PPI tests to that we observed in the current Dlg2+/- model (Nagura et 

al., 2012a). Mutant Dlg4 mice exhibit reduced acoustic startle response but a PPI 
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response comparable to WT. A similar process may underlie the phenotype observed 

in Dlg2+/-. This suggests that the association of Dlg2 and with its interactors might be 

a basis for this phenotype. 

Similar behavioural phenotypes showing a reduced acoustic startle response with a 

lack of habituation were also observed in a  genetic stress model (Dirks et al, 2002), 

and in a loss of function potassium channel knockout (Typlt et al., 2013). Mice (CRH-

OE2122) overexpressing corticotrophin-releasing hormone (CRH) startled significantly 

less to higher intensity stimuli (110 dB and 120 dB), despite startling slightly more 

than WT mice at the lowest intensity (75 dB). As with the Dlg2+/- mice, the CRH-OE2122 

mice did not demonstrate habituation to the startle stimulus (Dirks et al, 2002). Unlike 

the Dlg2+/-, however, the CRH-OE2122 mice also display reduced percentage PPI. 

However, there were methodological differences that need to be considered as a 

source of the difference; Dirks et al (2002) conducted each component of the startle 

response as separate experiments, as opposed to one continuous protocol as used 

in thesis. At the molecular level interaction between MAGUKs, including Dlg2, and 

the CRH receptor, CRHR1, has been demonstrated (Bender et al, 2015). This 

suggests a potentially interesting functional link between Dlg2 and the CRHR1 

receptor.   

Voltage-gated and calcium-activated potassium (BK) channel loss of function in mice 

resulted in a reduced startle response to the highest stimulus, as well as a lack of 

habituation across trials (Typlt et al., 2013), similar to Dlg2+/- mice. BK channels help 

regulate processes such as neuronal excitability (Shao et al., 1999; Brenner et al., 

2005), and are proposed to mediate synaptic plasticity that underlies short term 

habituation of startle (Zaman et al., 2017). Dlg2 does interact with other potassium 

channels but currently there is no link with BK channels. Interestingly, however, BK 

channels which are encoded by the KCNMA1 gene have been implicated in 

schizophrenia (Zhang et al., 2006; Kendler et al., 2011) and autism (Laumonnier et 

al., 2006). 

Abnormal habituation of startle response is considered a biomarker of schizophrenia, 

alongside impaired PPI, although habituation deficits might be more intricately linked 

with acute psychotic episodes than chronic disease (Mena et al., 2016a). However, 

patients with schizophrenia (Mena et al., 2016b) and autism (Kohl et al., 2014a) have 

higher acoustic startle responses than control groups as opposed to lower startle 

responses exhibited by Dlg2+/- mice. Additionally, abnormal habituation in human 

cohorts may be influenced by sensitisation, whereas this does not seem to be 
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occurring in Dlg2+/- mice because their startle response was maintained across 

presentations of the auditory stimulus. Despite the translational differences there 

does appear to be an altered startle response in Dlg2+/- mice.  

3.4.5 Dlg2+/- do not display any anxiogenic behaviours in two common 

paradigms. 

For both the EPM and OF measures, there was no indication of a difference in anxiety 

response between the genotypes. On both tests more time was spent in the ‘safer’ 

closed arms of the EPM, or in the corners of the open field, but both mutant and WT 

mice ventured out into the more risky open arms or arena centre. These findings 

support the lack of observed anxiety phenotypes in the McGee et al (2001) Dlg2 KO 

model on open field or light/dark tests (Winkler et al., 2018). 

In the EPM there was a trend towards Dlg2+/-mice spending more time in the middle 

zone of the maze (p = 0.06). However, there is ambiguity in the meaning and 

relevance of time spent in this zone as some argue it does not assess anxiety 

(Rodgers, Dalvi and Anxiety, 1997; Carobrez and Bertoglio, 2005). This could be 

overcome using an elevated zero maze, which is a continuous circle with open and 

closed sections, but no central zone (Shepherd et al, 1994). In addition, there was no 

difference in the so called “risk taking” measures of anxiety, head dips, stretch attends 

or time spent grooming (Walf and Frye, 2007), nor in terms of distance covered or 

speed of movement in the Dlg2+/ mice.  

Similarly, measuring anxiety in the OF maze, there was no difference in the time spent 

in either zone of the arena, with both genotypes demonstrating the same levels of 

thigmotaxis. As with the locomotor activity data obtained during the context shift task, 

locomotive activity was similar between WT and Dlg2+/-mice. This indicated that 

Dlg2+/- did not exhibit any hyperactivity phenotypes.  

Two models of Dlg4 mutation, the Dlg4-/- (Feyder et al. 2010b) and the Dlg4 PDZ 

domain KI mice (Nagura et al., 2012a), found increased levels of anxiety on OF and 

EPM compared to WT mice. This may reflect a more fundamental role of Dlg4 in fear 

and anxiety behaviours compared to Dlg2. 

3.4.6 Strengths and Limitations 

For studying hippocampal dependant learning this model may not be ideal given the 

lack of a reduction in Dlg2 mRNA in the hippocampus. However, the impact of Dlg2 

mutation on cortical functioning in cognition can be investigated with this model given 

the mRNA reduction present in the PFC. The PFC itself is important for processes 



72 
 

such as executive function which includes attention, working memory, flexibility and 

planning. Additionally a reduction in the PFC may influence functioning other cortical 

areas, for example M1 might be affected given the motor learning phenotype, or 

downstream regions and systems. For example abnormal innervation of nucleus 

accumbens from the PFC may play a role in hyperlocomotive phenotypes which are 

considered as proxy measures of psychosis in rodents. Analysis of mRNA and protein 

expression in these other regions, such as the motor cortex, would be important to 

dissociate whether effects are localised, or the result of this potential upstream 

reduction.  

Additionally, as discussed previously if Dlg2-/- mice still have weak expression of 

mRNA this suggests the presence of transcripts not affected by the mutation. 

Alternative transcripts of Dlg2 are proposed to have different functional importance, 

therefore only certain processes may be if some transcripts are still functionally 

expressed, potentially complicating interpretation of phenotypes. Future studies may 

benefit from functionally inactivating specific transcripts to determine the relative 

importance of each to different aspects of behaviour.  

3.4.7 Conclusions 

Overall, the mouse Dlg2+/-model investigated in this Chapter was useful for exploring 

impairment in behavioural domains as a result of Dlg2 mutation. In general Dlg2+/- 

mice are comparable to WT mice and are not universally impaired. This is in line with 

previous research, that found basic learning process, such as acquisition of simple 

operant conditioning tasks,  were intact in mice and humans with Dlg2 mutations 

(Nithianantharajah et al., 2013). This lack of global impairment in the mice mirrors the 

exhibition of more specific impairments, rather than a complete inability to function, 

that is often seen in humans carrying CNV mutations, Nevertheless, selective 

functional impairments were measured in this Dlg2tm1a(EUCOMM)Wtsi  derived model, in 

motor learning and in acoustic startle responses. Both behavioural phenotypes 

observed in the mutant model are similar to abnormalities associated with 

schizophrenia, although neither are most often associated with the disorder.  
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4 Fast and slow motor learning and 

psychomotor challenge in the 

Dlg2+/- mouse 

4.1 Introduction 

4.1.1 Motor Learning 

In Chapter 3 Dlg2+/- mice demonstrated specific impairment in motor learning, but not 

motor function, and reduced acoustic startle response to a 120 dB stimulus. Whilst 

WT mice demonstrated a rapid increase to asymptote in motor performance, as 

assessed by the latency to fall from the accelerating rotarod between the first and 

second trials the Dlg2+/- mutant mice did not. Dlg2+/- mice matched the performance of 

WT mice by Trial 4. This indicates an impairment of motor learning in Dlg2+/-. This 

deficit appears independent of motor function, as fixed speed testing on the rotarod 

did not reveal a performance difference to WT. 

A more challenging accelerating rotarod protocol can further probe this learning 

phenotype, including examining improvement across multiple days, which could also 

highlight potential deficits in acquisition of motor learning. Another mouse model 

carrying a mutation in a schizophrenia risk associated synaptic gene, Cyfip1, 

demonstrated impairment of motor learning during an extended motor learning task. 

Male, but not female,  Cyfip1+/-mice exhibited reduced latency to fall and plateaued 

much earlier, never matching the performance of the WT mice across seven trials 

(Bachmann et al., 2019). 

Rotarod training provides a simple paradigm in which to assess motor learning. The 

process of acquiring a new motor skill, “motor learning”, occurs in two phases. During 

the first session there is a rapid increase in ability, the “fast” phase of motor learning, 

with “slower” improvement across subsequent sessions before reaching a plateau 

(Karni et al., 1998; Costa, Cohen and Nicolelis, 2004; Luft and Buitrago, 2005). 

Between-session learning is dependent on protein synthesis selectively in the motor 

cortex, which if inhibited prevents slow learning (Buitrago et al. 2004; Luft et al. 2004). 

The key regions involved in motor learning are the cerebellum, motor cortex (M1 and 

M2) and dorsal striatum (Costa, Cohen and Nicolelis, 2004). The involvement of the 

regions changes over the skill acquisition process (Costa, Cohen and Nicolelis, 2004). 



74 
 

In both the motor cortex and the striatum a dramatic increase in the activity of task 

related neurons was observed during the first trial on an accelerating rotarod. Distinct 

changes were observed in the motor cortex and striatum as rotarod training 

progressed. In the motor cortex, more neurons increased firing versus decreased 

firing, whereas an increase in velocity-correlated neurons was found in the striatum 

(Costa, Cohen and Nicolelis, 2004). The activity of neuronal ensembles become less 

pronounced across the training days, which is reflective of the reduction observed in 

performance improvement in behavioural studies.  

After rotarod training an increase in c-Fos positive cells was observed in the dorsal 

striatum, cerebellum and motor cortex of WT mice (Hirata et al., 2016).The 

immediate-early gene cFos encodes the transcription factor cFos, the expression of 

which peaks early in learning, and remains elevated during the plateau phase in the 

motor cortex following motor learning (Kleim et al., 1996). Expression of cFos is used 

as an indirect measure of neuronal activity, and therefore can be analysed to compare 

motor learning at the molecular level (Kovács, 2008). 

In the motor cortex M1 is primarily referred to in relation to motor learning, and is 

involved in both fast and slow learning (Costa, Cohen and Nicolelis, 2004). M2 is also 

vital to the process. Inactivation of M2 in mice did not prevent performance of a 

rotarod task but did inhibit improvement of stepping pattern (Cao et al. 2015).  

Impairments of motor learning have been demonstrated in people with psychiatric 

disorders, primarily autism and schizophrenia. Differences in blood oxygenation level-

dependant (BOLD) signal responses in an important region involved in human motor 

circuity, the premotor area, were found between schizophrenia patients and controls 

prior to, and following training of a complex motor task (Kodama et al., 2017). It was 

proposed that schizophrenia patients exhibited a dysfunction of the neural networks 

involved during learning and executing complex motor tasks, and that motor learning 

in the patients was slower, or less efficient (Kodama et al., 2017). Deficits in motor 

learning and delays in ability improvement may also be predictive of later 

development of psychosis (Isohanni et al., 2001). 

4.1.2 Ketamine induced hyperlocomotion 

Hyperlocomotion, especially in response to drugs like ketamine or amphetamine, is 

considered a proxy for studying psychosis. The finding that ketamine, and other 

NMDAR antagonists like PCP and MK801, transiently induced psychotic symptoms, 

such as hallucinations, and cognitive deficits in humans formed the basis of the 

glutamatergic hypothesis of schizophrenia (Lahti et al., 1995; Javitt, 2010). It is 
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important to note, however, that the hallucinations induced by ketamine tend to be 

visual in nature as opposed to auditory (Javitt, 2007; Powers et al., 2015).. This 

pattern is more reminiscent of that seen in acute schizophrenia rather than chronic, 

established schizophrenia, and may be due to the promiscuity of ketamine (Javitt, 

2007). This promiscuity as delineates the glutamatergic hypothesis of schizophrenia 

(discussed in 1.2) from the ketamine model, despite the glutamatergic hypothesis 

originally being proposed due the effects of ketamine (Frohlich and Van Horn, 2014). 

Ketamine has a weak affinity for serotonin 5-HT2A receptors, and a proposed equal 

affinity for dopaminergic D2 receptors compared to NMDA although this is continuous 

due to a lack of replication (Kapur and Seeman, 2002). 

A single 40 minute infusion with a sub-anaesthetic dose of ketamine (0.5mg/kg) 

transiently induced psychotic symptoms in healthy people (Krystal, 1994). A single 

sub-anaesthetic dose of ketamine is sufficient to induce hyperlocomotion in rodents 

(Hakami et al., 2009), and is associated with increased dopamine release in multiple 

brain regions in rodents (Kokkinou, Ashok and Howes, 2018). The glutamate 

hypothesis postulates that the aberrant dopaminergic functioning observed in 

schizophrenia is downstream of glutamatergic abnormality. NMDA receptor 

hypofunction is potentially implicated in this process (Roberts et al., 2010).  

Ketamine is a non-competitive NMDAR antagonist (Anis et al., 1983) which acts 

through channel blocking (MacDonald, Miljkovic and Pennefather, 1987). It is less 

potent the other antagonists like PCP or MK801 due to faster dissociation from the 

channel (Johnson & Kotermanski 2006). Ketamine is does not act specifically on any 

particular NMDAR subunits, but there are indications of an increased potency (3 or 4 

fold) for NMDARs expressing GluN1/GluN2c, which are preferentially expressed on 

GABAergic interneurons (Khlestova et al., 2016). This was found in the presence, but 

not absence, of extracellular Mg2+, implying this increase is due to interactions 

between the channel pore, ketamine and Mg2+ rather than differential subunit affinity 

(Johnson & Kotermanksi, 2006). The subunits may also account for different effects 

of ketamine, for example Glun2D KO mice demonstrated attenuation of ketamine 

induced hyperlocomotion (Yamamoto et al., 2016). 

There are two non-mutually exclusive proposed mechanisms of action through which 

ketamine is thought to act and increase glutamate levels: the indirect and direct 

hypothesis. The indirect hypothesis postulates that as ketamine preferentially binds 

to GluN1/Glun2c containing NMDAR expressed on interneurons it has a disinhibitory 

effect, resulting in enhanced excitatory pyramidal neuron activity, thus increasing 
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glutamate (Miller, Moran and Hall, 2016). This is supported by the finding that NMDAR 

antagonists decrease GABAergic interneuron function, leading to increased 

pyramidal cell firing and excitation of dopaminergic neurons, inducing excessive 

glutamate release (Homayoun, Jackson and Moghaddam, 2005). The direct 

hypothesis proposes direct inhibition of excitatory pyramidal neuron NMDAR, 

resulting in protein-synthesis dependant and cell autonomous homeostatic plasticity, 

although this pathway may be more involved in the antidepressant effect of ketamine 

(Miller, Moran and Hall, 2016).  

The effects of ketamine on the Dlg2+/- model may be particularly interesting given the 

interaction between Dlg2 and the NMDA receptor. Mutation in Dlg2 may reduce or 

destabilise NMDAR at the synapse, therefore further stressing a dysregulated 

pathway with NMDAR antagonism may reveal functional impairments. Previously 

NMDAR KO mice were found to exhibit a hyperlocomotive phenotype (Mohn et al., 

1999; Yasuda et al., 2017).  

In primary hippocampal cultures siRNA knockdown of Dlg2 (~69% reduction) induced 

hyperactivity in MEA recordings (MacLaren et al. 2011). Hippocampal hyperactivity is 

proposed to mediate dopaminergic dysfunction (Lodge and Grace, 2007; Wolff et al., 

2018). Increased output from the ventral hippocampus can influence dopaminergic 

activity in the ventral tegmental area (VTA) and increase dopamine release in the 

nucleus accumbens (NAc) (Lodge and Grace, 2007; Perez and Lodge, 2013). 

Dopaminergic neurons in the nucleus accumbens have been implicated in mediation 

of ketamine induced hyperlocomotion in mice (Irifune, Shimizu and Nomoto, 1991), 

and D2 receptors in the NAc regulate spontaneous locomotion (Hauber and Münkle, 

1997). Therefore if in vitro Dlg2 knockdown is triggering hippocampal hyperactivity 

these downstream effects may also occur in vivo, and may be reflected in a 

hyperactivity response. Additionally, the Dlg2+- mice may exhibit a greater 

hyperlocomotion response to ketamine, or respond at a lower dose than the WT mice.  

4.1.3 Aims 

1. Measure acquisition of fast and slow motor learning across a three day accelerating 

rotatod protocol. 

2. Investigate differences in the activity of M1 between WT and Dlg2+/-  mice during 

rotarod training by quantifying  the expression of the immediate early gene cFos. It is 

predicted that Dlg2+/- mice will exhibit reduced expression of cFos after rotarod 

training compared to WT mice. 
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3. Determine whether the observed motor learning deficits are sex specific by 

conducting the three day rotarod protocol with female WT and Dlg2+/- mice.  

4. Probe altered NMDA receptor function in Dlg2+/- with a ketamine induced 

hyperlocomotion challenge. Dlg2+/- mice are predicted to be hypersensitive to 

ketamine, and exhibit hyperlocomotion at a lower dose or to a greater extent than WT 

mice.  
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4.2 Methods 

4.2.1 Experiment 1 Motor Learning in Dlg2+/- mice: Animals  

A cohort of 35 male mice (18 WT, 17 HET) were aged up to 3 months and housed 

the same as described previously 2.1.2. Mice were handled daily for a week to 

habituate to the experimenter prior to testing. All testing was conducted during the 

light phase (07:00-19:00) between 09:00 and 17:30).  

4.2.1.1 Experiment 1 Task 

Mice were habituated to the testing room for 5 minutes prior to their first trial. All 

animals completed 7 trials per day on 3 consecutive days. Mice were placed on the 

rod facing away from the experimenter whilst the rod was rotating at 4 rpm. The rod 

accelerated incrementally from 4-40 rpm over 5 minutes. During the 5 minute inter-

trial interval mice were returned to their home cage in the testing room. Latency (s) to 

first fall was recorded defined as either falling from the rod or one complete rotation 

of the rod. Animals were returned to their home cages following the last trial. 

Apparatus was cleaned with ethanol wipes between animals to mask odour cues.  

4.2.1.2 Experiment 1 Analysis 

Normality was assessed for all data using Shapiro-Wilks test. Where appropriate, 

transformations were attempted to correct to normality. Extreme outliers (±3 

studentized residuals) were removed. If significance is changed by outliers being 

retained this was reported. For ANOVA homogeneity of covariances was assessed 

by Box’s M test and homogeneity of variances was assessed by Levene’s test. In 

instances where the assumption of sphericity was violated the Greenhouse-Geisser 

correction was applied. For t test Levene’s test was used, and if violated then Welch’s 

t test is used. 

Latency to fall (s) was analysed across the 7 trials on each of the 3 training days 

between the genotypes using mixed ANOVA with the following factors: Genotype (WT 

and HET), Day (1, 2, 3) and Trial (1, 2, 3, 4, 5, 6, 7). 

Consolidation of motor learning was then analysed by comparing the difference in 

latency to fall between the genotypes for the last trail on Day 1 to the first trial on Day 

2 (D2T1/(D2T1+D1T7) using t test. 
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4.2.2 Experiment 2 investigating the cellular basis of impaired motor learning: 

Animals  

A cohort of 24 male mice (13 WT, 11 HET) were aged up to 3 months and housed as 

described previously 2.1.2. Mice were handled daily for a week to habituate to the 

experimenter prior to testing. All testing was conducted during the light phase (07:00-

19:00) between 09:00 and 17:30). 

4.2.2.1 Experiment 2 Task  

Seven male mice (4 WT, 3 HET) were used as control animals and were single caged 

in the holding room for 1.5 hrs. Sixteen male mice (8 WT, 8 HET) were single caged 

prior to testing. All behavioural mice were habituated to the experimental room for 5 

minutes prior to their first trial. All mice completed two trials, with the rod accelerating 

from 4-40 rpm over 5 minutes, and two inter-trial rest periods for 5 minutes. Mice were 

returned to their holding cage following their first fall, or full rotation of the rod, and for 

each rest period. Mice were returned to the holding room after completion of the 

second rest period for 1.5 hrs before sacrifice. The order in which mice underwent 

rotarod trained was counterbalanced for genotype.  

4.2.2.2 Experiment 2 Perfusion fixation 

Mice were sacrificed through IP administration of 0.1ml Euthatal and transcardially 

perfused with 1x PBS and 4% PFA (Sigma-Aldrich, Dorset, UK) as previously 

described 2.1.5. Brains were removed and post fixed for 24 hrs in 4% PFA at 4°C and 

cryopreserved in 30% (w/v) sucrose solution at 4°C. Brains were embedded in OCT 

(ThermoFisher Scientific, UK) and stored at -80°C. 

4.2.2.3 Experiment 2 Immunohistochemistry 

Sectioning for immunohistochemistry was conducted as previously described 2.3.2.1. 

Briefly brains were sectioned coronally in a counterbalanced manner using a cryostat. 

Sectioning commenced at the emergence of M1 (approx. bregma 2.3 to 2.2). Free 

floating 40 μm sections were taken in 1:10 series, totalling 70 sections per animal, 

and stored in 500 μl 1x PBS at 4°C.  

Immunohistochemistry was conducted as previously described 2.3.2. Sections were 

blocked in 500 μl 1% PBST with 3% normal donkey serum (S30-100ML, Millipore, 

Hertfordshire, UK) at room temperature with agitation for 2 hours. Rabbit anti-cFos 

(1:5000, Merck Millipore, Hertfordshire, UK) primary antibody was diluted in 500 μl 

0.1% PBST (v/v) with 0.2% normal donkey serum (v/v) and incubated overnight with 
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agitation at 4°C. Sections were then washed for 10 minutes 3 times in 1x PBS. Alexa 

Fluor® (ThermoFisher Scientific, UK) secondary antibodies were diluted (1:1000) in 

500 μl 0.1% PBST with 0.2% normal donkey serum. Sections were protected from 

light and incubated at room temperature with agitation for 2 hours. Sections were 

washed for 10 minutes 3 times, and then incubated with DAPI (1:1000, D9542-10MG, 

Sigma-Aldrich, Dorset, UK) in 500 μl 1x PBS at room temperature with agitation for 5 

minutes. Sections were mounted in a counterbalanced manner and 20 μl Mowiol® (4-

88, Sigma-Aldrich, Dorset, UK) added per slide and sealed with glass coverslips. 

Sections were stored at 4°C. 

4.2.2.4 Experiment 2 Imaging and Counting 

M1 was imaged in each stained section using a Zeiss confocal microscope running 

Zeiss Blue software at 20X magnification. Exposure time was constant between 

sections. A 3 x 3 tile scan of M1 was imaged as a Z stack and analysis was conducted 

in Fiji (1.52g). Cells were counted as an average intensity projection from the central 

focal plane and 2 adjacent focal planes in either direction, with a set interval of 1µm 

between planes. The area of M1 (Franklin and Paxinos, 2012) was measured using 

the freehand tool and the number of cFos+ cells were manually counted. The number 

of cFos+ cells/mm2 was calculated by dividing the number of counted cells by the area 

measured.  

4.2.2.5 Experiment 2 Analysis 

Both behavioural and molecular analysis was conducted as described in Experiment 

1 (4.2.1.2).  

Behaviourally the latency to fall (s) between trial 1 and 2 was compared between the 

genotypes using mixed ANOVA.  Molecularly the number of cFos+ cells/mm2 was 

compared between the genotypes using two-way ANOVA.  

4.2.3 Experiment 3 Motor Learning in Female Dlg2+/- mice: Animals  

A cohort of 21 female mice (12 WT, 9 HET) were aged up to 3 months and housed 

as described previously (2.1.2). Mice were handled daily for a week to habituate to 

the experimenter prior to testing. All testing was conducted during the light phase 

(07:00-19:00) between 09:00 and 17:30).  
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4.2.3.1 Experiment 3 Task 

The experiment was conducted as described in 4.2.1.1 with the addition of daily 

oestrus swabbing after testing was competed to enable confirmation of oestrus cycle 

stage.  

4.2.3.2 Experiment 3 Task Analysis 

Normality was assessed for all data using Shapiro-Wilks test. Where appropriate, 

transformations were attempted to correct to normality. Extreme outliers (±3 

studentized residuals) were removed. If significance is changed by outliers being 

retained this was reported. For ANOVA homogeneity of covariances was assessed 

by Box’s M test and homogeneity of variances was assessed by Levene’s test. In 

instances where the assumption of sphericity was violated the Greenhouse-Geisser 

correction was applied. For t test Levene’s test was used, and if violated then Welch’s 

t test is used. 

The potential influence of the oestrus cycle on the latency to fall (s) for 7 trials was 

analysed for each day separately using repeated measures ANOVA. 

Latency to fall (s) was analysed across the 7 trials on each of the 3 training days 

between the genotypes using mixed ANOVA with the following factors: Genotype (WT 

and HET), Day (1, 2, 3) and Trial (1, 2, 3, 4, 5, 6, 7). 

4.2.4 Experiment 4 Ketamine induced hyperlocomotion: Animals and Drugs 

Following completion of testing on the rotarod the cohort previously tested in 

Experiment 1 (4.2.1) underwent a ketamine challenge study. Male mice were scruffed 

daily for 3 days prior to testing to mimic IP injection to habituate them to handling. 

Ketamine hydrochloride (Ketavet®, Zoetis, UK) was stored, recorded and disposed 

of in accordance with ASPA 1986. Ketamine solution was made fresh daily prior to 

testing in a laminar flow hood using filtered, sterile 1x PBS as previously described 

2.1.4. All testing was conducted during the light phase (07:00-19:00) between 09:30 

and 16:30. Mice were monitored closely following ketamine injection. One WT animal 

died during the first day of injection. Throughout the course of the study the 

experimenter took over cage cleaning to limit stress. 

4.2.4.1 Experiment 4 Task 

Mice were habituated to the locomotor boxes in the dark for 2 hrs daily for 5 

consecutive days. Prior to testing mice were singly caged and habituated to an 

adjacent dark behaviour room for 30 minutes. Mice were assigned an activity box 
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which remained consistent throughout the experiment, as well as session time (09:30-

11:30, 12:00-14:00, 14:30-16:30). The groups were counterbalanced for genotype 

and drug administration. Testing was conducted in clear perspex boxes with beam 

breaks as the activity measure (described in Chapter 3). Once finished animals were 

then returned to their home cages and locomotor boxes cleaned with ethanol wipes.  

After 5 daily habituation sessions the drug administration schedule began. Mice were 

singly caged and habituated for 30 minutes in a dark adjacent behaviour room. Mice 

received 0.1ml/10g of either ketamine hydrochloride (Ketavet®, Zoetis, UK) or saline 

via IP (eg a 30g mouse received 300µl IP). Ketamine doses used were 5mg/kg, 

10mg/kg and 20mg/kg.  A cross-over design was implemented such that each mouse 

received both saline and ketamine at each dose used. This was counterbalanced by 

genotype for initial injection (SAL or KET), and this order was maintained for 

subsequent doses. Mice were injected in an adjacent testing room, away from the 

other animals. Injected mice were transferred to the testing room. When all mice had 

been injected they were transferred to their designated activity box. Following two 

hours of testing, mice were returned to their home cages and activity boxes were 

cleaned with ethanol wipes. Mice were given 1 week wash out between injections.  

4.2.4.2 Experiment 4 Analysis 

Normality of data was assessed as described in Experiment 1 (4.2.1.2). 

For the habituation sessions the total daily beam breaks across the 5 daily sessions 

was analysed by mixed ANOVA. The ratio change in activity between the total beam 

breaks on day 1 and day 5 (Day 5/(Day 1 + Day 5) was compared between the 

genotypes using unpaired t test.  

Daily beam break data was then binned into four 30 minute quantiles, which was then 

compared across the days between the genotypes using mixed ANOVA with the 

following factors: GENOTYPE (WT and HET), DAY (1, 2, 3, 4, 5) and QUANTILE (1, 

2, 3, 4).  

To analyse the effect of ketamine injection on locomotion the total beam breaks 

across each 2 hr session was compared between the genotypes for each dose (0, 

5mg/kg, 10mg/kg, 20mg/kg) using mixed ANOVA. For 0 the mean of all saline trials 

was used.  

Total activity was then binned into four 30 minute quantiles and compared between 

the genotypes at each dose separately using mixed ANOVA.  
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The change in total activity between during the first quantile of the last habituation 

day and each dose was then compared (Dose Quantile 1/(Hab Day 5 Quantile 

1+Dose Quantile 1) between the genotypes using mixed ANOVA.   
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4.3 Results 

4.3.1 Experiment 1: Male Dlg2+/- exhibit impaired motor learning across 3 days  

The latency to fall for 7 trials across 3 days was analysed using mixed ANOVA with 

the following factors: GENOTYPE (WT and HET), DAY (1, 2, 3) and TRIAL (1, 2, 3, 

4, 5, 6, 7). Most data was non-normal but reflect and logarithmic transformation did 

not correct normality so the data is reported untransformed. Five outliers were 

removed (4 WT, 1 HET). With the exception of Day 2 Trial 2, 5, 6, 7, and Day 3 Trial 

2, 3, 4 and 7 there was homogeneity of variances. The assumption of sphericity was 

met for TRIAL, but not DAY or DAY*TRIAL, X2 (20) 10.701, p = 0.954, X2 (20) 10.701, 

p = 0.954, X2 (20) 10.701, p = 0.954, so the Greenhouse-Geisser correction was 

applied.  

There was an effect of day, trial and genotype on latency to fall (DAY: F (1.594, 44.630) 

147.891, p =<0.001, TRIAL: F (6, 168) 16.713, p = <0.001, GENOTYPE: F 1, 28) 12.059, 

p = 0.002) (Figure 26). Genotype did not interact with any other factor, and there was 

a day*trial interaction but no day*trial*genotype interaction (DAY X GENOTYPE: F 

1.594, 44.630) 0.437, p = 0.604, TRIAL X GENOTYPE: F (6,168) 0.711, p 0.626, DAY X 

TRIAL: F 6.664, 186.591) 7.255, p = <0.001, DAY X TRIAL X GENOTYPE: F 6.664, 186.591) 

0.968, p = 0.454).  

 

Figure 26. Both genotypes demonstrate increased latency to fall (s) from the rotarod during 7 trials over 

3 days. However a genotypic difference is observed across the days. Dlg2+/- mice exhibit impaired motor 

learning, with a protracted period of a shorter latency to fall (a). This deficit, whilst less pronounced, 

persists onto day 2 (b) and 3 (c).  Data represent the mean ± SEM error bars. n = 14 (WT), 16 (HET). ** 

p = 0.01  

To understand the DAY*TRIAL interaction RM ANOVA was conducted for each day 

separately. As genotype was not involved in any interactions it was not included as a 

factor. The assumption of sphericity was met for day 1 and 2, but not day 3 so the 

Greenhouse-Geisser correction was applied, X2 (20) 18.353, p = 0.567, X2 (20) 

29.507, p = 0.080 and X2 (20) 40.568, p = 0.004 respectively. Bonferroni corrected 

pairwise comparisons were conducted where appropriate. 
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On each day there was an effect of trial (DAY 1: F (6, 174) 15.227, p = <0.001, DAY 2: 

F (6, 174) 2.785, p = 0.013, DAY 3: F (4.178, 121.169) 2.745, p = 0.030). On day 1 later trials 

were different to earlier trials, with no difference in trials from trial 3 onwards. On day 

2 the only differences were between trial 1 and 5 and 1 and 7. On day 3 the only 

differences were between trial 1 and 4 and 1 and 6. In summary both genotypes 

exhibit rapid within session improvement on Day 1, with slower increases observed 

on Days 2 and 3 before reaching asymptotic performance. Across all days the HET 

mice demonstrate impairment improvement, which is most pronounced on Day 1. 

Consolidation of learning was analysed by t test, comparing the difference in latency 

between trial 7 on Day 1 and trial 1 on Day 2 between the genotypes (D2 Trial 1/(D1 

Trial7+D2 Trial1). All data was normal. For consistency the same outliers were 

removed as for ANOVA analysis. Inclusion of the outliers did not change significance. 

There was homogeneity of variances. 

Both genotypes demonstrate comparable consolidation of motor learning between 

the first and second day of the rotarod protocol, t (28) -1.146, p = 0.261 (Figure 27).  

 

Figure 27. Both genotypes exhibit consolidation of latency to fall from the rotarod between the last trial 

of day one and first trial of day two, maintaining a similar performance level between the days. Data 

represent the mean ± SEM error bars. n = 14 (WT), 16 (HET). 

4.3.2 Experiment 2 Investigating the cellular basis of the motor learning deficit 

in Dlg2+/- mice  

In Experiment 1 the greatest difference in latency between the genotypes is between 

the second and third trials on the first day (Figure 26). Therefore, in order to 
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investigate the molecular basis of the deficit observed in Dlg2+/- mice, rotarod trained 

mice were sacrificed 90 minutes after completing two trials and inter-trial intervals on 

an accelerating rotarod. With the exception of T1 WT all data was normal. Removal 

of 1 outlier (WT) corrected normality. There was homogeneity of covariances, and of 

variances for T1 but not T2. The latency to fall (s) was greater for trial 2 than trial 1 

for both genotypes (TRIAL: F (1, 13) 6.602, p = 0.023, GENOTYPE: F (1, 13) 0.215, p = 

0.624, TRIAL X GENOTYPE: F (1, 13) 1.602, p = 0.228) (Figure 28).  

 

Figure 28. The training cohort of mice underwent two trials on an accelerating rotarod prior to sacrifice 

for cellular investigation. Both genotypes demonstrate an improvement in the latency to fall (s) between 

the first and second trial of the task. Data represent the mean ± SEM error bars. n = 7 (WT) 8 (HET).  

The number of cFos+ cells/mm2 in M1 was compared between the genotypes by two-

way ANOVA. WT control and rotarod tested HET data was non-normal. Squareroot 

transformation failed to correct normality, and did not alter significance, so data is 

reported untransformed. There was homogeneity of variances. 

There was no effect of condition (behaviour or control) of the number of cFos+ 

cells/mm2, nor of genotype, and no interaction between these factors (CONDITION: 

F (1, 16) 3.194, p = 0.093, GENOTYPE: F (1, 16) 3.760, p = 0.070, CONDITION X 

GENOTYPE: F (1, 16) 3.541, p = 0.078) (Figure 29). 

Given the a priori hypothesis that Dlg2+/- mice would have less activation of cFos+ cells 

in M1 after rotarod training the number of cFos+ cells were compared between control 

and rotarod conditions using t tests for each genotype separately. WT rotarod and 

HET control data were normal, but WT control and HET rotarod were not, therefore a 

Mann Whitney U was conducted instead.  
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There was an increase in cFos+ cells in M1 of WT mice following rotarod training 

compared to controls, U = 12.000, p  = 0.038, but no increase was observed in Dlg2+/- 

mice, U = 38.00, p = 0.909.  

In summary there is a trend indicating reduced neuronal function of M1 in Dlg2+/- mice 

during the rapid learning phase of rotarod training.  
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Figure 29. There is little cFos expression in M1 of control mice of both genotypes (a & b). A trend (p = 0.078) towards 

reduced cFos+ expression in M1 of Dlg2+/- mice (d) compared to WT mice (c) was found following rotarod training. 

Data represents mean ± SEM. n = 4 (WT CON), 6 (WT ROTA), 3 (HET CON), 7 (HET ROTA). Scale bar measures 
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200 µm. The nuclei of cells is stained blue (DAPI) and green puncta are cFos+ cells. White arrows indicate examples 

of cFos+ cells. 

4.3.3 Experiment 3 Motor Learning in Female Dlg2+/- mice 

For the analysis of oestrus cycle stage most data was non-normal but was not 

corrected by reflect and logarithmic transformation, so the data is reported 

untransformed. One outlier (WT) was removed.  

The latency to fall (s) was then compared for each day between the genotypes using 

mixed ANOVA. Most data was non-normal but reflect and logarithmic transformation 

did not correct normality so data is reported untransformed. The same outlier 

removed in oestrus analysis was removed. With the exception of Day 3 Trial 6 there 

was no homogeneity of variances.  

On day 1 there was no effect of trial or oestrus and no effect between the two (TRIAL: 

F (6, 96) 8.819, p = <0.001, OESTRUS: F (1, 16) 0.236, p = 0.792, TRIAL X OESTRUS: F 

(12, 96) 1.733, p = 0.071).  For day 2 there is an effect of trial but no effect of oestrus or 

an interaction between the factors (TRIAL: F (3.666 54.993) 2.702, p = 0.044, OESTRUS: 

F (1, 15) 0.954, p = 0.435, TRIAL X OESTRUS: F (10.999, 54.993) 1.090, p = 0.386). For day 

3 there was an effect of trial but not oestrus and no interaction between the factors 

(TRIAL: F (2.791, 41.860) 0.808, p = 0.489, OESTRUS: F (1, 15) 0.782, p = 0.522, TRIAL X 

OESTRUS: F (8.372, 41.860) 1.287, p = 0.275). 

As oestrus had no effect on any day it was not included in further analysis. The latency 

to fall (s) was compared between the genotypes for 7 trials across the 3 days using 

mixed ANOVA with the following factors: genotype (WT and HET), day (1, 2, 3) and 

trial (1, 2, 3, 4, 5, 6, 7). The assumption of sphericity was met for day and trial, but 

violated for day*trial, X2 (2) 2.513, p = 0.285, X2 (20) 31.238, p = 0.056 and X2 (77) 

114.200, p = 0.008 respectively, so the Greenhouse-Geisser correction was applied 

in this instance.  

There was an effect of day and trial, but not of genotype (DAY: F (2, 36) 64.348, p = 

<0.001, TRIAL: F 6, 108) 9.027, p =<0.001, GENOTYPE: F 1, 18) 1.077, p = 0.313) (Figure 

30). There were no interactions between any factors (DAY X GENOTYPE: F (2, 36) 

0.040, p = 0.960, TRIAL X GENOTYPE: F (6, 108) 0.850, p = 0.534, DAY X TRIAL: F 

(5.809, 104.561) 1.852, p = 0.098, DAY X TRIAL X GENOTYPE: F (5.809, 104.561) 1.181, p = 

0.323). Bonferroni corrected pairwise comparisons determined each day different 

from the other, and that earlier trials differed from later trials.  
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Figure 30. The latency to fall (s) for both genotypes increased across the 3 days...  Female Dlg2+/- mice 

did not exhibit any impairment across the 3 day accelerating rotarod task. (DAY: F (2, 36) 64.348, p = 

<0.001, TRIAL: F 6, 108) 9.027, p =<0.001, GENOTYPE: F 1, 18) 1.077, p = 0.313). See Appendix 1 for full 

statistical analysis. Data represent the mean ± SEM error bars. n = 11 (WT) 9 (HET).  

4.3.4 Experiment 4: Dlg2+/- mice exhibited abnormal intersession habituation 

of locomotion across 5 daily sessions 

The daily total for 5 habituation sessions were compared between the genotypes 

using mixed ANOVA. All data except Day 1 HET and Day 5 WT were normal. There 

was homogeneity of variances and covariances. The assumption of sphericity was 

met X2 (9) 16.071, p = 0.066. Both genotypes exhibited reduced locomotion across 

the days (DAY: F (4, 132) 31.229, p = <0.001, GENOTYPE: F (1, 33) 0.229, p = 636, DAY 

X GENOTYPE: F (4, 132) 2.264, p = 0.066) (Figure 31 a).  

The ratio change in activity was calculated from the daily totals of day 1 and 5 and 

compared between the genotypes using unpaired t test. All data was normal and there 

was homogeneity of variances. Dlg2+/- mice demonstrated smaller change in activity 

between the first and last habituation day compared to WT , t (33) -2.750, p = 0.010 

(Figure 31 b) indicating reduced habituation the environment across multiple days. 
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Figure 31. The daily total beam breaks reduced across the habituation sessions for both genotypes (a). 

Dlg2+/- mice exhibited reduced habituation compared to WT mice when the activity ratio for daily beam 

breaks on day 1 and 5 is examined. Data represent the mean ± SEM error bars. n = 18 (WT) 17 (HET). 

** p = 0.01 

The beam break data was binned into quantiles for each day, which was analysed 

using mixed ANOVA with the following factors: GENOTYPE (WT and HET), DAY (1, 

2, 3, 4, 5) and QUANTILE (1, 2, 3, 4) (Figure 32). Most data was normal and no 

outliers were found. There was homogeneity of variances for all data except Day 5 

quantile 2 and 3. The assumption of sphericity was met for day, but violated for bin 

and day*bin, X2 (9) 16.071, p = 0.066, X2 (5) 43.889, p = <0.001, and X2 (77) 112.574, 

p = 0.006 respectively, so in those instances Greenhouse-Geisser correction was 

applied. 

There was a difference of day and bin but not genotype (DAY: F (4, 132) 31.266, p = 

<0.001, BIN: F (2.006, 66.194) 83.879 p = <0.001, GENOTYPE: F (1, 33) 0.229, p = 0.636). 

There was an interaction between day and bin, but no interaction between genotype 

and any other factor or a three way day*bin*genotype interaction (DAY X 

GENOTYPE: F (4, 132) 2.265, p = 0.082, BIN x GENOTYPE: F (2.006, 2.006) 0.766, p = 

0.469, DAY X BIN X GENOTYPE: F (7.480, 246.843) 0.999, p = 0.435).   

 

Figure 32. Both genotypes demonstrated a reduction in activity across four 30 minutes bins on each of 

the five habituation sessions.  Data represent the mean ± SEM error bars. n = 18 (WT) 17 (HET). 

To further interrogate the day*bin interaction repeated measures ANOVA was 

conducted separately for each day. As there were no two way or three way 

interactions involving genotype it was not included as a factor. All assumptions were 

met at each time bin and Bonferroni pairwise comparisons were conducted were 
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appropriate. The assumption of sphericity was violated for day 1 X2 (5) 16.469, p = 

0.006 and so the Greenhouse-Geisser correction was applied. For days 2 to 4 the 

assumption was met, X2 (5) 9.236, p = 0.100, X2 (5) 4.199, p = 0.521, X2 (5) 7.511, p 

= 0.185 and X2 (5) 7.477, p = 0.188. Bonferroni corrected pairwise comparisons were 

conducted where appropriate.  

There was an effect of bin for each day (Table 9). During earlier initial habituation 

days locomotor activity was generally different the quantiles. By day 3 onwards 

generally activity was only different in the first quantile compared to others.  

In summary Dlg2+/- mice exhibited comparable within session habituation, consistent 

with the finding from a previous Chapter (3) but impaired between session 

habituation.  

Day F 

1 F (2.297, 78.096) 99.747, p = <0.001 

2 F (3,102) 44.161, p = <0.001 

3 F (3, 102) 41.235, p = <0.001 

4 F (3, 102) 16.684, p = <0.001 

5 F (3, 102) 23.397, p = <0.001 

Table 9. RM ANOVA conducted on each day separately determined there was an effect of time bin for 

each habituation session.  

4.3.5 Experiment 4: Dlg2+/- mice do not display a dose response to increasing 

doses of ketamine   

The effect of increasing doses of ketamine on the total number beam breaks over 2 

hrs was examined by mixed ANOVA (Figure 33). Data from one WT rat (5mg/kg 

group) was lost due to a software issue. Most data was normal. Removal of one outlier 

(HET) corrected normality for all data except 10mg/kg data. There was homogeneity 

of variances and covariances. The assumption of sphericity was violated, X2 (5) 

16.977, p = 0.005, so the Greenhouse-Geisser correction was applied. The 

comparison of most interest is between saline and each dose of ketamine, therefore 

Bonferroni pairwise comparisons were conducted in order to examine this.   

There was an effect of dose, but not genotype nor a dose*genotype interaction 

(DOSE: F (2.185, 65.538) 9.635, p = < 0.01, GENOTYPE: F (1, 30) 1.385, p = 0.248, DOSE 

X GENOTYPE: F (2.185, 65.538) 0.722, p = 0.501).  The difference in activity from saline 

for each dose of ketamine was then examined for each genotype using Bonferroni 
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corrected pairwise comparisons. For WT mice there was a strong trend towards an 

increase in activity compared to saline for 20mg/kg (p = 0.053) but not for any other 

dose. For Dlg2+/- mice no dose changed activity from saline.  

 

Figure 33. Daily total beam break for increasing doses of ketamine. WT mice exhibited a strong trend 

towards increased activity (p = 0.053) following administration of 20mg/kg ketamine but no other dose. 

No dose altered activity compared to saline in the Dlg2+/- mice. Saline value is average response to 

saline across all sessions. Data represent the mean ± SEM error bars. n = 16 (WT) 16 (HET).  

The beam break activity was then binned into four 30 minute quantiles and the effect 

of each dose of ketamine separately was then compared between the genotypes. 

One outlier was found consistently for all analysis and removed (HET).  

For saline and 5mg/kg all HET and most WT data was normal. Most 10mg/kg and 

20mg/kg data was normal. There was homogeneity of variances and covariances in 

all instances. The assumption of sphericity was violated for saline, X2 (5) 24.262, p = 

<0.001, 5mg/kg X2 (5) 26.819, p = <0.001, 10mg/kg X2 (5) 51.190, p = <0.001 and 

20mg/kg X2 (5) 83.467, p = <0.001, so the Greenhouse Geisser correction was 

applied in all instances.  

Activity decreased across the quantiles, and HET mice were more active compared 

to WT following saline injection, but there was no interaction between these factors 

(QUANTILE: F (1.889, 90) 25.006, p =  25.006, p  = <0.001, GENOTYPE: F (1, 30) 5.669, p 

= 0.024, QUANTILE X GENOTYPE: F (1.889, 56.660) 0.033, p = 0.962) (Figure 34). This 

was also the case following 5mg/kg ketamine (QUANTILE:  F (1.995, 59.856) 37.999, p = 
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<0.001, GENOTYPE: F (1, 30) 5.870, p = 0.022, QUANTILE X GENOTYPE: F (1.995, 59.856) 

0.602, p = 0.550) (Figure 34).  

However, whilst a similar effect of quantile was observed following 10mg/kg ketamine 

there was no difference in activity between the genotypes (QUANTILE: F (1.491, 44.722) 

25.639, p = <0.001, GENOTYPE: F (1, 30) 0.051, p = 0.823, QUANTILE X GENOTYPE: 

F (1.491, 44.722) 2.151, p = 0.140) (Figure 34). There was also an effect of quantile for 

20mg/kg ketamine but no effect of genotype (QUANTILE: F 1.235, 37.037) 24.936, p = 

<0.001, GENOTYPE: F (1, 30) 0.208, p = 0.652, QUANTILE X GENOTYPE: F (1.235, 37.037) 

0.567, p = 0.491) (Figure 34).  

 

Figure 34. There was a difference in activity between the genotypes across the quantiles for saline and 

5mg/kg ketamine, but not for 10mg/kg or 20mg/kg ketamine. Data represent the mean ± SEM error bars. 

n = 16 (WT) 16 (HET). * p= 0.05. 
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Given the habituation deficit observed in Dlg2+./- mice the change in total activity 

during the first quantile on the last day of habituation and the first quantile at each 

dose was compared between the genotypes using mixed ANOVA.  Most data was 

normal, there was homogeneity of variances and covariances and the assumption of 

sphericity was met, X2 (5) 9.232, p = 0.100). 

There was an effect of dose on the change in activity, but no effect of genotype or 

interaction between the two factors (DOSE: F (3, 90) 6.881, p = <0.001, GENOTYPE: F 

(1, 30) 0.000, p = 0.988), DOSE X GENOTYPE: F (3, 90) 0.132, p = 0.941) (Figure 35). 

Bonferroni corrected pairwise comparison determined only 20mg/kg increased 

activity compared to saline. 

 

Figure 35. The change in activity during the first quantile between the last habituation day and each dose 

of ketamine was comparable between the genotypes. Data represent the mean ± SEM error bars. n = 

16 (WT) 16 (HET)  
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4.4 Discussion 

Using an extended accelerating rotarod protocol the deficit in motor learning 

previously observed in Dlg2+/- mice (Chapter 3) was replicated. The Dlg2+/- mice again 

exhibited a delay in the increase of the latency to fall (s) compared to WT mice on 

day one of rotarod training, maintaining a protracted period of a reduced latency to 

fall. This protocol also facilitated examination of consolidation of learning across the 

days. This process appears to be intact in the Dlg2+/ - mice, as demonstrated by 

retention of latency between the final trail of one day and the first trial of the 

subsequent day. The cellular basis of this phenotype was investigated by comparing 

cFos+ cells in M1 between the genotypes in naïve and rotarod tested animals. There 

was a strong trend towards decreased cFos staining in M1 of rotarod trained Dlg2+/-  

mice compared to WT.  

Prior to ketamine challenge, mice underwent five daily habituation sessions to the 

locomotor activity boxes. Whilst initially comparable in their activity level, towards the 

end of the habituation period they began to diverge, with Dlg2+/- mice demonstrating 

reduced between session habituation compared to WT mice. Locomotive responses 

to increasing doses of ketamine was then compared between the genotypes. When 

compared to activity following saline injection only 20mg/kg ketamine in WT mice 

showed a trend towards increased activity. No other dose had an effect in WT mice, 

and no doses had any effect in Dlg2+/- mice. When the effect of each dose was 

analysed separately across four 30 minute quantiles Dlg2+/- mice were more active in 

response to saline and 5mg/kg ketamine, but were comparable to WT in response to 

10mg/kg or 20mg/kg. Again only 20mg/kg resulted in increased activity when the first 

quantile of each dose was compared to the first quantile of the last habituation day.  

4.4.1 Dlg2+/- mice exhibited a motor learning deficit on a second accelerating 

rotarod protocol  

As in Chapter 3, male Dlg2+/- mice from this new cohort exhibited delayed acquisition 

of improvement of the accelerating rotarod. The increased number of trials per day 

and extending training across3 days in this experiment facilitates analysis of fast and 

slow motor learning (Buitrago et al. 2004). This contrasts the protocol in Chapter 3, 

where less trials were conducted per day, and the number of trials conducted on each 

day was not consistent. Similar to the results in Chapter 3 the findings presented in 

this Chapter demonstrate a dramatic increase in ability for WT mice is seen early on, 

in this instance between Trials 2 and 3 on Day 1. These trials are also the point of 
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greatest difference between the WT and Dlg2+/- mice. In comparison to WT, mice the 

Dlg2+/- exhibited a shallower and more gradual increase in latency. 

This replicated motor learning deficit is in line with Winkler (2018), where Dlg2 KO 

mice demonstrated a severe impairment on an accelerating rotarod, with a less 

slightly less severe deficit found in the heterozygous mice. This pattern of impairment 

is different to that observed in the CYFIP1 heterozygous mouse, another important 

synaptic gene associated with psychiatric disorders. Cyfip1+/- mice demonstrated 

minimal improvement and an early plateau in latency (Bachmann et al., 2019). This 

may reflect a differential role or importance of CYFIP1 or its interactors in motor 

learning.  

By continuing the training across multiple days it was also possible to interrogate the 

consolidation of the motor memory in the Dlg2+/- mice. The Dlg2+/- mice exhibit a 

similar pattern of improvement on Day 2 to the WT mice, but do not reach a similar 

latency to fall (s). By Day 3 after the first few trials Dlg2+/- mice do eventually reach a 

similar level of plateau to WT mice. There is no difference between the latency to fall 

on the first trial on Day 2 and the last trial of Day 1 for either genotype, suggesting 

that consolidation of the motor memory is intact in Dlg2+/- mice. Despite the delayed 

motor learning in the Dlg2+/- mice, the overall increase in latency observed in both 

genotypes is consistent with the pattern anticipated with the acquisition of a motor 

skill (Luft and Buitrago, 2005). The period of rapid learning observed on the first day 

reflects the “fast” phase of motor skill learning, whilst the reduced degree of 

improvement across subsequent days before performance plateaus demonstrates 

the “slow” phase (Karni et al., 1998; Costa, Cohen and Nicolelis, 2004; Luft and 

Buitrago, 2005). The increased number of trials across multiple days facilitated 

greater increase in latency, as compared to the protocol employed in Chapter 3 where 

the latency to fall plateaued around 200 s. To further challenge the consolidated motor 

memory mice could be retested on the accelerating rotarod after a period of time 

without training (Buitrago et al., 2004). Once a ceiling effect in performance is 

observed, in this case running for the full 5 minutes, it would be anticipated that this 

memory would be retained, so that performance following a break from training would 

be comparable upon retesting.  

In Chapter 3 the importance of NMDAR for motor learning was discussed. A Dlg4 

mouse model was highlighted, which was normal except for the PDZ domain, to which 

Dlg4 binds (Nagura et al., 2012a). Unlike full Dlg4 KO mice (Feyder, et al. 2010) this 

model did not display impaired motor learning, suggesting the interaction between 
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Dlg4 and NMDAR was not driving the phenotype, and that this may be reflected in 

the Dlg2 model. In addition to NMDAR AMPAR are important for motor learning. 

Administration of CNQX, an AMPAR antagonist prior to rotarod training drastically 

impaired performance, as did injection of CNQX following training suggesting AMPAR 

are also important for maintaining acquired motor skills (Kida et al., 2016). AMPAR 

were particularly important during the earlier phase of motor learning (Kida et al., 

2016), which is when the deficit is seen in Dlg2+/- mice. Therefore it is possible that 

abnormal AMPAR functioning in the motor cortex of Dlg2+/-mice is involved in the 

motor learning deficit. Conducting electrophysiology after rotarod training would 

determine whether in the motor cortex Dlg2+/- mice AMPAR and NMDAR functioning, 

or the AMPAR:NMDAR ratio, is abnormal following motor learning (Kida et al., 2016). 

4.4.2 There is a trend towards reduced cFos+ cells in M1 of Dlg2+/- mice 

following rotarod training  

As detailed in Chapter 3 (3.3.1.1) there is no reduction in Dlg2 mRNA expression in 

the cerebellum, implying that the molecular basis of the motor learning deficit in male 

heterozygotes likely lies in the cortical or striatal regions involved in motor learning 

(Costa, Cohen and Nicolelis, 2004). Due to the importance of M1 in motor learning, 

particularly during the earlier “rapid” phase, (Costa, Cohen and Nicolelis, 2004). The 

neuronal activity in M1 following motor learning was investigated by analysis of cFos, 

an immediate early gene widely employed as a functional anatomical maker of 

activated neurons (Bullitt, 1990; Kovács, 2008). Whilst this can be investigated 

following completion of all training sessions (Hirata et al., 2016) it was decided to 

examine the point of greatest divergence in latency to fall between the genotypes, as 

Dlg2+/- mice demonstrate a more comparable latency to WT mice by the end of the 

session. This point, as discussed previously (4.3.1), is between the second and third 

trials.  

In terms of the behaviour no genotypic difference was observed in the rotarod trained 

mice which underwent two trials, although the trajectory of the Dlg2+/- mice does 

appear shallower between the two trials. When examining neuronal activity with cFos 

staining as a proxy marker using ANOVA there was no difference between the 

conditions, and a trend towards a difference  between the genotypes (p = 0.07). The 

lack of a difference between the conditions is likely masked by the lack of change of 

cFos expression between Dlg2+/- control and trained mice. However, the a priori 

hypothesis predicted that there would be an increase in cFos in trained WT but not 

Dlg2+/- mice, and so t tests when the conducted between the conditions for each 
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genotype. In this instance there was a significant increase in cFos staining in the WT 

mice but no change between the conditions for Dlg2+/- mice. This indicates that during 

the earliest part of the rapid phase of motor learning the normal increase of neuronal 

activity in M1 is not occurring the in the Dlg2+/- mice. As for why this difference was 

not reflected in the ANOVA it might be attributable to the low n in this experiment, with 

a total of 7 control and 13 rotarod trained mice, or the high variation, particularly in 

the WT rotarod trained mice. Supporting this conclusion a power calculation using 

JMP’s sample size and power tool (JMP 14.2.0) found that at an alpha level of 0.05 

there was a power level of 0.52. In order to have a power of 0.8 at the same alpha 

level a total sample size of 33 would be required (8/ group). Alternatively this may 

reflect a need to optimise when the rotarod trained mice are sacrificed. For example 

completing training up trial 4, the last trial before latency to fall begins to converge 

between the genotypes previously (Chapter 3), may facilitate greater neuronal 

activation therefore exacerbating any genotypic deficits.  

It is possible that there is a difference in cFos staining across the cortical layers that 

is being masked by counting the whole section. Motor training has previously been 

demonstrated to induce LTP in Layer 2/3 neurons in M1 (Rioult-Pedotti, Friedman 

and Donoghue, 1998; Harms et al., 2008), which in turn provide excitatory input to 

Layer 5a (Masamizu et al., 2014). Layer 2/3 is proposed to represent co-ordination of 

signals throughout learning whilst Layer 5a may be involved in evolving the network 

representing these learnt skills (Masamizu et al., 2014). Therefore co-staining with 

layer markers, such as Ctip2 (layer 5) (Arlotta et al., 2005) or Cux1 (layer 2/4) (Nieto 

et al., 2004), may elucidate whether there is a layer specific change in Dlg2+/- mice. 

In addition it would be informative to investigate other important regions, such as M2 

and the striatum (Costa, Cohen and Nicolelis, 2004). During rotarod training of Arc-

GFP mice more Arc promotor-activated neurons were found in M2 compared to M1, 

and recruitment of these neurons during training was specific to rotarod training, with 

different patterns of recruitment found following wheel running (Cao et al. 2015). The 

striatum could be particularly interesting as a regional difference across the phases 

of learning has been suggested (Yin et al., 2009). Also it has previously been 

demonstrated that striatal NMDAR KO mice exhibit impaired motor learning (Dang et 

al., 2006). Given the interaction between Dlg2 and NMDAR this may underlie the 

motor learning deficit observed, although the phenotype found in the striatal KO was 

more severe than the one discussed in this Chapter, as the KO mice plateau very 

early on and did not show any improvement (Dang et al., 2006). The dorsomedial 

striatum was preferentially engaged in early phases, and the dorsolateral striatum in 
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later stages of motor learning (Yin et al., 2009). The motor learning deficit in the Dlg2+/- 

mice is most apparent early on. Therefore it could be predicted that when cFos 

staining analysis is conducted on tissue taken early in the motor learning process, as 

in the case of the reported experiment, that differences in cFos staining would be 

observed in the dorsomedial but not dorsolateral striatum. 

4.4.3 Female Dlg2+/- mice do not exhibit a delayed motor learning phenotype 

Female rodents are often excluded from behavioural testing due to concerns that the 

stage of oestrus will impact upon the findings. Although there experiment was 

conducted with a smaller sized cohort there was no effect of oestrus. This is in line 

with previous findings that across a behavioural battery there was no effect of oestrus 

in C57BL/6J mice, although an effect was seen in BALBcByJ females (Meziane et al., 

2007). In contrast to the male Dlg2+/- mice (4.4.2) there was no effect on genotype in 

females on latency to fall across the sessions. Both genotypes of female mice 

demonstrated improvement in the earlier sessions, which plateaus by the third 

session, as was observed in WT male mice. Thus, the early motor learning deficit 

discovered in the Dlg2+/- mice is sex specific. Whilst there is one study which 

previously found a severe motor learning impairment in Dlg2+/- and KO mice it was 

only conducted in males, therefore this represents the first indication the deficit is sex 

specific.  Interestingly this male specificity was apparent in the motor learning 

phenotype observed in another important synaptic risk gene for schizophrenia, 

Cyfip1, heterozygous mouse model (Bachmann et al., 2019).  

4.4.4 Dlg2+/- mice demonstrate reduced intersession habituation across five 

days in a novel context 

Across the daily two hour habituation sessions both genotypes did demonstrate 

intersession habituation of total beam breaks across the days. However, when 

habituation was assessed as the change in activity between Day 1 and Day 5 WT 

mice demonstrated a greater reduction in activity compared to Dlg2+/- mice. When 

examining the habitation across the four 30 minute bins of each daily session both 

genotypes demonstrate intrasession habituation on each day, although by Day 5 

there is a slight divergence.  

In contrast to the WT mice, whose total beam break activity is reduced between Day 

4 and Day 5, Dlg2+/- activity actually increases. By Day 5, Dlg2+/- mice might be 

exhibiting sensitisation, paying more attention to the stimulus following repeated 

exposure and increasing, rather than decreasing, responding to it (Sanderson et al., 
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2011; Barkus et al., 2014a). This suggests that the impairment is due to abnormal 

habituation, and given that both genotypes were comparable in earlier sessions, and 

show a similar level of activity at the start of each session, it is not simply a 

generalised hyperactivity phenotype.   

The genotypic difference in habituation on this task is in contrast to the previous 

experiment examining locomotor activity in the same boxes, described earlier in 

Chapter 3. Across all aspects of the context shift task there were no differences in 

beam break activity between the genotypes, in contrast to the divergence observed 

in this Chapter. Additionally, whilst within session habituation was observed for both 

genotypes on both tasks, between session habituation was only observed across the 

5 days of the ketamine challenge sessions. This may be due to the difference in task 

length (2 hrs daily in the boxes in this task vs 30 minutes in Chapter 3), or caging 

arrangements (in this Chapter mice were singled housed prior to testing in preparation 

for later ketamine injection, whereas they were taken straight from their home cages 

in Chapter 3). Also whilst both tasks were conducting during the mouse’s light phase 

the testing in this Chapter was conducted in the dark, whereas in Chapter 3 due to 

the visual aids employed it was conducted in the light.  

A sensitisation response, increased rather than decreased response to repeated 

exposure, was seen in mice lacking AMPAR subunit Gria1, which exhibited short term 

habituation impairments (Sanderson et al., 2011; Barkus et al., 2014a). Given the 

interaction between AMPAR and DLG2 it is possible this interaction plays a role in 

the impaired habituation phenotype observed in the Dlg2+/- mice. In addition a 

habituation deficit the Gria1-/- mice demonstrated ‘inappropriate learning’ under some 

conditions; exhibiting long term memory not seen in WT controls. The authors 

proposed that this process is reflective of aberrant salience; the attribution of 

importance to environmental stimuli that are normally considered irrelevant (Kapur, 

2003c; Howes and Kapur, 2009).  

Aberrant salience, like hyperlocomotion, has been attributed to the 

hyperdopaminergic state observed in schizophrenia (Kapur, 2003c; Howes and 

Kapur, 2009). This hyperdopaminergic state results in persistent and inappropriate 

assignment of salience to stimuli, which can lead to formation of inappropriate 

associations, and is suggested to underlie psychosis (Kapur, 2003c). Stimulus 

novelty is important in this process as novel stimuli have a higher salience and so 

demand attentional focus and promote exploration, as well evoking striatal dopamine 

release (Rebec et al., 1997; Robinson and Wightman, 2004; Clark et al., 2010; Flagel 
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et al., 2011). The impaired habituation observed in the Dlg2+/- mice suggests that the 

context retained its novelty. This failure of habitation has been observed in patients 

with schizophrenia, who failed to exhibit suppression of BOLD activity in the medial 

temporal lobe and hippocampus in response to repeated presentation of fearful faces, 

in comparison to healthy volunteers (Holt et al., 2005). In some patients a 

sensitisation response was observed, with increased responding after repeated 

presentation of the stimuli.  

Previously a reduction in Dlg2 mRNA expression in vitro was observed to increase 

activity in primary hippocampal cultures (MacLaren et al., 2011). If this is replicated 

in mutant Dlg2 in vivo models it may contribute to hippocampal over activity, which 

has been postulated to underlie dysregulation in schizophrenia (Lodge and Grace, 

2007; MacLaren et al., 2011). Whilst Dlg2 mRNA expression was not reduced in the 

hippocampus (Chapter 3), and so may not be contributing to potential dopaminergic 

dysfunction directly (Lodge and Grace, 2007), it might be being mediated due to the 

mRNA reduction observed in the PFC (Chapter 3). Alterations in the PFC-

hippocampal-nucleus accumbens axis can result in a hyperdopaminergic state 

(Belujon, Patton and Grace, 2014). If this phenotype is the result of dopaminergic 

dysfunction then it might be rescued by treatment with a dopaminergic antagonist, 

such as haloperidol  (Wiedholz et al., 2008). 

4.4.4 Dlg2+/- mice do not exhibit a dose dependant increase in activity following 

administration of ketamine 

Only 20mg/kg ketamine increased activity in the first quantile when compared to the 

final habituation day, and was the only dose to trend towards increasing activity 

compared to saline (p = 0.053) in WT mice. No dose altered activity compared to 

saline in Dlg2+/- mice.  When the first quantile of each dose was analysed separately 

Dlg2+/- mice were more active compared to WT mice following saline and 5mg/kg 

ketamine. However this difference disappeared at the higher doses.  

Initially this could be viewed as Dlg2+/- mice responding differently to WT mice in 

response to ketamine – exhibiting increased activity at lower doses (5mg/kg) that may 

then reach a ceiling so there is less effect of higher doses. For example the genotypic 

difference during the first quantile disappears at 10mg/kg. This could be due to the 

fact the Dlg2+/- mice do not appear to increase activity much between 5mg/kg and 

10mg/kg in contrast to WT mice, potentially reflecting an effect of ketamine at a lower 

dose in the heterozygous mice or having already approached an activity increase 

plateau. However, this conclusion does not take into consideration the altered 
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baseline activity of the Dlg2+/- mice. As a result of the lack of habituation the response 

to saline already exceeds that of the WT mice. It therefore becomes challenging to 

pick apart these later differences, as to whether they are truly a different response to 

a specific dose of ketamine, or instead the ketamine is not having much of an effect 

but the increased activity observed is still a reflection of the higher activity baseline.  

To discriminate between these explanations the experiment could be repeated but 

requiring the mice to reach a criterion point of habituation before progressing onto 

ketamine administration. This would remove the confound of increased activity due 

to impaired habituation that may be responsible for the increased activity following 

saline or 5mg/kg injection, and provide a clearer demonstration of whether ketamine 

is differentially effecting Dlg2+/- mice.   

Additionally even in WT mice even 20mg/kg only resulted in a strong trend towards 

increased activity. Therefore it is plausible that to be able to see any major differences 

a higher dose would be required. As the effect of ketamine had not been previously 

investigated in this model it was opted to start with the lower doses reported in the 

literature and work up, in addition to the fact that it was postulated that the Dlg2+/-  

mice might have responded at a lower dose than WT mice. 

Investigation into the interaction of NMDAR and Dlg2, and the potential reduction in 

NMDAR that could be exacerbated by an NMDAR antagonist, at the molecular level 

may provide some answers as to whether ketamine would be predicted to have a 

differential behavioural response. It is possible Dlg2 mutation does not alter the 

number of NMDAR, but rather their localisation or internalisation (Zhang et al., 

2010a). NMDAR subunit expression was not altered in rats following ketamine 

injection, but a higher level of Dlg4 expression was observed in multiple brain regions 

and greater functional coupling between NMDAR and Dlg4 was indicated by an 

increased co-immunoprecipitation of the two in vivo (Lisek et al., 2017). This was 

proposed to reflect increased targeting of NMDAR to the plasma membrane to restore 

reduced NMDAR-signalling. Additionally altered interactions have been found 

between Dlg4 and PMCA4, a calcium efflux pump, following ketamine administration 

and may play a role in ketamine-mediated effects on calcium signalling (Lisek et al., 

2017). Interactions between Dlg4 and ErbB4 were also transiently increased in the 

PFC of rats following acute administration of MK-801, and Dlg4-ErbB4-NMDAR 

association was enhanced following chronic treatment (Li et al., 2013). ErbB4 has 

been associated with schizophrenia, and interacts with Neuregulin, with is also 

associated with schizophrenia (Norton et al., 2006; Silberberg et al., 2006; Law et al., 
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2007). Dlg2 also interacts with ErbB4, although this interaction has not been 

examined in post-mortem schizophrenia brains or following NMDAR antagonism. 

Both studies investigated ketamine’s effects in WT rodents, and it is unknown what 

effect, if any, reduction in Dlg2 or Dlg4 expression may have on these interactions 

after acute or chronic administration. 

4.4.5 Strengths and limitations 

The impaired motor learning phenotype first observed in Chapter 3 was recapitulated 

using the more extensive protocol described above. Therefore a deficit in this learning 

process has been observed in two separate cohorts of Dlg2+/- mice using two different 

protocols. Whilst this is in contrast to rotarod experiments with another Dlg2 mouse 

model it does appear to be a consistent phenotype in the current strain. 

As described above (4.3.2) the low n may explain the lack of statistical difference in 

the ANOVA for numbers of cFos+ cells in M1, or a potential need to optimise the point 

during the learning process targeted for analysis. Whilst the training point targeted 

may not have been optimal the delay between the behaviour and perfusion captured 

peak cFos protein expression, between 1.5 to 2 hrs (Kovács, 1998). Despite cFos 

expression analysis being a useful tool for investigating neuronal activity it is 

considered a proxy measure (Kovács, 2008). Future investigation could employ two 

photon imagining to track neuronal assemblies across multiple rotarod training 

sessions (Cao et al. 2015; Yang et al. 2009). 

In attempting to reduce the novelty response of the locomotor boxes prior to ketamine 

injection we uncovered a habituation deficit, which may arguably reflect a 

sensitisation phenotype, in Dlg2+/- mice. This is the second behavioural task where 

Dlg2+/- mice have demonstrated impairments of habituation to a stimulus. A previous 

cohort did not demonstrate habituation to a 120dB acoustic stimulus, although as 

discussed in Chapter 3 there are multiple possible explanations for this, together 

these findings do indicate a subtle deficit of learning processes in these mice.  

Interpreting the effect of ketamine on activity was confounded by the altered baseline 

of the Dlg2+/- mice, likely due to the habituation deficit observed.  As discussed earlier 

re-designing the experiment would address this issue. Additionally, given ketamine 

acts through antagonism of NMDAR it will be important to investigate whether Dlg2 

mutation results in any difference in number of NMDAR at the synapse, or whether it 

alters receptor localisation. This has currently not been investigated in this model.  
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Finally, due to technological constraints there was an uneven lag time between 

injection of ketamine and the start of activity recording between the mice.  Given the 

shorter window of action of ketamine this may have therefore confounded any 

potential genotypic differences in response to ketamine during the first 15 minutes. It 

was not possible to fully counterbalance for this lag in addition to counterbalancing 

for genotype and injection solution (ketamine or saline) for time of day. Future drug 

challenge experiments should aim to reduce this lag, starting recording individually 

following injection as opposed to as a whole group.  

4.4.6 Conclusions 

The early motor learning deficit in Dlg2+/- mice initially uncovered in Chapter 3 was 

replicated in the experiments conducted in this Chapter. This deficit began to 

normalise across multiple days of testing and was found to be sex specific, only being 

present in the male mice. The investigation into the cellular basis of this phenotype 

indicates a reduction in neuronal activity in M1 of the motor cortex, although this 

needs confirming with an increased cohort size. Additionally investigation into other 

key regions will determine whether M1 is solely important, or whether this dampened 

activity is widespread.  

Additionally, a habituation deficit was uncovered in a second paradigm, having 

previously been observed in the acoustic startle test in Chapter 3. Reduced 

habituation implies that there is less plasticity in the synapses in response to repeated 

stimuli, and may be indicative of abnormal dopaminergic function and attribution of 

salience to the environment (Kapur, 2003c).  Due to this deficit, however, it is difficult 

to determine whether Dlg2+/- mice responded differently to increases doses of 

ketamine as a result of NMDAR functioning abnormality or preceding hyperactivity as 

a result of impaired habituation.  
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5 Adult Neurogenesis in the Mouse 

Model 

5.1 Introduction 

Adult neurogenesis (AN) is the generation of new neurons, in the dentate gyrus of the 

hippocampus and the olfactory bulb, during adulthood (Kempermann et al., 2004). 

AN occurs across species, declining with age (Galvan and Jin, 2007), although there 

is still controversy over the process in humans (Eriksson et al., 1998; Spalding et al., 

2013; Boldrini et al., 2018; Sorrells et al., 2018). Increasingly adult neurogenesis is 

has been proposed to underlie some of the cognitive dysfunction in psychiatric 

diseases including schizophrenia (discussed below in 5.1.1). There is also evidence 

suggesting abnormalities of AN in rodent models of genetic risk for schizophrenia 

involving in synaptic functioning may represent a commonly affected pathway 

(Westacott, 2016; Haan et al., 2018; Moon et al., 2018). 

 

Most relevant to psychiatric disease is AN occurring in the dentate gyrus (DG) of the 

hippocampus. Only one cell type is generated by the process; DG granule cells 

(Kempermann et al., 2004). These neurons are the primary excitatory neurons in the 

DG, receiving input from the entorhinal cortex and projecting along the mossy fibre 

tract to hippocampal sub region CA3 (Jonas and Lisman, 2014). There are four 

phases of adult neurogenesis, with six distinctive milestones, based on cellular 

morphology and expression of certain markers (Figure 36).  
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Figure 36. Development timeline of adult neurogenesis. The expansion phase encompasses the pool of 

cells which may differentiate into neurons. Many of those cells born are eliminated before they can 

progress to the survival phase. During the survival phase the neurons establish functional connections, 

undergo synaptogenesis and axonal and dendritic growth, which is then fine-tuned. This process takes 

~ 7 weeks in mice. The blue box highlights those cells captured when staining using DCX, the primary 

marker of adult neurogenesis used in rodent studies. 

The initial pool of cells, “type 1”, are radial glial like cells that divide asymmetrically, 

producing a “type 2” daughter cell. The “type 2” population can be further subdivided 

into “type 2 a” and “type 2 b”, with only “type 2 b” cells expressing doublecortin (DCX), 

having become neuronally fated. From these arise neuronally committed neuroblasts, 

“type 3” cells which are minimally proliferative. Apoptosis dramatically reduces the 

number of new neurons within a few days of the neurons expressing NeuN (Kuhn et 

al., 2005), so most neurons are eliminated before they form connections and integrate 

into the circuitry. This point in the process is where most regulation occurs, ensuring 

only a small population of the surplus of new neurons generated actually survive 

(Kempermann, Song and Gage, 2015). The limited number of neurons that become 

integrated demonstrates that the function of adult neurogenesis is not to replace older 

cells (Crespo et al 1986). After a further 2-3 weeks the expression of calretinin 

switches to calbindin.  

5.1.1 Adult neurogenesis in psychiatric diseases 

In multiple psychiatric diseases abnormal AN has been implicated in phenotypes and 

treatment response. Increased AN is proposed to influence response to 

antidepressants, as the latency between treatment onset and observable 

improvement corresponds to the maturation time course of new-born neurons 

(Malberg et al., 2000).  Antipsychotics may improve the cognitive impairment 

associated with schizophrenia, and differences observed between these drugs may 

be associated with their impact on AN (Chikama et al., 2017). Atypical antipsychotics, 

but not haloperidol, increased BrdU positive cells (Chikama et al., 2017), an effect 

which may stem from agonism of the 5-HT1A receptor (Schreiber and Newman-

Tancredi, 2014). 

In addition to moderating response to drugs AN may underlie aspects of psychiatric 

disease pathology. One of the earlier phenotypes identified in schizophrenia was a 

reduction in hippocampal volume, using both post mortem analysis (Bogerts, Falkai, 

Greve, Schneider, & Pfeiffer, 1993; Bogerts, Meertz, & Schönfeldt-Bausch, 1985; 

Jeste & Lohr, 1989; Nelson et al, 1998) and MRI imaging (Altshuler et al., 2000; Sim 

et al., 2006; Goldman et al., 2008). This may indirectly reflect a reduced level of adult 
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neurogenesis (Adriano, Caltagirone and Spalletta, 2012; Walter et al., 2016). In post 

mortem schizophrenia patient brains a reduction of PSA-NCAM cells, which stains 

immature neurons, was found (Barbeau et al., 1995). Others found reduced Ki67, 

which is expressed only in cells in the cell cycle, marking them as potentially 

proliferative (Reif et al., 2007; Allen, Fung and Shannon Weickert, 2016). However, 

the majority of these studies are confounded by the high probability the patients had 

a long history of antipsychotic use, which can affect AN (Walton et al., 2012; Chikama 

et al., 2017).  

Risk factors for psychiatric diseases, both environmental and genetic, have also been 

found to alter AN. Mutation in DISC1 is associated with risk for developing 

schizophrenia (Millar et al., 2000), and was found to impair AN (Mao et al., 2009). 

DiGeorge syndrome chromosomal region 8 (Dgcr8), a candidate gene for 22q11.2 

deletion is associated with schizophrenia (Van, Boot and Bassett, 2017) and autism 

(Ousley et al., 2017). In heterozygous Dgcr8 mice, impaired AN and hippocampal 

dependant learning was found (Ouchi et al., 2013). Childhood trauma is a major risk 

factor for many psychiatric diseases (Schäfer and Fisher, 2011; Carr et al., 2013). 

Modelled in rodents using early life stress (ELS) paradigms, behaviours associated 

with schizophrenia and other psychiatric diseases have been observed, as well as 

inhibition of AN (Lajud and Torner, 2015). Interestingly in females ELS, which show 

greater resilience to the negative effects the ELS compared to males (Naninck et al., 

2015), the normal increase in AN in response to exercise was not observed (Abbink 

et al., 2017). This suggests an influence of AN on the stress response (Bannerman 

et al., 2004) that may affect interactions with other risk factors for psychiatric disease.  

Reduction of AN in rodent models also induces schizophrenia related phenotypes. In 

irradiated adult rats deficits in working memory and PPI were observed (Iwata et al., 

2008). Deficits in PPI were also observed in a MAM treated rat model (Maekawa et 

al., 2009). 

5.1.2 Aims 

1. Experiment 1: Conduct investigate into whether there is a baseline difference in 

number of newborn neurons between WT and Dlg2+/- mice, using the widely employed 

proxy marker for adult neurogenesis, DCX staining (Jin et al. 2002; Nacher et al. 

2003), during young adulthood (8 weeks) when neurogenesis peaks (Snyder et al., 

2009). 

2. Experiment 2: The impact of age on the number of  DCX+ cells in older (8 month) 

mice will be compared between the genotypes. Previously learning tasks have 



109 
 

been demonstrated to increase AN (Gould et al., 1999), and may counteract the 

age related decline in AN, therefore naïve 8 month old mice will be compared to 

a cohort that underwent a battery of behavioural testing (detailed in Chapter 3).  

Under my supervision brain sectioning, staining and analysis for experiment 2 was 

conducted by an undergraduate project student, Alice Pennington. 
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5.2 Materials and Methods 

5.2.1 Animals 

For experiment 1, a cohort of 20 mice (10 WT, 10 HET, 13 male, 7 female) were 

housed under standard conditions as previously described in 2.1.2, with ad libtum 

access to food and water. The mice only received basic handling pertaining to 

identification and husbandry before sacrifice at 8 weeks old.  

For experiment 2, a cohort of 45 male mice (25 WT, 20 HET) were housed as 

previously described in 2.1.2. Of these there were 27 naive mice (16 WT, 11 HET) 

sacrificed at 8 months old having only receiving basic handling associated with 

husbandry. The remaining 18 (9 WT, 9 HET) were part of the cohort which underwent 

behavioural testing in Chapter 3. Following the completion of behavioural testing, 

around 8 months of age, these mice were sacrificed.  

5.2.2 Perfusion Fixation 

For both experiments mice were sacrificed through IP administration of 0.1 ml 

euthatal (Merial, Harlow, UK) and transcardially perfused as described in 2.1.5 with 

1x PBS and 4% PFA (w/v) (Sigma-Aldrich, Dorset, UK). Brains were removed and 

post fixed for 4-6 hours in 4% PFA at RT and cryopreserved in 30% (w/v) sucrose 

solution at 4°C until they sank. Brains were embedded in OCT (ThermoFisher 

Scientific, UK) and stored at -80°C. 

5.2.2.1 Tissue Sectioning  

Brains were sectioned coronally in a counterbalanced manner using a Lecia CM1900 

cyrostat (Milton Keynes, UK). Sectioning commenced at the beginning of the 

hippocampus (approx. -0.82 mm bregma). Free floating 40 μm sections were taken 

in 1:10 series, totalling 80 sections per animal, and stored in 500 μl 1x PBS at 4°C.  

5.2.2.2 Immunohistochemistry 

Immunohistochemistry was conducted as described previously (2.3.2). Briefly 

sections are blocked in 500 μl 1% PBST with 3% normal donkey serum (S30-100ML, 

Millipore, Hertfordshire, UK) for 2 hrs at RT with agitation, then incubated with goat 

anti-DCX primary antibody (1:50, sc-8066, Santa Cruz, Insight Biotechnology, 

Middlesex, UK) diluted in 500 μl 0.1% PBST (v/v) with 0.2% normal donkey serum 

(v/v) and incubated overnight with agitation at 4°C. Sections were then incubated with 

Alexa Fluor® secondary antibodies (ThermoFisher Scientific,UK) diluted (1:1000) in 

500 μl 0.1% PBST with 0.2% normal donkey serum for two hrs with agitation at RT, 
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then incubated with DAPI (1:1000, D9542-10MG, Sigma-Aldrich, Dorset, UK) in 500 

μl 1x PBS at RT with agitation for 5 minutes. Sections were mounted in a 

counterbalanced manner with 20 μl Mowiol® (4-88, Sigma-Aldrich, Dorset, UK) added 

per slide and glass cover-slipped.  

5.2.3 Imaging of Sections 

The DG from all sections were imaged in a counterbalanced manner at 20x 

magnification on an upright Leica DM6000B fluorescence microscope using the tile 

scanning module. Exposure times were kept constant between animals.  

5.2.4 Cell Counting  

The number of DCX+ cells/mm2 were manually counted in the dentate gyri for each 

section for 8 sections per animal for 10 WT (7 male, 3 female) and 9 HET (7 male, 2 

female) animals using the ImageJ (1.50i) cell counter plugin. DCX is a cytoplasmic 

stain, so green (DCX 488) ringed DAPI cells, a nuclear stain, were considered DCX+. 

The distribution of new-born adult neurons along the transverse axis on the DG 

varies, separated into the suprapyramidal and infrapyramidal blades (Synder et al, 

2009). Therefore DCX+ cell counts for each blade were calculated separately, as were 

any ectopically located cells, and all values summed to give the total count per 

section. Cells were considered ectopic when localised outside the SGZ, e.g. the hilus. 

The area of each blade was measured using ImageJ’s freehand selection tool and 

the DCX+ cell density per mm2 was determined. The experimenter was blind to 

genotype during cell counting and analysis. Data was missing from 1 WT female due 

to unsuccessful staining and 1 HET female due to damaged sections. 

5.2.5 Analysis 

Experiment 1: The number of DCX+ cells/mm2 was compared between the genotypes 

for the whole DG, each blade individually and the percentage of ecoptic cells using t 

tests. Additionally, a two-way ANOVA was used to compare DCX+ density per mm2 in 

the whole DG with the following factors: GENOTYPE (WT and HET), SEX (male and 

female). 

Experiment 2: The number of DCX+ cells/mm2 was compared between the genotypes 

and behaviour vs naive by two way ANOVA.  

All data was assessed for normality using Shapiro-Wilks. Transformations were 

attempted to correct normality where appropriate and extreme outliers (±3 

studentized residuals) were removed. If significance is changed by the removal of 
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outliers this is reported. Homogeneity of variances was assessed using Levene’s test, 

and if violated Welch’s t test used instead.  
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5.3 Results 

5.3.1 Experiment 1: Dlg2 heterozygous mutation has no impact on DCX+ cell 

density in the dentate gyrus of 8 week old mice 

All data was normal and passed Levene’s test. No effect of sex or genotype was 

found, nor an interaction between these factors (SEX: F (1, 14) 0.357, p = 0.559, 

GENOTYPE: F (1, 14) 0.168, p = 0.688, SEX X GENOTYPE: F (1, 14) 0.330, p = 0.575, 

two way ANOVA). As a result subsequent analysis was conducted on combined male 

and female data. 

Data for whole DG analysis was normal, no outliers were found but the data failed 

Levene’s test. WT data for suprapyramidal and infrapyramidal blades and percentage 

ectopically located cells were non-normal, which was corrected in all instances with 

the removal of 1 outlier (WT male). Data for both blades and percentage ectopic 

passes Levene’s test, and the removal of the same outlier in the whole blade analysis 

means data passes Levene’s. Whole DG data analysed by ANOVA passes Levene’s 

test. 

No difference was found between Dlg2+/- and WT mice in the number of DCX+ cells 

per mm2 in the dentate gyrus (Figure 36 a-c), t (16) -0.261, p = 0.798. When split by 

blade no differences were observed for the suprapyramidal blade, t (16) -0.373, p = 

0.714, nor the infrapyramidal blade, t (16) 0.516, p = 0.613 (Figure 37 e & f). Ectopic 

cells were analysed as a percentage of overall DCX+ cell numbers in the whole 

dentate gyrus by t test. No difference was found between WT and Dlg2+/- mice t (16) -

0.399, p = 0.695 (Figure 37 d).  
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Figure 37: There was no difference in the density of DCX+ cells/mm2 in the whole dentate gyrus of 8 week old Dlg2+/- 

mice (a-c), or the percentage of total of DCX+ cells that are ectopically located, defined as localised outside the SGZ 

(d). There is no difference when the dentate is divided into two blades, the suprapyramidal (upper most blade in each 

image)(e) or the infrapyramidal blade (lower blade in each image) (f).n = 9 (WT), 9 (HET). Data represents mean ± 
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SEM. Scale bar measures 200 µm. The nuclei of granule cells is stained blue (DAPI) and in DCX+ cells the cytoplasm 

is stained green. 

5.3.2 Experiment 2: Dlg2 heterozygous mutation has no impact on DCX+ cell 

density in the DG of 8 month old behaviourally tested or naive mice. 

No genotype data was normal, nor was the non-behavioural group.  One outlier was 

removed (naive WT) and all data was square root transformed. This corrected 

normality for WT data but not HET or naive data. There was no homogeneity of 

variances. 

No difference in the density of DCX+ cells was found between the genotypes or the 

behavioural groups, and there was no interaction between these factors (Figure 38) 

(GENOTYPE: F (1, 40) 1.673, p = 0.203, BEHAVIOUR: F (1, 40) 0.654, p = 0.424, 

GENOTYPE X BEHAVIOUR: F (1, 40) 0.112, p = 0.740). 
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Figure 38.  There is no difference in the density of DCX+ cells/mm2 in the whole DG of 8 month old behaviourally naive 

(control) WT or Dlg2+/- mice (a & b). Neither was there any difference in DCX+ cells/mm2 between WT and Dlg2+/-mice 

that underwent behavioural tested (c & d). n = naïve 19 (WT) 11 (HET), behaviourally tested mice 9 (WT) 9 (HET). 

Error bars are SEM. Scale bar measures 200 µm. The nuclei of granule cells is stained blue (DAPI) and in DCX+ cells 

the cytoplasm is stained green).  
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5.4 Discussion 

Quantification of new born neurons in the DG using DCX staining is a widely used 

method for investigating adult neurogenesis in rodent models. No difference was 

found in baseline DCX+ cell numbers were compared between the genotypes during 

the peak of adult neurogenesis, 8 weeks of age (Snyder et al., 2009). Adult 

neurogenesis declines with age (Galvan and Jin, 2007) although this reduction may 

be attenuated by intervention such as cognitive testing or exercise. Both genotypes 

demonstrated vastly fewer DCX+ cells at baseline at 8 months old, and no protective 

effect of behavioural testing was found.  

5.4.1 Baseline DCX numbers in the DG are similar between WT and Dlg2+/- 8 

week old mice  

For the whole DG there was no difference in the number of DCX+ cells between the 

genotypes. Around 8 weeks, young adulthood in mice, is the peak of adult 

neurogenesis (Snyder,et al., 2009), and in normally comparably developing animals 

represents the time a difference in cell number may be most apparent. A functional 

asymmetry has been suggested between the blades, due to different circuit 

functioning, and that the infrapyramidal blade may be more involved in activating the 

hippocampus (Scharfman,et al, 2002) whilst the neurons in the suprapyramidal have 

been demonstrated to be more functionally active (Chawla et al., 2005; Snyder et al., 

2009). However, compared to WT mice, even when split into separate blades, no 

differences in DCX+ cell number were observed in Dlg2+/- mice compared to WT. 

Ectopically located cells were analysed as these cells may not integrate properly into 

the circuity, which could negatively impact the functioning of the network (Duan et al., 

2007). Increased ectopic localisation of DCX+ cells has been observed in other 

synaptic risk models, such as DISC1 (Duan et al., 2007) but no difference was found 

in Dlg2+/- mice.  

Increased or decreases DCX+ cell number may not translate into altered numbers 

surviving and having any functional impact. This can be investigated by injecting mice 

with BrdU daily for 5 days then sacrificed them after 30 days. NeuN+ mature neurons 

co-stained with BrdU will demonstrate how many of the neurons born during 

injections, having incorporated BrdU during their cell cycle, have survived to integrate 

into the SGZ. The functional importance of these neurons can be probed 

behaviourally, using pattern separation tasks which are thought to rely on new adult 

neurogenesis (Sahay et al., 2011), or through electrophysiological studies (Farmer et 

al., 2004; Schmidt-Hieber, Jonas and Bischofberger, 2004; Song et al., 2005).  
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5.4.2 There is no difference in DCX+ cells in the DG of aged WT and Dlg2+/- 

mice, nor between behaviourally tested or naïve mice. 

The second experiment compared naïve Dlg2+/- and WT mice which had been allowed 

to age up to 8 months old and between 8 month old naïve mice and a cohort that had 

undergone months of behavioural testing (Chapter 3). As rodents age the proliferative 

capacity for adult neurogenesis decreases (Kempermann, 2015), which is reflected 

in the lower number of DCX+ cells/mm2 counted in the second experiment (100s rather 

than 1000s).  

Physical activity (van Praag, Kempermann and Gage, 1999a; Kronenberg et al., 

2003) and cognitive testing (Gould et al., 1999) are positive regulators of adult 

neurogenesis and may counteract this age related decline in newborn neuron 

numbers (Kempermann, 2015). Exercise increases adult neurogenesis in the 

hippocampus, but not the olfactory bulb (Brown et al., 2003), and expands the pool 

of cells that can mature and integrate (van Praag, Kempermann and Gage, 1999b). 

However, no protective effect of enhanced activity (following behavioural testing) was 

observed for either genotype in 8 month old mice. It is possible that the tasks were 

not intensive enough to promote substantial increases in adult neurogenesis, or that 

stress associated with regular testing diluted any changes (Joëls et al., 2004; Levone, 

Cryan and O’Leary, 2015). 

5.4.3 Adult neurogenesis in other risk models for psychiatric disease 

This is the first study to investigate the impact of mutations in any Dlg gene or 

MAGUK’s more generally on adult neurogenesis. In contrast to the absence of any 

AN phenotypes observed in Dlg2+/- mice, other genetic models of psychiatric risk have 

been found to show abnormalities of adult neurogenesis. SNPs in the gene encoding 

the calcium voltage-gated channel subunit alpha1, CANCA1C, has been associated 

with schizophrenia (Nie et al., 2015). In a cKO mouse model reductions in DCX+ 

neuron numbers and decreased BrdU staining were observed (Lee et al., 2016). The 

BrdU reduction was also found in a heterozygous rat model but not decreased DCX+ 

numbers (Moon et al., 2018). In another synaptic risk gene model, Cyfip1+/- 8 week 

old mice there is an increase in DCX+ cells in the SGZ, as well reduced migration from 

the SGZ (Haan et al., 2018). Subsequent work determined the migration phenotype 

stemmed from abnormal actin polymerisation, whilst the increased DCX+ numbers 

were due to aberrant microglial function and impaired apoptosis. AN was also 

investigated in a KO mouse model of a component of the complement system, C3 

and its receptor C3-a (Westacott, 2016). C3 is downstream of the biggest GWAS hit 
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for schizophrenia C4 (Ripke et al., 2014; Sekar et al., 2016). Both mutant C3 mice 

models showed increased numbers of DCX+ in the whole DG, in both supra- and infra-

pyramidal blades individually, and abnormal morphology (Westacott, 2016).  Whilst 

the phenotypes observed differ slightly it appears that adult neurogenesis may often 

be affected by mutations that confer risk for psychiatric diseases.  

5.4.4 Limitations 

As there is not a reduction in Dlg2 mRNA expression in the hippocampus it is possible 

that any abnormalities in DCX+ number as a result of mutation may not be apparent 

in this model. It is possible, however, that other phenotypes may be present that have 

not be assessed. Although the numbers of DCX+ did not vary between genotypes 

there may be morphological differences in these cells. It is also possible that the cells 

are not functioning normally, or forming normal synaptic connections. Given the 

importance of the importance of Dlg2 at the synapse there may be abnormalities of 

distal connections, which could be examined using retroviral tracing (Vivar et al., 

2012).  

Additionally AN could be examined with other markers. DCX expression overlaps with 

another often used marker, PSA-NCAM. DCX is expressed by multiple cell types 

during neurogenesis, including type 2b, type 3 and early post-mitotic neurons 

(Kempermann, Song and Gage, 2015). Even if DCX+ numbers do not change the 

proportion of different subtypes which express DCX may shift. As these subtypes, 

except type 3, also express a discreet marker in addition to DCX, the proportion of 

DCX+ cells of each subtype can be determined.   

5.4.5 Conclusions 

Using a widely accepted proxy for studying adult neurogenesis, no difference in the 

number of DCX+ cells was found between WT and Dlg2+/- mice in young and old mice. 

However, this is only one aspect of adult neurogenesis and there may be 

abnormalities of more specific aspects of the process, as opposed to a more 

generalised impairment. The lack of altered DCX+ cell numbers differentiates Dlg2 

from many other synaptic proteins implicated in the risk for psychiatric disease.   

  



120 
 

6 Characterisation of Rat Model  

6.1 Introduction 

There are limited publications using Dlg2 rodent models in vivo. Mutant Dlg2+/- mouse 

models in the literature implicate Dlg2 in cognitive processing. Generally rats are 

preferably used to study cognition compared to mice in in neuroscience research. 

However, it has been very challenging to generate KO rat models until more recently, 

when advances in genetic engineering have facilitated the development of such 

models. Therefore the benefits of rat models for studying cognition can be combined 

with this increased ability to produce genetically manipulated models which reflect 

genetic risk factors in psychiatric diseases. This Chapter will discuss characterisation 

of a novel Dlg2+/- rat model.  

The mutation in the Dlg2+/- rat model is in exon 5, resulting in a premature stop codon 

in exon 6. This is further upstream than the mutation in the mouse model (exon 14) 

described in Chapter 3. Mutations may alter observable phenotypes through loss of 

function of the full length protein or the expression of mRNA prior to the mutation site, 

resulting in truncated protein that acts as a dominant negative, as is observed with 

the truncated version of the Tropomyosin receptor kinase B (TrkB) receptor (Fenner, 

2012). The Dlg2tm1a(EUCOMM)Wtsi  mouse model was designed to interrupt a critical exon 

which spans as many transcripts as possible, with some transcriptional start sites 

being further downstream. The rat model was generated using CRISPR which should 

allow greater control over mutation creation than traditional methods, given the 

specificity of binding between target DNA and the engineered complimentary single 

guide RNA (sgRNA) (Jinek et al., 2012).This facilitates targeting of multiple sites to 

generate deletions or inversions (Canver et al., 2014), the insertion of specific 

sequences to generate knock-in models (Wang et al., 2015) or correct disease 

mutations (Yin et al., 2014).   

Whilst there are similarities between the rodent species, rats should not be 

considered ‘big mice’. There are many aspects in which the species differ which 

determine the choice of species specific experimental investigations. Rats physiology 

is considered closer to that of humans, the larger size increases tissue samples 

potentially reducing the number of animals required, and size also makes surgery 

easier (Ellenbroek and Youn, 2016). Studies involving optogenetics on the other hand 

are easier in mice due to the smaller brain allowing easier passage of light into deeper 

brain regions (Ellenbroek and Youn, 2016). Rats are generally preferred for studying 
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cognition because they tend to require less habituation and training sessions to 

perform tasks (Colacicco et al., 2002; Jaramillo and Zador, 2014),  and experience 

less of the associated stress and anxiety than mice. Performance over time is also 

less stable in mice than rats (Colacicco et al., 2002). Fundamental differences 

between the species may explain some divergence in ability of the two species. For 

example mice exhibit greater difficulty during Morris Water Maze tasks, which might 

be attributable to a difference in the species natural response to water (Whishaw and 

Tomie, 1996). Wild rats actively spend time in and around water, whereas wild mice 

actively avoid water. This idea is supported by the lack of difference between the 

species tested in a ‘dry maze’ (Whishaw and Tomie, 1996).  

As with the mouse model the background strain of the model must be considered 

when interpreting findings. Long Evans (LE) originate from an outbred rat strain first 

developed in 1915 by crossing Wistar females with a wild Norway male (Pass & 

Freeth 1993). LE are often utilised for cognitive testing, as they often require less 

training to learn self-initiate trials and acquire reversal of contingents than other 

commonly used strains such as Sprague Dawley (SD) rats (Turner and Burne, 2014). 

LE have been shown to be more active, explore more, demonstrate reduced anxiety, 

PPI and improved cognition compared to SD, which are commonly used in psychiatric 

research (Turner and Burne, 2014). Additionally LE have been found to freeze less 

than SD during initial and repeated context and tone tests (Graham et al., 2009). 

Therefore protocols previously developed using other strains may need modification 

to pull out any genotypic effects.  

As this rat model is novel it is important to characterise the basic molecular and 

behavioural phenotype to determine the similarly of the haploinsufficiency rat and 

mouse models. In the Dlg2+/- mouse model, characterised in Chapter 3 (3.3.1.1), a  

reduction of Dlg2 mRNA was only found in the PFC, without any change in expression 

of Dlg2 and  other Dlg family members in any other brain region examined (PFC, 

hippocampus and cerebellum). Behaviourally male Dlg2+?-mice exhibited specific 

impairments in motor learning, acoustic startle response and between session 

habituation across 5 days. No deficits of motor function, context discrimination, 

anxiety response or ketamine-induced hyperlocomotion were demonstrated. A full 

knockout Dlg2 model exhibited impairments of object location paired association, 

reversal learning, extinction and attention, as did humans with Dlg2 mutations 

(Nithianantharajah et al., 2013) suggesting conservation of Dlg2 function. Therefore 

exploring whether phenotypes observed both mouse models are recapitulated in the 

rat will illuminate the conservation of impairments up the evolutionary tree. This will 
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have important consequences for the use of this novel Dlg2 haploinsufficiency rat as 

a viable model of human brain function.  

6.2 Aims 

1. Measure Dlg2 mRNA in three key brain regions of Dlg2 heterozygous rats: 

hippocampus, cerebellum and PFC.  

2. Determine whether there any compensatory changes in mRNA expression for 

Dlg family members Dlg1, Dlg3 and Dlg4 in the hippocampus, cerebellum and 

PFC Dlg2 heterozygous rats.  

3. Examine basic motor function and anxiety behaviours in the Dlg2+/- compared 

to wild type (WT) rats 
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6.3 Materials and Methods 

6.3.1 Generation of Founders 

Dlg2 heterozygous rats were generated on a LE Hooded background by Horizon 

Discovery (Pennsylvania, USA) using CRISPR  

Clustered, regularly interspaced, short palindromic repeat (CRISPR)/Cas9 gene 

editing is rapidly becoming the most popular method of gene editing due to its ease 

of use in comparison to methods such as zinc finger nuclease technology, the 

specificity achievable when generating mutations, and the ability to generate 

mutations in species that ES manipulation is generally unsuccessful in, including rats 

(Smalley, 2016).  

The technology is adapted from the RNA-mediated CRISPR-Cas9 adaptive immune 

system of bacteria, such as Streptococcus pyogenes, that protect hosts from invasion 

by foreign DNA (Jinek et al., 2012). The system acts as a genetic memory facilitating 

the detection and destruction of invaders, as genetic code remnants from past 

invaders, “spacer” sequences, interrupt the repeating sequences of genetic code. 

These sequences are transcribed in short RNA sequences that guide the system to 

matching DNA sequences in subsequent infections and cleaves the DNA causing a 

double stranded break (DSB). However, unless a protospacer adjacent motif (PAM) 

is present then the Cas9 will not bind and cleave the DNA. This PAM, a 2-6 base pair 

sequence immediately after the targeted sequence, prevents cleavage of host DNA 

as it is only found in the viral DNA. In S.pyogenes the canonical sequence is NGG 

(‘5-‘3). These PAM sites are found throughout the genome. Recognition of the PAM 

is thought to destabilise the adjacent sequence, allowing sgRNA interrogation and 

DNA-RNA binding where the sequence is present (Mekler, Minakhin and Severinov, 

2017).  

When this process is adapted for gene editing a short guide RNA (gRNA) is designed 

to match DNA sequences of interest, which guides the machinery to the desired 

genetic loci and causes a DSB. The DSB triggers one of two repair pathways: non-

homologous ending joining (NHEJ) or homology derived repair (HDR). The NHEJ 

pathway is more error prone, introducing random insertions/deletions that can alter 

the reading frame of the coding sequence. This is the pathway utilised in the creation 

of the Dlg2+/- rat. The HDR pathway relies in on the inclusion of a donor template 

allowing the introduction of specific mutations (Figure 39). A concern with the method 

is the potential for off-target cleavage at unintended sites (Markossian and Flamant, 

2016), which must be tested for during model generation.  
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Figure 39: Image from Ran et al., 2013. Cas9 triggers DSBs which can be repaired via two 

pathways. The NHEJ pathway is error-prone and can result in indel mutations at the junction site 

when repaired by endogenous DNA repair mechanisms. The HDR pathway can be triggered with 

the introduction of a plasmid or single stranded oligonucleotide to act as a repair template. This 

results in a more precise mutation than the random indels generated via NHEJ. 

The model was designed by the NMHRI as part of the DEFINE project. It was then 

produced and validated by Horizon Discover, as described in this paragraph. A 

sgRNA (ccagggtcatctccaatgtgAGG) was targeted to exon 5 of Dlg2 using a 

proprietary bioinformatics software (Horizon Discovery, plc UK). The resulting 

successful founders had a 7bp deletion (782933-782939 in the genomic sequence) 

in exon 5, which caused a frame shift and generation of an early stop codon in exon 

6 (Figure 40). Confirmation of successful non-homologus end joining (NHEJ) activity 

was assessed via PCR and sequenced by Horizon Discovery plc, UK.  The PCR 

reaction was as follows; 1μl of DNA in solution (extracted using 

Epicenter®QuickExtract Solution™), 1μm forward (tctgaccttgctgtgtctgc) and 1μm 

reverse (gcgtcactacagaaagccttg) primers, 12.5μl 1x Sigma Jumpstart 

TaqReadyMix™ (Sigma-Aldrich, St Louis, USA) and 6.5μl ddH20. The PCR reaction 

was run at 95°C for 5 mins, followed by 35 cycles of 95°C for 30s, 60°C for 30s and 

68°C for 1 min. The final extension was 68°C for 5 min. PCR products were resolved 

on 2% agarose gels.  
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Figure 40: Top: The genomic sequence of the WT rat. The section highlighted in blue is the 

sequence to be deleted. Bottom: The translated mRNA following the 7bp deletion. Image provided 

by Horizon Discovery plc UK. 

Both genotyping and sequencing were used to confirm the deletion by Horizon 

Discovery, plc UK in the founders (Figure 41).  

 

Figure 41: The deletion site is marked by a red line. Prior to this line only single peaks occur and 

the quality (grey bars) is high. After the 7bp deletion the sequence displays a mixed read out from 

both the WT and deletion alleles, demonstrated by presence of two peaks. Data provided by Horizon 

Discovery and analysed using Snapgene Viewer 3.3.2. 

An online CRISPR guide generation tool from MIT (http://crispr.mit.edu/) ranks all 

potential guides in relation to their on-target activity as well as providing the top ten 

off target sites for each sgRNA (Figure 42). Horizon discovery, plc UK used this 

information to assay for potential off-target effects present in the founders using PCR 

and SURVEYOR Cel-1 mutation Detection Assay (IDT). None were found. 

http://crispr.mit.edu/
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Figure 42: Off-target table for the top 10 predicted off-targets from the MIT online tool 

((http://crispr.mit.edu/) for the sgRNA used to generate the 7bp deletion. Table provided by Horizon 

Discovery, plc UK. 

Dlg2-/- rats are viable but initially all pairings were WT x HET, resulting in a Mendelian 

distribution of WT and HET pups, with an average litter size of nine pups. Selected 

heterozygous founders were sent to Charles River (Margate, UK) and bred to produce 

experimental colonies.  

6.3.2 Ethics and Housing 

All procedures on the rats were conducted in line with Animals (Scientific Procedures) 

Act (ASPA) (1986); under UK Home Office project license PPL 30/3135 and PIL 

131AE7D42.  

Rats were housed as previously described 2.1.2 in groups of 1-4, dependant on 

weight, with ad libtum access to standard food and water on a 12:12 hr light:dark 

cycle (lights on 07:00). All testing in this chapter was conducted during the light phase. 

Nesting material, wooden sticks and cardboard tubes provided environmental 

enrichment.  

6.3.3 Genotyping by PCR 

Ear punches from all weaned animals sent were from Charles River for genotyping 

prior to experimentation. Post-mortem tail and brain samples were taken for genotype 

confirmation. DNA extraction follows the protocol described in 2.1.3. 

Horizon Discovery plc, UK designed primers (forward – tctgaccttgctgtgtctgc, reverse 

– gcgtcactacagaaagccttg) and PCR cycling protocols were used. In accordance with 

manufactures instructions GoTaq® Green Master Mix (Promega, Southampton, UK) 

reaction mix was used for PCR. Briefly, 5µl sample was added to 12.6µl GoTaq®, 2µl 

forward and reverse primers, and 3.5µl ddH20.  Samples were run on a BioRad 

Thermal Cycler (T100 BioRad™, Herts, UK) under the following conditions: 95oC for 

5 minutes then 35 cycles of 95 oC for 30 seconds, 60 oC for 30 seconds and 68 oC for 

Off Target Sequence genomic coordinates comments F primer R primer results

Injected gRNA sequenceCCAGGGTCATCTCCAATGTGAGG

OT Site 1 CCAGGGTCATCTCCAATGTTAAG chr19: 34563666-34563688 screened by SAGE aggttagtccgtgcatggtg gcttgcctacagccgtattt negative

OT Site 2 CTTGAGTCATCTCCAATGTGTGG chr11: 75326973-75326995 screened by SAGE tgtcagtgctgccttttgtc tcctttgtgtggtgtggttc negative

OT Site 3 CCAGGGTGATCTCCAATCTGAGG chr14: 84150501-84150523 screened by SAGE ggtaactggcctttgggttt tctgatttggggcttaggtg negative

OT Site 4 TTATTGTCATCTCCAATGTGTAG chr16: 22863405-22863427 screened by SAGE tacccacttttcacccaagc ttgcccctttcagagaagac negative

OT Site 5 CTATGGTCATCTCCAATGGGTAG chr20: 16439248-16439270 screened by SAGE aaaccggttatgtcctgtgc ggaggaagatggagggaaac negative

OT Site 6 ACAAGCTTATCTCCAATGTGTAG chr6: 46008366-46008388 screened by SAGE tgcctaggaaactggcaact tgtgtcacttggatggatgtc negative

OT Site 7 CCAGGATAATATCCAATGTGTAG chr16: 34645325-34645347 screened by SAGE tgctcactgctgataggtctg ggatatcattggaccccaca negative

OT Site 8 TTAGGGTAATATCCAATGTGAGG chr3: 89806272-89806294 screened by SAGE tatctcggcccaagaagaag caaagaccaggatcccaatg negative

OT Site 9 CAATAATCATCTCCAATGTGCAG chr4: 164282994-164283016 screened by SAGE agcaggtcttcagcttggtt ccagaggccctcaaattaca negative

OT Site10 CGAAGGTCCACTCCAATGTGCAG chr17: 19811676-19811698 screened by SAGE tcgtgggaaggaaagacttg ggcagtccatgcctgtttat negative
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40 seconds and a final extension at 68 oC for 5 minutes. Samples were held 

indefinitely at 4 oC. 

A 4% gel was made with 1% TAE buffer (w/v) and SYBR Safe Gel DNA Stain (1:1000, 

ThermoFisherScientific, UK). PCR products were analysed by gel electrophoresis for 

2 hrs at 150v, with 10 µl of sample loaded per well. Gels were visualised using iBright 

CL1000 (Invitrogen, ThermoFisher Scientific, UK). Two bands were indicative of a 

heterozygous animal, with a mutant band at ~446 bp and a WT band ~421 bp, and 

single bands ~421 bp were indicative of a WT (Figure 43). 

 

Figure 43: Sample gel for genotyping. HET Animal 2666 and WT 1-3 after DNA extraction from brain 

tissue sent from Horizon are used as controls. Samples 7-13 are extracted from ear samples sent 

by Charles River of live animals. The presence of two bands in samples 7, 9, 11 and 13 indicate 

successful generation of heterozygous rats. The remaining samples are WT. 

6.4 Molecular Characterisation 

6.4.1 RT-qPCR Analysis  

A cohort of twenty-seven male and female LE rats were used for gene expression 

analysis (16 HET, 11 WT). The expression of Dlg1, Dlg1, Dlg2, Dlg3, and  Dlg4 mRNA 

in the cerebellum, hippocampus and PFC was analysed by RT-qPCR using validated 

primers (Table 10). The tissue was extracted from whole brain hemispheres from 8-

week-old rats and ~30g tissue from each region of interest was converted to cDNA 

as previously described in 2.3.1.2.  

Quantitation was conducted using the comparative Ct method (2-ΔΔCt method) to 

measure fold change in expression between WT and Dlg2+/- rats. Data normality was 

assessed using Shapiro-Wilks test. Where possible appropriate transformations were 

attempted to correct normality. On examination of boxplots values considered 

extreme outliers were removed. If significance is changed by outliers being retained 

this is reported. Normally distributed data was analysed using t tests. Where normality 

could not be corrected Mann Whitney U was used. Homogeneity of variances was 

assessed by Levene’s test. If this assumption was violated Welch’s t test was used.  
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Primer Forward Sequence Reverse Sequence 

Dlg2 GGACATCCCCGGATTAGGT

G 

TGTAGTTTATTTCCTGCCTCGT

GA 

Dlg1 
CCCAGATGGTGAGAGTGAC

G 
AGTTACGTGCTTCAGGCCTTT 

Dlg3 
GTCTAATCGGGACTTCCCTG

G 
TGGAACTGCTTTCGCTGTCA 

Dlg4 
ACAACCAAGAAATACCGCTA

CCA 
CCCCTCTGTTCCATTCACCTG 

Table 10. Primer pairs designed for each Dlg gene validated using control rat cDNA from 

hippocampus, cerebellum and PFC. 

6.5 Behavioural Characterisation 

6.5.1 Animals 

A cohort of thirty-eight male Long Evans rats (19 WT, 19 HET) underwent two 

behavioural tasks, rotarod motor performance and open field anxiety measures. 

When testing began rats were 3.9 months old. Rats were allowed to acclimatise to 

the animal unit for 1 week following transport from Charles River (Margate UK), and 

were then were handled daily for 3 days to habituate the rats to handling prior to 

testing. Rats were moved and rehoused to an adjoining animal unit between the tasks 

and were given a week to acclimatise to the new unit. After rotarod testing, 3 cages 

of 4 rats were separated into 6 cages of 2 to account for an increase in age related 

weight. Rats were transported to behavioural rooms in their home cages, and 

returned to them following task completion. All apparatus was cleaned between 

animals with ethanol wipes or 70% ethanol to mask odour cues. WT littermates were 

used as controls.  

6.5.2 Rotarod 

Task 

Rats were tested on the rotarod as described 2.2.1.1. Rats were habituated to the 

testing room for 10 minutes prior to testing. Each rat underwent three daily trials for 

three consecutive days on an accelerating rotarod (47760, Ugo Basile, Italy) which 

accelerated from 5rpm to 40rpm over 5 minutes. Latency (s) to fall from the rod was 

taken as a measure of motor performance. Rats were returned to their home cages 

and moved back to the holding room between trials with an inter-trial interval of 1 hr 

minimum.  
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Analysis 

Normality was assessed for all data using Shapiro-Wilks test. Where appropriate 

transformations were attempted to correct normality. Extreme outliers (±3 studentized 

residuals) were removed. If significance is changed by outliers being retained this is 

reported. Homogeneity of covariances was assessed by Box’s M test and 

homogeneity of variances was assessed by Levene’s test. In instances where the 

assumption of sphericity was violated the Greenhouse-Geisser correction was 

applied.  

The latency (s) to fall from the rotarod was analysed by mixed ANOVA with the 

following factors: Genotype (WT and HET), Trial (1-3) and day (1-3).  

6.5.3 Open Field 

Task 

The open field task was conducted in the 1 m2 arena described in 2.2.2.2. Rats were 

transported in home cages to an adjacent holding room for 20 minutes prior to testing. 

When taken into the testing room rats were placed in the centre of the arena. 

Recording was started immediately and the single session lasted for 10 minutes. Rats 

were returned to their home cages following testing. The percentage time spent in the 

centre and outer zones was measured as indices of anxiety. Total distance (cm) 

travelled and maximum velocity (cm/s) were measured as indices of activity.  

Analysis 

Normality was assessed for all data using Shapiro-Wilks test. Where appropriate 

transformations were attempted to correct normality. On examination of boxplots 

values considered extreme outliers were removed. If significance is changed by 

outliers being retained this is reported. Normally distributed data was analysed using 

t tests. Where normality could not be corrected Mann Whitney U was used. 

Homogeneity of variances was assessed by Levene’s test. If this assumption was 

violated Welch’s t test was used.  
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6.6 Results 

6.6.1 RT-qPCR 

6.6.1.1 Reduced Dlg2 mRNA expression in the hippocampus and PFC but 

not cerebellum in Dlg2+/- rats  

The expression of Dlg2 mRNA was assessed via RT-qPCR, comparing the genotypes 

with t tests or Mann Whitney U. All cerebellum and hippocampal data was normal and 

had homogeneity of variances. All WT PFC data was non-normal. One outlier was 

removed (WT) but this, nor transformation (square-root), corrected normality so Mann 

Whitney U was used. 

Dlg2+/- rats displayed no change in Dlg2 expression in the cerebellum, t (12) 0.492, p 

= 0.674 (Figure 44a). There was an approximately 50% reduction in Dlg2 expression 

in the hippocampus (Figure 44b), t (14) -4.259, p = 0.001, and the PFC (Figure 44c) 

U = 0.00, p = 0.001.   

 

Figure 44. The relative change in Dlg2 mRNA expression levels assessed in 8 week old rats by RT-

qPCR in the cerebellum (a) hippocampus (b) and PFC (c). n = 6 (WT) 8 (HET) (cerebellum), 8 (WT) 

8 (HET) (hippocampus) and 6 (WT) 8 (HET) (PFC). Data represent the mean ± SEM error bars. ** 

p = 0.01. 

6.6.1.2 There was no change of Dlg1, Dlg3 and Dlg4 mRNA expression in 

Dlg2+/- rats 

The expression of mRNA for Dlg1, Dlg3 and Dlg4 was assessed via RT-qPCR, 

comparing the genotypes with t tests or Mann Whitney U. All cerebellum data was 

normal. There was homogeneity of variances for Dlg1 and Dlg3 but not Dlg4, so 

Welch’s t test was used. Hippocampal data for Dlg3 was normal and had homogeneity 

of variances, but all Dlg1 data was non-normal. Transformation (Log10) failed to 

correct normality, so Mann Whitney U was used. All hippocampal HET data for Dlg4 

was non-normal, one outlier was found (HET) and removal corrected normality. There 

was homogeneity of variances. All PFC data for Dlg1 was normal and had 

homogeneity of variances. WT PFC data for Dlg3 and Dlg4 were non-normal, but 
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removal of one outlier (both WT) in each instance corrected normality. In both 

instances there was homogeneity of variances.  

There was no difference in the expression mRNA of any the Dlg family members, 

Dlg1 (Figure 45), Dlg3 (Figure 46) or Dlg4 (Figure 47) in the PFC, hippocampus or 

cerebellum of 8 week old rats, as assessed via RT-qPCR (Table 11).  

 

Figure 45. The relative change in Dlg1 mRNA expression levels assessed in 8 week old rats by RT-

qPCR in the cerebellum (a) hippocampus (b) and PFC (c). n = 6 (WT) 8 (HET) (cerebellum), 8 (WT) 8 

(HET) (hippocampus) and 6 (WT) 8 (HET) (PFC). Data represent the mean ± SEM error bars.  

 

Figure 46. The relative change in Dlg3 mRNA expression levels assessed in 8 week old rats by RT-

qPCR in the cerebellum (a) hippocampus (b) and PFC (c). n = 6 (WT) 8 (HET) (cerebellum), 8 (WT) 8 

(HET) (hippocampus) and 6 (WT) 8 (HET) (PFC). Data represent the mean ± SEM error bars. 

 

Figure 47. The fold change in Dlg4 mRNA expression levels assessed in 8 week old tissue by qPCR in 

the cerebellum (a) hippocampus (b) and PFC (c). n = 6 (WT) 8 (HET) (cerebellum), 8 (WT) 7 (HET) 

(hippocampus) and 6 (WT) 7 (HET) (PFC). Data represent the mean ± SEM error bars.  
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Gene/Region TEST 

Dlg1 PFC t (10) 0.219, p = 0.831 

Dlg1 Hippocampus U = 23.00, p = 0.563 

Dlg1 Cerebellum t (12) 0.492, p = 0.632 

Dlg3 PFC t (12) -2.218, p = 0.06 

Dlg3 Hippocampus t (13) -1.589, p = 0.136 

Dlg3 Cerebellum t (12) -0.297, p = 0.771 

Dlg4 PFC t (11) - 0.106, p = 0.918 

Dlg4 Hippocampus t (8.042) 0.548, p = 0.599 

Dlg4 Cerebellum t (6.873) 0.045, p = 0.966 

Table 11. The expression of Dlg1, Dlg3 and Dlg4 mRNA was compared between the genotypes 

from extractions of the PFC, hippocampus and cerebellum of 8 week old WT and Dlg2+/- rats. No 

differences were found in the expression of these Dlg isoforms in any region investigated. 

6.6.2 Behavioural Results 

6.6.2.1 Dlg2+/- rats showed comparable motor performance to WT across a 

three day accelerating rotarod task 

Latency to fall was assessed by mixed ANOVA with the following factors: Genotype 

(WT and HET), Trial (1-3) and Day (1-3) (Figure 47). All data was non-normal. There 

was no homogeneity of covariances, but there was homogeneity of variances in most 

instances. A Log10 transformation corrected normality for all data, as well as 

homogeneity of variances and covariances. However, Log10 cannot transform zero 

values, so 3 WT and 2 HET rats with latency (s) of zero were not transformed. The 

assumption of sphericity was met for trial, day and trial*day, X2 (2) 2.917, p = 0.233, 

day X2 (2) 2.318, p = 0.314, and trial*day X2 (9) 8.762, p = 0.460 respectively.  

There was an effect of day and trial, but not genotype (DAY: F (2, 62) 11.447, p <0.001, 

TRIAL: F (2, 62) 18.765, p =< 0.001, GENOTYPE: F (1, 31) 1.633, p =0.21) (Figure 48). 

Genotype did not interact with either factor but there was a day*trial interaction 

(DAY*GENOTYPE: F (2, 62) 0.064, p = 0.938, TRIAL*GENOTYPE: F (2, 62) 2.349, p = 

0.104, DAY*TRIAL: F (4, 124) 7.921, p = <0.001). There was no day*trial*genotype 

interaction (TRIAL*DAY*GENOTYPE: F (4, 124) 0.573, p = 0.662).  
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Figure 48. Both genotypes exhibit increased latency (s) to fall on Day 1, and a plateau of performance 

by Day 2. Data represent the mean ± SEM error bars. n = 16 (WT) 17 (HET).  

As there was no two way or three interaction involving genotype this factor was not 

included in subsequent analysis. Due to the trial*day interaction one way ANOVAs 

were conducted for each day separately. For all one way ANOVAs all assumptions 

were met and where appropriate followed up by Bonferroni corrected pairwise 

comparisons. The assumption of sphericity was met on Day 1, 2 and 3, X2 (2) 0.913, 

p = 0.634, X2 (2) 5.738, p = 0.057 and X2 (2) 0.891, p = 0.641 respectively. 

Only on Day 1 was there an effect of trial (TRIAL: F (2, 64) 41.332, p = <0.001). Latency 

(s) to fall on Trial 1 was shorter than Trial 2 (-0.403 ± 0.064, p = <0.001) and Trial 3 

(-0.509 ± 0.059, p = <0.001), plateauing between Trial 2 and 3 (0.106 ± 0.055, p = 

0.187). Both genotypes increase latency (s) to fall on Day 1 across the three trials, 

reaching asymptotic performance by Day 2. 

To examine the consolidation of learning across the three days, the performance on 

the first trial on each day was compared. This approach also removes the potential 

confound of fatigue across each session. Trial 1 on each day was compared between 

the genotypes by mixed ANOVA. There was homogeneity of variances and 

covariances, and the assumption of sphericity was met X2 (2) 2.113, p = 0.348. 
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There was an effect of day but not genotype, nor an interaction (DAY: F (2, 62) 19.217, 

p = <0.001, GENOTYPE: F (1, 31) 3.465, p = 0.072, DAY X GENOTYPE: F (2, 62) 0.254, 

p = 0.776) (Figure 49). Bonferroni pairwise comparison determined only Day 1 was 

different from any other day.  

 

Figure 49. Both genotypes demonstrate increased latency (s) to fall on the first Trial on Day 2 compared 

to Day 1. There is a trend towards an impairment on Trial 1 of Day 3 in Dlg2+/- rats (p = 0.072). Data 

represent the mean ± SEM error bars. n = 16 (WT) 17 (HET). 

To confirm whether weight had any effect of the rats latency fall a mixed ANOVA was 

conducted. As there was no difference in weight between WT and HET rats genotype 

was excluded as a factor. Rat weights were binned into six 50g categories (350-400, 

401-450, 451-500, 501-550, 551-600, 601-650). Mixed ANOVA was conducted with 

the following factors: weight bin (as previous), day (1-3) and trial (1-3). 

Data normality was asses by Shapiro-Wilks. Most data was non-normal. Square-root 

transformation corrected all data except bin 2 D1T1, bin 2 D2T3, and bin 1 and 2 

D2T2. Five outliers were found. Removal resulted in normality for all except bin 2 

D3T2, and resulted in bin 3 D1T1 becoming non-normal. Box’s M test was violated 

for homogeneity of covariances, but Levene’s test for homogeneity of variances was 

met. The assumption of sphericity was met for trial (X2 = (2) 3.817, p = 0.148), day (X2 

(2) 4.226, p = 0.121, and trial*day (X2 (9) 15.221, p =0.086). 

As in the main data set there was an effect of trial and day (TRIAL: F (2, 56) 8.163, p = 

.001, DAY F (2, 56) 10.689, p = <0.001). There was no interaction between weight and 

trial or day (TRIAL X WEIGHT: F (10, 56) 1.093, p = 0.384, DAY X WEIGHT: F 2, 56) 1.932, 

p = 0.060. There was a trend towards an effect of weight on latency to fall (WEIGHT: 

F (5, 28) 2.367, p = 0.065).  
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6.6.2.2 Dlg2+/- rats show are comparable on all measures of anxiety in the 

open field task to WT rats 

A software malfunction resulted in some data being lost (7 WT, 7 HET). All measures 

were compared between the genotypes by t tests. All data was normal and 

homogeneity of variances. 

The time spent in arena zones was compared between genotypes using t tests. The 

time spent in the centre, t (23) 1.400, p = 0.175 and perimeter, t (23) -1.400, p = 0.175 

of the arena was comparable between Dlg2+/- and WT over the 10 minutes (Figure 

49a). Both genotypes covered a similar total distance (cm) t (23) -0.995, p = 0.330, at 

a similar mean velocity (cm/s), t (23) -1.145, p = 0.264 (Figure 50b, c). Both genotypes 

spent a similar percentage of time in the centre and perimeter zones of the maze and 

exhibit comparable levels of locomotion during the 10 minute task.  

 

Figure 50. Dlg2+/- and WT rats spent a comparable amount of the 10 minute trial in the centre and the 

perimeter (a). Dlg2+/- rats cover a similar distance (cm) (b) at a similar velocity to WT rats (c). n = 12 

(WT) 13 (HET). Data represent the mean ± SEM error bars.     
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6.7 Discussion 

6.7.1 Dlg2+/- have reduced Dlg2 mRNA expression but comparable Dlg family 

member expression in two brain regions 

A ~50% reduction in Dlg2+/- expression was found in the both the hippocampus and 

PFC. This is in contrast to the mouse, where a reduction was only found in the PFC. 

Neither model demonstrated a reduction in the cerebellum. This suggests a 

mosaicism of mutation expression between brain regions, which has now been 

observed in two separate species in models generated using different techniques. 

The ~50% decrease in Dlg2 mRNA observed is in line with the anticipated reduction 

in expression in a heterozygotic model, as the mutation only affects one copy.  

As with the mouse model, no differences were found in the rat for mRNA expression 

of any other Dlg family members. Thus, at the mRNA level no compensatory 

expression mechanism is apparent in the three regions examined in the rat model. 

Similar to the mouse model the mutation in Dlg2 in the rat leads to a selective 

reduction in the expression of the targeted Dlg family member. As a reduction in Dlg2 

mRNA expression was found in the hippocampus the rat model provides a better 

opportunity to examine the effect of Dlg2 mutation on hippocampal dependant 

cognition. 

6.7.2 Dlg2+/- rats do not demonstrate an explicit impairment in motor 

performance during an accelerating rotarod task 

Across the three day protocol there was no difference in the latency (s) to fall between 

Dlg2+/- and WT rats.  Both genotypes exhibit improvement in performance (increased 

latency to fall) on Day 1 over the three trials, plateauing by Day 2. This pattern is 

consistent with the acquisition of a motor learning skill, where greatest improvement 

is seen on the first day before beginning to plateau over subsequent sessions (Luft 

and Buitrago, 2005). Improvement in  motor ability in this manner reflects the role of 

learning in this process, as opposed to being an exercise phenomena where the 

animals keep improving as fitness increases (Buitrago et al. 2004). If the improvement 

across a session only stemmed from exercise then a similar level of improvement 

would be anticipated daily. Instead, as observed in this model, the greatest 

improvement is demonstrated on the first day, with some improvement on subsequent 

days before plateauing, indicative of a learning process (Buitrago et al. 2004).  

The consolidation of learning between the days was examined by comparing the first 

trial on each day, removing the potential confound fatigue in later trials. If 
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consolidation has occurred the latency for the first trial should be increased on 

subsequent days before plateauing (Luft and Buitrago, 2005). The latency to fall on 

the first trial improves across the three days (p = <0.001) and there is a trend towards 

a difference in performance between the genotypes (p = 0.07), with the Dlg2+/- rats 

diverging slightly from WT rats by Day 3. This might be indicative of a potential deficit 

in memory formation that could be drawn out using a more sensitive task. The first 

phase of consolidation occurs between 10 minutes to 6 hrs post training (Walker et 

al., 2003). Further consolidation is thought to occur during sleep, improving 

performance, hence the improvement between days (Luft and Buitrago, 2005). The 

importance of sleep in the consolidation of motor skill learning has been demonstrated 

in humans (Pereira et al. 2015), although it is less clear in rodents. Following 

accelerating rotarod training, sleep was found to promote the formation of spines in a 

subset of branches in layer V motor cortex of mice, and that neurons activated during 

task acquisition where re-activated during non-rapid eye movement sleep (Yang et 

al., 2014). This suggests a fundamental role of sleep in the formation of learning 

dependant synapse formation, which can be prevented if this re-activation is inhibited 

(Yang et al., 2014). However, sleep following rotarod training was not found to 

improve learning of the task, but did improve learning of complex wheel running 

(Nagai et al., 2017). 

The lack of an observable phenotype on the accelerating rotarod is divergent from 

the mouse model, where Dlg2+/- mice exhibit a persistently impaired learning in two 

different protocols, a simple and a more extended training paradigm (Chapter 3 and 

4). This may reflect a species difference, both in terms of the mutation itself or task 

suitability for the animal. As discussed above (6.1) there are caveats comparing the 

species in general, but there are also methodological differences.  

The latency (s) to fall for both genotypes never exceeded 90 s on average, suggesting 

that the rats may exhibit lower performance on the rotarod task than the mice. By Day 

3 the majority of the mice were consistently staying on the rod for the entire 5 minute 

trial, whereas only 1 rat achieved this once across the three days. It is harder to 

determine whether this is a species issue or a protocol issue. In the literature there is 

more variability in accelerating rotarod protocols for rats, with the number of daily 

trials conducted being less consistent across publications, as well as length of inter-

trial intervals (ITI), compared to the largely consistent literature for mice (normally 

between 7 to 10 trials a day with 5 minute ITI). The difference in the number of trials 

between the species means the trajectory of the learning curve for the rats is less 

observable, making it more challenging to compare between the species, as the 
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increased number of trials for mice provides greater opportunity for a deficit to be 

seen particularly in the earlier stages. 

There could be a number of reasons for this difficulty of the task for rats. The size of 

the rats may be inhibiting the ability of larger rats to stay on the rotarod. The largest 

rats were ~630g, and although no differences were found between the genotypes for 

weight there is a trend towards an effect on weight on latency to fall (s) on the rotarod 

(p = 0.065) (see 6.6.2.1). Therefore there may be a minimal contribution of weight to 

performance on the rotarod. The rats may exhibit less motivation to stay on the rod 

(Hånell and Marklund, 2014). The innate fear of falling from the rod serves as the 

motivational drive to keep moving (Dunham & Miya, 1957), but fear may not be 

sufficient to maintain behaviour if diminished following falls during previous trials 

attenuated this fear (Brooks and Dunnett, 2009). Modifications to the task to increase 

motivation can be implemented, such as placing cold water beneath the rod (Difeo, 

Curlik and Shors, 2015). The rats may also show gait deficits that would affect 

maintaining balance on the rotarod. Rats alter their gait whilst running on the rod as 

training progresses (Buitrago et al. 2004). It is possible that the rats struggled to make 

this shift in gait pattern. Automated gait analysis whilst rats were walking or running 

(Mendes et al., 2015), or gait analysis during rotarod training (Buitrago et al. 2004), 

would be able to determine whether this is a factor for impaired motor performance 

on the rotarod compared to mice.  

An alternative approach to measuring motor performance and learning, may be to 

use a paw reaching or staircase task (Montoya et al., 1991). In addition to motor co-

ordination and learning, also assessed by the rotarod, this task also probes the innate 

manipulation skill of each paw (Baird, Meldrum and Dunnett, 2001), requiring rodents 

to reach and grasp pellets in a narrow space from a central platform and has been 

used for studies in  both mice (Chen, Gilmore, & Zuo, 2014) and rats (Pagnussat et 

al., 2009a). The staircase task removes the potential confound of fatigue and general 

fitness of the rat, as they are only required to reach down and retrieve a pellet rather 

than keep running for a prolonged period of time. Additionally the sugar pellet reward 

may ensure sustained attention and motivation to complete the task, as opposed to 

fear of falling from a rod. Previously it has been reported rats reach asymptotic 

performance and retrieve all the available pellets within 10-15 minutes during a test, 

following 2 weeks of training (Montoya and Astell, 1990). An impairment in motor 

learning in this task may be reflected by a reduced number of pellets being retrieved 

compared to WT rats across the training sessions. There may also be a delay in 
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reaching criteria for the task (number of trials to retrieve 12, 15 and 18 pellets) 

(Pagnussat et al., 2009a). 

6.7.3 Dlg2+/- rats do not exhibit any anxiety phenotypes during the open field 

test 

Both genotypes spend the majority of the trial in the perimeter of the arena, but do 

venture into the centre and spend around a third of the trial there. Therefore according 

to the open field task the Dlg2+/- rats are comparable to WT rats in presentation of 

anxiety behaviours. This is comparable to the lack of anxiety phenotypes observed in 

the mouse model characterised in Chapter 3. Nevertheless, the rat model should also 

be tested using other anxiety probing paradigms, such as the elevated plus maze or 

light dark boxes, as the tasks may represent different dimensions of anxiety (Ramos 

et al., 2008). Given that neither species has exhibited any anxiety phenotypes, but 

only the rats exhibit reduced expression of Dlg2 mRNA in the hippocampus this may 

indicate that the function of Dlg2 in the hippocampus may not be not important for 

anxiety behaviours. The locomotor activity of Dlg2+/- rats in the open field was 

comparable to WT rats, as was also found in the mouse model However, in both 

models only examining one 10 minute open field task may only assess the model’s 

immediate response to the novelty of the arena (Spruijt et al., 2014). A habituation 

deficit was uncovered in the Dlg2+/- mice following repeated exposed to a context for 

five consecutive days (Chapter 4). Investigation is required into whether this 

impairment of between session habituation is also seen in the rat model.  

6.7.4 Strengths and Limitations 

The expression of Dlg2 mRNA is reduced in both the hippocampus and PFC of the 

rat model in comparison to the more selective reduction observed in the PFC of the 

mouse model. The rat model may thus be more useful than the mouse model for 

investigating impairments of higher order cognition as a result of Dlg2 heterozygosity, 

as not only are the hippocampus and the PFC independently crucial for cognitive 

processing, but dysfunctional interaction between the two regions may provide a 

common element involved in their pathophysiology (Godsil et al., 2013).  

Additionally LE rats do not appear to have impaired visual acuity (Prusky et al., 2002), 

unlike the recessive mutation found in some C56BL6/J mice (Pritchett-Corning et al., 

2012), removing a potential confound in data interpretation or using tasks dependent 

on visual perception. Other behaviours that we observed that were impaired in the 

mice, acoustic startle and PPI response, could also be examined in the rat model to 
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examine whether there is conservation of that phenotype, and whether loss of Dlg2 

in multiple brain regions influences responding. Additionally western blot analysis 

could be conducted to examine whether the reduction in mRNA expression translates 

to the protein level.  

6.7.5 Conclusions 

There is a reduction in Dlg2 mRNA in the PFC and hippocampus of the rat model, 

without any change in expression of other Dlg family members, in comparison to the 

specific reduction in the PFC observed in the mice. On two basic behavioural tests 

the Dlg2+/- rats do not exhibit any impairments, demonstrating comparable ability to 

WT rats on the accelerating rotarod, as well as locomotion and anxiety response 

during an open field test. This indicates a potentially smaller effect of mutation in the 

rat model compared to the mouse model, where deficits of motor learning were 

observed.  However, in both instances further probing with more sensitive testing 

would be beneficial, to determine whether any deficits were masked during these 

tasks. Additionally examination of the rat’s acoustic startle and PPI response would 

also be illuminating, due to the relevance of the task to psychiatric diseases, the 

findings in the mouse model, and potential effect of deceased Dlg2 expression in two 

brain regions as opposed to just the PFC.  
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7 Contextual Fear Conditioning in 

the Rat Model 

7.1 Introduction 

A major advantage of the rat compared to the mouse model is the ability to probe 

more complex cognitive processes (Colacicco et al., 2002; Jaramillo and Zador, 

2014). Associative learning is dependent on the glutamatergic system, and as Dlg2 

interacts with key receptors in glutamatergic function, NMDA and AMPA, deficits may 

become apparent when employing tasks which behaviourally probe this system.  

Since 1911 abnormal associative learning has been considered a feature of 

schizophrenia (Bleuler, 1911; Peralta and Cuesta, 2011).  More recently has been 

proposed to play a role in psychosis. Abnormal glutamatergic function is proposed to 

be upstream of the hyperdopaminergic state thought to underlie psychosis in 

schizophrenia (Howes & Kapur, 2009; Kapur, 2003c). Psychosis is considered to be 

the result of aberrant salience, the aberrant assignment of importance to external 

objects and internal representations, resulting in the formation of abnormal 

associations. Once learnt these inappropriate associations can be reinforced and 

become fixed, and delusions may be the result of patients attempting to make sense 

of the aberrant associations (Kapur, 2003a). NMDAR mediated synaptic plasticity is 

important for associative learning, including aversive learning (Kosmidis, Breier and 

Fantie, 1999; Hofer et al., 2001; Jensen et al., 2008a). Mice pre-treated with PCP, a 

NMDAR antagonist, exhibited a lasting impairment of associative learning using a 

fear conditioning paradigm (Enomoto et al., 2005). Genetically modified mice lacking 

Grin1, which codes for the essential NMDAR subunit GluN1, demonstrated deficits in 

learning during Skinner-box tasks (Hasan et al., 2013). 

One established way often used to study associative learning processes is through 

fear conditioning. This involves the formation of an association between an initially 

neutral stimulus (conditioned stimulus, CS) and an either rewarded or aversive 

stimulus (unconditioned stimulus, US) such that presentation of the CS alone will elicit 

a change in behaviour often equivalent to that exhibited when exposed to the US 

(conditioned response, CR). This process can be investigated through aversive 

learning paradigms, such as contextual fear conditioning (CFC) where a novel context 

or training environment acts as the CS. Fear memory can last a lifetime even when 

only experienced once (Maren, 2005). In single trial tests, a context (CS) is presented 
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with an aversive stimulus (US), normally a foot-shock. This form of associative 

learning is rapid, long lasting and produces a measurable, stereotypical behavioural 

outcome such as freezing – defined as complete immobility except for respiration in 

response to re exposure to the CS. Fear conditioning is an evolutionary conserved 

form of associative learning (Milad and Quirk, 2012; Pattwell et al., 2012), Aversive 

fear learning is mediated through NMDA receptors in the amygdala and hippocampus 

(LeDoux, 2003).  

Re-exposure to the CS in the absence of US tests the recall and expression of the 

associations formed during conditioning, with exhibition of the fear response without 

the US occurring indicates successful formation of association. Consolidation of 

learning for long term memory is a protein synthesis dependent molecular process 

that occurs over several time scales (Squire et al., 2015), starting with earlier IEG 

expression peaking and returning to baseline within 1.5-2 hrs (Ressler et al., 2002), 

and later synaptic structural changes taking 24-48 hrs (Yang, Pan and Gan, 2009a; 

Clopath, 2012). 

Extinction involves prolonged or repeated exposure to the CS after initial acquisition 

in the absence of the US, and results in the loss of the CR (Pavlov, 1927; Eisenberg 

et al., 2003; Suzuki et al., 2004). Extinction is considered a new form of learning, 

competing with the CR during re-exposure to the CS and reduces responding, as 

opposed to degrading the original association (Bouton, 2004). Due to the competition 

between the memories it is possible to retrieve the conditioned memory through 

experimental manipulations, such as a reminder stimulus, after extinction (Bouton, 

2004). As a result of the competition between the memories the CS-US memory can 

be recovered after extinction learning using a reminder stimulus, demonstrating that 

the initial conditioned memory was not attenuated or overwritten by the extinction 

memory (Bouton, 2004; Trent et al., 2015a). As with acquisition of fear memory, 

extinction is NMDAR dependant (Falls, Miserendino and Davis, 1992), with dose 

dependant impairment of within and between session extinction observed following 

administration of NMDAR antagonists (Baker and Azorlosa, 1996; Santini, Muller and 

Quirk, 2001; Sotres-Bayon et al., 2009).  

A number of brain regions are involved in both fear conditioning and extinction. The 

PFC is important for associative fear learning when it involves a temporal or 

contextual component (Gilmartin, Balderston and Helmstetter, 2014), although its role 

in contextual fear appears to depend on the predictive value of the context. When the 

PFC is lesioned and the sole predictor of the shock the fear memory is largely intact 
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(Corcoran and Quirk, 2007; Gilmartin and Helmstetter, 2010; Zelinski et al., 2010). 

However, if there are other  reliable shock predictors in addition to context, such as  

light,  then inactivation of the PFC impairs the fear memory (Zhao et al., 2005; 

Gilmartin and Helmstetter, 2010). The hippocampus is important for contextual 

learning as it binds together various elements to form a contextual representation 

(Phillips and LeDoux, 1992; Fanselow, 2000). Without this representation learning 

cannot occur (Maren, Phan and Liberzon, 2013a). Animals immediately shocked 

when placed in a chamber do not have to time to form this representation and do not 

exhibit contextual conditioning (Fanselow, 1990; Wiltgen et al., 2001; Frankland et 

al., 2004). Additionally if the hippocampus is lesioned post-training recently acquired 

fear memories are impaired, indicating the hippocampal dependant encoding is the 

default mechanism for contextual learning (Biedenkapp and Rudy, 2009). Remote 

fear memories are not affected reflecting the selective memory impairments seen in 

humans with hippocampal damage (Fanselow, 2000; Rudy, Barrientos and O’Reilly, 

2002). The amygdala is important in contextual fear conditioning for co-ordination of 

the fear response (Fanselow and LeDoux, 1999; Lee et al., 2001; Davis, 2006; Kochli 

et al., 2015). Sensory inputs converge in the basolateral amygdala where protein 

synthesis dependant formations of association occurs (Maren et al., 2003; Kwapis et 

al., 2011) between the CS (context) and US (shock) in the basolateral amygdala 

(Barot et al., 2009). All three structures are also involved in extinction (reviewed in 

Maren et al. 2013 and Maren 2011). 

Aversive associative learning impairments have been observed in people with 

schizophrenia (Kosmidis, Breier and Fantie, 1999; Hofer et al., 2001; Jensen et al., 

2008a; Hall et al., 2009). As well as a deficient response to the CS patients with 

schizophrenia also exhibit an inappropriate increase in response to control or 

unconditioned stimuli (Jensen et al., 2008a). Fear memory extinction deficits have 

also been found in patients with schizophrenia (Holt et al., 2009). The Dlg2-/- mouse 

model demonstrated impaired extinction using an appetitive touch screen task 

(Nithianantharajah et al., 2013). However, reward based associative learning 

engages different neural circuits and mechanisms to fear (Schultz, Dayan and 

Montague, 1997).  

Of the other Dlg family members only the role of Dlg4 in fear conditioning has been 

examined. The expression of Dlg4 is increased in the amygdala and other brain 

regions that contribute to the network supporting fear learning (Mao et al., 2013). 

Formation of extinction memories rapidly reverses this increase (Mao et al., 2008; 

Mao et al., 2013). Deletion of insulin substrate-2 increases expression of Dlg4 and 
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increased fear memory for both context and cues (Irvine et al., 2011).  In the mouse 

Dlg4 knock in (KI) model exhibited deficient contextual discrimination. Overall Dlg4 

appears to be important for the stability of acquired fear memory, extinction and 

contextual discrimination in associative learning. It is currently unclear whether Dlg2 

may be comparably important in these processes. 

The different importance of each Dlg in cognitive function have been demonstrated in 

full KO mice (Nithianantharajah et al., 2013). In particular the divergence of roles 

between the paralogs in associative learning have been observed. Dlg2 and Dlg3 KO 

demonstrated opposing extinction phenotypes; Dlg3 KO mice demonstrated faster 

extinction compared to WT in opposition to the slower extinction observed in the Dlg2 

KO mice. As discussed above studies into Dlg2 in fear conditioning are lacking and 

are therefore beneficial to undertake.  

7.1.1 Aims 

1. Determine whether the mutation in Dlg2 impacts upon acquisition of fear 

memory during a single shock trial CFC paradigm.  

2. Assess whether Dlg2+/- rats exhibit comparable recall of the fear memory to 

WT 48 hrs after conditioning. 

3. Examine whether there is any effect of Dlg2 mutation on extinction of the CR, 

or recall of the extinction memory. 

4. Investigate whether the initial conditioned memory can be recovered following 

a reminder stimulus after multiple extinction sessions, facilitating 

discrimination between the strength of the CS-US memory and extinction. 
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7.2 Methods 

7.2.1 Animals 

For a pilot study to optimise the CFC paradigm 15 male Long Evans rats (10 WT, 5 

HET) were used and were housed as previously described (2.1.2) with the exception 

of the being held in the reverse dark light room. For the second experiment a cohort 

of thirty eight male Long Evans rats (19 WT, 19 HET) characterised in Chapter 6 were 

rehoused in the reverse dark light room (lights off 10:00 – 20:00) after open field 

testing. Rats were allowed to acclimatise for 1 week before further testing. At start of 

testing rats were 5.1 months of age. Rats were transported to the behavioural room 

and conditioning chambers in large transport cages, which was kept consistent 

between trials, and returned to home cages immediately following testing. All rats 

transported in box A were tested in chamber A, and all in box B in chamber B. All 

trials were completed during the dark phase, at least 30 mins after lights off. During 

each trial the chamber light was on, turning off when the trial finished. The rats were 

housed in a reverse dark light room but tested in chambers with the light on so that 

the holding room context was as distinct as possible from the testing boxes. 

7.2.2 Contextual Fear Conditioning 

Task 

All sessions were conducted in two standard rat modular test chambers (Med 

Associates Inc.,Vermont, USA) previously described in 2.2.2.3. All rats underwent 

each session in the same chamber. During testing sessions the light turned on in the 

chamber, staying on for the duration and turning off after the program had finished. 

This contrasted with the holding room, which was in the dark phase during testing, 

helping to separate the contexts of the holding room and the testing room. To maintain 

this difference rats were transported from home cages to the testing room in a light 

proof box and the box used was constant across all manipulations.  

7.2.2.1 Experiment 1: Pilot 

Previous work from our lab using a Cyfip1+/- rat model on the Long Evans background 

found that the WT rats did not condition using a 0.5 mA foot-shock (Simon Trent, 

personal communication, data not shown). Given the shared background strain, a 

pilot of 15 rats (10 WT, 5 HET) was conducted with a small cohort of WT and Dlg2+/- 

rats. Rats were placed in the chambers for 2 mins to acquire a contextual 

representation (CS) before receiving a 0.5 mA scrambled shock (US) for 2 secs. Rats 
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remained in the chamber for 1 min post shock before being returned to home cages. 

All rats were conditioned and tested between 10:30- 12:30.  

Two recall sessions were conducted 24 hr and 1 week after conditioning. Rats were 

returned to the conditioned context for 2 minutes in the absence of the US.  

7.2.2.2 Experiment 2: Conditioning  

For the main experiment the conditioning protocol was similar to the protocol 

described above but using a 0.7 mA shock. The cohort was divided across two days 

(n = 20 on day 1, n = 18 on day 2, counterbalanced for genotype) and all training and 

test sessions were conducted between 10:30-13:00. This timing was maintained for 

all subsequent trials. 

7.2.2.3 Experiment 2: Recall and Extinction 

Forty-eight hours post conditioning the rats were exposed to the conditioned context 

(CS) for 10 mins to elicit extinction of the conditioned memory in the absence of the 

US (Barnes and Thomas, 2008; Barnes, Kirtley and Thomas, 2012; Trent et al., 

2015a). Forty-eight hours post extinction, and 28 days post conditioning, the rats were 

exposed to the conditioned context for 2 minutes in the absence of the US (long term 

extinction recall test).  

7.2.2.4 Experiment 2: Reminder session 

Eight days after the long term extinction recall rats were exposed to the conditioned 

context for 2 minutes. This was co-terminated with a 2 sec 0.25 mA scrambled foot-

shock as a reminder stimulus (Trent et al., 2015b) . Forty hours later the rats were 

exposed to the conditioned context for 2 minutes.  

7.2.2.5 Analysis 

Offline analysis for freezing behaviour was scored every 10 seconds blind to condition 

(Barnes & Thomas, 2008; Trent et al. 2015). Freezing is defined as complete 

immobility, except for respiration, for 1 second. The number of instances of freezing 

was divided by the total bin number for each session (i.e. for 2 min recall the number 

was divided by 12) to generate a percentage freezing for each animal. Two 

experimenters blind to genotype independently scored each video to ensure 

reliability.  

Normality was assessed for all data using Shapiro-Wilks test. Where appropriate 

transformations were attempted to correct normality. Extreme outliers (±3 studentized 
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residuals) were removed. If significance is changed by outliers being retained this is 

reported. Homogeneity of covariances was assessed by Box’s M test and 

homogeneity of variances was assessed by Levene’s test. In instances where the 

assumption of sphericity was violated the Greenhouse-Geisser correction was 

applied.  

For the pilot percentage freezing across sessions conditioning (pre-US and post-US) 

and recall (24 hr and 7 days) was compared between genotypes by mixed ANOVA.  

For the main experiment the percentage freezing was compared between genotypes 

by mixed ANOVA for each session type: conditioning (pre-US and post-US), 

extinction (first and last two minute bins), extinction recall (48 hrs and 28 days), 

reminder sessions (reminder and recall). Additionally, percentage freezing was 

compared between genotypes across the 10 minute extinction session in 2 minute 

bins by mixed ANOVA.  
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7.3 Results 

7.3.1 Experiment 1: A 0.5 mA shock is does not induce sufficient CFM in either 

genotype 

A small pilot was conducted to determine whether a 0.5 mA shock was sufficient to 

induce a sufficient conditioned fear memory. Pilot data was normal except 7 day WT, 

24 hr HET and all pre-US data. There was homogeneity of variances and covariances 

for conditioning. One outlier was found for recall sessions (HET) and upon removal 

there was homogeneity of variances and covariances, and corrected normality for 24 

hr HET data. The outlier was removed from conditioning analysis without impact.  

The percentage freezing pre-US and post-US was compared using mixed ANOVA 

(Figure 51). Both genotypes exhibited increased freezing post-US (SESSION: F (1, 12) 

21.511, p = 0.001, GENOTYPE: F (1, 12) 26.144, p = 0.991, SESSION X GENOTYPE: 

F (1, 12) 0.036, p = 0.852). 

Fear memory recall was compared between the genotypes 24 hrs and 7 days post 

conditioning using mixed ANOVA (Figure 51). Both genotypes demonstrated a weak 

CR and similar percentage freezing in the recall sessions (SESSIONS: F (1, 12) 3.051, 

p = 0.106, GENOTYPE: F (1, 12) 0.003, p = 0.950, SESSION X GENOTYPE: F (1, 12) 

3.051, p = 0.106).   
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Figure 51. Both genotypes exhibited increased freezing following a 0.5 mA shock, but no difference in 

percentage freezing across 2 recall sessions (24 hr and 7 days). n = 10 (WT), n = 4 (HET). Data 

represents mean ± SEM. 

7.3.2 Experiment 2: Dlg2+/- rats exhibit normal acquisition, extinction and 

recall following a single a 0.7 mA foot-shock  

Two rats were excluded from analysis due to repeated escaping from the chamber. 

One further WT was found to be an outlier in all tests and removed. Several videos 

during the reminder recall session were corrupted (4 HET). Most data was normal. 

Extinction first and last 2 minutes, and both extinction recall sessions had 

homogeneity of variances and covariances. Pre-US and post-US had homogeneity 

of covariances but not variances and reminder and recall session only had 

homogeneity of variances, not covariances. Following on from the pilot study in order 

to increase CFM in both genotypes the shock intensity was increased to 0.7 mA. 

Dlg2+/- rats were able to acquire fear memory similarly to the WT rats. The percentage 

freezing exhibited between Dlg2+/- and WT rats pre-US and post-US was analysed by 

mixed ANOVA (Figure 52 a). Both genotypes exhibited increased percentage 

freezing in the minute post-US compared to pre-US (SESSION: F (1, 33) 108.623, p = 
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<0.001, GENOTYPE: F (1, 33) 0.048, p = 0.828, SESSION X GENOTYPE: F (1, 33) 0.002 

p = 0.962).  

Both genotypes demonstrated robust CFM in the first two minutes of the extinction 

session, but Dlg2 mutation did not impair extinction or extinction recall. The 

percentage freezing 48 hrs post conditioning was examined for the first 2 and last 2 

minutes of a 10 minute extinction session using mixed ANOVA (Figure 52a). Both 

genotypes exhibited a reduction in percentage freezing between the first and last 2 

minutes (TIME BIN: F (1, 33) 14.298, p = 0.001, GENOTYPE: F (1, 33) 0.031, p = 0.861, 

TIME BIN X GENOTYPE: F (1, 33) 0.000, p = 0.986). Extinction across the 10 minutes 

was then examined in 2 minute bins by mixed ANOVA (Figure 52b). The assumption 

of sphericity was met, X2 (9) 7.942, p = 0.541. Over the 10 minutes the percentage 

freezing was reduced for both genotypes comparably (TIME BIN: F (4, 132) 7.471, p = 

<0.001, GENOTYPE: F (1, 33) 0.008, p = 0.929, TIME BIN X GENOTYPE: F (1, 132) 0.143, 

p = 0.966). 

Extinction recall was then tested 48 hours and 28 days post extinction and analysed 

using mixed ANOVA (Figure 52a). The CR for both genotypes was lower for both 48 

hr and 28 day, demonstrating between session extinction. However, there was no 

difference in percentage freezing between the two recall sessions nor between 

genotypes (SESSION: F (1, 33) 0.074, p = 0.788, GENOTYPE: F (1, 33) 0.018, p = 0.894, 

SESSION X GENOTYPE: F (1, 33) 0.778, p = 0.384).  

Finally, neither genotype responded to the 0.25 mA reminder stimulus. The 

percentage freezing was analysed during the reminder stimulus session and a 

subsequent 48 hr recall session using mixed ANOVA (Figure 52a). Both genotypes 

exhibited weak CR in the final recall session after the reminder session, indicating no 

US mediated recovery of the CR as would be expected (Bouton, 2004; Trent et al., 

2015a)  (SESSION: F 1, 33) 1.167, p = 0.288, GENOTYPE: F (1, 33) 1.090, p = 0.304, 

SESSION X GENOTYPE: F (1, 33) 0.110, p = 0.743).  

In summary, Dlg2 mutation did not affect acquisition of CFM following a 0.7 mA shock, 

there was no impact on within session extinction and both genotypes showed long 

term extinction with no spontaneous recovery of CFM 28 days after extinction training. 

A reminder stimulus was not effective for either genotype.  
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Figure 52. Dlg2 mutation did not affect percentage freezing in response to a single 0.7 mA shock during 

CFC, extinction or recall sessions compared to WT (a). Weak intrasession extinction was exhibited by 

both genotypes during the 10 minute extinction trial 48 hrs after conditioning (b). n = 17 (WT) 18 (HET). 

Data represents mean ± SEM.  
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7.4 Discussion 

7.4.1 A 0.5 mA shock was not sufficient to produce adequate freezing for 

manipulation in either genotype 

The pilot study demonstrated that both genotypes were able to acquire an association 

between the CS and the US at 0.5 mA. There was a substantial reduction in freezing 

between post-US and 48 hr recall which may suggest an impairment in consolidation 

of fear memory in both WT and HET rats. This low level of conditioned freezing 

precludes further manipulation to study long term memory or extinction. A similar 

effect was observed in a Cyfip1+/- rat model, also from a Long Evans background, with 

both genotypes exhibiting little conditioning to a 0.5 mA shock (Simon Trent personal 

communication, data not shown). These experiments demonstrate that Long Evans 

(LE) rats require a higher intensity US for this protocol than Lister Hooded (LH) rats, 

the strain with which this protocol was generated with (Simon Trent, personal 

communication). Strain differences in CFC between Sprague Dawley (SD) and LE 

rats have been observed, with SD exhibiting more freezing and ultrasonic 

vocalisations than LE rats (Graham et al., 2009). It was also noted in both the Cyfip+/- 

and WT LE rats that greater freezing post-US and during recall was observed 

following a 0.8 mA shock, but this shock intensity prevented extinction of the fear 

memory (Simon Trent personal communication, data not shown). Previously weaker 

extinction was observed following more intense shocks (Annau and Kamin, 1961). In 

order to induce a greater freezing response, without inhibiting extinction, a 0.7 mA 

shock was used with LE rats for subsequent studies.  

7.4.2 Dlg2 mutation did not affect acquisition, extinction or recall of fear 

memory following a 0.7 mA shock 

Both genotypes acquired CFM following a single 0.7 mA shock. Across the 10 minute 

extinction session both genotypes demonstrated extinction when analysed in 2 

minute bins, and when compared between the first and last 2 min bins.  

Both genotypes demonstrate a similarly reduced CR 48 hrs post extinction, which is 

maintained when tested again 28 days post conditioning. This suggests neither 

genotype exhibited spontaneous recovery. This refers to the resurgence of the 

conditioned freezing memory following extinction with the passage of time (Milad and 

Quirk, 2012). Spontaneous recovery is thought to reflect a failure to retrieve the 

extinction memory as opposed to its loss (Bouton, 1993).  
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In addition, neither genotype demonstrated a resurgence of freezing behaviour in the 

recall session following a reminder stimulus session which co-terminates with a 0.25 

mA shock. Normally the CR reappears after a reminder session (Bouton, 2004; Trent 

et al., 2015a). The reminder stimulus used may have been too low in this instance; 

the stimulus needs to be sufficient to retrieve the conditioned memory without 

resulting in new learning (Cai et al., 2006; Myers and Davis, 2007; Blundell, Kouser 

and Powell, 2008). Given the need to avoid facilitating new learning a stimulus 

strength previously successful in provoking freezing behaviour was selected (Trent et 

al., 2015). However, given the previously demonstrated weaker response of LE rats 

to a 0.5 mA shock a greater intensity reminder may have been required. Alternatively, 

there may have been no memory to retrieve, given the weaker CR following 

conditioning.  

The ability to learn the association between CS and the US, as well as later extinction 

of CR, were particularly interesting to examine given the previously observed deficit 

in extinction in Dlg2-/- mice (Nithianantharajah et al., 2013). To investigate the mouse’s 

ability to acquire associations the mice underwent operant conditioning, with the 

selection of the correct image in the correct location triggering a food reward. 

Extinction was explored by studying how long until response reduced in the absence 

of reinforcement. The Dlg2-/- mice learnt the association but demonstrated slower 

extinction than WT mice (Nithianantharajah et al., 2013). By comparison the Dlg2+/- 

rats in our study demonstrated normal acquisition of the CS-US association during 

CFC and both genotypes exhibited extinction of the fear memory.  

Comparing the KO mouse and our rat model there are factors that may influence the 

different outcomes. Gene dosage may be important, as our rat model is still 

expressing one copy of Dlg2 as opposed to the mouse model which previously 

demonstrated an extinction deficit being a full KO. The presence of one copy of Dlg2 

may be sufficient to prevent impairment in NMDAR dependant processes, such as 

fear memory acquisition and extinction. Indeed the presence of a single copy of Dlg1 

enabled mice to learn normally, whereas the full deletion is embryonically lethal 

(Nithianantharajah et al., 2013). Another factor could influence our findings is the 

weaker CFM induced in both genotypes, which may indicate a less persistent CFM. 

We observed that LE rats require a high intensity shock to produce a robust CFM, 

with both genotypes demonstrating around 50-60% freezing post-US following a 0.7 

mA shock. Additionally the reminder stimulus failed to recover the CR. Whilst this may 

be due to a stronger extinction memory that could not be out competed this seems 

less likely, particularly given the increased difficulty of extinguishing CFM resulting 



154 
 

from higher intensity shocks (Annau & Kamin, 1961). Instead it is possible that the 

acquired CFM was weaker to start with. The reminder stimulus acts a cue for retrieval 

of the CS/US memory, but if this memory has been forgotten then there is no memory 

to retrieve. Given these methodological restrictions it may not have been possible to 

uncover any genotypic differences.   

Furthermore, the lack of an extinction deficit in our rat in comparison to the KO mouse 

model may be due to differences in appetitive vs aversive learning. Appetitive learning 

capitalises on the rodent’s response to a rewarding stimulus (Itzhak, Perez-Lanza 

and Liddie, 2014). Positive reinforcement of the response, given in temporal relation 

to the stimulus, increases the response probability by placing the emphasis on the 

relationship between the stimulus and response, as opposed to the association 

between two stimuli (Skinner, 1938; Martin-Soelch et al. 2007). The time taken for the 

association to form between the positively reinforced stimulus and the reward is much 

longer, requiring more training, than the fundamental fear response invoked during 

aversive conditioning. Given the prolonged training period required it is arguable that 

appetitive learning is more complex than one trial aversive learning paradigms, and 

as a result provides more opportunity for deficits to become apparent and influence 

behaviour.  

7.4.3 Strengths, limitations and future directions 

As observed in Chapter 6 the Dlg2+/- rats are not anxious or hyperactive compared to 

WT rats (6.6), phenotypes which could have confounded the interpretation of CFC 

data. For example, immobility (freezing) and hyperactivity are mutually exclusive, 

whilst anxious rats could exhibit greater innate freezing regardless of learning a CS-

US association. The lack of such phenotypes suggests there was no influence of 

these behaviours on the CFC experiments in this Chapter. 

However, strain differences are likely to have impacted upon the findings in this 

Chapter. Previously it has been shown that LE exhibit less freezing and vocalisation 

than SD rats during CFC studies (Graham et al., 2009). The authors suggested this 

may be the result of increased fear expression in SD than LE, or faster and/or stronger 

fear conditioning in the SD (Graham et al., 2009). The protocol described during this 

Chapter was initially developed using a third strain, LH rats (Simon Trent, personal 

communication). As discussed 6.6.2.1 there were issues determining a sufficient 

shock level to induce robust a CFM in both mutant and WT LE rats, across two 

different models. Therefore it is quite possible that the paradigm itself needs 

modification to be able to draw out any genotypic differences in models with a LE 
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background. This could include increasing the number of shock/context pairing 

sessions or altering the extinction protocol (multiple sessions as opposed to one long 

session). 

A potential difference in pain sensitivity may exist between genotypes. Antisense 

knockdown of Dlg2 was found to attenuate paw withdrawal response to acute thermal 

and mechanical stimulation during a neuropathic pain test, a response dependant on 

NMDAR activation in the spinal cord (Zhang et al., 2003). Given the genotypes 

responded comparably post-US a differential pain response to the shock is unlikely, 

but could be tested by conducting a tail flick or hot plate test (Bannon and Malmberg, 

2007).  

The simplicity of the single trial CFC task employed provides a useful starting point to 

investigating associative learning. Given the association of Dlg2 and NMDA 

receptors, and the importance of NMDAR in fear memory and extinction (Falls, 

Miserendino and Davis, 1992; Baker and Azorlosa, 1996; Santini, Muller and Quirk, 

2001; Sotres-Bayon et al., 2009), combining ketamine injection and CFC may reveal 

differential effects on extinction (Clifton, Thomas and Hall, 2018). As discussed in 

Chapter 4 this additional manipulation, on a system that may be weakened by Dlg2 

haploinsufficiency, may provide more challenge than can be accommodated. 

Ketamine has already been shown to impairs extinction in WT rats (Clifton, Thomas 

and Hall, 2018). Another approach would be to modify the protocol. The shock during 

conditioning could be increased in mA, and to counter the possibly strengthened 

extinction conduct multiple days of extinction testing. As well as probing recall in the 

conditioned context examining  behavioural responses it in a second context may 

reveal whether the Dlg2+/- rats exhibit a generalisation of the fear memory and failure 

to discriminate between contexts, as has been observed in multiple Dlg4 mutant 

models (Nagura et al., 2012a; Fitzgerald et al., 2015). Alternatively a discrete CS, 

such as a tone or light could be used instead of a context, so called cued conditioning 

(Curzon, Rustay and Browman, 2009). Cued conditioning, like contextual 

conditioning, involves the amygdala (Phillips and LeDoux, 1992). However, 

hippocampal lesions do not impair CR acquisition in cued conditioning paradigms, 

only contextual ones, implying that the hippocampus is more important for the 

formation of a contextual CS-US association (Otto and Poon, 2006). Another 

paradigm that could be employed to further explore the role Dlg2 haploinsufficiency 

in associative learning is latent inhibition (LI). LI involves pre-exposure to the CS prior 

to co-occurrence with the US, reducing its predictive value and subsequently the 

likelihood of association formation (Lubow, 1973). LI is impaired in schizophrenia 
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patients, thought to result from the inability to filter out irrelevant stimuli (Lubow, 1973; 

Swerdlow et al., 1996).  

7.4.4 Conclusions 

When tested with a single shock trial CFC mutation in Dlg2 did not affect acquisition 

of CFM, nor the extinction of this memory. Any genotypic effects may have been 

masked by the necessity of increasing the shock to 0.7 mA in order to achieve an 

anticipated level of freezing. Going forward more complex protocols may be better 

able to uncover any differences.  
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8 General Discussion 

8.1 Introduction 

Abnormal synaptic functioning has been repeatedly implicated through multiple 

approaches in the risk of developing psychiatric diseases. Dlg2 is an important PSD 

protein involved in the functioning of glutamatergic receptors, which forms part of the 

molecular basis for learning and memory. Disruption of glutamatergic signalling may 

contribute to the cognitive deficits observed in schizophrenia. Mutations in Dlg2 have 

been associated with schizophrenia, ASD and BPD. Previous research has 

implicated mutations in Dlg2 with impaired cognitive flexibility, as KO mice exhibited 

deficient extinction, reversal learning (Nithianantharajah et al., 2013) and motor 

learning (Winkler et al., 2018). However, behavioural characterisation of Dlg2 mouse 

models is still limited and the vast majority of current literature was obtained using full 

KO models. All data presented in this thesis is from more clinically relevant 

heterozygous Dlg2 rodents, which are more translatable to humans heterozygous for 

DLG2 CNVs.  

This Chapter will present the key findings from each chapter of this thesis and discuss 

the potential implications, before going on to outline the limitations of the work and 

how to take it further with potential future investigations.  

8.2 Summary of Findings 

The characterisation of two heterozygous rodent models was detailed in this thesis. 

The mouse model employed is a different strain to that of all currently published 

research on Dlg2 mutation and the rat model is completely novel. It was therefore 

important to examine the impact of the mutation in each model. The expression of 

Dlg2 mRNA in important brain regions for processes affected in psychiatric diseases 

(PFC, hippocampus) as well as control regions (cerebellum) was examined. In the 

mouse model (Chapter 3) a significant reduction in Dlg2 mRNA expression was found 

in the PFC, but not the hippocampus or cerebellum. In contrast in the rat model 

(Chapter 6) a significant reduction was found in both the PFC and hippocampus, but 

not in the cerebellum. The selectivity of the reduced regional expression in of the 

mouse, compared to rat model, may have influenced the behavioural phenotypes 

observed. 

Within the Dlg family of proteins there is possibility for a functional redundancy 

between the different proteins (discussed in 1.4.1) therefore it was important to 
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investigate if there were any changes in expression of Dlg1, Dlg3 or Dlg4 in the rodent 

models. No evidence was found of changes in mRNA of the other Dlg family members 

in any brain region of either the mouse (Chapter 3) or rat (Chapter 4) models.  

Basic behavioural characterisation was also conducted in each model. No evidence 

was found in either the mouse (Chapter 3) or the rat (Chapter 4) for altered locomotor 

activity levels or anxiety phenotypes. Acoustic startle and PPI response, locomotive 

response to a novel context, and motor function/learning were investigated in the 

mouse model. Differences compared to WT mice were observed in motor learning on 

the accelerating rotarod task, acoustic startle responses and habituation to an 

acoustic stimulus. On an accelerating rotarod task male but not female Dlg2+/- mice 

demonstrated impaired motor learning, maintaining a shorter latency to fall for longer 

before eventually matching performance of the WT mice with further training. In the 

rat model (Chapter 6) only the accelerating rotarod task was conducted, and in 

contrast to the mouse no differences were found. Dlg2+/- mice exhibited a reduced 

startle response to a 120-dB acoustic stimulus and did not demonstrate habituation 

to this stimulus.  

As part of the ketamine-induced locomotion challenge (Chapter 4), interrogating the 

interaction between Dlg2 and NMDAR, mice were given five daily habituation 

sessions to reduce novelty induced locomotion in response to the context prior to 

ketamine injection. It was found that Dlg2+/- mice exhibited reduced habituation across 

these sessions compared to WT mice. However subsequently, no differences in 

activity in response to ketamine were found between the genotypes. Whilst the 

deficient habituation provides further evidence of deficient habituation in Dlg2+/- mice 

in a second task it is in contrast to the context shift experiment in Chapter 3 using the 

same locomotor boxes. In this test neither genotype demonstrated between session 

habituation, although both demonstrated within session habituation, across four 

sessions prior to the final testing day.  

There are several factors that may have contributed to these conflicting results. The 

context shift habituation sessions were much shorter than for the ketamine study, 30 

minutes versus 2 hrs. It may be that this is not sufficient time daily to result in 

significant habituation across multiple days, and that more consecutive days would 

be needed to achieve this. It is also possible that the lighting may have influenced the 

outcome. Whilst both studies were conducted in the light phase of the day the context 

shift experiment required the light to be on during the task, so that the mice could 

observe the patterns on the walls, whereas the ketamine study was conducted in the 
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dark. Finally, as highlighted in Chapter 3 there is a potential visual issue in the 

background strain of the mice. The cohort tested in Chapter 3 had not been crossed 

to eliminate the possibility of this occurring, and so it could be that the mice did not 

behave as anticipated due to impaired vision and may not have been able to easily 

see the visual clues. By contrast the cohort in Chapter 4 had been crossed to prevent 

this potential issue, and were less reliant of visual cues being tested in the dark in 

clear boxes.  

The delayed motor learning phenotype was further investigated in Chapter 4. A 

separate cohort of mice underwent an extended training version of the accelerating 

rotarod task which increased the number of daily trails. Additionally, the mice were 

tested on three consecutive days to examine consolidation of learning. This modified 

protocol enabled examination of whether the motor learning deficit was specific to fast 

or slow motor learning. The early motor learning deficit observed in Chapter 3 was 

replicated. In the extended task, male Dlg2+/- mice exhibited deficient motor learning 

during the earlier phase of learning, and motor functioning was not impaired, as with 

increased training the Dlg2+/-mice eventually reached a similar performance level as 

WT mice. Both genotypes exhibited skill learning consolidation across the three days. 

No deficit was found using this protocol with female mice, implying that the impairment 

was sex specific. The cellular basis of this phenotype was then investigated (Chapter 

4). When comparing neuronal activity in M1 of the motor cortex following rotarod 

training, Dlg2+/- mice in the trained group did not express the increase in cFos staining 

observed in the WT mice, indicating less neuronal activity during early phase motor 

learning.  

The deficits observed in the mouse model were found in fairly simple learning tasks 

that involved non-associative learning reliant on synaptic plasticity (Chapter 3 and 4). 

Associative learning and cognitive flexibility, such as extinction, was investigated in 

the novel rat model using a single shock contextual fear conditioning paradigm 

(Chapter 7). Neither genotype exhibited sufficient conditioning to the initially tested 

0.5 mA shock, so the intensity was increased to 0.7 mA. Following the 0.7 mA shock 

contextual fear conditioning was found to be intact in Dlg2+/- rats. Across a 10 minute 

trial both genotypes exhibited comparable extinction of the fear memory, and no 

differences were found for recall of extinction in subsequent sessions.  

The final investigations in the mouse model examined the potential impact of Dlg2 

mutation on adult neurogenesis in the DG of the hippocampus (Chapter 5), a process 

that may reflect a convergent phenotype across synaptic risk gene models 
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(Westacott, 2016; Haan et al., 2018). When comparing expression of the new-born 

neuron marker DCX, no differences in the basal rate of neurogenesis between the 

genotypes were found in 8-week-old mice or older 8-month-old mice. Rates of 

neurogenesis did not differ for either genotype between behaviourally naive mice and 

those which had undergone behavioural testing.  

8.2.1 Does heterozygosity of Dlg2 impact upon brain functioning? 

Previous behavioural examination of Dlg2 mutant models was limited both in 

abundance and scope. The majority of the literature available focused on KO mice, 

as opposed to the more disease relevant heterozygotes, probed a limited range of 

behavioural tasks and was all conducted in one Dlg2 mutant strain.  This thesis is 

also the first time Dlg2 mutation has been investigated in a rat model. The behavioural 

experiments conducted with the Dlg2tm1a(EUCOMM)Wts strain demonstrated that the male 

Dlg2+/- mice are not generally impaired. There was no evidence of phenotypes in 

general locomotion, motor function, PPI response or anxiety in Dlg2+/- mice.  

 

Thus, there is no evidence of abnormalities in the mice, such as generalised hypo- or 

hyperactivity, nor anxiety phenotypes, which could have confounded other tests. This 

supports a recent study, where neither homozygous or heterozygous male Dlg2-/- 

mice exhibited altered anxiety measured during the open field or light/dark tests 

(Winkler et al., 2018).  

 

However, Dlg2+/- mice did exhibit behavioural specific deficits; habituation to an 

acoustic stimulus and deficient motor learning. Acoustic startle and PPI response had 

not been investigated in Dlg2 mutant mice, therefore this represents a novel 

observation.  

 

The first paper investigating a Dlg2 mouse model found no differences between WT 

and Dlg2 mutant mice on rotarod tasks (McGee et al., 2001), whereas Winkler et al 

(2018) supports the impaired motor learning phenotype observed in male Dlg2+/- mice, 

and found an even more severe phenotype in Dlg2 KO. Given that this deficit has 

been seen in two different strains, and across experiments using different motor 

learning paradigms in this thesis (Chapter 3 and Chapter 4), it is likely that impairment 

in motor learning is a genuine phenotype of Dlg2 heterozygosity. Furthermore, the 

observation of reduced neuronal activation in M1, as measured by cFos expression 

in Dlg2+/- mice during motor learning (Chapter 4) points towards a biological basis for 

the deficit. 
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In the novel rat model motor learning, locomotor activity and anxiety were investigated 

(Chapter 6). As with the mouse model there was no evidence of altered locomotor 

activity or anxiety. Although conducting further anxiety tests, such as light/dark box 

or EPM, would be beneficial to support this conclusion as multiple tasks may assess 

a wider spectrum of the emotional profile of the rats (Ramos et al., 2008).  An 

accelerating rotarod task was employed to assess motor learning, although the 

corresponding motor function task, involving the set speed rotating rod was not 

conducted due to time constraints, so conclusions cannot be drawn regarding motoric 

functioning in the rats. In contrast to the mouse model no differences were found in 

motor performance, and similar to the mice there were no differences in consolidation 

between the genotypes. There are a number of possible explanations for this 

discrepancy between the mouse and rat models. In general the rats performance was 

worse than on the rotarod task than the mice, with the average latency to fall never 

exceeded 90 seconds for the rat, even after multiple sessions. By comparison the 

majority of the mice were remaining on the rod for the 5-minute task duration despite 

undergoing more trials than the rats. The difference in protocols may also have 

influenced the ability to detect any differences in the rat model. The task for rats had 

a longer inter-trial interval and less trials per session, therefore the slope of the 

learning curve is reduced when compared to the 7 trials per session in the mice, 

making it more difficult to uncover subtle deficits. As suggested in Chapter 6 an 

alternative task for assessing motor learning, such as the staircase task (Montoya et 

al., 1991; Pagnussat et al., 2009b), may be more practical for the rats as it removes 

fatigue as a confound.  

 

Contextual fear conditioning was used to investigate associative learning processes 

in the rat model in Chapter 7. No differences in acquisition of a fear memory, extinction 

learning or recall of the extinguished memory were found between the genotypes 

following a single shock trial. The protocol employed was quite simple, and as such 

may not have been sensitive enough to draw out deficits in any of the learning 

processes, which may only become apparent with increasingly complex 

manipulations. This could be addressed by increasing the complexity of the protocol 

through introduction of multiple contexts, using different extinction protocols, or 

employing a different approach, such as latent inhibition (LI). LI relies on the PFC and 

hippocampus and involves active inhibition of the CS-US association. This inhibition 

occurs as a CS no-US association is formed during the pre-exposure to the context, 

which then interferes with the formation of the CS-US association during conditioning 



162 
 

(Escobar et al 2002). This approach may therefore represent an alternative means 

for assessing cognitive flexibility in the rat model. The lack of any impairment in 

extinction is in contrast to the delayed extinction seen previously in a Dlg2 KO mouse 

(Nithianantharajah et al., 2013). This could be attributed to a species difference, a 

gene dosage effect (one functional copy in the rat vs a full KO mouse) or task type 

(aversive learning in our rat vs appetitive learning in the mouse). 

 

Only a few basic behavioural tasks have been conducted so far in the rat model, 

which demonstrated no current indication of abnormalities in anxiety or locomotor 

activity. However, as the rat model is completely novel further characterisation should 

be conducted to explore the impact of the mutation, for example probing acoustic 

startle and PPI response, habituation to a novel context or different cognitive 

processes like working memory or spatial memory.  

 

Of the tasks assessed in both species so far in this thesis there has not been 

convergence of phenotypes. It is possible that species differences may mean some 

phenotypes will not translate into the rat model, as may be the case with the lack of 

an extinction phenotype in Chapter 7 that had previously been seen in another Dlg2 

KO mouse strain (Nithianantharajah et al., 2013).  However, it is also important to 

recognise that examining the same processes may require optimisation of 

experimental conditions and training protocols for each species. For example, as 

discussed above, rotarod tasks may not be the most effective means to investigate 

motor learning in the rat model. Whilst at present there is no convergence of 

phenotypes the rat is still a useful model from which important insights could be 

gained. One major advantage the rat model has over the mouse model described in 

this thesis is the reduction Dlg2 mRNA in the hippocampus, which was not found in 

the mouse. The rat model, therefore, is better suited than the mouse to studying the 

impact of Dlg2 mutation on the hippocampus, and hippocampal dependant tasks. For 

example, it is possible no difference was found in DCX expression in the DG of the 

hippocampus in the heterozygous Dlg2 mice because there was no apparent 

difference in Dlg2 expression in this region.   

 

The deficits observed in the Dlg2+/- mice in this thesis involve cognitive processes that 

are arguably less complex than previously reported phenotypes, delayed reversal 

learning, delayed extinction, and attentional deficits, in Dlg2 KO mice 

(Nithianantharajah et al., 2013). This could stem from a gene dosage effect, an 
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interpretation supported by the increased severity of the motor learning phenotype 

between Dlg2+/- mice and KO mice (Winkler et al., 2018).  

 

Habituation is an universal behaviour often described as the simplest form of learning 

(Harris, 1943; Thompson and Spencer, 1966; Groves and Thompson, 1970). Motor 

learning is specifically associated with gaining a new motoric skill, and that once learnt 

it can be automatically executed, as opposed to being cognitively demanding (Dayan 

and Cohen, 2011; Kal et al., 2018). Arguably this is at odds with the suggestion 

previously put forward by (Nithianantharajah et al., 2013) that DLG2 is only important 

for more complex cognitive tasks. Perhaps, it is better to frame the behavioural 

deficits found the Dlg2 knockdown and knockout models as being reflective of 

abnormalities of flexibility and adaptivity. For both phenotypes reported in this thesis, 

impaired habituation and deficient motor learning, responding to the environment is 

important. The ability to stay on a rotarod at a constant speed was normal in Dlg2+/- 

mice. Thus, motor performance was normal when conditions were stable. Only when 

the speed of the rod increased during a trial and there was a requirement to adapt to 

this change did a deficit become apparent. Additionally, this deficit begins to 

normalise as training progresses because the need for a behavioural adjustment in 

motor coordination begins to diminish with the reduced cognitive demand of the task.  

Impairments in habituation were demonstrated both in response to an acoustic 

stimulus (Chapter 3) and an environment (Chapter 4). Habituation to an environment 

is initially comparable to WT mice but gradually diverges, potentially reflecting a 

sensitisation phenotype on the last day of habituation that may have become more 

pronounced with further sessions.  Habituation plays a role in filtering input and 

ensuring only the most relevant and important draws attention, such as to threats or 

potential rewards (Turatto, Bonetti and Pascucci, 2018).There would be little benefit 

to expend energy exploring an environment that is already known to be lacking in 

food, for example. In the Dlg2+/- mice the context appears to retain its novelty for a 

prolonged period of time, meaning some aspect of the habituation process is 

functioning abnormally.  

 

8.3 Relevance of phenotypes observed in Dlg2+/- mice to psychiatric 

diseases 

8.3.1 Impaired motor learning 

Mutations in Dlg2 have been associated with schizophrenia (Kirov et al., 2012; 

Fromer, et al., 2014), ASD (Egger et al., 2014; Xing et al., 2016) and BPD (Noor et 



164 
 

al., 2014). Motor learning deficits have been observed in schizophrenia (Isohanni et 

al., 2001; Kodama et al., 2017), ASD (de Moraes et al., 2017), and recently BPD 

(Chrobak et al., 2015, 2017).  

Motor learning has been found to be slower, or less efficient in schizophrenia patients 

(Kodama et al., 2017) and may even predict the later development of psychosis 

(Isohanni et al., 2001). The earlier onset of these motor phenotypes during childhood, 

such as delays to ability to walk, compared to more traditionally considered 

symptoms, like psychosis that emerge in adolescence, may therefore provide one 

aspect with which to stratify children at risk of going on to develop schizophrenia. 

Motor deficits and delays in development are common co-morbidities of ASD (Lai, 

Lombardo and Baron-Cohen, 2014), but are not diagnostic criteria for the disorder 

(Marko et al., 2015). Children with ASD have demonstrated impaired motor learning 

on a task which relies on visual error learning, previously found to rely on lobule VI 

and some of lobule VIII of the anterior cerebellum, which was smaller compared to 

healthy controls (Marko et al., 2015). A systematic review found there appears to be 

a specific pattern of deficits in motor learning in ASD, which was likely attributed to 

slower rates of learning (de Moraes et al., 2017). It is also interesting to note that the 

most common neurobiological finding in post mortem ASD brains is a reduction in 

Purkinje cell numbers; Dlg2 localises to the PSD and dendritic microtubules of 

Purkinje neurons in the cerebellum (Brenman et al., 1998).  

One critical component for motor behaviour, as well as social and communication, is 

the generation of internal models of action (Shadmehr and Krakauer, 2008; Mostofsky 

and Ewen, 2011). Following a movement the brain forms an association between the 

motor command and the sensory feedback so that it can predict the sensory 

consequences of the self-generated action (Shadmehr and Krakauer, 2008). The 

developmental nature of ASD suggests that the core deficits observed, including 

motoric skill, may result from abnormalities in the process of generating these internal 

models (Provost et al. 2007). Indeed, when the processes involved in this internal 

model generation were examined in children with ASD it was different to that relied 

upon by normally developing children (Haswell et al., 2009). Whereas the healthy 

controls primarily relied upon visual feedback whilst acquiring a novel action pattern 

those with ASD excessively relied on proprioceptive feedback, discounting the visual 

(Haswell et al., 2009). Interestingly this impaired motor learning in ASD may be 

reminiscent of prediction errors in schizophrenia. 
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Dysfunctional predictive coding in schizophrenia is proposed as an explanation of 

hallucinations (Sterzer et al., 2018). According to this account, bottom up perceptual 

signals interact with higher order cognitive processes in order to generate 

expectations about the environment (Fletcher and Frith, 2009; Nazimek, Hunter and 

Woodruff, 2012). Received input can then been compared to these expectations. If 

the stimuli match the expectations then they are suppressed, whereas when 

discrepancies between the stimuli and prior expectations occur they trigger a 

mismatch signal, or a “prediction error” (McCleery et al., 2018). These errors 

demonstrate the predictive model was incorrect and needs to be updated to 

accommodate the triggering stimuli, to prevent further errors. Hallucinations are 

argued to result from erroneous environmental expectations and result in dampening 

of predicative error signalling (Northoff and Qin, 2011; Nazimek, Hunter and 

Woodruff, 2012; Horga et al., 2014). Incoming sensory input, attributed to aberrant 

sensory cortex activation as opposed to external stimulation, is consistent with prior 

expectations and so does not trigger a prediction error. This false perception results 

from the sensory cortex erroneously anticipating a perceptual event (McCleery et al., 

2018). Biologically it has been proposed that these prediction errors are encoded by 

phasic dopamine signals (Nasser et al., 2017). 

In BPD, investigation of motoric phenotypes is much more limited but there appear to 

be deficits in implicit motor learning tasks using the serial reaction time task (SRTT) 

(Chrobak et al., 2015, 2017). The SRTT task requires participants to learn a 

sequential pattern of finger presses, which occurs without conscious recognition this 

sequence. The sequence is mixed in with random order stimuli, allowing comparison 

of the participant’s reaction time to the random order and repetitive sequence blocks  

(Tzvi, Münte and Krämer, 2014). This task engages key regions of the brain involved 

in implicit motor learning; primary motor cortex, PFC, striatum, posteriori parietal 

cortex and cerebellum (Dayan and Cohen, 2011; Tzvi, Münte and Krämer, 2014). 

Some studies have found deficits in this task in schizophrenia patients whilst a smaller 

number found no impairments (Remillard 2014, for review). In right handed 

participants, the deficits in a BDP cohort were different to those observed in 

schizophrenia cohort (Chrobak et al., 2017). BDP patients exhibited a deficit 

performing the task with either hand, whilst schizophrenia patients were able to 

demonstrate some motor learning with the right hand, but not the left (Chrobak et al., 

2017).  
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8.3.2 Reduced acoustic startle amplitude and habituation  

In Chapter 3 Dlg2+/- mice exhibited a decreased response to the highest intensity 

stimulus, 120 dB, and lack of habituation to it.  

Decreased habituation in response to an acoustic stimulus has been found in some 

studies of patients with schizophrenia (Braff, Grillon and Geyer, 1992; Parwani et al., 

2000; Meincke et al., 2004), although these are contradicted by other studies in which 

habituation was intact (Kumari, Soni and Sharma, 2002; Aggernaes et al., 2010). 

Although the flattened habituation response seen in the Dlg2+/- mice is reflective of 

the decreased habituation seen in schizophrenia patients, often patients exhibited 

higher initial responding to the auditory signal, unlike the observation in Dlg2+/-  mice 

(Parwani et al., 2000; Meincke et al., 2004). There are several mouse models that 

also exhibit reduced startle response and a lack of habituation, including a genetic 

stress model (Dirks et al., 2002) and a LoF potassium channel KO (Typlt et al., 2013) 

(Chapter 3, for more detailed discussion). In patients with schizophrenia, impaired 

PPI response to an acoustic stimulus is considered a potential biomarker for the 

disease (Gottesman and Gould, 2003; Walters and Owen, 2007). By contrast to PPI 

impaired habituation of the acoustic startle response appears to be more intricately 

linked to the acute phase of schizophrenia. Thus whilst both habituation and PPI were 

disrupted 5 days after hospitalisation, when tested again 3 months after discharge 

only PPI response remained abnormal (Mena et al., 2016a).  

Reports of altered habituation to acoustic startle in ASD patients are quite variable, 

and this heterogeneity likely stems from the subgroup of ASD, their sex and age of 

the patient  (Kohl et al., 2014b). In a mixed sex high functioning autism (HFA) adult 

cohort, no differences were found in habituation or PPI response, despite an initial 

higher startle amplitude in the HFA group (Kohl et al., 2014b). However, in a male 

only study a reduction in habituation was observed (Perry et al., 2007), as well as in 

studies of children with ASD (Kemner et al., 2002). 

Startle response data is largely inconsistent in BPD possibly due to variables such as 

sex or current phase of the disease (mania, depressed, euthymic).  In addition,  less 

is known overall about sensorimotor gating in BPD (Kohl et al., 2013). Very few 

studies have examined the process in BDP patients in the mania phase, with an initial 

study reporting reduced habituation and PPI in mania patients (Perry et al., 2001), 

but this was not replicated in a subsequent study (Carroll et al., 2007). In a study 

addressing phase (depressed and euthymic, but not mania) and sex, females with 

BDP did not differ to controls for PPI response regardless of state, whereas males 
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with depression but not euthymic exhibited lower PPI than controls (Matsuo et al., 

2018). No evidence of differential habituation was found.  

8.3.3 Abnormal habituation to a context 

In human studies exploring habituation in psychiatric disease they predominately 

investigate the response to repeated stimuli, for example acoustic or visual, as 

opposed to in relation to a context. As discussed in 8.3.2 impaired habituation to an 

acoustic stimulus has been found in schizophrenia patients (Braff, Grillon, & Geyer, 

1992; Meincke, et al 2004; Parwani et al., 2000), although there are discrepancies 

between studies. Impaired habituation to visual stimuli have also been found in a few 

fMRI studies. For example, one study found reduced habituation in the right anterior 

hippocampus in response to fearful faces following repeated exposure (Holt et al., 

2005), whilst another found deficient habituation in response to neutral faces or 

objects in the hippocampus and visual cortex (Williams et al., 2013). In ASD there is 

no real consensus on acoustic startle stimulation, as discussed in the previous 

section. Impaired habitation to visual stimuli has been observed in ASD (James and 

Barry, 1980; Vivanti et al., 2018). Patients with ASD required more trials to habituate 

to a familiar visual stimulus, which consisted of various shapers in different colours, 

but this may have been confounded by the reduced attention paid to both novel and 

familiar stimuli during the task (Vivanti et al., 2018). There appears to be a lack of 

literature explicitly looking at visual habituation in patients with BPD and the findings 

relating to acoustic stimulus habituation in BPD are contradictory. 

For ASD and BPD rodent model’s literature examining habituation to a novel context 

is limited therefore making it challenging to compare to phenotypes observed in 

schizophrenia. One study employing a prenatal exposure to valproic acid ASD model 

found decreased exploration and accelerated habituation to an open field in pubertal 

and adult rats (Olexová et al., 2013). It is possible that fear mediated the reduced 

exploration of the environment, which in turn may influence the habituation process. 

In a model reflecting behavioural relevance to BPD,  GSK-3β-OX mice,  hyperactivity 

and impaired habituation to a novel context was found (Prickaerts et al., 2006). 

Habituation is influenced by many factors, such as attention, initial exploration, 

general activity level, and novelty. For example the marked hyperactivity of a DAT KO 

mouse likely interfered with habituation to a novel context, as there was also a lack 

of habituation in a familiar context and the novelty-induced hyperlocomotion was 

reversed by antipsychotics (Spielewoy et al., 2000). The delayed habituation 

observed in the Dlg2+/- mice (Chapter 4) is unlikely to be simply general hyperactivity, 
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as the locomotion of the genotypes is comparable during the initial sessions before 

diverging in later sessions and no evidence of hyperactivity was found in the open 

field task (Chapter 3). 

An alternative basis for the habituation deficit may be an abnormal response to 

novelty (Barkus et al., 2014). Ordinarily a novel context will induce hyperlocomotion 

initially before gradually activity decreases as a result of habituation. However, if for 

some reason the context retains its novelty for a protracted period of time the 

habituation might be deficient or not occur at all.  There is limited research specifically 

testing whether the balance between the value of novelty and of familiarity is skewed 

in favour of novelty in people with schizophrenia, and whether this does indeed 

interfere with adaptive behaviours, such as habituation (Martinelli et al., 2018). 

However, one study reported that schizophrenia patients preferred newly introduced 

images (regardless of whether they were truly novel or actually familiar) compared to 

healthy controls, and this was found to correlate with hallucinatory severity (Martinelli 

et al., 2018). 

Habituation deficits have been observed in models carrying mutations in the subunits 

which form the interacting partner of Dlg2, AMPAR. Enhanced novelty-induced 

hyperlocomotion and delayed habituation to a novel context was found in GluA1 KO 

mice (Procaccini et al., 2011, 2013), as were short term habituation deficits on the Y 

maze in a GluA1 KO mouse (Barkus et al., 2014a). Additionally short term deficits 

were also seen in a Cyclin-D2 (CD2) KO hyperactive ventral hippocampus model 

(Grimm et al., 2018). It has previously been proposed that Dlg2 reduction could result 

in hippocampal overactivity (MacLaren et al., 2011). However, in all instances the 

deficits observed were over the short term, predominately across a single session. 

By contrast the phenotype observed in the Dlg2+/- mice is gradual, becoming apparent 

across the habituation sessions, whereas within session habituation was comparable 

to the WT mice. Therefore, whilst an abnormal response to novelty may be involved 

it is not likely the full explanation for the phenotype.   

As the activity level of the Dlg2+/- mice gradually increases following repeated 

exposure to the context it could be argued that this reflecting more of a sensitisation 

phenotype or may have progressed into one with subsequent sessions. Sensitisation 

is a non-associative learning process where repeated exposure to a stimulus induces 

a progressively amplified behavioural and neurochemical response (Groves and 

Thompson, 1970).  
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In order to address whether this is the case extending the number of sessions could 

illuminate whether the divergent trajectory between the genotypes continued. 

Subsequent treatment with traditional antipsychotics, which target dopaminergic 

receptors, could demonstrate whether this phenotype is partly dependant on 

dopaminergic functioning by essentially rescuing the phenotype. In the GluA1 KO 

mouse (Procaccini et al., 2011, 2013) and CD2 mouse (Grimm et al., 2018) treatment 

with antipsychotics normalised the hyperlocomotion observed. It would also be 

interesting to investigate in the Dlg2+/- mice whether the abnormal habituation 

phenotype extends to a task such as novel object recognition and whether there is 

perseverance of focus on ‘familiar’ objects that was observed in GluA1 KO mice 

(Sanderson and Bannerman, 2012; Barkus et al, 2014b), which again may indicate 

dysfunctional dopaminergic functioning .  

8.4 Limitations 

8.4.1 Models 

Genetically the use of a single gene knockout or knockdown rodent, as with our 

heterozygous Dlg2 models, does not address the polygenic nature of schizophrenia. 

With all models it is important to remember that none of them are able to completely 

model any psychiatric disease as they result from a complex interaction of factors; 

genetic, environmental, and social. Additionally, there are aspects of the disease, 

such as hallucinations and delusions which are not translatable in rodents. It should 

be therefore be clear that these models are not intended to be considered models of 

psychiatric disease. Instead single gene knockout models can increase our 

understanding of the functional consequences of specific mutations, as well as the 

wider effects on disease associated pathways, such as glutamatergic transmission. 

This in turn can help uncover the contribution of specific genes to observed 

phenotypes. 

In the Dlg2+/- mouse model used, the mutation was designed to target all transcripts, 

which resulted in a further downstream mutation around exon 14. By comparison the 

Dlg2 mouse model in the literature, where the mutation is in exon 6 (Chapter 3). This 

may explain why there was no clear reduction in mRNA expression in the 

hippocampus or cerebellum of our Dlg2+/- mice. The downstream mutation result in 

residual expression of some transcript’s mRNA, through alternative splicing or lack of 

nonsense mediated decay of the upstream transcript. Even in homozygous mice 

developed by McGee et al (2001), which has a much further upstream mutation 

compared to our model, Northern blot analysis found a weak band for Dlg2, attributed 
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to alternative splicing. As the rat model is completely novel it is possible that there are 

transcripts not affected by the mutation, and thus may be affecting observable 

phenotypes. For example, recently in mice a novel splice variant of Dlg2 was found 

to be highly expressed in immune system plasmacytoid dendritic cells (Ali et al., 

2018). In KO mice, generated through deletion of exon 9, expression of this novel 

isoform was found in the brain and bone of homozygotes. It is unknown whether this 

newly identified isoform is able to fulfil any of the normal functioning of Dlg2 (Ali et al., 

2018). Different transcripts of Dlg2 are known to have differing roles. For example 

PSD93α is required for postsynaptic membrane targeting (Firestein, Craven and 

Bredt, 2000b), and the overexpression of PSD93δ or ε, but not PSD93α, increases 

potency of AMPAR and the number at the post synaptic membrane (Kruger et al., 

2013). It is therefore possible that phenotypes can be influenced by which transcripts 

are affected by the specific mutation, and which are likely to be masked in a 

genetically global knockout model. Generating transcript specific mutants was 

beyond the scope of this project but representing an interesting opportunity for future 

investigations. 

Western blot analysis of Dlg2 in both the mouse and rat models used is necessary to 

determine whether there were any changes in protein expression. This is particularly 

important because in post mortem schizophrenia brains, increased mRNA but 

decreased protein has been found (Kristiansen et al., 2006). This indicates abnormal 

expression of DLG2 in schizophrenia brains, and that there is either abnormal 

translation and/or accelerated degradation of DLG2 occurring (Kristiansen and 

Meador-Woodruff, 2005).  Western blots were conducted for both the mouse and rat 

models to examine Dlg2 expression in multiple brain regions. Unfortunately despite 

trialling a panel of antibodies from various suppliers, as well as two generated 

previously by a colleague examining Dlg2 in vitro, only one antibody produced any 

bands, which were very weak and inconsistent across experiments. Despite 

extensive troubleshooting with this antibody, including different preparation methods 

(RIPA and Synper) and modifications to various aspects of western blot protocol no 

viable blots were generated.  

In addition to determining the expression of Dlg2 mRNA in key brain regions the 

expression of the other Dlg family members was also examined, investigating whether 

there were any compensatory changes in heterozygous rodents. No evidence of 

expression changes for any other Dlg family members in Dlg2+/- rodents was found. 

This is similar to other published literature. Nevertheless, Dlg4 expression has been 

found to functionally compensate for Dlg2 in in vivo models (Elias et al. 2006). 
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However, in vitro studies have repeatedly found that acute knockdown of Dlg2 has a 

significant impact on NMDAR and AMPAR functioning (Elias et al. 2006; Sun & 

Turrigiano 2011; Carlisle et al. 2008; Frank et al. 2016). This suggests that reduction 

of Dlg2 has important consequences for synaptic functioning, but that compensation 

from Dlg4 can ameliorate the effects.  The discrepancy between the in vivo and in 

vitro models is likely an issue of the differing complexity of the systems. Given animals 

grow up with a chronic reduction in Dlg2 resulting from genetic manipulation there is 

more opportunity, and potentially more need, for compensatory processes to develop, 

which may not occur in the shorter time span of in vitro experiments. Employing 

inducible Dlg2 KO mice, for example using a tetracycline-controlled transcription 

method, would be one approach to investigate the impact of acute knockdown in vivo 

on processes reliant on synaptic plasticity, such as LTP during a learning paradigm.  

This could determine whether phenotypes would be more marked and/or selective 

when the opportunity for compensatory processes during development are reduced. 

This approach could be used to examine the effect of acute Dlg2 KO during learning, 

as could intrahippocampal RNAi, exploring if Dlg2 is more important for some aspects 

of learning than others, such as extinction.  

This project employed heterozygous, as opposed to homozygous, Dlg2 models which 

better reflect the occurrence of mutation in humans (Kirov et al. 2012; Purcell et al. 

2014). Something that has not been so far investigated, however, is the impact of 

duplication of the Dlg2 gene as opposed to deletion. In the study comparing humans 

with DLG2 mutations with KO mice three of the four carriers were diagnosed with 

schizophrenia two of the subjects had deletions within DLG2, but one had two 

duplications instead (Nithianantharajah et al., 2013). Whether this has any substantial 

effect on phenotypes compared to deletions is unknown for DLG2. However, so called 

mirror phenotypes have been observed in humans carrying 16p11.2 mutations 

(Qureshi et al., 2014; LeBlanc and Nelson, 2016) and rodent models (Arbogast et al., 

2016), where deletions and duplications have opposite effects on aspects of 

cognition, brain structure and metabolism. In the mice, for example, the deletion 

model exhibited reduced weight, impaired adipogenesis, deficient recognition 

memory, and hyperactivity, with the opposite found in the duplication model (Arbogast 

et al., 2016). In humans deletion carriers exhibited increased size on multiple brain 

measures whereas reduced size was found in those with duplications (Qureshi et al., 

2014). Therefore, this may be an avenue of investigation worth pursing in future.  

Fundamentally this thesis to characterise and compare an established Dlg2+/- mouse 

and a novelDlg2+/- rat model in basic behavioural tasks and some that are relevant 
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for psychiatric disorders. Therefore, there were other factors that could interact with 

a genetic mutation and potentially modify its impact but it was beyond the scope of 

the current project to investigate them. For example within cage dominance structures 

may have influenced behaviour of either of the genotypes.In all the experiments with 

both rodent species all cohorts were in mixed genotype housing. It has been 

demonstrated previously that in mice lacking Neuroligin3, a gene associated with 

ASD, altered the social behaviour of co-housed WT mice (Kalbassi et al., 2017). 

Given that recently a hypersocial phenotype was observed in homozygous Dlg2 mice 

(Winkler et al., 2018), this potential variable may be worth exploring in future 

experimentation. It is unknown whether a similar phenotype was present during our 

studies, and whether this impacted co-housed WT mice, as social behaviours were 

not investigated.  

The potential impact of an altered pre or postnatal environment, ie poor maternal care, 

in breeding females with Dlg2 mutations was not directly addressed by the 

experiments. Where possible the Dlg2 mutation was transmitted through the paternal 

line for the experimental cohorts to remove this variable. However, it may be 

worthwhile investigating this experimentally given the link between early life stress 

and disease risk. For example, the glucocorticoid receptor has been implicated in 

postpartum depression, and heterozygous deletion in C57BL/6 dams reduced their 

licking/grooming behaviours (Chourbaji et al., 2011). Pups that received low levels of 

these behaviours later exhibit elevated stress and anxiety phenotypes as adults 

(Caldji et al., 1998). There are hundreds of genes which alter maternal care, for 

example influencing bonding and sociability, and within the genes enrichment was 

found for genes associated with schizophrenia, BPD and ASD (Gammie et al., 2016). 

Future examination of disease relevant environmental factors, such as maternal 

infection, maternal or juvenile stress, in combination with Dlg2 mutation could uncover 

whether this interaction would result in more severe phenotypes. This could be 

especially interesting as whilst  the impact of common variants on risk for developing 

schizophrenia has been proposed to be mediated by presence or absence of 

pregnancy complications (Ursini et al., 2018), this is unknown for de novo CNVs.  

8.4.2 Sex 

Another important limitation of the findings presented in this thesis is that almost all 

experiments were conducted in male rodents. Concern surrounding the influence of 

the oestrus cycle on behaviour often means female mice are excluded from 

behavioural studies (Meziane et al., 2007; Beery, 2018). All rat experimentation was 
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conducted in males only in the first instance with the intention of repeating the studies 

in females in the future. However, as discussed in Chapter 4 a small pilot was 

conducted to investigate motor learning in female Dlg2+/- mice. The female mice 

underwent the same three day rotarod protocol detailed in the first experiment of 

Chapter 4. In contrast to the male Dlg2+/- mice the females did not display any deficits. 

Thus, the early motor learning deficit appears to be sex specific in Dlg2+/- mice.  

Whilst this is only one experiment, it reinforces the importance of studying both sexes. 

In humans there are sex differences in many psychiatric conditions. In schizophrenia, 

the  prevalence, symptomology and response to treatment is different between the 

sexes (Kokras and Dalla, 2014). It has also been proposed that oestrogen may exert 

a protective effect in schizophrenia (Kulkarni et al., 2013). The male-to-female ratio 

in autism is 4.5:1 (Christensen et al, 2016) and1.4:1 for schizophrenia (McGrath et 

al., 2008). The ratio for BPD by contrast is roughly equal but there are sex differences 

in disease course, presentation and co-morbidity (Koo and Duman, 2009). Despite 

the higher occurrence in males there is an increased rare CNV burden females for 

schizophrenia (Han et al., 2016), and when sex is corrected for the association 

between these CNVs and schizophrenia is unaffected. Similarly in ASD females 

possess a high CNV burden (Jacquemont et al., 2014), including an excess of genes 

disrupted by de novo CNVs (Gilman et al., 2011; Levy et al., 2011; Sanders et al., 

2015). The discrepancy between greater mutational burden and lower prevalence of 

both ASD and schizophrenia in females is consistent with the hypothesis that females 

require an increased risk factor load in order to manifest a neurodevelopmental 

disorder (Robinson et al., 2013; Jacquemont et al., 2014). There is also a non-

mutually exclusive hypothesis that males may be more susceptible than females to 

developing ASD, from genetic risk studies (Robinson et al., 2013) and investigation 

of epigenetic changes (Kim et al., 2016). 

Mutations in risk genes related to Dlg2 may result in divergent phenotypes between 

the sexes. In Dlg1 cKO mice, a motor learning phenotype was observed in female, 

but not male, mice (Gupta et al., 2018). This is the reverse to the motor learning 

phenotype observed in the Dlg2+/- male mice, highlighting the difference between 

phenotypic manifestation between the sexes, and the function of different members 

of the same protein family.  

Given there is evidence indicating sex differences, both in a related gene (Dlg1) and 

from our own data with Dlg2+/- mice it would thus be important to study female Dlg2+/- 

mice in the same behavioural battery as males. Also, as discussed above, there are 
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often sex differences in disease risk for psychiatric disorders that may well be 

reflected in rodent models. There is more drive to include both sexes wherever 

possible in basic research in order to explore where there are divergences.  

Of particular interest for the Dlg2 models would be investigating ketamine induced 

hyperlocomotion, as sex differences in response to acute administration of NMDAR 

antagonists has been observed. Following administration of PCP (Vezzani et al., 

1989) and MK-801 (Nabeshima et al., 1984a), females exhibited greater behavioural 

sensitivity, including hyperlocomotion, stereotyped behaviours and ataxia. The 

differential response to NMDAR antagonists is due to pharmacokinetic differences 

between the sexes, with lower metabolism of NMDAR antagonists in females 

resulting in higher levels in the brain and plasma (Nabeshima et al., 1984b; Vezzani 

et al., 1989; Shelnutt, Gunnell and Owens, 1999). Therefore, whether Dlg2+/- females 

are more sensitive to acute ketamine injection than the males and exhibit a different 

dose response pattern remains an important question. The experiment would permit 

the assessment of normal locomotion and habituation to a novel environment in the 

females at the same time.   

8.4.3 Molecular and Behavioural Studies  

As discussed in Chapter 4 the impaired motor learning deficit appears to be partially 

unpinned by a reduction in neuronal activity in M1. Due to time constraints 

confirmation of a reduction in Dlg2 expression in the motor cortex was not measured. 

This would be important to determine, especially given the lack of a reduction of Dlg2 

mRNA in the cerebellum, another key structure in motor learning (Chapter 3). Due to 

the difficulty in reliably dissecting out M1 this analysis could be conducted using in 

situ hybridisation of sectioned brains. This method was also provide better spatial 

resolution of expression changes, allowing examination of individual cortical layers, 

for example. 

As discussed at multiple points in this thesis the interaction between NMDAR and 

Dlg2 may be important for cognitive impairments observed in Dlg2 KO mice. 

Expression of the NMDAR subunits in the heterozygotes models discussed in this 

thesis was not conducted. NMDAR expression has only previously been investigated 

in primary cortical Dlg2 KO cultures (Zhang et al., 2010b), and not in vivo. Winkler et 

al (2018) examined protein expression in hippocampal synaptic fractions from Dlg4+/- 

mice and found no change in any NMDAR or GluR1 AMPA receptor subunit 

expression. They did not conduct this analysis in Dlg2+/- mice. It would be important 

to examine NMDAR expression in our Dlg2 models as receptor density or distribution 
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may influence observed phenotypes, as discussed in relation to the ketamine 

challenge study in Chapter 4 for example.  

Finally, as discussed previously during this thesis Dlg2 is most heavily implicated with 

synaptic plasticity which underpins learning and memory. However, investigation was 

only conducted on a small number of associative learning tasks, motor learning and 

CFC. In the mouse model there were additional intended experiments focusing on 

cognition that were not conducted. For example, no change was found in DCX 

expression in Dlg2+/- mice, and so a follow behavioural task, pattern separation, was 

not conducted as it is thought to rely on new-born neurons. This task probes the 

rodent’s ability to discriminate between two squares (in a touchscreen task) or two 

objects (in a physical task) at variable distances apart. For the rat model again, there 

was the need to conduct basic characterisation, even more important as the model is 

completely novel. As discussed in Chapter 7 increasing the complexity of the CFC 

task, for example employing multiple contexts, in the rat model would potentially 

uncover aspects of cognition impacted by the Dlg2 mutation. Even in the literature 

the majority of the cognitive testing of Dlg2 models is limited. Future experiments 

could investigate different cognitive processes that are impaired in patients with 

schizophrenia, such as working memory, using Y or T mazes or recognition memory 

using novel object recognition or novel object location, or associative recognition 

memory with object-in-place tasks. The cognitive deficits associated with 

schizophrenia can be considered both clinical and prognostic predictors and 

therapeutic targets, therefore it is vital to investigate them in rodents modelling 

different risk factors of the disease. 

8.5 Future directions 

8.5.1 Further investigation of the early motor learning deficit 

The experiments presented in Chapters 3 and 4 demonstrate a deficit in early phase 

motor learning in male Dlg2+/- mice, which at the network level may be underpinned 

by reduced neuronal activity in motor cortex M1. In human imaging studies the 

anterior cerebellum has been proposed to underlie motor learning deficits in ASD 

patients (Marko et al., 2015). The presence of a motor learning deficit in the male 

mice, despite the lack of reduced Dlg2 mRNA in the cerebellum, implies that it is less 

likely the cerebellum is involved in the motor learning deficit.. Comparison between 

males and females would also be important, given the sex specific nature of the 

phenotype. Dlg2+/- females would be predicted to exhibit a similar increase in cFos 

staining during rotarod training to the WT female mice. Additionally, investigating 
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neuronal activity in both sexes using cFos following a later stage of motor learning 

would be interesting. The male Dlg2+/- mice do gradually improve across the motor 

learning sessions, although never quite reaching the same plateau as WT mice. 

Therefore, it would be predicted that neuronal activation in regions like M1 would 

become more comparable to that of WT mice at later stages of the motor learning 

process, i.e. towards the end of the second day or start of the third day.  

Electrophysiological approaches to investigating the motor learning phenotype would 

also increase understanding of the impact of Dlg2 mutation on synaptic plasticity 

directly. Rats which had undergone one day of accelerating rotarod training exhibited 

an increased AMPAR:NMDAR ratio, and increased amplitude, but not frequency of 

mEPSCs, suggesting involvement of increased postsynaptic AMPAR during early 

stage motor learning in layer 2/3 of M1 (Kida et al., 2016). Under normal conditions 

no change in the AMPAR:NMDAR ratio was found in Dlg2 or Dlg4 KO slices, although 

knockdown in cultures using shRNA did result in decreased AMPAR EPSCs (Elias,et 

al 2006). Preliminary studies from collaborators working on our Dlg2+/- rat model found 

a reduction in the AMPAR:NMDAR ratio (Simonas Griesius, personal 

communication). Given a motor learning phenotype has already been demonstrated 

in the Dlg2+/- mice on a rotarod task, which evidence suggests alters the 

AMPAR:NMDAR ratio during the period of training where we observed the 

behavioural deficit (Kida et al., 2016), it would be interesting to assess whether the 

AMPAR:NMDAR ratio is abnormal in the mice. One approach to behaviourally 

investigating whether abnormal AMPAR functioning is mediating the early motor 

learning phenotype would be comparing Dlg2+/- mice to WT mice given an AMPAR 

antagonist, such as CNQX, prior to training on the accelerating rotarod. If AMPAR 

functioning is indeed involved in this phenotype the mice treated with CNQX may 

exhibit a similar deficit to the Dlg2+/- mice. 

An alternative approach to investigating plasticity would be to investigate structural 

plasticity with motor learning by measuring spine formation. Using two photon imaging 

of dendritic spines in layer 5, two days of accelerating rotarod training was found to 

induce regionally specific spine formation in the forelimb area of the motor cortex in 

mice, whereas a motor task without the learning element did not (Yang, Pan and Gan, 

2009b). It has been previously demonstrated that MAGUKs, in particular the PSD-95 

family, are involved in the stabilisation of nascent spines (Wang et al., 2014; Lambert 

et al., 2017). Extrapolating this methodology to this model would allow examination 

of spine formation during the earlier stage of motor learning, as well tracking the 

stability of the spines over time, comparing them between WT and Dlg2+/- mice. 
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Differences in spine formation or stability may play a role in the motor learning deficit 

observed in the Dlg2+/- mice, demonstrating how Dlg2 mutation may mediate 

dysfunctional synaptic plasticity. As has been discussed previously in this thesis 

abnormal synaptic plasticity is believed to be important to the cognitive impairment 

observed in schizophrenia.   

8.6 Concluding Remarks 

Heterozygosity of Dlg2 in two different rodent models was not found to result in 

universal impairment, but instead specific deficits in processes involved in learning. 

The experiments discussed in this thesis demonstrate a delayed early motor learning 

phenotype in male, but not female, Dlg2+/- mice, that may have a basis in reduced 

neuronal activation in M1. In the male Dlg2+/- mice across two paradigms (locomotion 

response to a context and acoustic startle) the simple non-associative learning 

behaviour of habituation was found to be impaired. As demonstrated by these findings 

altered Dlg2 function may therefore be linked to common phenotypes that are shared 

across some psychiatric disorders. For example motor learning deficits are observed 

in SZ and ASD, and may also be present in BPD.  

This work expands upon the currently limited pool of research into in vivo effects of 

Dlg2 mutation. The rotarod experiments conducted during this thesis lend support to 

the previous finding of deficient motor learning in Dlg2 mutants (Winkler et al., 2018), 

furthers the understanding of this phenotype by demonstrating that it is sex specific, 

and uncovers a potential molecular basis. The findings do suggest that whilst some 

basic learning processes are intact in Dlg2 mutants (Nithianantharajah et al., 2013), 

abnormalities may manifest in other types of simple  learning such as habituation. 

Although simpler than the cognitive tasks deficits have previously been found in for 

Dlg2 KO mice an element of cognitive flexibility is required for these behaviours. 

Importantly the research detailed in this thesis was conducted in heterozygotes, 

arguably more applicable to the human carriers, and demonstrates that deficits still 

manifest despite the presence of one copy of Dlg2.   

The novel rat model provides another avenue through which to investigate the impact 

of Dlg2 mutation. When compared to the mouse model discussed in this thesis it has 

a major advantage in that the reduced expression of Dlg2 in the hippocampus and 

PFC better mimics the dysfunctional network observed in schizophrenia. This fact can 

be capitalised on in future studies to investigate behaviours reliant on these regions 

and exploring more complex aspects of cognition may be simpler or less time 

consuming than in the mouse model.  
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