

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/125462/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Masschelein, Joleen, Sydor, Paulina K., Hobson, Christian, Howe, Rhiannon, Jones, Cerith , Roberts, Douglas M., Yap, Zhong Ling, Parkhill, Julian, Mahenthiralingam, Eshwar and Challis, Gregory L. 2019. A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nature Chemistry 11 , pp. 906-912. 10.1038/s41557-019-0309-7

Publishers page: https://doi.org/10.1038/s41557-019-0309-7

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Supplementary Information

A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis

Joleen Masschelein^{1,†,‡}, Paulina K. Sydor^{1,†,‡}, Christian Hobson¹, Rhiannon Howe¹, Cerith Jones^{2,‡}, Douglas M. Roberts¹, Zhong Ling Yap², Julian Parkhill³, Eshwar Mahenthiralingam² and Gregory L. Challis^{1,4,5,*}

¹Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
 ²Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
 ³Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
 ⁴Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
 ⁵Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia

⁺These authors contributed equally to this work.

[†]Current addresses: Rega Institute for Medical Research, KU Leuven, Herestraat 49, PO Box 1041, 3000 Leuven, Belgium (J.M.); Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK (P.K.S.); Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, CF37 1DL, United Kingdom (C.J.).

*Author to whom correspondence should be addressed.

TABLE OF CONTENTS

Methods	3
Supplementary Figures	17
Supplementary Fig. 1	17
Supplementary Fig. 2	18
Supplementary Fig. 3	2
Supplementary Fig. 4	27
Supplementary Fig. 5	29
Supplementary Fig. 6	30
Supplementary Fig. 7	31
Supplementary Fig. 8	32
Supplementary Fig. 9	33
Supplementary Fig. 10	37
Supplementary Fig. 11	38
Supplementary Fig. 12	39
Supplementary Fig. 13	40
Supplementary Fig. 14	41
Supplementary Fig. 15	42
Supplementary Tables	43
Supplementary Table 1	43
Supplementary Table 2	44
References	45

Methods

All reagents and chemicals were purchased from Sigma Aldrich unless otherwise stated.

Genome sequencing. Genomic DNA was prepared from *B. ambifaria* BCC0203 as previously described¹ and prepared for sequencing using a DNA template preparation kit 2.0 (Pacific Biosciences). The genome sequence was assembled from data obtained from two SMRT cells with a PacBio RSII sequencer using SMRTanalysis v2.3.0 (Pacific Biosciences).

Gene deletion and complementation. In-frame deletions in bamb 5915 and bamb 5917 were introduced via double homologous recombination using the suicide plasmid pGPI and the I-Scel expression plasmid pDAI.² Briefly, the sequences (500-1000 bp) flanking the gene regions targeted for deletion were amplified from *B. ambifaria* BCC0203 genomic DNA using Q5 DNA polymerase (NEB) and the primers listed in **Supplementary Table 1**. Restriction sites were introduced at the 5'-end of the bamb_5915 primers to allow for directional cloning of the PCR products into pGPI. The amplified regions flanking *bamb_5917* were cloned into pGPI via Gibson Assembly. Constructs were mobilized into E. coli SY327 by electroporation (bamb 5915) or using chemically competent cells (bamb 5917), and transformants were selected on LB agar plates supplemented with trimethoprim (50 µg/mL). Plasmids were purified from trimethoprim-resistant colonies using the GeneJET Plasmid Miniprep kit (Thermo Scientific; bamb_5915), or the Qiagen Miniprep Kit (Qiagen; bamb_5917), and correct assembly of the mutagenesis constructs was confirmed by Sanger sequencing (GATC Biotech (bamb 5915); Eurofins (bamb 5917)). Validated constructs were transferred into B. ambifaria BCC0203 via triparental mating² and transconjugants were selected using trimethoprim (200 µg/ml) and polymyxin (600 U/ml). Single B. ambifaria mutants were selected and correct integration of the mutagenesis plasmids into the genome was confirmed by colony PCR. Next, the pDAI plasmid was introduced into the *B. ambifaria* single crossover mutants by triparental mating using E. coli SY327 (pDAI) and E. coli HB101 (pRK2013) as the donor and helper strain, respectively.² Transconjugants were selected on LB agar plates containing tetracycline (200 µg/ml) and polymyxin (600 U/ml). Single B. ambifaria mutants were selected and correct gene deletion was confirmed by colony PCR and Sanger sequencing. Finally, the deletion mutants were cured of pDAI by plating the cells on M9 minimal medium³ containing 10% sucrose. To examine the effect of the gene deletions on enacyloxin biosynthesis, mutant strains were grown at 30°C on solid minimal medium containing glycerol as a sole carbon source (BSM-G).⁴ Following incubation for 3 days, the cells were scraped off and ethyl acetate extracts of the agar were analyzed by UHPLC-ESI-Q-TOF-MS as described below.

For genetic complementation, *bamb_5915* and *bamb_5917* were amplified from *B. ambifaria* BCC0203 genomic DNA using Q5 DNA polymerase (NEB) and the primers listed in **Supplementary Table 1**. The appropriate PCR products were purified, digested with *Eco*RI and *XbaI*, and cloned into similarly digested expression vector pMLBAD.⁵ The resulting constructs were introduced into *E. coli* SY327 using electroporation or chemically competent cells (see

above), and transformants were selected on LB plates supplemented with trimethoprim (50 μ g/ml). Plasmids were purified from trimethoprim-resistant colonies using the GeneJET Plasmid Miniprep kit as described above and the validity of the expression constructs was confirmed by Sanger sequencing. Correct constructs were transferred into the corresponding *B. ambifaria* deletion mutants via triparental conjugation.² Single mutants carrying complementation plasmids were selected using trimethoprim (200 μ g/ml) and polymyxin (600 U/ml). Their ability to restore enacyloxin production was confirmed by UHPLC-ESI-Q-TOF-MS analysis of ethyl acetate extracts from BSM-G agar-grown cultures. Control experiments were performed with *B. ambifaria* mutants carrying empty pMLBAD plasmids.

Gene cloning and site-directed mutagenesis. Protein coding sequences were amplified by PCR using the primers and templates listed in **Supplementary Table 1**. Domain boundaries were defined by sequence alignments and secondary structure predictions using Phyre^{2,6} A CACC sequence was introduced at the 5'-end of the forward primers to allow for directional cloning of the blunt-ended PCR products into pET151/D-TOPO. The PCR reaction was performed with Expand High Fidelity DNA Polymerase (Roche) according to the manufacturer's instructions. PCR products were purified using the GeneJET Gel Extraction kit (Thermo Scientific) and ligated with the linearized expression vector using the Champion pET151 Directional TOPO Expression kit (Invitrogen) according to the manufacturer's guidelines. The ligation mixtures were then used to transform One Shot TOP10 chemically competent E. coli cells (Life Technologies). Transformants were selected on LB agar plates supplemented with ampicillin (50 µg/mL). Plasmids were purified from ampicillin-resistant colonies using the GeneJET Plasmid Miniprep kit (Thermo Scientific) and the sequences of the cloned genes were confirmed by Sanger sequencing (GATC Biotech). One correct clone was used to transform BL21 Star(DE3) or C43(DE3) chemically competent *E. coli* cells for expression of the coding sequences as N-terminal His₆-tagged fusion proteins (Supplementary Table 2).

The H205A and C1988A mutations in Bamb_5915 and the KS⁰ domain of Bamb_5919, respectively, were introduced using the QuickChange XL Site Directed Mutagenesis Kit (Agilent Technologies), according to the manufacturer's instructions. The primers are listed in **Supplementary Table 1**. The presence of the desired mutations was confirmed by Sanger sequencing (GATC Biotech). CD spectroscopy showed that the mutations did not significantly affect the secondary structure of the proteins (**Supplementary Fig. 15**)

Overproduction, purification and analysis of enacyloxin biosynthetic proteins. For overproduction of the enacyloxin biosynthetic proteins, the *E. coli* BL21 Star (DE3) or C43 (DE3) cells carrying the appropriate expression constructs (**Supplementary Table 1**) were cultured in LB medium supplemented with ampicillin (50 µg/mL) at 37 °C with shaking at 180 rpm. Incubation was continued until the optical density of the cultures at 600 nm reached 0.5-0.6, at which time isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 0.5 mM to induce expression. The cell cultures were then incubated overnight at 15 °C with shaking at 180 rpm.

For purification of the His₆-tagged proteins, the *E. coli* cells were harvested by centrifugation (5000 g, 15 min, 4 °C) and cell pellets were resuspended in 20 mL of binding buffer (20 mM Tris-HCl (pH 8.0), 100 mM NaCl, 20 mM imidazole, 10% glycerol). The cells were subsequently lysed with a high-pressure cell disruptor (Constant Systems Ltd. TS-Series Cabinet) at 20300 psi. After removal of the cellular debris by centrifugation (15000 g, 30 min, 4 °C), the cell-free lysate was applied to a 1 mL HiTrap HP affinity column (GE Healthcare) equilibrated with binding buffer. Unbound proteins were removed by washing the column with 20 mL binding buffer. The recombinant His₆-tagged proteins were eluted with 4 mL elution buffer (20 mM Tris-HCl (pH 8.0), 100 mM NaCl, 200 mM imidazole, 10% glycerol). Fractions were analyzed by SDS-PAGE (Supplementary Fig. 4) and those containing the His₆-tagged proteins were pooled, concentrated and exchanged into storage buffer (20 mM Tris-HCl (pH 8.0), 100 mM NaCl, 10% glycerol) using Amicon Ultra centrifugal filters with a 10 or 30 kDa molecular weight cut-off (MWCO) membrane (Millipore) (Supplementary Table 2). The proteins were aliquoted, flash frozen in liquid N₂ and stored at -80 °C. Protein concentrations were determined by measuring the absorbance at 280 nm on a NanoDrop spectrophotometer (Thermo Scientific) and using the calculated extinction coefficients listed in Supplementary Table 2. UHPLC-ESI-Q-TOF-MS (see below) was used to confirm the molecular weights of the purified proteins (Supplementary Fig. 4).

In vitro conversion of *apo*-ACPs/PCPs to *holo-* or acylated *holo*-ACPs/PCPs. *Apo*-carrier proteins (the Bamb_5919_ACP domain, the Bamb_5919_ACP-KS⁰ di-domain, Bamb_5917 and the Bamb_5917_PCP domain) were converted into their *holo-* or acylated *holo*-forms using the promiscuous phosphopantetheinyl transferase (PPTase) Sfp from *B. subtilis*, which was overproduced and purified as reported previously.⁷ (2*E*, 4*E*)-2, 4-pentadienoyl-CoA was generated in situ from the corresponding pantetheine thioester (synthesised as described below) using purified recombinant PanK, PPAT and DPCK.⁸ The *apo*-proteins (200 µM) were combined with MgCl₂ (12.5 mM), Sfp (10 µM) and CoA, or acyl-CoA (0.5 mM), respectively, in a total volume of 200 µL. Reactions were carried out in buffer containing 20 mM Tris-HCl (pH 7.5) and 100 mM NaCl. Following incubation at 30 °C for 45 min, excess (acyl-)CoA was removed using Amicon Ultra centrifugal filters with a 5 kDa MWCO membrane (Millipore). Conversion of the proteins to the *holo* and acetylated *holo*-forms, respectively, was verified by UHPLC-ESI-Q-TOF-MS analysis (**Supplementary Fig. 5 and 6**).

Analysis of acetyl transfer between the ACP and KS⁰ domains of Bamb_5919. 250 μ M of the acetylated Bamb_5919 ACP domain was combined with 25 μ M of the Bamb_5919 KS⁰ domain, or its C1988A mutant, in buffer containing 25 mM Tris (pH 7.5) and 0.5 M NaCl. Following overnight incubation at 25 °C, the reactions were diluted 2.5-fold with deionised water and the extent of KS⁰ domain acetylation was determined using UHPLC-ESI-Q-TOF-MS, as described below. Each experiment was performed in triplicate.

Analysis of KS⁰ domain-catalysed acetyl transfer from the Bamb_5919 ACP domain to the Bamb_5917 PCP domain. The acetylated Bamb_5919 ACP domain (100 μ M) and *holo*-

Bamb_5917 or its excised PCP domain (100 μ M) were combined with the Bamb_5919 KS⁰ domain (25 μ M) and reaction buffer (25 mM Tris (pH 7.5), 0.5 M NaCl) in a total volume of 100 μ l. The Bamb_5919 KS⁰ domain was omitted, or replaced with the C1988A mutant (25 μ M), in negative control reactions. When the acetylated Bamb_5919 ACP-KS⁰ di-domain was used in place of the isolated KS⁰ and ACP domains, a concentration 100 μ M of was used. All reactions were incubated at 30°C for 3 hours, then diluted 10-fold with deionised water prior to UHPLC-ESI-Q-TOF-MS analysis (see below). Each experiment was carried out in triplicate.

Carrier protein, acyl donor and acyl acceptor specificity of Bamb_5915. To investigate the carrier protein specificity of Bamb_5915, the acetylated Bamb_5919 ACP and Bamb_5917 PCP domains and acetylated full-length Bamb_5917 (200 μ M) were separately incubated with Bamb_5915 (20 μ M) and DHCCA or AHCCA (1 mM), in a total volume of 100 μ l. Reactions were carried out in buffer containing 20 mM Tris-HCl (pH 7.5) and 100 mM NaCl. Bamb_5915 was omitted from negative control reactions. Following incubation for 1 h at 30 °C, the reactions were stopped by the addition of two volumes of methanol. Precipitates were removed by centrifugation (13000 g, 1 min) and the supernatants were analysed by UHPLC-ESI-QTOF-MS (see below). All assays were performed in triplicate.

The acyl acceptor specificity of Bamb_5915 was examined by incubating the enzyme (20 μ M) with the acetylated Bamb_5917 PCP domain or full-length protein (200 μ M) and a range of DHCCA analogues (1 mM), in a total volume of 100 μ l of buffer (20 mM Tris-HCl (pH 7.5), 100 mM NaCl). Bamb_5915 was omitted from negative control reactions. After incubation for 1 h at 30 °C, the proteins were precipitated by the addition of two volumes of methanol. Precipitates were removed by centrifugation (13000 g, 1 min) and the supernatants were analysed by UHPLC-ESI-QTOF-MS (see below).

The acyl donor specificity of Bamb_5915 was investigated similarly, except that a range of NAC thioesters (1.5 mM) and AHCCA (1 mM) were used instead of the acetylated Bamb_5917 PCP domain/full-length protein and the DHCCA analogues, respectively.

In vitro reconstitution of chain release from the enacyloxin PKS. The acetylated Bamb_5919 ACP domain (25 μ M) was combined with the *holo*-Bamb_5917 PCP domain/full-length protein (25 μ M), the Bamb_5919 KS⁰ domain (25 μ M), Bamb_5915 (20 μ M) and AHCCA (1 mM) in a total volume of 100 μ l. Reactions were carried out in buffer containing 20 mM Tris-HCl (pH 7.5) and 100mM NaCl. To evaluate the role played by the Bamb_5919 KS⁰ domain in the overall process, it was omitted from the reaction or replaced with the C1988A mutant. In addition, the acetylated Bamb_5919_ACP-KS⁰ di-domain was employed in place of the isolated ACP and KS⁰ domains at a concentration of 25 μ M. A negative control reaction from which Bamb_5915 was omitted was also carried out. All reactions were incubated for 1h at 30 °C and stopped by the addition of two volumes of methanol. Precipitates were removed by centrifugation (13000 g, 1 min) and the supernatants were analysed by UHPLC-ESI-QTOF-MS (see below). All experiments were performed in triplicate.

UHPLC-ESI-Q-TOF-MS analyses. Small molecules were analyzed using a Dionex UltiMate 3000 UHPLC connected to a Zorbax Eclipse Plus column (C_{18} , 100 × 2.1 mm, 1.8 µm) coupled to a Bruker maXis impact mass spectrometer. Mobile phases consisted of water (A) and acetonitrile (B), each supplemented with 0.1% formic acid. The column was eluted with a linear gradient of 5 - 100% B over 35 min, employing a flow rate of 0.2 mL/min. The mass spectrometer was operated in positive ion mode with a scan range of 50-3000 *m/z*. Source conditions were: end plate offset at -500 V; capillary at -4500 V; nebulizer gas (N₂) at 1.6 bar; dry gas (N₂) at 8 L min-1; dry temperature at 180 °C. Ion transfer conditions were: ion funnel RF at 200 Vpp; multiple RF at 200 Vpp; quadrupole low mass at 55 *m/z*; collision energy at 5.0 eV; collision RF at 600 Vpp; ion cooler RF at 50–350 Vpp; transfer time at 121 µs; pre-pulse storage time at 1 µs. Calibration was performed with 1 mM sodium formate through a loop injection of 20 µL at the start of each run.

UHPLC-ESI-Q-TOF-MS analyses of intact proteins were conducted using a Dionex UltiMate 3000 RS UHPLC connected to an ACE 3 C₄-300 reverse phase column (Advanced Chromatography Technologies, Aberdeen, UK; 100 × 2.1 mm) coupled to a Bruker maXis II mass spectrometer. Proteins were eluted with a linear gradient of 5 - 100% MeCN containing 0.1% formic acid over 30 min. A flow rate of 0.2 ml/min was employed. Source conditions were: capillary at -4500 V, ion polarity positive, time-of-flight tube at 9860 V and detector at 3500 V.

CD spectroscopy. The CD spectra of Bamb_5915, the Bamb_5919 KS⁰ domain and their mutated variants were measured from 180 to 260 nm in buffer consisting of 50 mM potassium phosphate (pH 7.4) and 50 mM NaCl, using a JASCO J-1500 spectrometer and a 1 mm path length quartz cuvette. The spectra were recorded at 20°C using a protein concentration of 0.2 mg/ml.

Synthesis of substrates and substrate analogues

General procedures

Room temperature refers to ambient temperature (20 - 22 °C), 5 °C refers to a cold water bath and 0 °C refers to an ice slush bath. Heated experiments were conducted using thermostatically controlled oil baths. All commercially available solvents and chemicals were used without any further purification. NMR spectra were recorded on a Bruker Avance AV-300 MHz spectrometer or a Bruker HD-500 MHz spectrometer equipped with a DCI cryoprobe at room temperature (298 K). Chemical shifts are reported in parts per million (ppm) referenced to CHCl₃ ($\delta_{\rm H}$: 7.26 ppm and $\delta_{\rm C}$: 77.0 ppm). Coupling constants (J) are rounded to the nearest 0.5 Hertz (Hz). Multiplicities are given as multiplet (m), singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin.), sextet (sext.), septet (sept.), octet (oct.) and nonet (non.). ¹H and ¹³C assignments were established on the basis of COSY, DEPT, HMQC and HMBC correlations. Infra-red spectra were recorded using either a Perkin Elmer Spectrum 100 FT-IR spectrometer or an Alpha Bruker Platunium ATR single reflection diamond ATR module. Melting points were recorded on a Stuart scientific melting point apparatus and are uncorrected. Silica column chromatography was performed on 40-60 Å silica gel. Thin layer chromatography (TLC) was carried out on aluminium sheets coated with 0.2 mm silica gel 60 F_{254} . Visualisation was effected by UV light (254 nm) or by potassium permanganate solution followed by heating. Low resolution mass spectra (LRMS) were recorded using an Agilent 6130B single Quad (ESI). High resolution mass spectra (HRMS) were obtained using a Bruker MaXis mass spectrometer.

Synthesis of (±)-(1R,3R)-3-hydroxycyclohexanecarboxylic acid and (±)-(1S,3R)-3-hydroxycyclohexanecarboxylic acid

These compounds were synthesized according to literature procedures.⁹

Synthesis of (\pm) -(1S,3R,4S)-3-amino-4-hydroxycyclohexane carboxylic acid (AHCCA), (\pm) -(1S,3R,4S)-3-acetamido-4-hydroxycyclohexane-1-carboxylic acid and (\pm) -(1S,3R,4R)-3-amino-4-hydroxycyclohexane-1-carboxylic acid

(±)-Ethyl (15,3R,4R)-3-benzamido-4-hydroxycyclohexane-1-carboxylate

To a solution of ethyl (±)-(1*S*,3*S*,6*R*)-7-oxabicyclo[4.1.0]heptane-3-carboxylate¹⁰ (1.15 g, 6.76 mmol) in EtOH (10 mL) was added 28 % aqueous ammonia (20 mL). The reaction was stirred at 45 °C overnight and concentrated *in vacuo* to afford the crude amino alcohol as a yellow oil. The oil was dissolved in EtOH (20 mL) and benzoic anhydride (1.68 g, 7.44 mmol) was added in an ice-water bath. After 15 min the reaction was allowed to warm to room temperature and was stirred for a further 2 h. The reaction was then concentrated *in vacuo*, and the crude oil purified by silica chromatography (EtOAc : Petroleum ether, 30 : 70) to afford the product as a white solid (1.75 g, 89 %, m.p. 138-140 °C).

 v_{max} /cm⁻¹ (neat) 3423 (NH), 3310 (OH), 2944 (ArH), 1720, 1627 (C=O), 1025 (C-O); δ_{H} (500 MHz; CDCl₃) 7.76 (2H, d, J 7.5, Ar*H*), 7.51 (1H, t, J 7, Ar*H*), 7.43 (2H, t, J 7.5, Ar*H*), 7.18 (1H, br. d, J 6.5, N*H*), 4.19 (2H, q, J 7.5, OC*H*₂CH₃), 4.12-4.05 (1H, m, C*H*N), 3.71 (1H, br. s, O*H*), 3.56 (1H, td, J 9 and 4.5, C*H*OH), 2.72 (1H, quin., J 4, C*H*CO₂), 2.50-2.44 (1H, m, C*H*₂CHN), 2.22-2.14 (1H, m, C*H*₂CHCO₂), 1.99-1.91 (1H, m, C*H*₂CHOH), 1.73 (1H, br. s, O*H*), 1.63-1.54 (3H, m, C*H*₂CHN, C*H*₂CHCO₂ and C*H*₂CHOH), 1.29 (3H, t, J 7, C*H*₃); δ_{C} (125 MHz, CDCl₃) 174.0 (CO₂CH₂), 169.3 (CON), 134.2 (ArC_{quart.}), 132.0 (ArC), 128.8 (ArC), 127.2 (ArC), 74.2 (CHO), 60.9 (CH₂CH₃), 53.1 (CHN), 38.9 (CHCO₂), 31.5 (CH₂CHN), 30.7 (CH₂CHOH), 25.0 (CH₂CHCO₂), 14.4 (CH₃); HRMS (ESI) calc. for C₁₆H₂₁NNaO₄⁺: 314.1363, found: 314.1363.

(±)-Ethyl (3aR,5S,7aS)-2-phenyl-3a,4,5,6,7,7a-hexahydrobenzo[d]oxazole-5-carboxylate

To a solution of (±)-ethyl (1*S*,3*R*,4*R*)-3-benzamido-4-hydroxycyclohexane-1-carboxylate (1.5 g, 5.15 mmol) in CHCl₃ (30 mL) was added SOCl₂ (1.5 mL, 9.82 mmol) dropwise under an inert atmosphere. The reaction was allowed to stir for 1 h at 40 °C , saturated NaHCO₃ (15 mL) was added and the mixture was stirred for a further ten minutes. The organic layer was separated and the aqueous layer was extracted with CHCl₃ (2 x 20 mL). The combined organics were dried (MgSO₄), filtered and concentrated *in vacuo* to afford the product as a yellow oil (1.21 g, 86 %).

 v_{max} /cm⁻¹ (neat) 2941 (ArH), 1720 (C=O), 1631 (C=N), 1025 (C-O); δ_H (500 MHz; CDCl₃) 7.94 (2H, d, J 7.5, Ar*H*), 7.48 (1H, t, J 7.5, Ar*H*), 7.41 (2H, t, J 7.5, Ar*H*), 4.81 (1H, dt., J 9 and 5.5, CHOCN), 4.39 (1H, quin., J 4.5, CHN), 4.13 (2H, qd, J 7 and 2, OCH₂CH₃), 2.59 (1H, dtd, J 11.5, 7 and 5, CHCO₂), 2.24 (1H, dt, J 14.5 and 4, CH₂CHN), 2.01-1.92 (2H, m, CH₂CHN and CH₂CHO), 1.88-1.73 (2H, m, CH₂CHO and CH₂CHCO₂), 1.68-1.60 (1H, m, CH₂CHCO₂), 1.24 (3H, t, J 7, CH₃); δ_{c} (125 MHz, CDCl₃) 176.0 (CO₂CH₂), 164.5 (CON), 131.6 (Ar*C*), 128.5 (Ar*C*), 128.3 (Ar*C*), 128.0 (Ar*C*_{quart.}), 77.7 (CHO), 63.2 (CHN), 60.6 (CH₂CH₃), 35.7 (CHCO₂), 28.6 (CH₂CHN), 25.0 (CH₂CHO), 20.9 (CH₂CHCO₂), 14.3 (CH₃); HRMS (ESI) calc. for C₁₆H₂₀NO₃⁺: 274.1438, found: 274.1439.

(±)-(1S,3R,4S)-3-amino-4-hydroxycyclohexane-1-carboxylic acid

(±)-Ethyl (3a*R*,5*S*,7a*S*)-2-phenyl-3a,4,5,6,7,7a-hexahydrobenzo[d]oxazole-5-carboxylate (1.20 g, 4.41 mmol) was dissolved in aqueous HCl (6 M, 50 mL) and heated to reflux overnight. The reaction was concentrated *in vacuo*, diluted with water and washed with Et₂O (5 x 50 mL). The aqueous phase was subsequently concentrated *in vacuo* to afford (±)-(1*S*,3*R*,4*S*)-3-amino-4-hydroxycyclohexane-1-carboxylic acid as a white solid (0.65 g, 92 %, m.p. 233-235 °C).

 v_{max} /cm⁻¹ (neat) 3283 (NH₂), 3134 (OH), 2904 (CO₂H), 1697 (C=O), 1040 (C-O); δ_{H} (500 MHz; D₂O) 4.06 (1H, dt, J 6.5 and 3, CHOH), 3.62 (1H, dt, J 8 and 4, CHNH₂), 2.79 (1H, quin., J 6 CHCO₂H), 2.10-1.91 (3H, m, CHCH₂CHNH₂, CH₂CHCO₂H), 1.85-1.67 (3H, m, CH₂CHCO₂H, CH₂CHOH); δ_{c} (125 MHz, D₂O) 178.9 (CO₂H), 65.5 (CHOH), 50.2 (CHNH), 37.1 (CHCO₂H), 27.1 (CH₂CHOH), 26.3 (CH₂CHNH₂), 22.0 (CH₂CHCO₂H); HRMS (ESI) calc. for C₇H₁₄NO₃⁺: 160.0967, found: 160.0968.

(±)-(1S,3R,4S)-3-acetamido-4-hydroxycyclohexane-1-carboxylic acid

To a solution of (±)-(1*S*,3*R*,4*S*)-3-amino-4-hydroxycyclohexane-1-carboxylic acid (100 mg, 0.63 mmol) in H₂O (2 mL) was added acetic anhydride (75 μ L, 0.85 mmol), followed by sodium acetate (200 mg, 2.52 mmol). The resulting mixture was stirred at room temperature for 4 h, then acidified using aqueous HCl (2 M, 2 mL). Concentration *in vacuo* afforded the crude product as a white tacky solid. This was resuspended in MeOH (10 mL), filtered and concentrated *in vacuo* to afford (±)-(1*S*,3*R*,4*S*)-3-acetamido-4-hydroxycyclohexane-1-carboxylic acid as a viscous oil (92 mg, 73 %).

 v_{max} /cm⁻¹ (neat) 3136 (OH), 2935 (NH), 1699, 1618 (C=O), 1023 (C-O); δ_H (500 MHz; D₂O) 5.12 (1H, dt, J 6 and 3, CHOH), 3.77 (1H, dt, J 9.5 and 3.5, CHNH), 2.82 (1H, quin., J 5, CHCO₂H), 2.19-2.14 (1H, m, CH₂CHNH), 2.16 (3H, s, CH₃CON), 2.07 (1H, ddd, J 14, 10 and 5, CH₂CHNH), 1.96-1.75 (4H, m, CH₂CHCO₂H, CH₂CHOH); δ_C (125 MHz, D₂O) 177.4 (CO₂H), 171.2 (CONH), 67.7 (CHOH), 46.5 (CHNH), 35.9 (CHCO₂H), 24.8 (CH₂CHNH), 22.5 (CH₂CHOH), 19.8 (CH₂CHCO₂H), 18.4 CH₃; HRMS (ESI) calc. for C₉H₁₆NO₄ ⁺: 202.1074, found: 202.1075).

(±)-(1S,3R,4R)-3-amino-4-hydroxycyclohexane-1-carboxylic acid

(±)-Ethyl (1*S*,3*R*,4*R*)-3-((*tert*-butoxycarbonyl)amino)-4-hydroxycyclohexane-1-carboxylate¹¹ (1.35 g, 4.70 mmol) was dissolved in aqueous HCl (6 M, 50 mL) and heated to reflux overnight. After cooling, the mixture was concentrated *in vacuo* to afford (±)-(1*S*,3*R*,4*R*)-3-amino-4-hydroxycyclohexane-1-carboxylic acid as a viscous oil (0.73 g, 98 %).

 v_{max} /cm⁻¹ (neat) 3277 (NH₂), 3145 (OH), 2912 (CO₂H), 1698 (C=O), 1037 (C-O); δ_{H} (500 MHz; D₂O) 4.12-4.09 (1H, m, CHOH), 3.40 (1H, dt, J 12.5 and 3.5, CHNH₂), 2.55 (1H, tt, J 12.0 and 3.5, CHCO₂H), 2.06-1.93 (2H, m, CHCH₂CHNH₂, CH₂CHOH), 1.83-1.76 (2H, m, CH₂CHCO₂H,

CH₂CHOH), 1.67-1.57 (2H, m, CHCH₂CHNH₂, CH₂CHCO₂H); δ_{c} (125 MHz, D₂O) 178.6 (CO₂H), 64.3 (CHOH), 51.6 (CHNH), 40.5 (CHCO₂H), 29.8 (CH₂CHOH), 25.9 (CH₂CHNH₂), 21.1 (CH₂CHCO₂H); HRMS (ESI) calc. for C₇H₁₄NO₃⁺: 160.0967, found: 160.0968.

Synthesis of (±)-(1S,3R,4S)-3,4-dihydroxycyclohexane carboxylic acid (DHCCA), (±)-(1R,3R,4S)-3,4-3,4-dihydroxycyclohexane carboxylic acid, (±)-(1R,3R,4R,5R)-3,4,5-trihydroxycyclohexane-1-carboxylic acid and (±)-(1S,3R,4S,5R)-3,4,5-trihydroxycyclohexane-1-carboxylic acid

(±)-(1S,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylic acid

To a solution of the acetonide of (\pm)-(1*S*,3*R*,4*S*)-3,4-dihydroxycyclohexane-1-carboxylic acid¹² (350 mg, 1.64 mmol) in MeOH (30 mL) was added TsOH (35 mg, 0.20 mmol). The resulting mixture was stirred at room temperature for 1 h, then concentrated *in vacuo* and partitioned between EtOAc (20 mL) and saturated NaHCO₃ (20 mL). The layers were separated and the aqueous phase was extracted with EtOAc (2 x 20 mL). The combined organics were washed with brine, dried (MgSO₄), filtered and concentrated *in vacuo* to afford a viscous oil, which was dissolved in THF (10 mL). H₂O (5 mL) and LiOH (40 mg, 2 mmol) were added and the resulting mixture was stirred at room temperature overnight. The THF was removed *in vacuo* and the resulting suspension was acidified and extracted with EtOAc (5 x 10 mL). The combined organics were washed with brine, dried (MgSO₄), filtered (MgSO₄), filtered and concentrated *in vacuo* to afford a viscous oil, which was dissolved in THF (10 mL). H₂O (5 mL) and LiOH (40 mg, 2 mmol) were added and the resulting mixture was stirred at room temperature overnight. The THF was removed *in vacuo* and the resulting suspension was acidified and extracted with EtOAc (5 x 10 mL). The combined organics were washed with brine, dried (MgSO₄), filtered and concentrated *in vacuo* to afford the (\pm)-(1*S*,3*R*,4*S*)-3,4-dihydroxycyclohexane-1-carboxylic acid as a viscous oil (192 mg, 73 %).

 v_{max} /cm⁻¹ (neat) 3147 (OH), 2935 (CO₂H), 1718 (C=O), 1066 (C-O); δ_{H} (500 MHz; D₂O) 4.05-4.01 (1H, br. m, CHCH₂CHOH), 3.69 (1H, ddd, J 11, 4 and 3, CHOH), 2.55 (1H, tt, J 12 and 3.5, CHCO₂H), 2.06-1.99 (1H, m, CHCOHCH₂CHCO₂H), 1.96-1.90 (1H, m, CH₂CHCO₂H), 1.76-1.60 (3H, m, CHCOHCH₂CHCO₂H, CH₂CHOH), 1.47 (1H, qd, J 12.5 and 4, CH₂CHCO₂H); δ_{C} (125 MHz, D₂O) 183.1 (CO₂H), 71.2 (CHOH), 69.2 (CHCH₂CHOH), 38.4 (CHCO₂H), 33.9 (CHCH₂CHOH), 26.3 (CH₂CH₂CHCO₂H), 27.0 (CH₂CHCO₂H); HRMS (ESI) calc. for C₇H₁₃O₄ ⁺: 161.0814, found: 161.0813.

(±)-(1R,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylic acid

A solution of 3,4-dihydroxybenzoic acid (1.5g, 9.8mmol) and rhodium on alumina (5 wt%, 0.2 g) in water (60 ml) was hydrogenated for 2 days at 140 °C and 80 atm. The mixture was cooled to room temperature and filtered. The resulting solution was lyophilized to yield an off-white solid, which purified by reverse-phase HPLC (isocratic 100% water) to yield (±)-(1R,3R,4S)-3,4-dihydroxycyclohexane-1-carboxylic acid as a white solid (630 mg, 42%).

 v_{max} /cm⁻¹ (neat) 3152 (OH), 2940 (CO₂H), 1716 (C=O), 1067 (C-O); δ_H (500 MHz; D₂O) 3.96-3.93 (1H, br m, CHCH₂CHOH), 3.70 (1H, ddd, J 11, 4 and 3, CHOH), 2.37 (1H, tt, J 11 and 3.5, CHCO₂H), 1.93-1.84 (2H, m, CHCOHCH₂CHCO₂H, CH₂CHCO₂H), 1.76-1.53 (3H, m, CHCOHCH₂CHCO₂H, CH₂CHCO₂H, CH₂CHOH); δ_C (125 MHz, D₂O) 183.0 (CO₂H), 71.2 (CHOH), 69.2 (CHCH₂CHOH), 43.3 (CHCO₂H), 31.0 (CHCH₂CHOH), 29.7 (CH₂CHCO₂H), 22.8 (CH₂CHCO₂H); HRMS (ESI) calc. for C₇H₁₃O₄⁺: 161.0814, found: 161.0817.

(±)-(1R,3R,4R,5R)-3,4,5-trihydroxycyclohexane-1-carboxylic acid and (±)-(1S,3R,4S,5R)-3,4,5trihydroxycyclohexane-1-carboxylic acid

To a stirred solution of shikimic acid (100 mg, 0.57 mmol) in MeOH (4 mL) was added palladium on carbon (20 mg). The resulting mixture was placed under a H₂ atmosphere and stirred at room temperature for 16 h. It was then filtered through Celite and concentrated *in vacuo* to afford a mixture of the two products, which was separated by semi-preparative reverse phase HPLC to afford (1*R*,3*R*,4*R*,5*R*)-3,4,5-trihydroxycyclohexane-1-carboxylic acid (5 mg, 5 %) and (1*S*,3*R*,4*S*,5*R*)-3,4,5-trihydroxycyclohexane-1-carboxylic acid (4 mg, 4 %) as colourless oils.

(1R,3R,4R,5R)-3,4,5-trihydroxycyclohexane-1-carboxylic acid: v_{max}/cm^{-1} (neat) 3261 (OH), 1701 (CO); δ_{H} (500 MHz; CD₃OD) 4.06 (1H, q, J 3.5, CHOHCHOHCHOH), 3.75 (1H, ddd, J 11.0, 9.5 and 4.5, CHOHCHOHCHOH), 3.27 (1H, dd, J 9.0 and 3.0, CHOHCHOHCHOH), 2.82 (1H, tt, J 12.5 and 3.5, CHCO₂H), 2.16-2.19 (1H, m, CH₂CHCO₂HCH₂), 2.03 (1H, dq, J 14.0 and 3.5, CH₂CHCO₂HCH₂), 1.61 (1H, ddd, J 14.5, 12.5 and 2.0, CH₂CHCO₂HCH₂), 1.41 (1H, q, J 12.5, CH₂CHCO₂HCH₂); δ_{C} (125 MHz, CD₃OD) 177.2 (CO₂H), 77.3 (CHOHCHOHCHOH), 70.4 (CHOHCHOHCHOH), 70.1 (CHOHCHOHCHOH), 37.2 (CHCO₂), 36.3 (CH₂CHCO₂CH₂), 34.9 (CH₂CHCO₂CH₂); HRMS (ESI) cald. for C₇H₁₂NaO₅: 199.0582, found: 199.0581.

(1*S*,3*R*,4*S*,5*R*)-3,4,5-trihydroxycyclohexane-1-carboxylic acid: v_{max} /cm⁻¹ (neat) 3268 (OH), 1711 (CO); δ_H (500 MHz; CD₃OD) 4.08 (1H, td, J 5.5 and 3.5, CHOHCHOHCHOH), 4.00 (1H, ddd, J 8.5, 5.5 and 3.0, CHOHCHOHCHOH), 3.72 (1H, dd, J 5.5 and 3.0, CHOHCHOHCHOH), 2.76 (1H, tt, J 10.0 and 4.5, CHCO₂H), 2.02-1.87 (3H, m, CH₂CHCO₂HCH₂), 1.75 (1H, dt, J 14.0 and 5.0, CH₂CHCO₂HCCO₂HCH₂); δ_C (125 MHz, CD₃OD) 176.9 (CO₂H), 77.1 (CHOHCHOHCHOH), 70.5

(CHOHCHOHCHOH), 69.9 (CHOHCHOHCHOH), 37.4 (CHCO₂), 36.2 (CH₂CHCO₂CH₂), 34.7 (CH₂CHCO₂CH₂); HRMS (ESI) cald. for C₇H₁₂NaO₅: 199.0582, found: 199.0578.

Synthesis of N-acetyl cysteine thioesters - general procedure.

To a solution of N-(2-mercaptoethyl)acetamide (100 mg, 0.84 mmol) and triethylamine (107 μ l, 0.77 mmol) in CH₂Cl₂ (5 mL) was added the acid chloride (0.7 mmol) dropwise at 0 °C. The resulting mixture was stirred at room temperature overnight and quenched by the addition of 2 M HCl. It was then extracted with CH₂Cl₂ (3 x 10 mL), washed with brine (10 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The resdiue was purified by silica chromatography (EtOAc) to afford the product as a colorless oil.

S-(2-acetamidoethyl) propanethioate¹³

S-(2-acetamidoethyl) propanethioate was synthesized using the general procedure described above using propionyl chloride (61 μ l) to afford the product as a colourless oil (112 mg, 91 %).

 δ_{H} (500 MHz; CDCl₃) 5.92 (1H, br. s, N*H*), 3.42 (2H, q, J 6, C*H*₂NH), 3.01 (2H, t, J 6.5, C*H*₂S), 2.59 (2H, q, J 7.5, CH₃C*H*₂), 1.96 (3H, s, COC*H*₃), 1.17 (3H, t, J 7.5, C*H*₃CH₂); δ_{C} (125 MHz, CDCl₃) 201.0 (COS), 170.5 (CON), 39.8 (CH₂NH), 37.6 (CH₂CH₃), 28.5 (CH₂S), 23.3 (COCH₃), 9.8 (CH₂CH₃); HRMS (ESI) calc. for C₇H₁₃NNaO₂S⁺: 198.0565, found: 198.0567.

S-(2-acetamidoethyl) 2-methylpropanethioate¹³

S-(2-acetamidoethyl) 2-methylpropanethioate was synthesized using the general procedure described above using isobutyryl chloride (85 μ l) to afford the product as a colourless oil (92 mg, 70 %).

 δ_{H} (500 MHz; CDCl₃) 5.96 (1H, br. s, NH), 3.41 (2H, q, J 6.5, CH₂NH), 2.99 (2H, t, J 6.5, CH₂S), 2.59 (1H, septet, J 7, (CH₃)₂CH), 1.94 (3H, s, COCH₃), 1.18 (6H, d, J 7, (CH₃)₂CH); δ_{C} (125 MHz, CDCl₃) 205.0 (COS), 170.4 (CON), 43.3 (CH(CH₃)₂), 39.9 (CH₂NH), 28.2 (CH₂S), 23.3 (COCH₃), 19.5 (CH(CH₃)₂); HRMS (ESI) calc. for C₈H₁₅NNaO₂S⁺: 212.0721, found: 212.0722.

<u>S-(2-acetamidoethyl) 2,2-dimethylpropanethioate</u>

S-(2-acetamidoethyl) 2,2-dimethylpropanethioate was synthesized using the general procedure described above using pivaloyl chloride (86 μ l) to afford the product as a white solid (78 mg, 55 %, m.p. 45-47 °C).

 v_{max}/cm^{-1} (neat) 3251 (NH), 1678, 1640 (C=O); δ_{H} (500 MHz; CDCl₃) 5.79 (1H, br. s, NH), 3.42 (2H, q, J 6, CH₂NH), 3.00 (2H, t, J 6.5, CH₂S), 1.96 (3H, s, COCH₃), 1.24 (9H, s, (C(CH₃)₃); δ_{C} (125 MHz, CDCl₃) 207.8 (COS), 170.3 (CON), 46.7 (C(CH₃)₃), 39.9 (CH₂NH), 28.2 (CH₂S), 27.5 (C(CH₃)₃), 23.4 (COCH₃); HRMS (ESI) calc. for C₉H₁₁NNaO₂S⁺: 226.0878, found: 226.0880.

S-(2-acetamidoethyl) (2E,4E)-hexa-2,4-dienethioate14

To a solution of sorbic acid (76 mg, 0.67 mmol), N-(2-mercaptoethyl)acetamide (88 mg, 0.74 mmol, 1.4 equiv.) and DMAP (18 mg, 0.16 mmol, 0.3 equiv.) in CH_2Cl_2 (5 mL), was added EDC (141 mg, 0.75 mmol, 1.4 equiv.) at 0 °C. The resulting mixture was stirred at room temperature overnight. After quenching by the addition of 2 M HCl, the mixture was extracted with CH_2Cl_2 (3 x 10 mL), washed with brine (10 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by silica chromatography (EtOAc) to afford the product as a white solid (121 mg, 85 %, m.p. 167-169 °C).

 $\delta_{\rm H}$ (500 MHz; CDCl₃) 7.20 (1H, dd, J 15.5 and 11, COSCHC*H*), 6.25 (1H, dq, J 15 and 6.5, CH₃C*H*), 6.16 (1H, dd, J 14.5 and 11, CH₃CHC*H*), 6.08 (1H, d., J 15.5, COSC*H*), 5.93 (1H, br. s, N*H*), 3.46 (2H, q, J 6, CH₂NH), 3.10 (2H, t, J 6.5, CH₂S), 1.96 (3H, s, COCH₃), 1.88 (3H, d, J 6.5, CHCH₃); $\delta_{\rm C}$ (125 MHz, CDCl₃) 190.6 (COS), 170.4 (CON), 142.1 (COSCHCH), 142.0 (CH₃CH), 129.7 (CH₃CHCH), 125.8 (COSCH), 77.7 (CHCO), 40.1 (CH₂NH), 28.5 (CH₂S), 23.4 (COCH₃), 19.1 (CHCH₃); HRMS (ESI) calc. for C₁₀H₁₅NNaO₂S⁺: 236.0716, found: 236.0718.

N-(tert-butoxycarbonyl)-O-(tert-butyl)-L-serine N-acetyl cysteamine thioester¹⁵

To a stirred solution of *N*-(*tert*-butoxycarbonyl)-*O*-(*tert*-butyl)-L-serine (500 mg, 1.9 mmol) in DMF (10 mL) under an argon atmosphere was added *N*-acetyl cysteamine (266 mg, 1.9 mmol), K₂CO₃ (756 mg, 5.7 mmol) and BOP (960 mg, 2.3 mmol). The resulting mixture was stirred for 3 hours and diluted with ethyl acetate (20 mL). The organics were washed with NH₄Cl (sat., 2×10 mL) and NaHCO₃ (sat., 10 ml), dried (MgSO₄), and concentrated *in vacuo*. The resulting

oil was filtered through silica (25% hexane in ethyl acetate) to yield the product as a white solid (588 mg, 84 %).

 δ_{H} (300 MHz, CDCl₃): 5.97 (1H, br s), 5.46 (1H, br d *J* 8.0), 4.39-4.31 (1H, m), 3.85 (1H, br d *J* 9.0), 3.52 (1H, dd *J* 9.0, 3.0), 3.46-3.36 (2H, m), 3.02 (2H, t *J* 6.5), 1.95 (3H, s), 1.48 (9H, s), 1.13 (9H, s); δ_{C} (75 MHz, CDCl₃): 201.8, 170.4, 155.7, 80.8, 73.7, 62.0, 61.1, 39.7, 28.7, 28.5, 27.4, 23.2; MS ES⁺: 385 (100 %, [M+Na]⁺), 363 (11 %, [M+H]⁺).

L-Serine N-acetyl cysteamine thioester hydrochloride¹⁵

A solution of HCl (dioxane, 2 M) was added to *N*-(*tert*-butoxycarbonyl)-*O*-(*tert*-butyl)-L-serine *N*-acetyl cysteamine thioester (500 mg, 1.4 mmol) on ice with stirring. The resulting solution was stirred for 10 minutes at 0 °C and then at room temperature for 3 h. The solvent was removed *in vacuo* and the resulting solid was recrystallized (CH₃OH/CH₂Cl₂) to yield the desired product as a white solid (274 mg, 81 %).

 δ_{H} (400 MHz, d₆-DMSO): 8.60 (3H, br s), 8.24 (1H, br t J 5.5), 4.32-4.25 (1H, m), 3.86 (2H, d J 3.5), 3.21 (2H, q, J 6.5), 3.05-2.99 (2H, m), 1.80 (3H, s); δ_{C} (100 MHz, d₆-DMSO): 194.8, 169.7, 60.7, 60.5, 37.8, 28.3, 22.5; MS ES⁺: 435 (19 %, [M₂-H₂Cl₂+Na]⁺), 413 (100 %, [M₂-H₂Cl₂+H]⁺), 206 (17 %, [M-Cl]⁺).

Synthesis of the pantetheine thioester of 2,4-hexadienoic acid

<u>S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl</u>) (2E,4E)-<u>hexa-2,4-dienethioate</u>

A modification of the procedure reported by Roberts *et al.* was used.¹⁶ To a solution of sorbic acid (61 mg, 0.54 mmol, 1.3 equiv.), (*R*)-*N*-(3-((2-mercaptoethyl)amino)-3-oxopropyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamide (184 mg, 0.58 mmol, 1.4 equiv.) and DMAP (14 mg, 0.12 mmol, 0.3 equiv.) in CH₂Cl₂ (5 mL), was added EDC (109 mg, 0.58 mmol, 1.4 equiv.) at 0 °C. The resulting mixture was stirred at room temperature for 17 h, then quenched by the addition of 2 M HCl, extracted with CH₂Cl₂ (3 x 10 mL), washed with brine (10 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. The residue was purified by silica gel chromatography (EtOAc) to afford the product as a colourless oil (199 mg, 90 %).

 v_{max}/cm^{-1} (neat) 3328 (NH), 2940 (C=C-H), 1671, 1512 (C=O); δ_{H} (500 MHz; CDCl₃) 7.19 (1H, dd, J 15 and 10.5, CHCHCOS), 7.03 (1H, br. t, J 6.0, NH), 6.24 (1H, dq, J 15.0 and 7.0, CH₃CH), 6.23 (1H, br. m, NHCH₂CH₂S), 6.15 (1H, ddd, J 15.0, 11.0 and 1.0, CH₃CHCH), 6.06 (1H, d, J 15.0, CHCOS), 4.06 (1H, s, CHCONH), 3.67 (1H, d J 11.5, CH₂OC(CH₃)₂), 3.60-3.40 (4H, m, NHCH₂, CH₂CH₂S), 3.26 (1H, d J 11.5, CH₂OC(CH₃)₂), 3.08 (2H, t, J 6.5, CH₂S), 2.41 (2H, t, J 6.5, CH₂CONH), 1.87 (3H, d, J 7.0, CHCH₃), 1.45 (3H, s, OC(CH₃)₂), 1.41 (3H, s, OC(CH₃)₂), 1.02 (3H, s, CH₂C(CH₃)₂), 0.96 (3H, s, CH₂C(CH₃)₂); δ_{C} (125 MHz, CDCl₃) 190.3 (CO₂S), 171.4 (CH₂CONH), 170.2 (CHCONH), 142.1 (CH₃CH), 142.0 (CHCHCOS), 129.7 (CH₃CHCH), 125.8 (CHCHCOS), 99.2 (OC(CH₃)₂), 77.3 (CH), 71.6 (CH₂OC(CH₃)₂), 40.0 (CH₂CH₂S), 36.1 (CH₂CONH), 34.9 (CH₂NH), 33.1 (CH₂C(CH₃)₂), 29.7 (OC(CH₃)₂), 28.5 (CH₂S), 22.3 (CH₂C(CH₃)₂), 19.1 (OC(CH₃)₂), 18.9 (CH₂C(CH₃)₂), 14.1 (CHCH₃); HRMS (ESI) calc. for C₂0H₃2N₂NaO₅S [M + Na]⁺: 435.1924, found: 435.1923..

<u>S-(2-(3-((R)-2,4-dihydroxy-3,3-dimethylbutanamido)propanamido)ethyl</u>) (2E,4E)-hexa-2,4-

<u>dienethioate</u>

S-(2-(3-((R)-2,2,5,5-tetramethyl-1,3-dioxane-4-carboxamido)propanamido)ethyl) (2E,4E)hexa-2,4-dienethioate (180 mg, 0.45 mmol, 1.0 equiv.) was stirred in AcOH : H₂O (2 : 1, 3 mL), for 16 h at room temperature. The solvent was removed *in vacuo* and the residue was purified using silica gel chromatography (CH₂Cl₂ : MeOH, 85 : 15) to give the product as a colourless oil (42 mg, 25 %).

 v_{max} /cm⁻¹ (neat) 3340 (OH), 2969 (NH), 2940 (C=C-H), 1651, 1540 (C=O); δ_H (500 MHz; CD₃OD) 7.21 (1H, dd, J 15.0 and 10.0, CHCHCOS), 6.30 (1H, dq, J 15.0 and 6.5, CH₃CH), 6.24 (1H, dd, J 15.0 and 10.0, CH₃CHCH), 6.15 (1H, d, J 15.0, CHCOS), 3.89 (1H, s, CHCONH), 3.53-3.33 (6H, m, NHCH₂, CH₂CH₂S, CH₂OH), 3.08 (2H, t, J 7.0, CH₂S), 2.41 (2H, t, J 6.5, CH₂CONH), 1.87 (3H, d, J 6.0, CHCH₃), 0.92 (6H, s, C(CH₃)₂); δ_{C} (125 MHz, CD₃OD) 191.2 (CO₂S), 176.1 (CH₂CONH), 173.9 (CHCONH), 142.8 (CH₃CH), 142.8 (CHCHCOS), 130.8 (CH₃CHCH), 126.9 (CHCHCOS), 77.3 (CH), 70.3 (CH₂OH), 40.4 (CH₂C(CH₃)₂), 40.2 (CH₂CH₂S), 36.4 (CH₂CONH), 36.3 (CH₂NH), 29.0 (CH₂S), 21.3 (CH₂C(CH₃)₂), 20.9 (CH₂C(CH₃)₂), 14.2 (CHCH₃); HRMS (ESI) calc. for C₁₇H₂₈N₂NaO₅S [M + Na]⁺: 395.1611, found: 395.1605.

Supplementary Fig. 1: Type I PKSs employ various chain release mechanisms resulting in structurally diverse products. (a) Thioesterase (TE) domains catalyze product release via macrolactonization (e.g. to yield 6-deoxyerythronolide B, a key intermediate in erythromycin biosynthesis), macrolactamization or hydrolysis. (b) Thioester reductase (TR) domain-mediated chain release results in an aldehyde, which can undergo transamination to form an amine (e.g. in the biosynthesis of coelimycin P1 and several other polyketide alkaloids) or further reduction to an alcohol. (c) Chain release by α -oxoamine synthase (OAS) domains involves decarboxylative condensation of an amino acid with the ACP-bound polyketide thioester. The resulting α -oxoamine can undergo cyclodehydration and reduction to form a 2-alkylpyrrole (e.g. 2-undecylpyrrole, a key intermediate in the biosynthesis of streptorubin B and other prodiginine alkaloids). (d) Tetronate synthase (TS)-mediated chain release involves condensation of the polyketide chain with an ACP-bound glyceryl thioester, resulting in the formation of a 2-acyl-4-hydroxymethyl-tetronic acid (e.g. in the biosynthesis of RK-682 and numerous other (spiro)tetronate-containing natural products).

а

KS0_5919 KS_5923 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5921_2 KS_5924_1 KS_5922	PG-AADLGAFWDNLRDGHDAITPIPPERWNHDAYFDRQRNVP VGMACRLPG-ADSPDALWAQLMQAEAVALDPVESRPAARFDLARYLSDEDAP VAIVGIALRFPGGIDTPQAYWRMLDEGRCVIGERPDTRWREYREELAALAP ISMACRFPGGANSPEAFWELLANGVDTAGPIPPERWDHSRYYDSEKGKP VAIIGMSCRFPGAP-DAEAFWRAIEAGADTVTTMTGQRWEMEAWHTDAASAEAAEA IAIVGAACRYPGGIGSLDQLWTALEAGRDGIRTMVGERWPMQRFLTDDPHRP VAIVGIGCRVPG-ADSPEALWELLRDGREALAEVPPGRWDLDAYYDATPGTP IAVIGMACRMPAGANDVGAFWDQLISGTDMVRPFDGTRWDVRFYTPGSTED IAVIGIGCRFPGGIDSPETFWAALRESRDLIGEIDALRWDAPALQRA IAIVGVGCRLPGGVAGPDDYWALLRSAGSGIVEMQDQRWNMAAYFDADPEAG RFPGGVTDLDSYWALLREGRSGVIEVEPERWSNRQFVDPDYAAA *. *:. *:	41 51 49 55 52 51 52 47 52 44
KS0_5919 KS_5923 KS_5925 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5924_2 KS_5924_1 KS_5922	GKSYSAWGGFIEDVDAFDPAFFSISPRMSAYLDPKERLFLETVWNLLEEAGETRERM GKAYSLAGGFLDDLEQFDHARFRLSHREACFMDPQQRLALETTWRAFEDVGIDPAARLDG ALPQIHRGGFLAEVDRFDAAFFRITPREAQALDPQQRLLELVHEAFEQAGIDADTQ GKAYVKEGCFVDSVDRFYPERFGIAGIEAELMDPQQRMLLDVCYEAFERAGLDPASL GRIYTRRFGLLEDIDGFEPGAFGISEEEAPYIDPQHRLLLEQAWFCLEHAGLDAKTV GGIYSDAMGLLEAIDGFDAAHFGLRHDEAIHIDPQHRLLLEVAWEAFEDAGYAVDAF YKTYARRAGYLDEVDHFDARFFGISPREAQRMDPQQRLLLEVSHRALEDAELPVTAL GKWANDGGQIADVHGFDNRFFGIGDREAEYMDPQQRLALEVAWEALERAGYDFGA GALTTRAGVLDGVERFDCELFGITPREAQCMDPQQRLLLEVSWEALERAGYDFGA GRIHTRSLGLVDEVDRFDADFFSISPREAESMDPQQRLLLEVAWEAIERSGHACASL GKLVTPYAGLLEHIYDFDAEFFGLSALEAENLDPQQRLLLEVSWLALEDAGYDIGRL ::: * *::::::::::	98 111 108 106 112 109 108 109 103 109 101
KS0_5919 KS_5923 KS_5925 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5921_2 KS_5924_1 KS_5922	QQAYGAQVGVFVGAMYQLYGACAADEGERVATALSSYNAIAHRTSYFFNLRGP SAADALDAAVFFGIGQNEYGPLCRSVADGEDAGLMSTGQSMNIIAGRVAHLFGLDGP AGREVGVFLGAYTHDYEALTLRERA-LGEIDAWFGSGTALSTAAGRLAYCFDFRGP GGSETGVFMGVMTQDYLQLTQHVRDHAFYVGTGTANSIVSGRIAHTFGLMGP KGSDIGVFVGQMNNDYARLIRRAEDLNPYVGAGSAPSAAAGRLSYVFGLKGP SGSRTGVYVGIMNDDYGQLQGPLEAASLYIGSGIAKSCAAGRLAYTFGLEGP REQPVGVFVGISSGEYAVMTFDKARSD-SQDAWSITGTSMNSAAGRLAYHYGFNGP A-DGAGVFIGPGPSDFADLSQRHAGALVGLMGPGHHVSAIPGRIAHLFDWQGP GGTAGGVFIGPGPNDYARFATDAKALSHHHSTGNALSVTAGRLAFVLDWQGP DGRQVGVFVGMNNKDYLHLNAPDITGEAARHSPYYASGEAFSIAAGRLAYILGVHGP RGSDTGVVVGIGSQDYGMALLADPAHANPYVASGNSLSMAAGRLSYFFDFSGP .***	151 168 163 158 164 161 163 161 156 166 154
KS0_5919 KS_5923 KS_5925 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5921_2 KS_5924_1 KS_5922	SIALDTMCSSSLTAVHYACRSLLDGDCALAIAGGVNLSLHPRKYVGLSQAQIVGSHADSR AICHDTACSSSLVALDAAVQHLRGGRNRLAVVGGVNALVSPDTFVLLGKARALSRQGRCA TMTIDTACSSSSLVALDAAVQHLRGGRNRLAVVGGVNALVSPDTFVLLGKARALSRQGRCA TMTIDTACSSSSLVTVQLACEQLRSGACDMAVAGGVSLQLTPEPLVLECAGGMLSPTGRCR SITIDTACSSSLVAVHLASQSLRLGECGMALAGGVNLLLSPETAVGACVARMLSARGRCN TLALDTACSSSLVAVHLAVQALRRGECDAALAGGVNLLISPQGTVVACRSQMLSPSGRCR ALAIDTACSSSLVAVHQAVRSLLNEECHTALAGGVNCLLTPEPSIALAQNKVLSASGRCS CMAIDTACSSSLVAVHVAAQHLRERECRVALAGGVNLLLSPANNIVLSKAGMLSPAGRCR ALAVDTACSSSLVAVHAVQALRRGECSIALAGGVNLLLSAETSVLLSKGGMLAPDGRCK CMTIDTACSSSLVAVHLACRSLLEDECELALAGGTSLILSPEASIVSSNARMLSPTGQCW SLSIDTACSSSLVAVHACRRLQLGECGLALAAGVNAMLTPHAGINFSRARMLSTERDCH : ** **** : * . * . * . * . *	211 228 223 218 224 221 223 221 216 226 214
KS0_5919 KS_5923 KS_5925 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5924_2 KS_5924_1 KS_5924_1 KS_5922	SFS-DGDGYLPAEGVGAVLLKPLARALADDDRILAVIKASSVNHGGRATGYYAPNANAQV AFDARADGYVRAEGCVVMVLKRLADARADGDAIHAVIRGSAVNHDGRSSGLTAPSGAAQE TFDAGADGYVRGEGGVVLLLKRLDDALADGDRVHAVIKSAALMQDGRTNGLTAPNGQAQV TFDADADGFVRGEGCGVVVLKRLADAVAAGDPVVGVIRGGAVAHDGRAGGLTVPNGLAQQ TFGGEADGYVRAEGCGLVLLKTLSRARADGDTVLAVIRGSAVNQDGRSHGLSAPNGPAQV TFDASADGYVRAEGCGLVLLKRLSDAERDGDRILALVRGSAVNHDGRTQGLTAPSGQAQR PFSAEADGLVRGEGCGMLVLKRLDDALAQGCRILAVIRGSHVNQDGASSGLTVPNGYAQQ TFDVGADGYVRSDGCGMVLLKRLDDALAQGCRILAVIRGSAVNHNGRGQGLTAPSSRQQA TFDAAADGYVRSEGCAMVVLKRLDDALADGDAILGVIRGSAVNHNGRGQGLTAPSSRQQA TFDAAADGYVRSEGCAMVVLKRLGDALAAGDEVLAVVRGSAANQDGHSQGLTAPNGQAQQ SFDHRADGYVRGEGCAVVVLKRLSRALADGDPVLAVIAGSAVNHDGRSQGLTAPNTAQM TFDAAACGYVRGEGCAVVVLKRLSRALADGDPVLAVIAGSAVNHDGRSQGLTAPNTAQM	270 288 283 278 284 281 283 281 276 286 274

KS0_5919 KS_5923 KS_5925 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5921_2 KS_5924_1 KS_5922	DLMEASFRKAGVSPESIDYIEAAANGTSLGDAVELRALARVFDGTARDGRRVPIGTVKSN 3 RVMRAALRDAGVAAHEVALVEAHGTGTALGDPIEYHALRAVYADDAPRATPLVLGALKSF 3 DVIRRALAQAGCDPADIDYVEAHGTGTRLGDPVEIQALHEAYCAGVERAAPLSVGSVKTN 3 RVLEKALADAGIARERVSYVEAHGTGTHLGDPIELNALQAVYGRTP-RDTPLLLGSVKTN 3 QVMRDALARARLDPAEVGYLETHGTGTPLGDPVEVQAIDTVYGRAEGRRSPLALGAVKAN 3 RVIAAALADAGVAAAEVGFVECHGTGTALGDPIELRALEASYVLEAGERAPLVVGALKSN 3 ALIATALKRARLAPGAIGYVEAHGTGTLGDPIEIKALQQALGAGREAGRPVLIGALKAH 3 RLIEAALARAGTLPSEIRYVEAHGTGTPLGDPIEMAALKATYGAHRDAADPLYVGAVKSA 3 RVLRNALADAALDPARVGLLEAHGTGTPLGDPIEFAAARAVYGEAPGREAPLWIGSVKTN 3 ALMREALRGAKLDAARIRYVEAHGTGTPLGDPIEMASIQAVYGEARDEASPLVIGSVKTQ 3 AVIRAALRAGVAPAEVDYAEAHGTGTRLGDPIEAMAIADVYGEARCAGRPLVIGAVKAN 3	30 48 43 37 44 41 43 41 36 46 34
KS0_5919 KS_5923 KS_5925 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5924_2 KS_5924_1 KS_5924_1 KS_5922	IGHPEAASGIAQLTKVILQMQHETLVPSIKTEPVNPNLDLAHTPFRLLSRQAAWPSDPAR 3 IGHTEAASGLAGLLKLVLSLRARIAPAQRHYVTPNPFIETSE-RIEIPRGARALGGDG 4 LGHTEAVSGMAGLVKVVLSMQHRRVPAHLHLNQPSPLLRLDERNIEIARQARDWQATPGR 4 IGHAEAAAGIAGLIKVLLAMRHETLPPHLHYRRANPNFDWTRGALEVVGQRRGWHAAA 3 MGHGESAAGIAGLIKLVQLLRHDSLPPVAHLDALNPHFDGLSDQLLFPKGA-AAAWPQGR 4 LGHMESAAGIGGHKAIQVVRHRVPRNLHFETLNPQIRVDLERLRIA-AE-AVAMPERE 3 IGHLEAASGVAGVIKTVLALRHRLLPAQINLGTPTPHVDWSSGGVAVVSESTPIAYGPDA 4 IGHTESAAGIAGIKVLLMMRHRMIPPTLHLNTLNPHLEIDPRTIRIPTAPQPLLAREDG 4 LGHAEAAAGIAGFIKAVLCLRHEMIVPHLHFTRLNPEIELDEAAMRIPGATAAWRGA 3 IGHLEAASGVAGUIKLALCVAHDRVVPQRNFERLNPHITLRDGVRLALR-DEPFGGEA-G 4 LGHLEAAAGLAGLIKAMLVVRHGEAPPQPGFETLNPAIGWDTAKFKVVRQPTPLRPADGR 3 :** *: :*: * :*	90 05 03 95 03 99 03 01 93 04 94
KS0_5919 KS_5923 KS_5925 KS_5920_2 KS_5920_1 KS_5919 KS_5921_1 KS_5924_2 KS_5924_2 KS_5924_1 KS_5922	PRRATVSSFGASGANAHLI409RVLGAVSAFGFNGTNAHVIVER427PRRAGISSFGFSGSNTHLIVEE425PLVAGVSSFGLSGTNAHLLVEQ417PSVAALSSFGYTGTNAHLLL423RALAGVSSFGFSGTNAHVIVE420PFYAGVSSFGFSGTNAHLILQD425TLSCAVSSFGFSGTNAHLIVAAPP425GRYAAVSSFGFSGTN408ARYGAVNSFGFSGTNAHLIVRDLP428PWLAGVSSFGFSGTNAHAIV414:.:** .*:*	
b		
KS_GbnD5_1 KS_GbnD4_4 KS0_5919 KS_GbnD5_2 KS_GbnD1_4 KS_GbnD2_1 KS_GbnD2_1 KS_GbnD2_1 KS_GbnD1_3 KS_GbnD6_2 KS_GbnD6_2 KS_GbnD6_3 KS_GbnD4_1 KS_GbnD4_1 KS_GbnD4_1 KS_GbnD4_2 KS_GbnD4_2 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_1 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_1 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_3 KS_GbnD4_1 KS_GbnD4_1	VIGLAGRYPGAATLEAFWEAVVAARPATGALPADQWSRHVGEDDAEATAAAT 5 IAVVGMACHFPAAQDIDAFWRNLRDGRDCIGEVPASRWSVARHYGGPDYADGKSV 5 IAVVGMSGRFPQARDLDAFWRNLRDGRDCISEIPASRWDLAHYYDDGAAEPGRIH 5 IAIVGGGRYPQANDLDAFWDNLESGRDAITEIPPERWALTGFYDAGKDRRGMSY 5 IAVIGLAGRYPQANDLDAFWDNLESGRDAITEIPPERWALTGFYDAGKDRGMSY 5 IAVIGLAGRYPQAADLDAFWENLSTGRDCITEIPSTRWDHEAYFDARKGQPGKSY 5 QAVAVIGLAGRYPQAADLDAFWENLSTGRDCITEIPSTRWDHEAYFDARKGQPGKSY 5 IAVIGLAGRYPQAADLDAFWENLSTGRDCITEIPSTRWDHEAYFDARKGQPGKSY 5 IAIIGLAGRYPQAPDLNAYWENLREGRDCITEIPAERWSLDGFYCEDVEQAVAQGRSY 5 IAIIGLAGRYPQAPDLNAYWENLREGRDCITEIPAERWSLDGFYCEDVEQAVAQGRSY 5 IAIIGLAGRYPQAPDLNAYWENLREGRDCITEIPAERWSLDGFYCEDVERAVSEGLSY 5 IAIIGLAGRYPQAPDLNAYWENLREGRDCITEIPAERWSLDGFYCEDVERAVSEGLSY 5 IAIIGLAGRYPQAPDLNAYWENLREGRDCITEIPAERWSLDGFYCEDVERAVSEGLSY 5 VAIVGFSGRFPRARSLDAFWDNLLAGRNAITSVPDGRWSDARSAA 3 VAIVGFSGRFPRARSLDAFWDNLLAGRNAITSVPDGRWSDARSAA 5 VAIVGFSGRFPRARSLDAFWDNLLAGRNAIGEVPASRWDWRPYFSGPGEASNRIA 5 VAIIGVSVRTAGANDAGELWELLRSGRRAIGEVPASRWDWRPYFSGPGEASNRIA 5 VAIIGVSVRTAGANDAGELWELLRSGRRAIGEVPASRWDWRPYFSGPGEASNRIA 5 VAIIGVSVRTAGANDAGELWELLRSGRRAIGEVPASRWDWRPYFSGPGEASNRIA 5 VAIIGVSVRTAGANDAGELWELLRSGRRAIGEVPASRWDWRPYFSGPGEASNRIA 5 VAIIGVSVRTAGANDAGELWELLRSGRRAIGEVPASRWDWRPYFSGPGEASNRIA 5 DGIAVVGMACRCAGAQDPAAFWKLVARGEIHLDSVAARRPAWGEYLAAHEIDAQ 5 IAVIGGAGRYPGAPDLDSYWRNLAAGVDSVGEVPAWRWSGQPYADDEALY 5 IAVVGMSGAFFKSPDLARFWDNLAAGRDCVSEVPASRWDVEAYC-DGSGAAGRSA 5 DPIAVVGMSGRFFARAADLDALWAHLANGDDLVGPVTRWPKPAGR	25555788887565540495
KS_GbnD5_1 KS_GbnD4_4 KS0_5919	LGHGGALADADAFDALFFGMTPADAAAVDPQARLLLETAWHACEDAACLPATLA1 THQGGFLDDIESFDPGYFGIPEAVAPGVDPLARQWLEVSAEALADAGYTRQDVW1 SAWGGFIEDVDAFDPAFFSISPRMSAYLDPKERLFLETVWNLLEEAGETRERMQQAY1	06 09 02

KS_GbnD5_2	SKWGGFIDGVDE <mark>FD</mark> PLF <mark>F</mark> R	RISPLEAEMM <mark>D</mark> P9	QE <mark>R</mark> LFLQAAWETIED <mark>A</mark>	GYTRAALADAGRAP 115
KS_GbnD1_4	SKWGGFLDGVDE <mark>FD</mark> PLF <mark>F</mark> N	IISPREAQLI <mark>D</mark> P(QE <mark>R</mark> LFLQCAYHTLED <mark>A</mark>	GHTRESLG109
KS_GbnD2_2	SKWGGFLDGVDE <mark>FD</mark> PFF <mark>F</mark> N	IISPREAQLM <mark>D</mark> P(QE <mark>R</mark> LFLQCAYHALED <mark>A</mark>	GHTRASLG 109
KS_GbnD2_1	SKWGGFLDGVDE <mark>FD</mark> PSF <mark>F</mark> S	SISPREAQLM <mark>D</mark> P(QE <mark>R</mark> LFLQCAYHALED <mark>A</mark>	GHTRASLG111
KS_GbnD3_2	CKWGGFLEGFAEFDPLFFG	SISPREAESMDP	QERLFVETCWEVIEDA	GYTRRTLRERH 115
KS_GbnD1_3	AKWGGFVESFAQFDPLFFN	ILSPRDAEDIDP	QE <mark>R</mark> LFLETCWHVIEDA	GYTRDRIARRH 115
KS_GbnD6_2	SKWGGFIEGFADFDPLFFN	ILSPREAEGIDP	QERLFMQTCWHVIEDA	GYTRDSLARRH 115
KS_GbnD6_3	SKWGGFIEGFADFDPLFFN	ILSPREAEGIDP	QERLEMQ'I'CWHVIEDA	GYTRDSLARRH 115
KS_GbnDI_I	AFRGGFIDHADCFDAGFFR	CISPKEAEFMDP(QQRVLLEVLWHTLEDA	RVRPSSLA91
KS_GbnD4_1	IRWGGFIDEIAAFDSQFFG	SISPREAELMDP(QQRLLMEHVWAAMEDA	GYSAKSIA 109
KS_GDND3_3	TNRGAFIEGLDGFDPLFFE	I SPREAQWMDPI	RQRLILEEAWRAFEDA	GYAGERLR 110
KS_GDND4_2	THRGAFIEGLDGFDPLFFE	I SPREAQWMDPI	RQRLILEEAWRAFEDA	GYAGERLR 109
KS_GDND6_4	THRGAFIEGLDGFDPLFFE	I SPREAQWMDPI	RORLILEEAWRAFEDA	GIAGERLR 109
KS_GDND4_3	SLRAGFADDIDAFDPLFFL	ISPVQAEQMDA:	SURVLLEGIHAAIEDA	GIDPASLA 108
KS_GDIIDZ_S		I SPAEAELIDPY	QURLE LUESHRAFED	GIAGAGLDI04
KS_GDIIDI_Z		L SE VEARAMDE (QQALF LERAWACVESP	CYACEALD 103
KS_GDIID5_1		I SAI LAS VMDE	OODI EI EEGWDAIEAA	
rs_guing_t	G-WSSHLEATEAFDFLFF	IISGVEARNM <mark>D</mark> F	* •• *	GLIFARLD 100
	• •	• • • "	••	•
VC Chap5 1		AFUT ADTCC	VACACOVAUET ANDI C	
KS_GDIIDJ_I		ACTDSK		
KS_GDIID4_4 KGO_5010		'ACAADECED'	AVIGVGQNFISAILS WATAIQQVNATAUDTQ	
KS ChpD5 2	HORVEVYVCVMVSEVOLVC	FOOOAFBR-	TECLECNTACUANEVS	XEEDEHCPSMSLDT 172
KS_ChpD1_4		VOTOPCCCC		
KS_GDND1_4	AVRVCVEVCVMVEEVHLLS	DPACCDLAO	TVIPCCVLSSVANRVS	VECNER CPSECUDT 167
KS_GDND2_2	AARVCVEVCVMVEEVPVLC	SPECCTTO-1	POALCCSSASTANRVS	VAENINCPSTAMDT 168
KS GhnD3 2	DGRIGVYAGITKTGEDLYG	PALWARCD-1	DTYPHTSFCSLANRVS	SYLEDENCE SLAEDT 172
KS ChnD1 3	GSBVGVEVGVTKTGEDLHG	PGARRDDP-1	LREPHTSESSVANRVS	YFLNLHOPSLPIDT 172
KS GhnD6 2	GGRVGVFAGTTKTGFELHG	PELWRRGV-1	PAFPRTSFSSVANRVS	YFLNLHOPSLPIDT 172
KS GbnD6 3	GGRVGVFAGITKTGFELHG	PELWRRGV-1	PAFPRTSFSSVANRVS	YFLNIHGPSI.PIDT 172
KS_GbnD1_1	GRKVGVFMGVCNNDYVDLI	AEFGVGDSSGL	YGSTGTSSATLSNRVS	FVFDFRGPSVTVDT 151
KS GbnD4 1	GSRTGVFLAIGPGGYROSA	SOPIES	YSATGAVPSMAPNRIS	FLLNLH <mark>GP</mark> SEPVET 164
KS GbnD3 3	GSRCGVFVGVEEGVPGEAA	D	GLATSHHNGTLAARIS	YVI.DI.KGPNI.ATNT 160
KS GbnD4 2	GSRCGVFIGVEEGVPGEAA	D	GLATSHHNGILAARIS	YVLDLKGPNLAINT 159
KS GbnD6 4	GSRC <mark>G</mark> VFIGVEEGVPGEAA	D	GLATSHHNGILAARIS	YVLDLK <mark>GP</mark> NLAINT 159
KS GbnD4 3	AREV <mark>G</mark> TFIGSMGVAGA	DSLSH	HAMLGNDGAILSSRIA	YHLNLS <mark>GP</mark> AMTVNT 159
KS GbnD2 3	GLNC <mark>G</mark> VYLGIMGCEYAOIV	MRAGRO	GSATGASAAIAAGRVA	YHYNLN <mark>GP</mark> AIPVDT 158
KS GbnD1 2	GSAC <mark>G</mark> VFAGCVHGDYHRGL	PAASLTA	ODLMGASSSILAARIA	YALDLK <mark>GP</mark> CLSIDT 164
KS GbnD3 1	AARC <mark>G</mark> VYVGYNGADYQTLV	DEHAPA	~ QAMWGNAGSILSARIA	YCLNLQ <mark>GP</mark> AVTIDT 158
KS GbnD6 1	GSRT <mark>G</mark> VYAGAADSKYGSYV	REDEVG	HSFWGTAPSILPARVA	AYFLNLK <mark>GP</mark> AVTIDT 163
	*.: .		: :	: ** .::
KS GbnD5 1	A <mark>C</mark> S <mark>S</mark> SLLALHLARTALLAG	ECDLALA <mark>GG</mark> VNI	LSLHRSKYLLLAGLGI	MSADGRERT <mark>F</mark> DIGA 224
KS GbnD4 4	A <mark>C</mark> A <mark>S</mark> ALTAIHLAAQSLRSG	ESSLAIA <mark>gg</mark> vd:	ILLDEGPFLLLSSARI	LSAGGRCRT <mark>F</mark> DEGA 223
кs0 5919	MCSSSLTAVHYACRSLLDG	;DCALAIA <mark>GG</mark> VNI	LSLHPRKYVGLSQAQI	VGSHADSRS <mark>F</mark> SD-G216
KS_GbnD5_2	M <mark>C</mark> S <mark>S</mark> S <mark>L</mark> TAIHLACRGIAYG	ecgvala <mark>gg</mark> vni	LSIHPNKYAVLSQARI	ISTKGRCES <mark>F</mark> GKGG 232
KS_GbnD1_4	M <mark>C</mark> S <mark>S</mark> S <mark>L</mark> TAIHLARESLLRG	ecdaala <mark>gg</mark> vn	VSIHPNKYLSLSQGHF	ASSDGRCRS <mark>F</mark> GAGG 227
KS_GbnD2_2	M <mark>C</mark> S <mark>S</mark> S <mark>L</mark> TALHLACQSLRLG	ECELALA <mark>GG</mark> VN	VSIHPNKYLGLSQGQF	ASSEGRCRS <mark>F</mark> GAGG 227
KS_GbnD2_1	M <mark>C</mark> S <mark>S</mark> S <mark>L</mark> TALHLACQSLRLG	ECELALA <mark>GG</mark> VN	VSIHPNKYLGLSQGQF	ASSEGRCRS <mark>F</mark> GAGG 228
KS_GbnD3_2	M <mark>C</mark> S <mark>S</mark> S <mark>L</mark> VAIHEACAHLLAG	ECELAIA <mark>GG</mark> VNI	LYLHPSNYVALCAHRM	ILSPDGRCRS <mark>F</mark> GAGA 232
KS_GbnD1_3	M <mark>C</mark> S <mark>S</mark> S <mark>L</mark> TAIHEACEHLLRD)ECELAIA <mark>GG</mark> VNI	LYLHPSNYVELCRHRM	ILSPRGRCRS <mark>F</mark> GEGG 232
KS_GbnD6_2	M <mark>C</mark> S <mark>S</mark> SLTAIHEACEHLLRD)ECELAIA <mark>GG</mark> VNI	LYLHPSSYVMLCLSRM	ILSPRGRCRS <mark>F</mark> GEGG 232
KS_GbnD6_3	M <mark>C</mark> S <mark>S</mark> SLTAIHEACEHLLRD)ECELAIA <mark>GG</mark> VNI	LYLHPSSYVMLCLSRM	ILSPRGRCRS <mark>F</mark> GEGG 232
KS_GbnD1_1	A <mark>C</mark> S <mark>S</mark> S <mark>L</mark> VAVLMAARAIRSG	ECEAALA <mark>GG</mark> VNI	ICWAASRFLAFAQAGM	ILSKDGVCRT <mark>F</mark> DAHA 211
KS_GbnD4_1	A <mark>C</mark> S <mark>S</mark> SLVAVHRAMRAIEAG	;DCEQAFV <mark>GG</mark> VN'	TIVSPELHICFSKAGM	ILSPDGRCKT <mark>F</mark> SREA 224
KS_GbnD3_3	A <mark>C</mark> S <mark>S</mark> GLVAVHAACQSVQRD)ECELALA <mark>GG</mark> VN	VLNSPLMYLALTQGGM	ILSPDGECYT <mark>F</mark> DARA 220
KS_GbnD4_2	A <mark>C</mark> S <mark>S</mark> G <mark>L</mark> VAVHTACQSVQRG	ecelala <mark>gg</mark> vn	VLNSPLTYVALTQGGM	ILSSSGECHA <mark>F</mark> DARA 219
KS_GbnD6_4	A <mark>C</mark> S <mark>S</mark> G <mark>L</mark> VAVHTACQSVQRG	ECELALA <mark>GG</mark> VN	VLNSPLTYVALTQGGM	ILSSSGECHA <mark>F</mark> DARA 219
KS_GbnD4_3	A <mark>C</mark> S <mark>SAL</mark> VAISLACDKLRAG	ELDMAIA <mark>gg</mark> iti	LYTQPASFVMMRNAGM	ILSPSGACRP <mark>F</mark> DDGA 219
KS_GbnD2_3	A <mark>C</mark> S <mark>S</mark> S <mark>L</mark> VAIHLAALALERG	EIDLALA <mark>GG</mark> VSI	LYLSAETYARMCEAGM	ILSRSGSCRS <mark>F</mark> DDGA 218
KS_GbnD1_2	ACSSSLVAVATACDSLAEG	RSELALA <mark>GG</mark> VC	VLAGPDLHIMASDAGM	ILSPTGRCHS <mark>F</mark> DSRA 224
KS_GbnD3_1	ACSSSLVSVHLACQALRAR	EIDAALA <mark>GG</mark> AF	VQATPGFYLLAGRAGM	ILSPTGRCAT <mark>F</mark> AAGA 218
KS_GbnD6_1	ACSSSLVAIHLGCESLRNH	ietdlila <mark>gg</mark> afi	LQATPHFGAAAGNAQM	ILAADGKCHT <mark>F</mark> DDRA 223
	* * * * * * * *	:.**	:	• • * •
KS_GbnD5_1	NGYVPGEGVGLALLKPMEA	ALADGDRIHGV	LAGSATNHSGRAAGRY	SPNLHALVEVIERG 284
KS_GbnD4_4	DGIGIGEGCGVLILKRLSD	DAVREGNKIYGV	LDGSAVNADGSTMGIT	TPNPERQRELIELA 283

KS0_5919	D <mark>G</mark> YLPAEGVGAVL <mark>L</mark> KPLAR <mark>A</mark> LADDDRILAVIKASSVNHG <mark>G</mark> RATGYYAPNANAQVDLMEA	S 276
KS_GbnD5_2	E <mark>G</mark> YIPGEGVGCVM <mark>L</mark> KPLAR <mark>A</mark> LADRDAIHGIVKGTALSHG <mark>G</mark> RANGYTVPNPGAQAATISM	1A 292
KS GbnD1 4	D <mark>G</mark> YVPGEGVGAVL <mark>L</mark> RRIDD <mark>A</mark> LADGDVIHALIRGSSINHG <mark>G</mark> KTNGYTVPNPGAQRELIEA	A287
KS GbnD2 2	D <mark>G</mark> YVPSEGVGCVL <mark>L</mark> RPLAA <mark>A</mark> EAAGDRILGVIRASAINHG <mark>G</mark> RTNGYTVPNPNAQGELIAE	A 287
KS GbnD2 1	D <mark>G</mark> YVPSEGVGCVL <mark>L</mark> RPLAA <mark>A</mark> EAAGDRILGVIRASAINHG <mark>G</mark> RTNGYTVPNPNAQGELIAE	A 288
KS GbnD3 2	N <mark>G</mark> YVPGEAVGAVL <mark>L</mark> KPLAA <mark>A</mark> QADGDNIHGIVRGSAINHG <mark>G</mark> KTHGYTVPNPGAQGALIER	A 292
KS GbnD1 3	D <mark>G</mark> MVPGEGVGAVLLKRLGA <mark>A</mark> EADGDRIHGVIRASAINHG <mark>G</mark> KTNGFTVPNPNAQAELIVE	A 292
KS GbnD6 2	D <mark>G</mark> MVPGEGVGAVL <mark>L</mark> KRLSA <mark>A</mark> EADGDRIHGVIRASAINHG <mark>G</mark> KTNGYTVPNPGAÕRELIVS	A 292
KS GbnD6 3	D <mark>G</mark> MVPGEGVGAVL <mark>L</mark> KRLSA <mark>A</mark> EADGDRIHGVIRASAINHG <mark>G</mark> KTNGYTVPNPGAÕRELIVS	A 292
KS_GbnD1_1	NGYVRGEGAGAVLLKPLRRALADGNEVYGVTRGGATNHGGRTRGLTVTNPDOOROLLT)A 271
KS GhnD4 1		12 2 8 4
KS GbnD3 3		T. 280
KS_GbnD4_2		17279
KS_Chap6_4		07070
KS_GDIID0_4		1 2 1 2
KS_GDIID4_3		<u>יען אין אין אין אין אין אין אין אין א</u>
KS_GDIIDZ_J		0/2V
KS_GDNDI_Z		JV 284
KS_GDND3_1	DGFVPAEGVGVVMLKRLADALDDGDTIHGVIRGSGINQDGITSGITAPSALSQERLQRE	IV 2 / 8
KS_GDND6_1	N <mark>G</mark> MVSGEAVAVLV <mark>L</mark> KRLDE <mark>A</mark> RADGDRIHGVIVGSGINQD <mark>G</mark> ATNGITAPSALAQQQLQTU	V 283
	$\vdots^* \vdots \vdots^* * \vdots \vdots \vdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	
KS_GDnD5_1	VASAGLAPEAIGHVETHGTGTQLGDPIEVQAIARALGAAGRGDKRC	:T 331
KS_GbnD4_4	IADAAVDAASISYVEAHGTGTLIGDPIELRSLTAVLAPHHRAARAC	:G330
KS0_5919	FRKAGVSPESIDYIEA <mark>A</mark> AN <mark>G</mark> TSL <mark>GD</mark> AV <mark>E</mark> LRALARVFDGTARDGRRV	'P 323
KS_GbnD5_2	IEQAGVAPRAISYIEA <mark>H</mark> GT <mark>G</mark> TSL <mark>GD</mark> PI <mark>E</mark> IAGLVHAFGELGASGQFC	:A 339
KS_GbnD1_4	LAAAGVRADEISYVEA <mark>H</mark> GT <mark>G</mark> TEL <mark>GD</mark> PI <mark>E</mark> IAGLTQAFGDAHAAAGRRC	A 335
KS_GbnD2_2	LRASGVDARAISYLEA <mark>H</mark> GT <mark>G</mark> TAL <mark>GD</mark> PI <mark>E</mark> IAGLVKAYGAWEGEPGEPGDARLEPC	A 342
KS_GbnD2_1	LRASGVDARAISYLEA <mark>H</mark> GT <mark>G</mark> TAL <mark>GD</mark> PI <mark>E</mark> IAGLVKAYGAWEGEPGEPGDARLEPC	A 343
KS_GbnD3_2	LARAGVAARQLGYVEA <mark>H</mark> GT <mark>G</mark> TEL <mark>GD</mark> PI <mark>E</mark> IAGLMRAFGADAMPAEDRPC	A341
KS_GbnD1_3	LTRGGIDSAAVAYLEA <mark>H</mark> GT <mark>G</mark> TAL <mark>GD</mark> PI <mark>E</mark> IAGLAKAFAQASRQTHERALPC	A 343
KS_GbnD6_2	LAKSGIEARDIGYVEA <mark>H</mark> GT <mark>G</mark> TEL <mark>GD</mark> PI <mark>E</mark> IAGLSQAYGDTGGSSC	A 337
KS GbnD6 3	LAKSGIEARDIGYVEA <mark>H</mark> GT <mark>G</mark> TEL <mark>GD</mark> PI <mark>E</mark> IAGLSQAYGDTGGSSC	A 337
KS GbnD1 1	YRDAGVDPAMVGYIEV <mark>H</mark> GT <mark>G</mark> TSL <mark>GD</mark> PI <mark>E</mark> LLGLKQAFESTHLAAPAGRARSRTRVEPGQC	V 331
KS GbnD4 1	YRRANLDIRTVSYVEA <mark>H</mark> GT <mark>G</mark> TSL <mark>GD</mark> PAEINGLKRAFATLYEQQQARVERVHC	A 337
KS GbnD3 3	YRRYRIDASEIGYVIA <mark>H</mark> GT <mark>G</mark> TRL <mark>GD</mark> PV <mark>E</mark> VNSLADAFRTFTDRRGFC	A 327
KS GbnD4 2	LERGGVEAERIEAVLA <mark>H</mark> SV <mark>G</mark> SPL <mark>GD</mark> PI <mark>E</mark> ARALCEALGEGLNEGLNEGTOTR	v 331
KS GbnD6 4	LERGGIEAERIEAVLAHSVGSPLGDPIEARALCEALGEGLGEGLNEGLNEGLNEGTÖTR	v 339
KS GbnD4 3	YRAARLSPEALOYVEAHGTGTRLGDPVELHALTEAFRGFTARRSFC	A 326
KS GbnD2 3	HARHGIDPASIGYVEAHGTGTRIGDPIELAALATAFGAAPRAGGPC	A 325
KS GbnD1 2	HRREGIDPASISLVEAHGTGTOLGDPIELEALTASEGAHAASBAGO	'A 331
KS GbnD3 1	VDSWGIDVETIGLVEAHGTGTBLGDPVEHBALASAFRRDTAKRGFC	'A 325
KS GhnD6 1		11 3 2 3 0
	: : : · · *: :** * ·:	
KS_GbnD5_1	LGS-RANFGHLESASGIGALTKTLLGMRRGLIPPCANLETLNPALRLDETALTIPREAM	IR 390
KS_GbnD4_4	V <mark>G</mark> SVKSNL <mark>GH</mark> LLS A AGAAGMVKVLLSLAHRALPPTLHCDTPNPRFDFEASPLYPVRELQ	A 390
KS0_5919	I <mark>G</mark> TVKSNI <mark>GH</mark> PEA <mark>ASG</mark> IAQLTKVILQMQHETLVPSIKTEPVNPNLDLAHTPFRLLSRQA	A 383
KS_GbnD5_2	I <mark>G</mark> SAKSNI <mark>GH</mark> GES <mark>AAG</mark> IAGVCKVLLQMRHRQLAPSLHSAELNPYIDFASSPFAVQRELG	E 399
KS_GbnD1_4	I <mark>G</mark> SVKSNI <mark>GH</mark> AES <mark>A</mark> AGIAGLTKVLLQMRHGRLVPSLHADTLNPHIDFERTALRVQRELA	D 395
KS_GbnD2_2	I <mark>G</mark> SVKSNI <mark>GH</mark> CES <mark>A</mark> AGIAGLTKVLLQMRHGKLAPSLHAQTLNPLIDFGRTPFRVQRELA	AP 402
KS_GbnD2_1	I <mark>G</mark> SVKSNI <mark>GH</mark> CES <mark>AAG</mark> IAGLTKVLLQMRHGKLAPSLHAQTLNPLIDFGRTPFRVQRELA	AP 403
KS_GbnD3_2	L <mark>G</mark> SVKSNI <mark>GH</mark> AES <mark>A</mark> AGIAAVTKVLLQFRHRQLVPTLHVDTPSPQIRFERTPLRLQTQLA	D 401
KS_GbnD1_3	I <mark>G</mark> SVKSNI <mark>GH</mark> AES <mark>A</mark> AGIAGLTKVLLQMRHGELAPSLHADHTNPLIDFGATPFRVQRELA	R 403
KS GbnD6 2	I <mark>G</mark> SAKSNI <mark>GH</mark> AES <mark>AA</mark> GIAGLTKVLLQMRHGELVPSLHAQRPNPHIDFGRTPFRLQTALS	SA 397
KS GbnD6 3	I <mark>G</mark> SAKSNI <mark>GH</mark> AES <mark>AA</mark> GIAGLTKVLLQMRHGELVPSLHAQRPNPHIDFGRTPFRLQTALS	A 397
KS GbnD1 1	L <mark>G</mark> AVKTNI <mark>GH</mark> LEG <mark>A</mark> AGIAGLIKVLLALRHHTIPANLNFQTLNPRIKLEGTRFRIPTETL	A 391
KS GbnD4 1	L <mark>G</mark> SVKSSI <mark>GH</mark> LEV <mark>A</mark> AGMAGLFKVLLAMRHGVLPGTLHCEDTNPYIELEGTPFEILKQNR	A 397
KS GbnD3 3	L <mark>G</mark> SFKPNL <mark>GH</mark> TFA <mark>ASG</mark> VVSLVAMLAAIRHROIPPSANHRSDNEFLDLPNSAFRLVEHCT	'R 387
KS GbnD4 2	LGSVKPOIGHTFAASGVVNVIAMCASLRHELRLGIANHEVANPDLRIGDGALSLGAGAC)P 391
KS GbnD6 4	LGSVKPOIGHTFAASGVVNVIAMCASLRHGLRLGIANHEVANPDLRIGDGALSLGAGAC)P 399
KS GbnD4 3	IGSVKANIGHATAAAGALGLIKVLLAMRHATLPPVSGFAOPNRHVDFAASPFRVETOAR	P 386
KS_GbnD2_3	LGAVKTNLGHTSAAAGVAGLHKILLCLRHRELVPSLHFTRPNAHFEFAGSGLRLVSERF	A 385
KS GbnD1 2	LGSVKSNIGHSLAAAGISGLLKVLLALRHROLPPSIHFVTPNPHLLLESSPFRINTALC	D 391
KS GhnD3 1		A 385
KS ChnD6 1		.P 300
KS_GbnD5_1	WTLPLESRVSGIHAFGIGGSNVFMV 415	

KS GbnD4 4	WAGVDGVLRAGISAFGLGGHNAHLIVSD	418
KS0 5919	WPSDPARPRRATVSSFGASGANAHLI	409
KS GbnD5 2	<mark>W</mark> R	401
KS GbnD1 4	WVRPRAT	402
KS GbnD2 2	WRRPRVRVDGVEREMPRLAGISSFGAGGANAH	434
KS GbnD2 1	WRRPRVRVDGVEREMPRLAGISSFGAGGANAH	435
KS GbnD3 2	WDAPGGTPRLAGVSSFGAAGTNAHVVLQEY-	431
KS GbnD1 3	WPRARATAAGIERELPRLAGISSFGAGGANAHLIVE	439
KS_GbnD6_2	WPRPVCEEAGERRERPRIAAISSFGAGGANAHLIVEEY-	435
KS GbnD6 3	WPRPVREEAGERRERPRIAAISSFGAGGSNAHLIVEEY-	435
KS_GbnD1_1	WPAPTSGR-SRLRRRAGVSSFGYGGAYAHVVVE	423
KS_GbnD4_1	WTRLSDARGAPVPRRAGISSFGFGGVNAHLVVEEY-	432
KS_GbnD3_3	WESDAPRVGAISAFGMSGTNAHLVIAEYV	416
KS GbnD4 2	WPKRAGVARCGLVSATGMSGTNACVVIEE	420
KS GbnD6 4	WPKRAGVARCGLVSATGMSGTNACVVIEE	428
KS_GbnD4_3	WLPGEDGMRRAALSAFGFSGTNAHL	411
KS GbnD2 3	WATHGDAPRRAALSSFGYSGTNAHLVVEEYV	416
KS_GbnD1_2	WTVPAGGLRRAAINSFGFSGTNAHLVVDEAP	422
KS GbnD3 1	WNPPPGMPRRAALSAFGFSGTNAHLVID	413
KS GbnD6 1	WTPAPGGVLRAAVSSFGFSGTNAHLVLESH-	420
	*	
-		

С

KSO_BaeR	IAIIGMSAQFPQSPDIQSF	VEHIVNGDHCITEIPADRWDWRRYAGDENDT 50
KS0_MmpA	PEPVAIIGLSANVAQSASVRQF	QALDDDRSLIEEIPATRFDFTSWYAGSNIEEGKM 57
KS0_PedF	-EAIAIVGLSGYFPQSASVDEF	RHLDQDATLIEEIPDSRFDWRKVFDPTGERPGSS 56
KS0_OnnI	-EPIAIIGLSGSLPKSQTIAEF	WRSLDQDLSLIEEIPRSRFNWEEVYDPDGKDVDKM56
KS0_BaeJ	-EDIAVVGMSCRFPGAASLEEY	SLLAEGRSAIRPVPAERWGFKT44
KS0_BaeL	IAVVGMSCRFPGAESLEQY	VDLLRSGRSAIGSVPAERFGYAN42
KSO_TaiK	DIAVVGLACRFPGAPSVDAY	VALLRDGARGIGPAPRERFAQAD43
KS0_OzmH	DIAVVGMSGRFPGAPDLDAY	WRLLSEGRSAIAPVPARRWADGT43
KSO_LnmI	IGMAGRLPGAGDLDAF	VDNLVSGRTAIGPAPASRPETAPS40
KS0_RhiB	MAIIGISGRYPGAANPDEL	VQNLSAGRASIIPLSREALFYGSDDAGD 47
KS0_DszC_1	VIGLAGRYPGADTPRQL	RALRSGQSAVTRPPAGRFGASAPQGDEPRGGGA 51
KS0_ChiD	IAIVGQSGRYPGAPDAAAL	VERLRRGERSIRPAPADRWDPAPLQATGPDKGGI 53
KS0_ChiC	-DDIAILALDGRYPQARSPEEL	ENLRAGRECTREVPADRWDVSAYYDADPRR-AAAGRM 58
KS0_DszB	IAIIGVSGRYPQAEDLRAL	WARLQAGESCIEEIPAERWDKDRYFDPQK-GRSGKS 54
KS0_DszC_2	-VDIAIVGLSGRYPGADTIDAF	SNLRQGRDSVTEVPADRWDAAAIFDPEGGPGKT 55
KS0_ChiF	FAIIGIGGRYPEAADVREF	VENLKAGRSCIGEVPPHRWDGDAYYRPDGG-GAS 52
KS0_5919	PGAADLGAF	VDNLRDGHDAITPIPPERWNHDAYFDRQR-NVPGKS 44
KS0_PedH	IAIIGMSGRFPFAPDLEAF	VENLSQGCDCITEIPPTRWKHQEYFDPEK-GKPGKT 54
KS0_RhiF	LAIVGISGRYPGAEDLEAF	HKLAGGEDLISEVPTQRWDHQAYFADQR-DRFDKT 54
KS0 TaiN	-EPVAIIGISGRYPGAYDVPAF	RNLLAGACAITEVPAERWDWRAHYRADAAEAAREGKS 59
KS0 ⁰ zmJ	PDAVAVIGMSGVFPGAPDPDGL	VELLMAGRSAVTEVPGRRWDWREHYDPHPEGADVVGKS 60
KS0_BryC	MAVIGMSACYPSAKNLDQY	VENLKCGKNCITEIPDDRWSIDGFFCPDVEEALSQGKS 57
KS0_BryD	-EPIAIIGLSGHYPQANSLDAY	VENLKAGKDCIREIPDDRWSLDGFFHEDVEEAIAQGKS 59
_	: ,	* : .
KS0_BaeR	SLRW-GGFIDGVGE <mark>FD</mark> PLF <mark>F</mark> GIS	SPKEASQMG <mark>P</mark> EQFLLLMHTWKAMEDAGLTNKALS105
KSO_MmpA	RTRW-GGFIPAIDQ <mark>FD</mark> PVF <mark>F</mark> GMI	LPAEARKMD <mark>P</mark> QQRLLLMSVRQTFEDAGYRHTDWK 112
KS0_PedF	CSKW-GGFIPDIRG <mark>FD</mark> PAF <mark>F</mark> NII	PGAEAITLD <mark>P</mark> RQRLLLMSAYQTLNDAGYASQALR111
KS0_OnnI	RTKW-GGFLRDIYG <mark>FD</mark> PHF <mark>F</mark> KII	LPRDAAVMD <mark>P</mark> RQRLLLMSVYQTLADAGYAPETFK 111
KS0_BaeJ	PYYAGMLDGIHQ <mark>FD</mark> PDF <mark>F</mark> LLA	AEEDVKAMD <mark>P</mark> QALAVLEECLNLWYHAGYSPDEIK 98
KS0_BaeL	QYVAGLIDNMDH <mark>FD</mark> SEF <mark>F</mark> FII	PENDAKAMD <mark>P</mark> QALAVLEESLKLWCHAGYSREEIK96
KSO_TaiK	RFCGGFLDAVGR <mark>FD</mark> PDH <mark>F</mark> GI <i>l</i>	APGDARAMD <mark>P</mark> QALLLLELGVELFHHAGYRPEELR 97
KS0_OzmH	KYTAGLLDL-EG <mark>FD</mark> PGH <mark>F</mark> HLS	SDADAAAMD <mark>P</mark> QALLLLEETLFAFCDAGYAPDELK96
KSO_LnmI	GARATGGFLPHIDR <mark>FD</mark> SLL <mark>F</mark> HVS	SPQEAPALD <mark>P</mark> QARLMLESVWQCLDDAGHTADSLR96
KSO_RhiB	SPQWAVGALAGKQL <mark>FD</mark> PLL <mark>F</mark> KI	fpaeaktld <mark>p</mark> qerlflqavwhclessgytaaslr103
KSO_DszC_1	SPGW-GGYLERLDR <mark>FD</mark> SLF <mark>F</mark> GIS	SPAEAKLMD <mark>P</mark> QERLFIEVAWECLEDAGYTPEELR106
KS0_ChiD	YCSS-GGFLDDVDR <mark>FD</mark> CLL <mark>F</mark> RMS	SPAEARSID <mark>P</mark> QERLFLEAAWACLEAAGTTAERLN108
KS0_ChiC	YCKW-GGFLDDIGR <mark>FD</mark> ALF <mark>F</mark> QIS	SPTEAASLD <mark>P</mark> SERLFLEIAWSTLERAGYARRRPQ113
KS0_DszB	ESKW-GGFLRDVDQ <mark>FD</mark> PLL <mark>F</mark> NII	PPARARIMD <mark>P</mark> MQRLFLESVYETLEDAGYTRAMLS109
KS0_DszC_2	RQRW-GGFLDRVDR <mark>FD</mark> ALL <mark>F</mark> NIS	SPREAAGMD <mark>P</mark> QERLFLEIAWCAFEDAVYTRERLAEEQA 114
KS0_ChiF	RSKW-GGFLEDVDR <mark>FD</mark> PLL <mark>F</mark> NIS	SPLEAERLD <mark>P</mark> QLRLFLQTAWETFEDAGYPRRRLRVVQQ111
KS0_5919	YSAW-GGFIEDVDA <mark>FD</mark> PAF <mark>F</mark> SIS	SPRMSAYLD <mark>P</mark> KERLFLETVWNLLEEAGETRERMQQ100
KS0_PedH	YCKW-GGFLESIDQ <mark>FD</mark> PLF <mark>F</mark> KII	PPAQAEVLD <mark>P</mark> QERLFLETVWNLLESSGYLGETLQR110
KS0_RhiF	YCKW-GGFLDGVED <mark>FD</mark> PLF <mark>F</mark> NLS	SPREAEIIN <mark>P</mark> NDRLFIETCWNLLESAGLTRQRLKQ110
KS0 TaiN	YSKW-GGFVDDVGR <mark>FD</mark> PAF <mark>F</mark> GM	fpqdaqhtd <mark>pq</mark> ellflemcwhalqdagqtpallpg115

KS0_OzmJ	HSKW-GAFLDGFDA <mark>FD</mark> PAV <mark>F</mark> GFTEQEARNTD <mark>P</mark> QVRLFLQECWKALEDAGIAPSKLPS116
KS0_BryC	YSKW-GGFLEDFAAFDPLFFNLSPRDAMRIDPQERIFLQECWRAFEDAGYVCSRLSP113
KS0_BryD	YSKW-GGFLEGFAD <mark>FD</mark> PLF <mark>F</mark> NLSPREVMTID <mark>P</mark> QERLFLQSAWEAVEDAGYTRAQLAS115
	.: ** ** .: :
KGO BOOD	
KSO MmpA	GSATGVFTAAERNEVHLNLLOAOTD-PGEGLDOAASMLANRUSHFYDLRGPSETTEAA150
KSO PedF	-OSKTOVFIAADAADTIDAADAGID-PGOWYAO-TCLLANRISYFFDWRGTSEVVDAO167
KS0_OnnI	KSKT <mark>GV</mark> FFSIODNEYLOLLREGGVD-RGEGFGH-ASMIANRIAYFFDFR <mark>G</mark> PSEFVDA0167
KS0 BaeJ	
KS0 BaeL	GIEAGVYIGGRSQHQPDPEILANTRNPIVAGGQNYLAANVSQFFDLRGPSIVLDTA152
KS0 TaiK	GGAV <mark>GV</mark> FLGGRSQHAPDAALLAHAHHPIVAVGQNYLAANLSRHFDLN <mark>G</mark> ACALVDTA153
KS0_OzmH	GRGI <mark>GV</mark> YVGGRSRHVPDEATLGRSRNPVVAVGQNYLAANLSHHFDLR <mark>G</mark> PSTVVDTA152
KS0_LnmI	RSAGRV <mark>GV</mark> FIGSMWHDYRQQGADRWNGGDSAEVAATASDIANRVSHFFDFR <mark>G</mark> PSLAVDTS156
KS0_RhiB	RQAERI <mark>GV</mark> FVGAMWGDYQHHRPTEQGERATSFLSAIANRVSFFNDFN <mark>G</mark> PSVAFDTS159
KS0_DszC_1	RAAPRV <mark>GV</mark> FVGAMWSDYQSVGLEAWQRDRRAKAVAFHSSIANRISYLFDLH <mark>G</mark> PSVAIDTS166
KS0_ChiD	AQAGKV <mark>GV</mark> FVGVMWNDFQNEGVEGFREDHVARAVALHSSIANRVSHTFDFK <mark>G</mark> PSVAVDTS168
KSU_ChiC	SRSVGVFVGVNVGDYHLLALEEQARGRWVFSNPSFSATANRVSYFFDFQGPSLAIDTQ1/1
KSO DazC 2	DUCUCACUEVICSMYOOVSMIADTDDACASSSEWSIANDVSVEEDIDCDSIAVDTA 160
KSO ChiF	GATSGVGVFVGSMIQQISMLARIPDAG ASSS FWSIANRVSIFFDLKGPSMLVDIA 169
KS0 5919	AYGAOVGVFVGAMYOLYGACAADEGERVATALSSYNAIAHRTSYFFNLRGPSIALDTM158
KS0 PedH	IAQSRVGVFVGSMSQQYHAFQADLTRESLVTMSSHSSIANRVSYFFDFQGPSVAVDTM168
KS0 RhiF	QYQQQV <mark>GV</mark> FVGVMYQQYQAFEADFVRESLVSVTSYSAIANRVSYFFDFQ <mark>G</mark> PSLAIDTM168
KS0_TaiN	DVRRRA <mark>GV</mark> FAAITKHYAFPPTSFASLANRVSHALDFG <mark>G</mark> KSLAIDTM161
KS0_OzmJ	ETRGRI <mark>GV</mark> FAGGAKHGFTQLGAEGRLEMPRTSFGDMVNRVSFQFDLG <mark>G</mark> PSKAVDTA 172
KS0_BryC	ELRHKT <mark>GV</mark> YGAMTKINPNTSFASLVNRVSYIMDLH <mark>G</mark> PSVPVDSM157
KS0_BryD	QFNKRV <mark>GV</mark> FAGITKTGFNLYAGDLNSQAELFYPYTSFSMLVNRVSYFLDLQ <mark>G</mark> PSIPVDTM175
VCO POOP	
KSO MmpA	CISILVALHAVQSIAHNECEQAVVGAANILQSPAGFIGFDSMGILSANGAAASFQADAD210
KS0 PedF	CPGAAVAIHRAVSALRNGEIELALVGAANLLLRPEPFVLLSESGOLSESASVHSFGAOAO 227
KS0 OnnI	CAGAAVALYRAVSTLRSGDITYAVVGAANLLLRAEPFAVLTRANOLSPTNCVNSFGKDAQ 227
KS0 BaeJ	CSSALVGMNMAVQALVTGEIKAAVVGGVSLFESEETHKLFEQRGILSKAQSFHVFDQRAD214
KS0_BaeL	CSSALTGMNMAVQALRSGDIKAAVVGGVSLLNTDAAHRMFQERGLLNEKPAFHVFDKRSG212
KSO_TaiK	CSSALVAMHS <mark>A</mark> VLALAAGEIDA <mark>A</mark> VVGGVSLLSSDAGHRLFEQRGLLAPDGAFHLFDERAN 213
KS0_OzmH	CSSALVALHH <mark>A</mark> AQALRSGDVEA <mark>A</mark> VVAGVTLLPDAGGHRLFDRRGLLNTGTEFHVFDRRAR 212
KS0_LnmI	CSSSFAALHL <mark>A</mark> VESLRRGECGA <mark>A</mark> VVGAVNLLAHPYHWGLLDGLELLAADAPPAAYAAEGS 216
KS0_RhiB	CSSAMTALHFACNSIRQGECQAAIVGGVNLISHPSHLELLTSLKLLSDDSQSYPFGRHAN 219
KSU_DSZC_I	CSSGLTALHLASRSLRLGECDVALVGGVNLLGHPFHPDLLEGLNLTSRDDKTRAFGAGGS 226
KS0_ChiC	CSSAMIALHLACESIQAGECAAIVGGVNLMIHFIHQGLLCSLGMVSESGFGNALGEDAI228
KS0_DszB	CASSLTATHLACEGULIGRTDLATAGGVNLSLTPEKYLGLSOLOFMSGGALSRPFGD-SD 226
KSO DszC 2	CASSLTALHLACESLRRGECCLALAGGVNLHLHPHKYVALDRLGLLGSGAASKSLGD-GD 228
KS0 ChiF	CSSSLTAIYMACESLARGECAMALAGGVNLSLHPQKYVIFSQMGLLGSKERSSSLGE-GD 228
KS0_5919	CSSSLTAVHYACRSLLDGDCALAIAGGVNLSLHPRKYVGLSQAQIVGSHADSRSFSD-GD217
KS0_PedH	CSSALVAVHMACESLLRDDCKAAVAGGVNLSIHPKKYIGLSASQILGSHPDSSSFGQ-GD227
KS0_RhiF	CSSSISAIHA <mark>A</mark> GEALRNGDCRL <mark>A</mark> IAGGVNLTLHPKKYIGLSIGKVLGSHASSRSFAD-GD 227
KS0_TaiN	CSSSLVAVNEAWEYLQR-DGRLAVVGGVNLYLDPQQYAHLSRFRFASSGPVCKAFGEGGD 220
KS0_OzmJ	CSSAHVALHEAVESIRSGRCDLALAGAVNLYLHPSTYVELATVGLLSDRDDCASFGAEAA 232
KS0_BryC	CSSSLVALHQACESLRQGTIDMALVGAVNLYLHQDIYLGMCQAKVISDSATPAIFGCDGK21/
KSU_BryD	CSSSLTATHEACEHLHRQRCELATAGGVNLYLHPSSYTHLCAGHILSKNNRCSAFGQGGD235
	· · · · · · · · · · · ·
KS0 BaeR	GFVRSEGAGVIIIKPLEAAIEDGDHIHMVIKGTGVSH-GGKGMSLHAPNPAGMKAAMKKA269
KS0 MmpA	GYLRGEGVCSLLLKPLSKAEADGDHIYGLIRNTAVNYNGGDAASIAAPSVSAHSSLVQDC 289
KS0 PedF	GHLRAEGVCSLLLKPLTKALADGDPIYASIKHSAVNFNGQGGASIAAPNVDSHVDLIKSC287
KS0_OnnI	GHLRAEGVVSLLLKPLSKAEADGDPIYALIKNTACNYNGQGGMSIAAPNVDSHAELIETC 287
KS0_BaeJ	GVVLG <mark>E</mark> GVGMVLLKTVSQ <mark>A</mark> IEDGDSIYAVVKAASVNN-DGRTAGPATPSLEAQKAVMKTA 273
KS0_BaeL	GVVLG <mark>E</mark> GVGMVLLKTVSQ <mark>A</mark> QKDGDTIHAVIKAAAMNN-DGRTAGPSAPNMQAQKDVMQSA 271
KS0_TaiK	GTVLSEGAGLVMLKPLAAARAHGDTIYAVLKGLAVNN-DGRTAGPSSPNFAAQQAVMRRA 272
KSU_OzmH	GFTPAEGVGVLLLKPLAAAEAAGDRVHAVLKGIAVNN-DGRTAGPATPNPAAQRGVMARA 271
KSU_LNM1	GWHPGEGVGVLLLKPADAAKKAKDTVHGLLEGTRIGH-AGRAPRYGAPHTAALADSLARA 275
KOU Deac 1	
KSO ChiD	GWTTGEGYGAVILLRPADDAERSCOHTHAI.TKATAINH-TCATORYCMOCAFACAACTON 207
KS0 ChiC	GEVPGEGVGAVLLKPLROALLDRDPTLAVIKGSALNH-AGKTSGFMAPSPAAOADLLERA 290

KS0_DszB	GMIPG <mark>E</mark> GVGAVLLKPLI	dr <mark>a</mark> vrdrdH	IIHAIIRS	SAVSH-GGASTGE	TAPNLKAQSDMFV	7EA 285
KSO DszC 2	GYVPG <mark>E</mark> AVGAVVLKPLI	dr <mark>a</mark> vadndf	RIYGVIKG	SFANH-AGKTAGY	GVPSPAAQADLIA	AA 287
KS0 ChiF	GITVG <mark>E</mark> GVGALLLKPLZ	al <mark>a</mark> lrdgdf	VYAVIKG	GFVNH-GGRTHGA	TVPNPSAQADLIV	7EA 287
KS0_5919	GYLPAEGVGAVLLKPL	ar <mark>a</mark> ladddf	RILAVIKA	SSVNH-GGRATGY	YAPNANAOVDLME	AS 276
KSO PedH	GYLPSEGVGAVLLKPL	REAVADNDT	TLGVIKS	TTINH-SGOSNGY	(FVPNGAAOTELM)	ZSN 286
KSO RhiF	GYLPAEGVGAVLLKTL		TT'AALKS	TAVNH-CCHTHCE	CMPSAKAEAALTE	SN 286
KSO TaiN	CENDCECACATVILKEL	SDAFRDCDE	THAVIRG	CAVNH-NCRSTSE		279 ZOZ
KSO Ozmi	CIVECECVCAVITEDI		VUAVIRG	CAVNII NGRUISI		DA275
	GIVFGEGVGAVLLKFL		VIAVIRG	GAVNE-NGRIIGE	ISFSSQRQAEVIE	
NSU_BLYC	GF I PSEGVGAV VIKRL	SDAERGNDF	CVLAVIRG	SAVNH-SGRINHI	GVPCPRQQAAVIA	
KS0_BryD	GFVPGEGVGCVLLKPL	SC <mark>A</mark> ERDGDN	IIYAVILG	SHTNH-SGRAGGN	1GPNLN-AQSDLII	EN 293
	* .* ::::	* :	: :		•	
			.			DO DO F
KSU_BaeR	YEDTDVDPQTVTYIEA	GIASEMAL	ALEFNAL	KAGYGESANQ	EESAPCYISTV	PC 325
KS0_MmpA	YRRAGIDPRHVSYIEA	QGMGNPVAL	DIAEWDAL	NHGLLALGREQGV	/QLQEGQCAISTL <mark>K</mark>	PM 349
KS0_PedF	YQQARVDPRQVRYI <mark>E</mark> AQ	QGMGNVLA <mark>I</mark>	LV <mark>E</mark> WQAF	'NRALTDIARQQRV	/SLPPGNCLISTL <mark>K</mark>	PM 347
KS0_OnnI	YEQVQVDPGEIRYI <mark>E</mark> A	<mark>Q</mark> GMGNPLS <mark>I</mark>	LG <mark>E</mark> WHAY	NQALQSMAKKRGV	/VLPQGQCAISTL <mark>K</mark>	PM 347
KS0_BaeJ	LEKSGKRPEEITHI <mark>E</mark> AI	NGSGTAVT <mark>I</mark>	LL <mark>E</mark> LKAI	QSVYRSTD	AGPLGIGSV <mark>K</mark>	PN 325
KS0_BaeL	LFKSGKKPEDISYI <mark>E</mark> AI	NGSGSAVT <mark>I</mark>	LL <mark>E</mark> LKAI	QSVYRSGQ	HVPLGIGSI <mark>K</mark>	PN 323
KSO_TaiK	LAQSGLRADDVRHV <mark>E</mark> AI	NGSGSRVT <mark>I</mark>	LL <mark>E</mark> LKSI	RAVYGGQSRD	AAWCALGSV <mark>K</mark>	PS 326
KSO OzmH	LAKAGVAADDVTYI <mark>E</mark> TI	N <mark>aagsqip</mark> i	LI <mark>E</mark> LKAI	AAVYRDGS	DTPCSLGSV <mark>K</mark>	PN 323
KS0 LnmI	LADASVIPDEVDYV <mark>E</mark> C	A <mark>aagagia</mark>	AA <mark>E</mark> LEAL	GSVLARCAG	ASPVPVGTL <mark>K</mark>	PN 328
KS0 RhiB	LQQAGLSADEIGYV <mark>E</mark> A	AAPGASLA <mark>I</mark>	GA <mark>E</mark> FAAI	SNVFGARRSD	AP-LLVGSI <mark>k</mark>	AN 331
KS0 DszC 1	LADGGVAASEIDYVEC	AATGSGIA <mark>I</mark>	AS <mark>E</mark> VDAL	KQAFEGRSPD	GPPCLLGSV <mark>K</mark>	PN 339
KS0 ChiD	LRRAGLGPEAVSYV <mark>E</mark> A	AATGAAIA	ASEIAAL	IEVFGEROGS	APRVALGSI <mark>k</mark>	PN 341
KS0 ChiC	LARANVDPGSVSYI		AAFLAAF	TRVLRRG-RR	OGPCLLGSI	PN 343
KSO DS7B	TERAGIDPRTISYVEA	AANGAPLG	PTEVNAT.	TRAFRRFTAD	TGFCALGTV	SN 339
KSO DszC 2	LERTGIDPETICYTEV	ANGSSLG	ATELACI	TOAFRRETAR	KHECAVGSV	SN 341
KSO ChiF	FRACURPDAUSYTEV	ANCSPLC	STETACL	KOAFRRETVE		99341
KS0_5010	FRACUSPESTDYTEA					GM 330
KSO Dodu					KOECALCOV	
KSU_Pedr	FIRAGIDPRILSIVES	ANGSSLGL	ALLINAL	NDVECONCUN	KQFCALGSV	SN 340
KSU_RAIF	FRAGVDPRTISIVEA	AANGSAMG	AIELSAL	INRVFGQAGVA	HQSCAIGSV	SN 340
KSU_TAIN	LTRAGVDPRTIGIVEA	AANGHAMGI	ATEMTGL	GKVFAACDGV	SGTRAIGSV	
KSU_OZmJ	LRDARVDPRTIGYVEA	PANGSEIGL		TQVFEDRPDA	KGPIRIGSLK	PN 345
KS0_BryC	IDNANVDPRSIAVIES	AANGSEMGL	ALEMSAL	TKVFQTHRDN	GKAQYSIGSL	SI 33I
KSU_BryD		ASNGSHLG <mark>L</mark>	SIELRAL	DKAFSQHTKK	RDFCAIGSV	PN 347
	: ::*	••••	* •		:.::*	
KS0_BaeR	I <mark>GH</mark> GELASGLAALI <mark>K</mark> VI	АМАМКННТІ	PGIPRFT	'AANEQMAIQKSRE	RFTEDNQEWTQLT	'D-384
KS0_MmpA	S <mark>GH</mark> MHAASAIGALF <mark>K</mark> II	IRSLQTEKI	HKILDFE	QPNLHLHTAGQPC	RLATHTVDWPRQ-	406
KS0_PedF	M <mark>GH</mark> MESASALGALF <mark>K</mark> VI	IRSLHTRTI	HKIAHFT	QYHPDMDYQGQPC	CAIAGETVAWPQM-	404
KS0_OnnI	M <mark>GH</mark> MESVSSLGAIM <mark>K</mark> VI	IRSFKTNTI	HKILNVQ	EISPDLDPQGMPC	RLLTETEPWPEQ-	404
KS0_BaeJ	I <mark>GH</mark> PLCAEGIASFI <mark>K</mark> V	VLMLKEKSF	IPFLSGE	HEHTHFDREKANI	QFTRTLADWPSPI	P-384
KS0_BaeL	I <mark>GH</mark> PLCAEGIASFI <mark>K</mark> V	VLMLKHKQI	VPFLSGD	EPMPHFDITKTDE	HFHKTAGEWDAAF	RP-382
KSO TaiK	I <mark>GH</mark> TLCAQGIAAFI <mark>K</mark> SY	VLMLHHRSV	PPFLSGQ	QPMQHSPIERSRI	LRFVRETIPFDVAA	AP-385
KS0 OzmH	I <mark>GH</mark> PQCAEGIAGVI <mark>K</mark> T'	VLMLRNRAI	VPFLSGR	QPLEHFDFAATPI	RFERALTPWPDAF	PL-382
KS0 LnmI	I <mark>GH</mark> LEAASGLSQLI <mark>K</mark> VI	LLQIRHGRI	APTLVSG	ELSPLVDWDGLPV	/ELVDTPRALTPRA	A-387
KS0 RhiB	I <mark>GH</mark> LESASALSQIT <mark>K</mark> VI	LMQLKHRQI	APTLGCN	PLSPMICLDDNHI	LAIADQLSDW	385
KSO DszC 1	I <mark>GH</mark> LESASALSÕLT <mark>K</mark> VI	ILÕLEHGĒI	APTLHTE	PRNPLIOLDGTPE	RINRALSPWPRAF	G-398
KS0 ChiD	TGHLESASAMSOLAKV	L.L.OTOHKTI	APHVLSG	ALNPMTPWDRAPE	WVPEOPAAWOPR-	398
KS0 ChiC	IGHLEGAAGISOLTKV	VHOLESEOT	APSTHAD	PVNPEVGFDASLE	RIPGALEPWPMP	V-402
KSO DszB	TCHLEGASCUSOLAKVI	LLOLRHGAT	APTINAE	PRNPNI.HI.DDTPF	YLOERLDDWRRPI	TS 399
KSO DezC 2	ICHDEDASCIDOLTKVI	I COT UURTI				עדי 101 א די
KSO_DSZC_Z		N VOT UUDTT	VETLIAE			TH - 300
	IGHLEAASGVSQVIKV		VEILNSE			399
KSU_5919	IGHPEAASGIAQLIKV.	LLQMQHETT	VPSIKIE	PVNPNLDLAHTPP	RLLSRQAAWPSDP	388
KSU_PedH	IGHGEAASGIAQLIKV	LLQLKHRQI	JVPTIKAQ	PLNSNIDFTHTPE	CLQRRLEPWRRPS	SLA 400
KS0_RhiF	IGHAEAASGMSQLSKL	VLQLQHQQI	APSLLLG	SLNPKLDFENSPE	. VLQRELGHWPQPV	/VE 400
KSU_TaiN	I GHCEAASGMSQLTKV	VMAMRDGVI	AP'ILRDG	TRNPNIAFERLPE	"EVQEQAAPWRRLI	v-392
KSU_OzmJ	1 <mark>GH</mark> GEASAGMAQLF <mark>K</mark> VI	LLALRHRTI	PTRLPG	EYNPAIDIDRLPE	ELSGAPVAWDQVT	'V-404
KS0_BryC	L <mark>GH</mark> GEAVSGMAQFM <mark>K</mark> V	VLQLRNKSI	CPSPDPQ	QKNPNIHFENLPE	ELQTELDEWRQLT	'I-390
KS0_BryD	I <mark>GH</mark> LESASGMSQLT <mark>K</mark> VI	LLQLRHKQI	VPSIHAQ	PLNSNIDFEDTAE	RLQKEVEEWKRLI	VQ 407
	** •:• • *	:.			•	
_		_				
KS0_BaeR	HTGRPIPRRAAINS	SYGFG <mark>G</mark> MNA	HVVLEQY	- 413		
KS0_MmpA	ATPRLAGLHS	SYGAG <mark>G</mark> NNA	HILVEE-	- 430		
KS0_PedF	EGLRLAGIH	CYGMG <mark>G</mark> VNA	HLLVEES	V 430		
KS0_OnnI	ARPRLAGLH	SFGIG <mark>G</mark> NNV	HILLEEY	- 429		
KS0_BaeJ	AAGIN	CFADG <mark>G</mark> TNA	HVIVEAW	IQ 406		
KS0_BaeL	SAAIN	CFADG <mark>G</mark> TNA	HVILE	- 401		

KSO TaiK	AVALNCFADG	GTNVHAVL	403
KS0_OzmH	LAAVSSFADG	GTNAHAVL	400
KS0_LnmI	DGRATVLVNAVGAT	GSYGHVVV	409
KS0_RhiB	RGPQRALINAFGAS	GSGGHLIVE	408
KS0_DszC_1	ADAPPRRALINAFGAT	GSSAHAVVEEY-	425
KS0_ChiD	SGPRRALVNAFGAT	GSLGHAVIEE	422
KS0_ChiC	DGHAEPSTRRACISSFGAG	GSGVYLIVE	430
KS0_DszB	GREVPRRAMINSFGAG	GYATLVVEEH-	426
KS0_DszC_2	-GEGGTAELPRRAAISSFGAG	GANTHLLVEEYS	433
KS0_ChiF	EGEPLRAAVASFGAG	GANAYLIL	422
KS0_5919	ARPRRATVSSFGAS	GANAHLI	409
KS0_PedH	LGDGPMREYPLRATVSSFGAG	GSNAHLILEEF-	432
KS0_RhiF	-TDGVSRQYPRRAALSAFGAG	GSNAHLVLEEY-	431
KSO TaiN	DGSEVPRRAGVTSIGGG	G <mark>VNAHVVLEEYV</mark>	421
KS0_OzmJ	DGALVPRRAGITGLGGG	GTNAHVVL	429
KS0_BryC	ADKKIPRRAGITALGAG	GVNAHMIVEEYQ	419
KS0_BryD	-VNGENKEIPRRAAINSFGAG	GVNANLIIQEY-	438
—		+ -	

. : . * :

Supplementary Fig. 2: Sequence alignment of the Bamb_5919 KS⁰ domain with other KS and KS⁰ domains. Universally conserved amino acid residues are highlighted in cyan. The Cys and His residues in the conserved C-H-H catalytic triad of KS domains are highlighted in green. Instances where the first of these His residues has been mutated are highlighted in yellow. Alignments were created using Clustal Omega. (a) Alignment of the Bamb_5919 KS⁰ domain (KS⁰_5919 – aa residues 1820-2238) with the Bamb_5925 (KS_5925 – aa residues 828-1252), Bamb 5924 (KS 5924 1-aa residues 47-474, KS 5924 2 - aa residues 1455-1879), Bamb 5923 (KS 5923 - aa residues 665-1091), Bamb 5922 (KS 5922 - aa residues 44-457), Bamb 5921 (KS 5921 1 - aa residues 34-458, KS_5921_2 - aa residues 1514-1921), Bamb_5920 (KS_5920_1 - aa residues 33-455, KS_5920_2 - aa residues 1792-2208) and Bamb 5919 (KS 5929 – aa residues 33-452) KS domains from the enacyloxin PKS. (b) Alignment of the Bamb_5919 KS⁰ domain (KS⁰_5919 – aa residues 1820-2238) with the GbnD1 (KS_GbnD1_1 – aa residues 35-457, KS_GbnD1_2 – aa residues 1397-1818, KS_GbnD1_3 – aa residues 2576-3014, KS_GbnD1_4 - aa residues 4090-4491), GbnD2 (KS_GbnD2_1 - aa residues 198-632, KS_GbnD2_2 - aa residues 1720-2153, KS_GbnD2_3 - aa residues 2724-3139), GbnD3 (KS_GbnD3_1 - aa residues 557-969, KS_GbnD3_2 - aa residues 1785-2215, KS GbnD3 3 - aa residues 3038-3453), GbnD4 (KS GbnD4 1 - aa residues 902-1333, KS GbnD4 2 - aa residues 2168-2587, KS GbnD4 3 - aa residues 3266-3676, KS GbnD4 4 - aa residues 4506-4923), GbnD5 (KS_GbnD5_1 - aa residues 492-906, KS_GbnD5_2 - aa residues 1702-2102) and GbnD6 (KS_GbnD6_1 - aa residues 424-843, KS_GbnD6_2 - aa residues 1633-2067, KS_GbnD6_3 - aa residues 3619-4053, KS_GbnD6_4 aa residues 4907-5334) KS domains from the gladiolin PKS. (c) Alignment of KS⁰ domains from the Bamb 5919 (KS⁰_5919 – aa residues 1820-2238) subunit of the enacyloxin PKS, the BaeJ (KS⁰_BaeJ – aa residues 4532-4937), BaeL (KS⁰_BaeL – aa residues 4027-4427) and BaeR (KS⁰_BaeR – aa residues 1488-1900) subunits of the bacillaene PKS, the PedF (KS⁰_PedF – aa residues 44-473) and PedH (KS⁰_PedH – aa residues 4182-4613) subunits of the pederin PKS, the LnmI (KS⁰ LnmI – aa residues 1934-2342) subunit of the leinamycin PKS, The MmpA (KS⁰ MmpA - aa residues 27-456) subunit of the mupirocin PKS, the OnnI (KS^0 OnnI - aa residues 76-504) subunit of the onnamide PKS, the BryC (KS⁰_BryC - aa r residues 4621-5039) and BryD (KS⁰_BryD - aa residues 2204-2641) subunits of the bryostatin PKS, the DszB (KS⁰ DszB – aa residues 5502-5927), DszC (KS⁰ DszC 1 – aa residues 1889-2313, KS⁰ DszC 2 – aa residues 2671-3103) subunits of the disorazole PKS, the RhiB (KS⁰ RhiB – aa residues 1041-1448) and RhiF (KS⁰_RhiF – aa residues 1551-1981) subunits of the rhizoxin PKS, the ChiC (KS⁰_ChiC – aa residues 7634-8063), ChiD (KS⁰_ChiD – aa residues 2034-2455) and ChiF (KS⁰_ChiF – aa residues 4825-5246) subunits of the chivosazol PKS, the TaiN (KS⁰_TaiN – aa residues 659-1079) and TaiK (KS⁰_TaiK – aa residues 1454-1856) subunits of the thailandamide PKS, and the OzmH (KS⁰_OzmH - aa residues 6122-6521) and OzmJ (KS⁰_OzmJ – aa residues 911-1339) subunits of the oxazolomycin PKS.

Supplementary Fig. 3: Comparison of the enacyloxin biosynthetic gene clusters from *Burkholderia ambifaria* AMMD and *B. ambifaria* BCC0203. Grey bars link homologous genes. The number on each bar indicates the percentage of amino acid sequence identity between the gene products.

Supplementary Fig. 4: SDS-PAGE and mass spectrometry analysis of purified recombinant proteins. Measured mass spectra (left), deconvoluted mass spectra (middle) and SDS-PAGE analysis (right) of purified His₆-tagged (**a**) Bamb_5915, (**b**) Bamb_5915 (H205A), (**c**) Bamb_5917 *apo*-PCP domain, (**d**) Bamb_5917, (**e**) Bamb_5919 KS⁰ domain (C1988A), (**g**) Bamb_5919 *apo*-ACP domain and (**h**) Bamb_5919 *apo*-ACP-KS⁰ di-domain.

Supplementary Fig. 5: *In vitro* conversion of purified *apo*-ACP and –PCP domains to their *holo*-form. Measured (left) and deconvoluted (right) mass spectra of (a) the Bamb_5917 PCP domain, (b) Bamb_5917 and (c) the Bamb_5919 ACP domain following incubation with Sfp and coenzyme A.

Supplementary Fig. 6: *In vitro* conversion of purified *apo*-ACP and –PCP domains to their acetylated *holo*-form. Measured (left) and deconvoluted (right) mass spectra of (**a**) the Bamb_5917 PCP domain, (**b**) Bamb_5917, (**c**) the Bamb_5919 ACP domain and (**d**) the Bamb_5919 ACP-KS⁰ di-domain following treatment with Sfp and acetyl-CoA.

Supplementary Fig. 7: Acyl transfer assay with the acetylated Bamb_5919 ACP-KS⁰ di-domain and the Bamb_5917 *holo*-PCP domain. Experimental setup (left) and deconvoluted mass spectrum of the Bamb_5917 *holo*-PCP domain (right) following incubation with the acetylated Bamb_5919 ACP-KS⁰ di-domain. The ACP-bound acetyl group is transferred onto the PCP domain as indicated by a mass shift of +42 Da.

Supplementary Fig. 8: Acyl transfer assays with the full-length Bamb_5917. Experimental set up (left) and deconvoluted mass spectra of *holo*-Bamb_5917 (right) following incubation with (**a**) the acetylated Bamb_5919 ACP domain and the Bamb_5919 KS⁰ domain, (**b**) the acetylated Bamb_5919 ACP-KS⁰ didomain, (**c**) the acetylated ACP domain alone, and (**d**) the acetylated ACP domain and the C1988A mutant of the KS⁰ domain. The data show that the KS⁰ domain catalyses transfer of an acyl group from the Bamb_5919 ACP domain to Bamb_5917 (47.4 \pm 2.1% and 45.3 \pm 1.8% acetylation, respectively). Significantly reduced levels of acyl transfer are observed when the KS⁰ domain is omitted from the reactions (12.2 \pm 1.1%), or when the C1988A mutant of the KS⁰ domain is employed (14.9 \pm 1.1%).

Supplementary Fig. 9: Acyl acceptor tolerance of Bamb_5915. DHCCA analogues were incubated with the acetylated Bamb_5917 PCP domain and Bamb_5915, and formation of an acetylated product was determined using UHPLC-ESI-Q-TOF-MS (chromatograms labelled +C). Bamb_5915 was omitted from negative control reactions (chromatograms labelled –C). (a) Extracted ion chromatograms (EICs) at $m/z = 225.0733 \pm 0.005$, corresponding to $[M+Na]^+$ for the mono-acetylated derivative of (\pm) -(1*S*,3*R*,4*S*)-3,4-dihydroxycyclohexane-1-carboxylic acid. (b) EICs at $m/z = 225.0733 \pm 0.005$, corresponding to $[M+Na]^+$ for the mono-acetylated derivative of (\pm) -(1*R*,3*R*,4*S*)-3,4-dihydroxycyclohexane-1-carboxylic acid. (c) EICs at $m/z = 224.0893 \pm 0.005$, corresponding

to $[M+Na]^+$ for the mono-acetylated derivative of $(\pm)-(1S,3R,4R)-3$ -amino-4-hydroxycyclohexane-1-carboxylic acid. (d) EICs at $m/z = 224.0893 \pm 0.005$, corresponding to $[M+Na]^+$ for the mono-acetylated derivative of (\pm) -(1S,3R,4S)-3-amino-4-hydroxycyclohexane-1-carboxylic acid. (e) EICs at $m/z = 209.07845 \pm 0.005$, corresponding to [M+Na]⁺ for the mono-acetylated derivative of (±)-(1R,3R)-3-hydroxycyclohexanecarboxylic acid. (f) EICs at $m/z = 209.07845 \pm 0.005$, corresponding to [M+Na]⁺ for the mono-acetylated derivative of (±)-(15,3R)-3hydroxycyclohexanecarboxylic acid. (g) EICs at $m/z = 208.0944 \pm 0.005$, corresponding to $[M+Na]^+$ for $(\pm)-(1R,3R)$ -3-acetamidocyclohexanecarboxylic acid. (h) EICs at $m/z = 218.0424 \pm 0.005$, corresponding to [M+Na]⁺ for 3acetamido-4-hydroxybenzoic acid. (i) EICs at $m/z = 241.0682 \pm 0.005$, corresponding to [M+Na]⁺ for (±)-(1R,3R,4S,5R)-3-acetoxy-4,5-dihydroxycyclohexanecarboxylic acid. (j) EICs at $m/z = 239.0526 \pm 0.005$, corresponding to $[M+Na]^+$ for $(\pm)-(3R,4S,5R)$ -3-acetoxy-4,5-dihydroxy-1-cyclohexenecarboxylic acid. (k) EICs at 241.0682 ± 0.005, corresponding to [M+Na]⁺ for (±)-(15,3R,45,5R)-3-acetoxy-4,5m/z = dihydroxycyclohexanecarboxylic acid. (I) EICs at $m/z = 194.0787 \pm 0.005$, corresponding to [M+Na]⁺ for (±)-(1R,3S)-3-acetamidocyclopentanecarboxylic acid. (m) EICs at $m/z = 168.0631 \pm 0.005$, corresponding to $[M+Na]^+$ for 4-acetamidobutanoic acid. (n) EICs at $m/z = 184.0580 \pm 0.005$, corresponding to $[M+Na]^+$ for (\pm) -4-acetamido-3-hydroxybutanoic acid. (o) EICs at $m/z = 180.0990 \pm 0.005$, corresponding to $[M+Na]^+$ for the mono-acetylated derivative of (1-aminocyclopentyl)methanol. (p) EICs at $m/z = 209.0790 \pm 0.005$, corresponding to [M+Na]⁺ for anti-4-acetoxycyclohexanecarboxylic acid. (q) EICs at $m/z = 209.0790 \pm 0.005$, corresponding to [M+Na]⁺ for syn-4-acetoxycyclohexanecarboxylic acid. (r) EICs at $m/z = 167.0684 \pm 0.005$, corresponding to [M+Na]⁺ for the monoacetylated derivative of syn-1,2-cyclopentanediol. (s) EICs at $m/z = 166.0844 \pm 0.005$, corresponding to [M+Na]⁺ for the mono-acetylated derivative of (\pm) -(1S,2R)-2-aminocyclopentanol. (t) EICs at $m/z = 151.0735 \pm 0.005$, corresponding to $[M+Na]^+$ for the mono-acetylated derivative of cyclopentanol. (u) EICs at $m/z = 237.03753 \pm$ 0.005, corresponding to $[M+Na]^+$ for the mono-acetylated derivative of 3-dehydroshikimate. (v) EICs at m/z =150.0895 ± 0.005, corresponding to [M+Na]⁺ for the monoacetylated derivative of cyclopentylamine. (w) EICs at m/z = 180.1007 ± 0.005, corresponding to [M+Na]⁺ for the mono-acetylated derivative of (±)-(1S, 2R)-2aminocyclohexanol.

Supplementary Fig. 10: Mutation of the active site His residue (H205) in Bamb_5915 to Ala abolishes the condensation reaction. Extracted ion chromatograms at $m/z = 224.0893 \pm 0.005$ (corresponding to [M+Na]⁺ for *N*-acetyl-AHCCA) from UHPLC-ESI-Q-TOF-MS analyses of the Bamb_5915-catalysed acetylation of AHCCA with the acetylated Bamb_5917 PCP domain (top chromatogram), a control reaction in which Bamb_5915 was replaced with the H205A mutant (middle chromatogram), and the authentic standard of N-acetyl-AHCCA (bottom chromatogram).

Supplementary Fig. 11: *In vitro* reconstitution of the enacyloxin chain release reaction using full-length Bamb_5917. Experimental setup (right) and extracted ion chromatograms (EICs) at m/z = 224.08993 (left), corresponding to the [M+Na]⁺ ion for acetyl-AHCCA from UHPLC-ESI-Q-TOF-MS analyses of reactions containing the following. The acetylated Bamb_5919 ACP domain, the Bamb_5919 KS⁰ domain, *holo*-Bamb_5917, Bamb_5915 and AHCCA (top); the acetylated Bamb_5919 ACP-KS⁰ di-domain in place of the acetylated Bamb_5919 ACP domain (second from top); lacking the Bamb_5919 KS⁰ domain (third from top); with the C1988A mutant of the Bamb_5919 KS⁰ domain (third from bottom) and lacking Bamb_5915 (second from bottom). The bottom chromatogram is for the authentic standard of *N*-acetyl-AHCCA. The levels of acetyl-AHCCA in reactions lacking the functional KS⁰ domain were 84.5 ± 1% lower than in reactions containing it.

Supplementary Fig. 12: *In vitro* reconstitution of the enacyloxin chain release reaction using the 2, 4hexadienoylated Bamb_5919 ACP domain. Experimental setup (right) and extracted ion chromatograms at m/z = 276.1212 ± 0.002 (left) corresponding to [M+Na]⁺ for 2,4-hexadienoyl-AHCCA from UHPLC-ESI-Q-TOF-MS analyses of reaction mixtures containing the following. The 2,4-hexadienoylated Bamb_5919 ACP domain, the Bamb_5919 KS⁰ domain, *holo*-Bamb_5917, Bamb_5915 and AHCCA (top); lacking Bamb_5915 (second from top; lacking the Bamb_5919 KS⁰ domain (second from bottom); and with the C1988A mutant of the Bamb_5919 KS⁰ domain (bottom).

Supplementary Fig. 13: In vitro reconstitution of the enacyloxin chain release mechanism using the dodecanoylated Bamb_5919 ACP domain. Experimental setup (right) and extracted ion chromatograms at m/z = 364.2464 ± 0.002 (left) corresponding to [M+Na]⁺ for dodecanoyl-AHCCA from UHPLC-ESI-Q-TOF-MS analyses of the following reaction mixtures. The dodecanoylated Bamb_5919 ACP domain, the Bamb_5919 KS⁰ domain, *holo*-Bamb_5917, Bamb_5915 and AHCCA (top); lacking Bamb_5915 (second from top); lacking the Bamb_5919 KS⁰ domain (second from bottom); and with the C1988A mutant of the Bamb_5919 KS⁰ domain (bottom).

Supplementary Fig. 14: Acyl donor tolerance of Bamb_5915. (a) Bamb_5915 was incubated with AHCCA and various NAC thioesters, and formation of an acylated product was determined using UHPLC-ESI-Q-TOF-MS (chromatograms labelled +C). Bamb_5915 was omitted from negative control reactions (chromatograms labelled –C). (b) Extracted ion chromatograms (EICs) at $m/z = 224.0893 \pm 0.005$, corresponding to [M+Na]⁺ for *N*-acetyl-AHCCA. (c) EICs at $m/z = 238.1050 \pm 0.005$, corresponding to [M+Na]⁺ for propanoyl-AHCCA. (d) EICs at $m/z = 252.1206 \pm 0.005$, corresponding to [M+Na]⁺ for isobutyryl-AHCCA. (e) EICs at $m/z = 266.1368 \pm 0.005$, corresponding to [M+Na]⁺ for pivaloyl-AHCCA. (f) EICs at $m/z = 266.1362 \pm 0.005$, corresponding to [M+Na]⁺ for 2,4-hexadienoyl-AHCCA. (g) EICs at $m/z = 269.1108 \pm 0.005$, corresponding to [M+Na]⁺ for serinyl-AHCCA.

Supplementary Fig. 15: Secondary structure comparison of wild type and mutant proteins. Overlay of CD spectra measured for (a) the wild type Bamb_5919 KS⁰ domain and the C1988A mutant and (b) Bamb_5915 and the H205A mutant.

Supplementary Table 1: Primers and templates used for PCR and site directed mutagenesis. The restriction sites and CACC sequences introduced at the 5' end of primers to allow for directional cloning are underlined and double underlined, respectively. Artificial stop codons introduced at the 5' end of reverse primers are shown in bold. Fw: forward primer, Rev: reverse primer.

Gene (region)	Size (bp)	Primer sequences (5'-3')	Construct Name	Template
Gene deletion				
<i>bamb_5915</i> 5'-flanking region	912	Fw: <u>TCTAGA</u> GAGATGAACGGCCGGATCAG Rev: <u>AAGCTT</u> ATGAAAGCCATACTCAGCAC	pGPI/∆ <i>bamb_5915</i>	gDNA
<i>bamb_5915</i> 3'-flanking region	916	Fw: <u>AAGCTT</u> CCGCGCGCTCACAGGCTTGC Rev: <u>GGTACC</u> GCTACGAGGCCTGCGCCGAG	pGPI/∆ <i>bamb_5915</i>	gDNA
<i>bamb_5917</i> 5'-flanking region	580	Fw: CACTTAACGGCTGACATGGGAATTCTCG CCGCTCTCGAACC Rev: GGATCACGCCGGTAGCGAGGGTCATG GC	pGPI/∆ <i>bamb_5917</i>	gDNA
<i>bamb_5917</i> 3'-flanking region	587	Fw: CCTCGCTACCGGCGTGATCCGCTGAGGC Rev: AGCTTCCCGGGAAGATCTGGCTAGCGG GATTGCCGATCAGGTCC	pGPI/∆ <i>bamb_5917</i>	gDNA
Genetic complemen	tation			
bamb_5915	1539	Fw: TTGGGCTAGCAGGAG <u>GAATTC</u> ATGACG ATTCCCGCCTTG Rev: TCCGCCAAAACAGCC <u>TCTAGA</u> TCATAAA	pMLBAD/ bamb_5915	gDNA
bamb_5917	948	Fw: GC <u>GAATTC</u> ATGACCCTCGCTACCCTGCA AGCC Rev: GC <u>TCTAGA</u> TCAGCGGATCACGCCTTCTT CGTACTC	pMLBAD/ bamb_5917	gDNA
Protein overproduct	ion			
bamb_5915	1543	Fw: <u>CACC</u> ATGACGATTCCCGCCTTG Rev: TCATAAAACCTCCGTGGT	pET151/bamb_5915	gDNA
bamb_5917 ACP	310	Fw: <u>CACC</u> GGCGCCGCCGCGGGCGTC Rev: TCAGCGGATCACGCCTTC	pET151/bamb_5917 _ACP	gDNA
bamb_5917	952	Fw: <u>CACC</u> ATGGTGAGCGCACCGCGC Rev: TCAGCGGATCACGCCTTC	pET151/bamb_5917	3C12 fosmid
bamb_5919 ACP	568	Fw: <u>CACC</u> CTGGCCGAGCTGGTCGAG Rev: TCA CGCGAACGTGGCGCGCGA	pET151/bamb_5919 _ACP	3C12 fosmid
bamb_5919 KS ⁰	2017	Fw: <u>CACC</u> CCGTCGCGCGCCACGTTC Rev: TCA GGCCCGCCCATCGAC	pET151/bamb_5919 _KS ⁰	3C12 fosmid
bamb_5919 ACP- KS ⁰	2652	Fw: <u>CACC</u> CTGGCCGAGCTGGTCGAG Rev: TCAGGCCCGCCCATCGAC	pET151/bamb_5919 _ACP-KS ⁰	3C12 fosmid
Site directed mutage	enesis			
<i>bamb_5915</i> (H205A)	7299	Fw: CGCGTCGACGATGATGGCATGGAACACG CACAGC Rev: GCTGTGCGTGTTCCATGCCATCATCGTCG ACGCG	pET151/bamb_5915_ H205A	pET151/ bamb_59 15
bamb_5919 KS ⁰ (C1988A)	8408	Fw: GCGCTCGACACAATGGCCTCGTCG TCGCTGAC Rev: GTCAGCGACGACGAGGCCATTGT GTCGAGCGC	pET151/ bamb_5919_KS ⁰ _ C1988A	pET151/ bamb_59 19_KS ⁰

Supplementary Table 2: His₆-tagged proteins produced in this study, along with their molecular weights and extinction coefficients, the *E. coli* strains used to overproduce them, the molecular weight cut off (MWCO) of the filtration membranes used for protein concentration and buffer exchange, and the average yield of each protein.

alculated nolecular weight of lis₀-tagged proteins Da)	Extinction coefficient (M ⁻¹ cm ⁻¹)	<i>E. coli</i> strain used for protein overproduction	Amicon Ultra filtration membrane (MWCO)	Average yield (mg/L)
9692	73910	C43 (DE3)	30000	6
9625	73910	C43 (DE3)	30000	6
4466	9970	BL21 Star (DE3)	10000	20
6929	40450	BL21 Star (DE3)	30000	35
1662	1490	BL21 Star (DE3)	10000	15
4956	77810	BL21 Star (DE3)	30000	12
4924	77810	BL21 Star (DE3)	30000	12
2086	78185	BL21 Star (DE3)	30000	10
8133	30370	BL21 Star (DE3)	10000	10
	alculated olecular weight of is6-tagged proteins Da) 0692 0625 1466 5929 1662 1956 1924 2086 3133	Alculated olecular weight of is6-tagged proteinsExtinction coefficient (M ⁻¹ cm ⁻¹)269273910269273910262573910262573910262573910262573910262573910262573910262573910262573910262573910262573910262573910202678185313330370	Alculated olecular weight of ise-tagged proteins oa)Extinction coefficient (M ⁻¹ cm ⁻¹)E. coli strain used for protein overproduction269273910C43 (DE3)262573910C43 (DE3)262573910C43 (DE3)262573910BL21 Star (DE3)26259970BL21 Star (DE3)26261490BL21 Star (DE3)262777810BL21 Star (DE3)262878185BL21 Star (DE3)208678185BL21 Star (DE3)313330370BL21 Star (DE3)	Alculated olecular weight of ise-tagged proteins ba)Extinction coefficient (M ⁻¹ cm ⁻¹)E. coli strain used for protein overproductionAmicon Ultra filtration membrane (MWCO)969273910C43 (DE3)30000962573910C43 (DE3)30000962573910C43 (DE3)30000962573910BL21 Star (DE3)30000962673910BL21 Star (DE3)30000970BL21 Star (DE3)300009970BL21 Star (DE3)30000

*The Bamb_5917 PCP domain boundaries were identified using BlastP analyses. The Bamb_5917 PCP domain sequence was then aligned with the sequence of the Bamb_5919 ACP domain to identify the boundaries of the Bamb_5919 ACP domain:

5919 5917_PCP	EARAEATIGLIPPEQGAEVIARQFAHRDGDFALIPMRLAALAGQDRMPWLRAL <mark>LAELVEA</mark> 162GA 2 *	0
5919	EAGATGASGAPRVERRAGGTAGAALLAGLASLDAAARAARLKRHLEAAIRKLLNRADTLD 168	0
5917_PCP	AAGVSAAGIEPDLTAIWQALFALPAVGR 30 ***. * : *: *: *: *: 30	
5919	DRASMFDLGLDSLLSIDLRMQLEKDLACSLSTTVLHDHPTIEALAGFLAERVGAPPAGTV 174	0
5917 PCP	-HQDFFALGGDSQLGLRMLAQLRERHGVDLPLRCLYEAPTVARLA74	
—	: .:* ** ** * .: : **.:*. *:: **: **	
5919	RAGAAGGAGAGTGAPAGATGAAAAHAVSSASPVPAGAASAAASAASAAAAAGAPSRATFA 180	0
5917-PCP	ETIVRLAAPAPSGDQDDASEYEEGVIR 101	
	* *:*.* * * * * * * * * * * * * * * * *	

The fragment highlighted in blue was used for cloning into pET151.

References

1. Loveridge, E. J. *et al.* Reclassification of the specialized metabolite producer *Pseudomonas mesoacidophila* ATCC 31433 as a member of the *Burkholderia cepacia* complex. *J. Bacteriol.* **199**, e00125-17 (2017).

2. Flannagan, R. S., Linn, T. & Valvano, M. A. A system for the construction of targeted unmarked gene deletions in the genus *Burkholderia*. *Environ. Microbiol.* **10**, 1652–1660 (2008).

3. Agnoli, K. *et al.* Exposing the third chromosome of *Burkholderia cepacia* complex strains as a virulence plasmid. *Mol. Microbiol.* **83**, 362–378 (2012).

4. O'Sullivan, L. A. *et al.* Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium *Burkholderia vietnamiensis*. *Environ. Microbiol.* **9**, 1017–1034 (2007).

5. Lefebre, M. D. & Valvano, M. A. Construction and evaluation of plasmid vectors optimized for constitutive and regulated gene expression in *Burkholderia cepacia* complex isolates. *Appl. Environ. Microbiol.* **68**, 5956–64 (2002).

6. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. *Nat. Protoc.* **10**, 845–858 (2015).

7. Jenner, M., Jian, X., Dashti, Y., Masschelein, J., Hobson, C., Roberts, D., Jones, C., Harris, S., Parkhill, J., Raja, H., Oberlies, N., Pearce, C., Mahenthiralingam E. & Challis G.L. An unusual Burkholderia gladioli double chain-initiating nonribosomal peptide synthetase assembles 'fungal' icosalide antibiotics. *Chem. Sci.* **10**, DOI: 10.1039/C8SC04897E (2019).

8. Tosin, M., Spiteller, D. & Spencer, J.B. Malonyl carba(dethia)- and Malonyl oxa(dethia)coenzyme A as Tools for Trapping Polyketide Intermediates. *ChemBioChem* **10**, 1714-1723 (2009).

9. Sekiyama, Y., Palaniappan, N., Reynolds, K. A. & Osada, H. Biosynthesis of phoslactomycins: cyclohexanecarboxylic acid as the starter unit. *Tetrahedron* **59**, 7465–7471 (2003).

10. Wang, X., Ma, M., Reddy, A. G. K. & Hu, W. An efficient stereoselective synthesis of six stereoisomers of 3, 4-diaminocyclohexane carboxamide as key intermediates for the synthesis of factor Xa inhibitors. *Tetrahedron* **73**, 1381–1388 (2017).

11. X. Wang, M. Ma, A. G. K. Reddy and W. Hu, *Tetrahedron*, **73**, 1381–1388 (2017).

12. Nagata, T. *et al.* Stereoselective synthesis and biological evaluation of 3,4diaminocyclohexanecarboxylic acid derivatives as factor Xa inhibitors. *Bioorg. Med. Chem. Lett.* **18**, (2008).

13. Prasad, G., Borketey, L. S., Lin, T.-Y. & Schnarr, N. A. A mechanism-based fluorescence transfer assay for examining ketosynthase selectivity. *Org. Biomol. Chem.* **10**, 6717 (2012).

14. Mir Mohseni, M. *et al.* Discovery of a mosaic-like biosynthetic assembly line with a decarboxylative off-loading mechanism through a combination of genome mining and imaging. *Angew. Chemie Int. Ed.* **55**, 13611–13614 (2016).

15. Powell, A. *et al.* Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. *J. Am. Chem. Soc.* **129**, 15182–15191 (2007).

16. Roberts, D. M. *et al.* Substrate selectivity of an isolated enoyl reductase catalytic domain from an iterative highly reducing fungal polyketide synthase reveals key components of programming. *Chem. Sci.* **8**, 1116–1126 (2017).