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Abstract
Consider the metric cone X = C(Y ) = (0,∞)r ×Y with metric g = dr2+r2h where
the cross section Y is a compact (n − 1)-dimensional Riemannian manifold (Y , h).
Let �g be the positive Friedrichs extension Laplacian on X and let �h be the positive
Laplacian on Y , and consider the operatorLV = �g+V0r−2 where V0 ∈ C∞(Y ) such
that �h + V0 + (n − 2)2/4 is a strictly positive operator on L2(Y ). In this paper, we
prove global-in-time Strichartz estimates without loss regularity for the wave equation
associated with the operator LV . It verifies a conjecture in Wang (Remark 2.4 in Ann
Inst Fourier 56:1903–1945, 2006) for wave equation. The range of the admissible pair
is sharp and the range is influenced by the smallest eigenvalue of�h+V0+(n−2)2/4.
To prove the result, we show a Sobolev inequality and a boundedness of a generalized
Riesz transform in this setting. In addition, as an application, we study the well-posed
theory and scattering theory for energy-critical wave equation with small data on this
setting of dimension n ≥ 3.
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1 Introduction andmain result

1.1 Background: the setting and Strichartz estimate

Suppose that (Y , h) is a compact (n−1)-dimensional Riemannianmanifold, themetric
cone X = C(Y ) on Y is the space (0,∞)r ×Y with g = dr2+r2h. The metric cone X
has a simplest geometry singularity and it has incomplete metric. One can complete it
to C∗(Y ) = C(Y ) ∪ P where P is its cone tip. Denote �g the Friedrichs extension of
Laplace-Beltrami from the domain C∞

c (X◦), compactly supported smooth functions
on the interior of the metric cone. There is a number of works to extend the theory
of the Laplace operator �g on smooth manifolds to certain Riemannian spaces with
such conical singularities; for example the spectral theory, see Cheeger [13,14].

Solutions to the wave equation on cones and related spaces were studied from
the perspective of wave diffraction from the cone point, see [20,21,57]. In the set-
ting of exact cones, Cheeger and Taylor [15,16] studied the Laplacian from points
of the functional calculus. Melrose and Wunsch [44] proved a propagation of sin-
gularities property for solutions to the wave equation on the more general setting of
conic manifolds. In addition, the other aspects of Schrödinger operator on the met-
ric cone, even with potentials that are homogeneous of degree −2, also have been
extensively studied. For instance, the asymptotical behavior of Schrödinger propaga-
tor was considered in [62]. The heat kernel was studied in [43,47] and Riesz transform
kernel was investigated in [30,42]. The L p-estimates were studied in [41] and the
restriction estimate for Schrödinger solution was studied by the first author [64]. The
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Strichartz estimates for Schrödinger were proved on a flat cone by Ford [19], on polyg-
onal domains by Blair–Ford–Herr–Marzuola [6], on exterior polygonal domains by
Baskin–Marzuola–Wunsch [4], and on the metric cone by the authors [66]. Regarding
the Strichartz estimate for wave equation on cones, Blair–Ford–Marzuola [7] have
established the Strichartz inequalities on a flat cone of dimension two, that is, Y = S

1
ρ .

However, one needs the explicit form of wave propagator when Y = S
1
ρ in [7], hence

the methods of [7] can not be applied to our general setting.
In this paper, we prove the Strichartz estimates for the solution to wave equations

on metric cone and, as an application, we study the well-posed theory and scattering
theory for the energy-critical nonlinear wave equation. Here we recall the Schrödinger
operator LV = �g + V where V = V0(y)r−2 and V0(y) is a smooth function on
the section Y . Our motivation to study this Schrödinger operator is to understand the
regularity or singularity of wave propagates in a singular black hole. For example,
we refer to [18,52] for the connection with Schwarzchild black hole or [48,63] for
the Reissner–Nordstöm black hole. With respect to the potential, since the decay of
the inverse-square potential is closely related to the angular momentum as r → ∞,
we are known that inverse square decay of the potential is in some sense critical for
the spectral and scattering theory. In context of this paper, we remark here that the
inverse-square type potential is homogeneous of degree −2 and is at the boardline
of decay in order to guarantee validity of Strichartz estimate; see Goldberg–Vega–
Visciglia [25]. The property of the inverse-square type potential near the cone tip, or
near infinity-end, or both, brings the singular behavior, however, it is a natural potential.
For example [11], the Dirac equation with a Coulomb potential can be recast in the
form of a Klein–Gordon equation with an inverse-square type potential.

Consider the solution u : I × X → R to the initial value problem (IVP) for the
wave equation on metric cone X ,{

∂2t u + LV u = F(t, z), (t, z) ∈ I × X;
u(0) = u0(z), ∂t u(0) = u1(z).

(1.1)

It is well-known that the Strichartz estimate implies the decay and regularity of the
solutions to thewave equations, and plays an important role in the studying of nonlinear
wave equations. More precisely, let u be the solution to (1.1) and the time interval
I ⊆ R, the Strichartz estimate states an inequality in the form of

‖u(t, z)‖Lq
t (I ;Lr

z(X)) + ‖u(t, z)‖C(I ;Ḣ s (X))

� ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X) + ‖F‖
Lq̃′
t (I ;L r̃′

z (X))
, (1.2)

where Ḣ s = L− s
2

V L2(X) denotes the homogeneous L2-Sobolev space over X and the
pairs (q, r), (q̃, r̃) ∈ [2,∞] × [2,∞) satisfy the wave-admissible condition

2

q
+ n − 1

r
≤ n − 1

2
, (q, r, n) 
= (2,∞, 3) (1.3)

and the scaling condition
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1

q
+ n

r
= n

2
− s = 1

q̃ ′ + n

r̃′
− 2. (1.4)

For s ∈ R, we say the pair (q, r) ∈ �s if (q, r) ∈ [2,∞] × [2,∞) satisfies (1.3) and
(1.4).

Due to the importance of the Strichartz inequalities, there is a lot of work studying
the Strichartz inequalities onEuclidean space ormanifolds; for example, see [29,38,53,
54] and references therein. In the following,we in particular focus on recalling themost
relevant work about the Strichartz estimate on a metric cone, or on a slightly different
setting of asymptotically conic manifold, or with a perturbation of inverse-square type
potentials. Our setting metric cone is close to the asymptotically conic manifold M
which, outside some compact set, is isometric to the conical space X away the cone
tip. On the non-trapping asymptotically conic manifold M , for Schrödinger equation,
Hassell, Tao andWunsch [31,32] andMizutani [46] showed the local-in-timeStrichartz
estimates; the global-in-time Strichartz inequality including endpoint case was proved
by Hassell and the first author in [35] for Schrödinger and in [65] for wave equation;
and very recently Bouclet and Mizutani [8] and the authors [67] showed the global-
in-time Strichartz estimates on asymptotically conic manifold even with a hyperbolic
trapped geodesic. As remarked above, the perturbation of the inverse-square potential
is nontrivial. In [9,10], the additional perturbation of the inverse-square potential was
taken into account when they studied the Euclidean standard Strichartz estimate for
Schrödinger and wave, which is a tough task. On a flat cone of dimension 2, Blair–
Ford–Marzuola [7] have established the Strichartz inequalities for wave by developing
a representation of fundamental solution to the wave equation on the flat cone C(S1ρ)

which is also applied to the Schrödinger case in [19].

1.2 Main result and the sketch of proof

In our present general setting, we need to consider the propagator of the dispersive
equation associated with the operator LV which is influenced by the geometry and the
inverse-square type potential. The authors [66] proved the full range of global-in-time
Strichartz estimates for Schrödinger equation associated with the operator LV which
proved Wang’s conjecture [62, Remark 2.4] for Schrödinger.

In this vein (as in [66]), we intend to prove the global-in-time Strichartz estimate for
wave equation associated with the operator LV , but with innovative aspects to combat
difficulties arising fromwave equation.More precisely, we prove the following results.

Theorem 1.1 (Global-in-time Strichartz estimate).Assume that (X , g) is ametric cone
of dimension n ≥ 3. Let LV = �g + V where r2V =: V0(y) ∈ C∞(Y ) such that
�h + V0(y) + (n − 2)2/4 is a strictly positive operator on L2(Y ) and its smallest
eigenvalue is ν20 with ν0 > 0. Suppose that u is the solution of the Cauchy problem
(1.1) with the initial data u0 ∈ Ḣ s, u1 ∈ Ḣ s−1 for s ∈ R.

(i) If V ≡ 0, then the Strichartz estimate (1.2) holds for all (q, r), (q̃, r̃) ∈ �s .
(ii) If V 
≡ 0, then the Strichartz estimate (1.2) holds for all (q, r), (q̃, r̃) ∈ �s,ν0

where
�s,ν0 = {(q, r) ∈ �s : 1/r > 1/2 − (1 + ν0)/n}. (1.5)
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Fig. 1 Diagrammatic picture of the range of (q, r), when ν0 > 1/(n − 1)

Remark 1.1 From the first result (i), the geometry of metric cone, possibly having
conjugated points, does not influence the Strichartz estimate even though the conju-
gated points cause the failure of dispersive estimate. From the restriction (1.5), the
Strichartz estimate is affected by the positive square root of the smallest eigenvalue
of �h + V0(y) + (n − 2)2/4. The requirement (1.5) is sharp, see Sect. 6.3.

Remark 1.2 The set �s,ν0 makes sense when s ∈ [0, 1 + ν0) otherwise it is empty.
Compared with �s , one can check that �s,ν0 = �s for s ∈ [0, 1/2 + ν0), and while
�s,ν0 ⊂ �s for s ∈ [1/2 + ν0, 1 + ν0). In particular, V ≡ 0, hence ν0 > (n − 2)/2
large enough so that �s,ν0 = �s for s ∈ R, thus the second conclusion is consistent
with the first one.

Remark 1.3 If ν0 > 1
n−1 , the Strichartz estimates hold for (q, r) such that ( 1q , 1

r )

belongs to the region ABCEF when n ≥ 4 and ABO when n = 3. Compared with the
Euclidean case, the Strichartz estimate fails in the region CDOE of Fig. 1. If 0 < ν0 <
1

n−1 , then the line EC is above the line FB, we do not have the Strichartz estimate with
q = 2. The result illustrates that the smallest eigenvalue of �h + V0(y) + (n − 2)2/4
plays an important role in the Strichartz estimate.

Remark 1.4 The restriction 1/r > 1/2− (1+ ν0)/n is also necessary for Schrödinger
by a similar counterexample constructed in Sect. 6.3. The reason for disappearance
of this restriction in the Strichartz estimate of Schrödinger established by the authors
[66, Theorem 1.1] is that we only consider the estimate at regularity level s = 0. This
is same to the case here for wave �s,ν0 = �s for s ∈ [0, 1/2 + ν0) in which the
restriction 1/r > 1/2 − (1 + ν0)/n disappears. The argument for wave needs more
techniques on the Sobolev inequality and Riesz transform.

Remark 1.5 Compared with the result involving the derivatives [9, Theorem 9], the
result in Theorem 1.1 needs to consider the influences of conical singular geometry
and the potential V0(y)r−2 (rather than V0(y) ≡ c).
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We sketch the idea and argument of the proof here. The usual method to derive the
Strichartz estimate is Keel–Tao’s [38] abstract method in which we need dispersive
estimate and L2-estimate. In our setting, however, there are two difficulties to prevent
us from obtaining the dispersive estimate. The first one arises from the conjugated
points from the geometry, and the second one from the inverse-square potential. First,
the degeneration of projection between the conjugated points will slow down the
dispersive decay estimate of the Schrödinger orwave propagator, whichwas illustrated
in [34,35]. Second, as discussed in [35,66] for Schrödinger, it is not possible to obtain

a dispersive estimate for half wave operator ei(t−s)
√LV with norm O(|t − s|− n−1

2 ) as
|t − s| → ∞ due to the influence of the negative inverse-square potential; see [9,10]
for the perturbation of inverse-square potential on Euclidean space.

There are two key points, which have been established and used in [67] for
Schrödinger equation, to treat the two issues. The first one is to microlocalize the
propagator which separates the conjugated points. We achieve this through study-
ing the property of the micro-localized spectral measure associated with the operator
L0, i.e. without potential. The second key one is to establish the global-in-time local
smoothing estimate which is proved via a variable separating argument.

More precisely, we first show (i) in Theorem 1.1 inwhichwe do not need to consider
the potential. To obtain the Strichartz estimate for L0, as in [35,65,67], our strategy
is Keel–Tao’s abstract method where we need the property of the micro-localized
spectral measure to prove dispersive estimate and L2-estimate. However, we should
modify the argument to adapt to wave equation and sharpen the Strichartz estimate
in a Lorentz space. Compared with the Schrödinger, the wave propagator multiplier
eitλ is less oscillation than the Schrödinger’s eitλ

2
, thus we need a Littlewood-Paley

theory in our setting, in particular the Littlewood–Paley square function inequality on
Lorentz space. The key is to showaMikhlin–Hörmandermultiplier theorem.Wenotice
that our setting is a measure space in which the wave operator has finite propagation
speed and one has doubling condition. Thus, from Chen–Ouhabaz–Sikora–Yan [12],
the multiplier estimate on L p is a consequence of a spectral measure estimate which
can be obtained from the property of micro-localized spectral measure and T T ∗-
method. The Littlewood–Paley (LP) square function inequality on Lorentz space is
finally obtained from the interpolation characteristic of Lorentz space. Once the LP
square function estimate has been established, we may assume that the initial data
is frequency localized in {λ ∼ 2k}. The argument [65] can be modified to prove the
Strichartz estimate. We remark that the property of microlocalized spectral measure
capturing the figures of the decay and oscillation behavior which plays an important
role in this part.

Next we show (ii) in Theorem 1.1. We use a perturbation method [36,51] to derive
(ii) from a local smoothing and the results of (i). The usual way to show a local
smoothing estimate is through establishing the resolvent estimate for LV at low and
high frequency. Unlike the usual way, we avoid the resolvent estimate to show the
global-in-time local smoothing estimate by using the explicit formulas with separating
variables expression. In addition, in particular for obtaining Strichartz estimate at
q = 2,we need a double end-points inhomogeneous Strichartz estimate forL0 which is
not proved in (i). To this end, wemodify an argument in [35] to adapt to wave equation.
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Another difference between wave and Schrödinger should not be ignored, that is,
wave’s double end-points inhomogeneous Strichartz estimate involves some negative
derivative. This requires us to study the L p-boundedness theory of a generalized Riesz
transform operator �

s/2
g L−s/2

V . It is worth mentioning that the method of [9] is based
on the fact the potential V0(y)r−2 = cr−2 independent of y, and the method can not
be directly used for the potential in our setting. To obtain our result, we have to resort
to the harmonic analysis tools, such as the Sobolev inequality, associated with LV

which are established in our preliminary sections.

1.3 Application: energy-critical wave equation

As an application of the global-in-time Strichartz estimates, we study the nonlinear
wave equation on X of dimension n ≥ 3

{
∂t t u + LV u + γ |u| 4

n−2 u = 0, (t, z) ∈ R × X ,

(u(0), ∂t u(0) = (u0(z), u1(z)) ∈ Ḣ1(X) × L2(X), z ∈ X .
(1.6)

where Ḣ1(X) = L− 1
2

V L2(X) is the homogeneous Sobolev space over X and γ = ±1
which corresponds to the defocusing and focusing case respectively. Notice that our
metric cone X is invariant under the dilation variable change, hence our equationmodel
has symmetries of time translation and scaling dilation but not translation invariant in
space. The class of solutions to (1.6) is invariant by the scaling

(u, ut )(t, z) �→ (
λ

n−2
2 u(λt, λz), λ

n
2 ut (λt, λz)

)
, ∀ λ > 0. (1.7)

One can check that the only homogeneous L2-based Sobolev space Ḣ1(X)×L2(X) is
invariant under (1.7). The rescaling also remains invariant for the energy of solutions
defined by

E(u, ut ) = 1

2

∫
X

(|∂t u|2 + |LV u|2)dμ + γ (n − 2)

2n

∫
X

|u| 2n
n−2 dμ, (1.8)

which is a conserved quantity for (1.6) and where dμ = √|g|dz = rn−1drdh. Hence
the Cauchy problem (1.6) falls in the class of energy-critical problem. Because of the
conserved quantities at the critical regularity, the energy-critical equations have been
the most extensively studied instances of NLW. In the Euclidean space, that is X = R

n

and V = 0, for the defocusing energy-critical NLW, it has been known now that the
solutions that are global and scatter when the initial data is in Ḣ1× L2 which could be
arbitrarily large, see Grillakis [24], Kapitanski [37], Shatah and Struwe[55], Bahouri
and Gérard [3], Tao [59] and the references therein. For the focusing energy-critical
NLW in dimensions n ∈ {3, 4, 5}, Kenig and Merle [39] obtained the dichotomy-type
result under the assumption that E(u0, u1) < E(W , 0), where W denotes the ground
state of an nonlinear elliptic equation. From this, it is not an easy thing to study the
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global existence and scattering theory of the initial value problem with large data in
Ḣ1 × L2 even though in the Euclidean space.

In this paper, as an application of Strichartz estimate, we study the global existence
and scattering for the Cauchy problem (1.6) with initial data in Ḣ1 × L2 but small
enough. Our result for the energy-critical wave equation is the following.

Theorem 1.2 Let X be metric cone of dimension n ≥ 3 and LV = �g + V as in
Theorem1.1. Let γ = ±1 and suppose that the initial data (u0, u1) ∈ Ḣ1(X)×L2(X).
Assume the above ν0 > 1/2. Then there exists T = T (‖(u0, u1)‖H1(X)×L2(X)) > 0
such that the energy-critical Eq. (1.6) is local wellposed in I = [0, T ) and the unique
solution u obeys

u ∈ C(I ; Ḣ1(X)) ∩ Lq
t (I ; L r(X)), I = [0, T ) (1.9)

where

(q, r) =
{

((n + 2)/(n − 2), 2(n + 2)/(n − 2)), 3 ≤ n ≤ 6;
(2, 2n/(n − 3)), n ≥ 7.

(1.10)

In addition, if ‖(u0, u1)‖Ḣ1(X)×L2(X) ≤ δ for a small enough constant δ, there exists

a global solution u and the solution u scatters in the sense that there are (u±
0 , u±

1 ) ∈
Ḣ1(X) × L2(X) such that

∥∥∥∥
(
u(t)

u̇(t)

)
− V0(t)

(
u±
0

u±
1

)∥∥∥∥
Ḣ1
z ×L2

z

−→ 0, as t −→ ±∞. (1.11)

where

V0(t) =
(
K̇ (t) K (t)

K̈ (t) K̇ (t)

)
, K (t) = sin(t

√LV )√LV
. (1.12)

Remark 1.6 This result is similar to the well known result for energy-critical wave
equation in Euclidean space and the global existence and scattering theory for small
data still holds on the metric cone manifold. Like the Euclidean result, this small
initial result is also a cornerstone result for future work with large data on this setting.
The assumption on ν0 > 1/2 guaranteeing that the Strichartz estimate holds for all
(q, r) ∈ �s with s = 1 can be improved, we do not pursue this here.

We prove this result by using Picard iteration argumentwhichwas used in Euclidean
space, see Tao’s book [60]. The key ingredient is the global-in-time Strichartz estimate
in Theorem 1.1.

Finally, we introduce some notation. We use A � B to denote A ≤ CB for some
large constant C which may vary from line to line and depend on various parameters,
and similarly we use A � B to denote A ≤ C−1B. We employ A ∼ B when
A � B � A. If the constant C depends on a special parameter other than the above,
we shall denote it explicitly by subscripts. For instance, Cε should be understood as
a positive constant not only depending on p, q, n, and M , but also on ε. Throughout
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this paper, pairs of conjugate indices are written as p, p′, where 1
p + 1

p′ = 1 with
1 ≤ p ≤ ∞. We denote a± to be any quantity of the form a ± ε for any small ε > 0.

This paper is organized as follows: In Sect. 2, we recall and prove some analysis
results such as the spectral measure and the Littlewood–Paley theory in our setting.
Section 3 is devoted to the Sobolev inequality and a generalized Riesz transform. In
Sect. 4, we prove our main Theorem 1.1 on Strichartz esimate for wave with L0. We
prove a double endpoint inhomogeneous Strichartz estimate in Sect. 5. In the section 6,
we show a local smoothing estimate and prove Theorem 1.1 for wave with LV . We
construct a counterexample to show the sharpness. In the final section, we utilize the
Strichartz estimates to show Theorem 1.2.

2 Some analysis results associated with the operatorLV

This paper is devoted to the wave equation associated with the operator LV , hence we
need extra harmonic analysis tools which are influenced by the geometry of the cone
X and the potential V , even though some ones have been established in previous work
[64,66]. The purpose of this section is to show and recall the analysis tools for usage
in the following sections.

2.1 Basic harmonic analysis tools and notation on themetric cone

Recall that the metric cone X = C(Y ) = (0,∞)r × Y is equipped with the metric
g = dr2 + r2h and the cross section Y is a compact (n − 1)-dimensional Riemannian
manifold (Y , h). Let z = (r , y) ∈ R+ × Y , then the measure on C(Y ) is

dg(z) = dμ(z) = rn−1drdh = rn−1drdμY (y). (2.1)

For 1 ≤ p < ∞, define the L p(X) space by the complement of C∞
0 (X) under the

norm

‖ f ‖p
L p(X) =

∫
X

| f (r , y)|pdμ(r , y) =
∫ ∞

0

∫
Y

| f (r , y)|prn−1drdμY (y). (2.2)

Let d (resp. dY ) be the distance function on X = C(Y ) (resp. Y ) then, for instance
see [15], the distance on a metric cone is

d(z, z′) =
{√

r2 + r ′2 − 2rr ′ cos(dY (y, y′)), dY (y, y′) ≤ π;
r + r ′, dY (y, y′) ≥ π,

(2.3)

with z = (r , y) and z′ = (r ′, y′). Furthermore, about the distance function, we refer
the reader to Li [43, Proposition 1.3, Lemma 3.1] for the following results.

Lemma 2.1 There exist constants c and C such that the following property of the
distance function holds

c(|r − r ′|2 + rr ′d2Y (y, y′)) ≤ d2(z, z′) ≤ C(|r − r ′|2 + rr ′d2Y (y, y′))
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and

d(z, z′) ∼ |r − r ′| + min{r , r ′}dY (y, y′).

Let y′ ∈ Y and define the ball BY (y′, δ) = {y ∈ Y : dY (y′, y) ≤ δ} and z′ ∈ X and
the ball B(z′, r) = {z ∈ X : d(z′, z) ≤ r}. Then there exists C such that

μY (BY (y′, δ)) ≤ Cδn−1, μ(B(z′, r)) ≤ Crn . (2.4)

As a consequence, we first have

Lemma 2.2 For 0 < α < 1 and let z = (r , y), there exists C such that

∫
{z′∈X :r∼r ′}

d(z, z′)−(n−α)dμ(z′) ≤ Crα. (2.5)

Proof By a direct computation and Lemma 2.1, we have

∫
r∼r ′

d(z, z′)−(n−α)dμ(z′)

�
∫
r ′∼r

(max{|r − r ′|, r ′dY (y, y′)})−(n−α)r ′n−1dr ′dμY (y′)

�
∫
r ′∼r

∫
{y′∈Y :r ′dY (y,y′)≥|r−r ′|}

(r ′dY (y, y′))−(n−α)dμY (y′)r ′n−1dr ′

+
∫
r ′∼r

∫
{y′∈Y :r ′dY (y,y′)<|r−r ′|}

|r − r ′|−(n−α)dμY (y′)r ′n−1dr ′

�
∫
r ′∼r

∑
k≥0

2−(n−α)k |r − r ′|−(n−α)

∫
{y′∈Y :r ′dY (y,y′)∼2k |r−r ′|}

dμY (y′)r ′n−1dr ′

+
∫
r ′∼r

|r − r ′|−(n−α)

∫
{y′∈Y :r ′dY (y,y′)<|r−r ′|}

dμY (y′)r ′n−1dr ′

�
∫
r ′∼r

∑
k≥0

2−(n−α)k |r − r ′|−(n−α)

(
2k |r − r ′|

r ′

)n−1

r ′n−1dr ′

+
∫
r ′∼r

|r − r ′|−(n−α)

( |r − r ′|
r ′

)n−1

r ′n−1dr ′

�
∫
r ′∼r

|r − r ′|−1+αdr ′ � rα.

��
Next we recall the Hardy–Littlewood–Sobolev inequality in [43, Corollary 1.4],

and we provide an alternative argument by using the above lemma.
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Proposition 2.1 (Hardy–Littlewood–Sobolev). Let 0 < α < n, for any function
f (z) ∈ L p(X), let

Sα f (z) =
∫
X

f (z′)
d(z, z′)α

dμ(z′), ∀ z ∈ X .

Then, for any 1 < p < q < +∞ satisfying

1 + 1

q
= 1

p
+ α

n
,

there exists a constant Ap,q > 0 such that

∥∥Sα f
∥∥
Lq ≤ Ap,q‖ f ‖L p , f ∈ L p(X). (2.6)

Proof From the classical Marcinkiewicz interpolation theorem, we only need to show
that there is a constat C > 0 such that for any λ > 0

μ
{
z ∈ X : |Sα f (z)| > λ

} ≤ C
(‖ f ‖L p

λ

)q
. (2.7)

For any γ > 0, define

S1α f (z) =
∫
d(z,z′)≤γ

f (z′)
d(z, z′)α

dμ(z′)

and

S2α f (z) =
∫
d(z,z′)>γ

f (z′)
d(z, z′)α

dμ(z′).

Thus, for any τ > 0,

μ
{
z ∈ X : |Sα f (z)| > 2τ

}
≤ μ

{
z ∈ X : |S1α f (z)| > τ

}+ μ
{
z ∈ X : |S2α f (z)| > τ

}
. (2.8)

Without loss of generality, assume that ‖ f ‖L p = 1. By Hölder’s inequality, we get

|S2α f (z)| ≤
∑

k:2k≥γ

1

2kα

∫
d(z,z′)∼2k

| f (z′)| dμ(z′)

�
∑

k:2k≥γ

1

2kα

( ∫
d(z,z′)∼2k

dμ(z′)
) 1

p′ ‖ f ‖L p

�
∑

k:2k≥γ

2
kn
p′

2kα
≤ C1γ

− n
q ,

1

p′ + 1

q
= α

n
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where we use thatμ
(
B
(
(s∗,m∗), r

)) ∼ rn in Lemma 2.1. Choose γ so thatC1γ
− n

q =
τ , then

μ
{
z : |S2α f (z)| > τ

} = 0.

On the other hand, we will show that

‖S1α f (z)‖L p ≤ Cγ n−α. (2.9)

Then, we have by Chebyshev’s inequality [27]

μ
{
z : |S1α f (z)| > τ

} ≤ ‖S1α f (X)‖p
L p

τ p
≤ Cγ p(n−α)τ−p = C2τ

−q .

Thus, (2.7) follows if let λ = 2τ . Now we prove (2.9). Recalling z = (r , y), z′ =
(r ′, y′), and using the compactness of Y and the Hölder inequality, we obtain

‖S1α f (z)‖L p

�
∑

k:2k≤γ

1

2kα

( ∫
X

∣∣∣ ∫
d(z,z′)∼2k

f (z′) dμ(z′)|p dμ(z)
) 1

p

�
∑

k:2k≤γ

2
kn
p′

2kα

( ∫
X

∫
d(z,z′)∼2k

| f (z′)|p dμ(z′) dμ(z)
) 1

p

�
∑

k:2k≤γ

2kn

2kα
‖ f ‖L p � γ n−α.

��

2.2 Lorentz spaces

In this subsection, we recall the well-known Lorentz space and some properties of this
space for our purpose. Let (X , μ) be a σ -finite measure space and f : X → R be a
measurable function. Define the distribution function of f as

μ f (t) = μ({z ∈ X : | f (z)| > t}), t > 0

and its rearrangement function as

f ∗(s) = inf{t : μ f (t) ≤ s}.

For 1 ≤ p < ∞ and 1 ≤ r ≤ ∞, define the Lorentz quasi-norm

‖ f ‖L p,r (X) =
⎧⎨
⎩
(∫∞

0

(
s

1
p f ∗(s)

)r
ds
s

)1/r
, 1 ≤ r < ∞;

sups>0 s
1
p f ∗(s), r = ∞.
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Strichartz estimates and wave equation in a conic singular space 537

The Lorentz space L p,r (X , μ) denotes the space of complex-valued measurable func-
tions f on X such that its quasi-norm ‖ f ‖L p,r (X) is finite. From this characterization,
L p,∞(X) is the usual weak L p space, L p,p(X) = L p(X) and L p,r (X) ⊂ L p,r̃ (X)

with r < r̃ .
We refer to [27] for the following properties of Lorentz space. The first one is the

Hölder inequality due to O’Neil [49].

Proposition 2.2 (Hölder’s inequality in Lorentz space). Let 1 ≤ p, p0, p1 < ∞ and
1 ≤ r , r0, r1 ≤ ∞, then

‖ f g‖L p,r ≤ C‖ f ‖L p0,r0 ‖g‖L p1,r1 ,
1

p
= 1

p0
+ 1

p1
,

1

r
= 1

r0
+ 1

r1
. (2.10)

The second one is the duality of the Lorentz space.

Proposition 2.3 (The dual of Lorentz space). The dual of the Lorentz space
(L p,r (X))∗ = L p′,r ′

(X).

It is more convenient to use their characterization as real interpolates of Lebesgue
spaces. We refer to [5]. Suppose that B0 and B1 are two Banach spaces which are
continuously embedded into a common topological vector space V , for θ ∈ (0, 1) and
r ∈ [1,∞], the real interpolation space [B0, B1]θ,r consists of the elements f ∈ V
which can be written as f = ∑

j∈Z
f j such that f j ∈ B0 ∩ B1, {2− jθ‖ f j‖B0} j ∈ �r (Z)

and {2 j(1−θ)‖ f j‖B1} j ∈ �r (Z). Actually the space is equipped with the norm

‖ f ‖[B0,B1]θ,r = inf
f =∑

j∈Z
f j

⎛
⎜⎝
⎛
⎝∑

j∈Z
2− jrθ‖ f j‖rB0

⎞
⎠

1/r

+
⎛
⎝∑

j∈Z
2 jr(1−θ)‖ f j‖rB1

⎞
⎠

1/r
⎞
⎟⎠ .

We have the following from [5, Theorem 5.3.1]

Proposition 2.4 Let 1 ≤ p, p0, p1 < ∞ and 1 ≤ r , r0, r1 ≤ ∞, then

(1) if p0 
= p1, we have

[L p0 , L p1 ]θ,r = [L p0,r0 , L p1,r1 ]θ,r = L p,r ,
1

p
= 1 − θ

p0
+ θ

p1
, 1 ≤ r ≤ ∞;

(2.11)
(2) if p0 = p1 = p, we have

[L p,r0 , L p,r1 ]θ,r = L p,r ,
1

r
= 1 − θ

r0
+ θ

r1
. (2.12)

2.3 The spectral measure

We first use the separation of variable method to analyze the spectral measure dE√LV
.

In this part, we obtain an explicit expression of half wave operator in terms of series
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of eigenfunctions which allows us to study a local smoothing estimate but not the
dispersive estimate. Next, in the case V ≡ 0, we recall an integral expression for a
microlocalized spectral measure based on our previous result [66]. This allows us to
obtain the dispersive estimate for a microlocalized half-wave operator.

Our operator is

LV = �g + V0(y)

r2
. (2.13)

Let �h be the positive Laplace–Beltrami operator on (Y , h), we suppose that V0 is a
smooth function on Y such that

�h + V0(y) + (n − 2)2/4 > 0 (2.14)

is strictly positive on L2(Y ) in sense that for any f ∈ L2(Y )\{0}
〈(

�h + V0(y) + (n − 2)2/4
)
f , f

〉
L2(Y )

> 0.

Define the set χ∞ to be

χ∞ =
{
ν : ν =

√
(n − 2)2/4 + λ; λ is eigenvalue of �h + V0(y)

}
. (2.15)

For ν ∈ χ∞, let d(ν) be the multiplicity of λν = ν2 − 1
4 (n − 2)2 as eigenvalue of

�̃h := �h + V0(y). Let {ϕν,�(y)}1≤�≤d(ν) be the eigenfunctions of �̃h , that is

�̃hϕν,� = λνϕν,�, 〈ϕν,�, ϕν,�′ 〉L2(Y ) = δ�,�′ =
{
1, � = �′

0, � 
= �′.
(2.16)

We can decompose L2(Y ) into

L2(Y ) =
⊕
ν∈χ∞

Hν

where Hν = span{ϕν,1, . . . , ϕν,d(ν)}. Define the orthogonal projection πν on f ∈
L2(X)

πν f =
d(ν)∑
�=1

ϕν,�(y)
∫
Y
f (r , y)ϕν,�(y)dh :=

d(ν)∑
�=1

ϕν,�(y)aν,�(r).

For any f ∈ L2(X), we can write f in the form of separation of variable

f (z) =
∑

ν∈χ∞
πν f =

∑
ν∈χ∞

d(ν)∑
�=1

aν,�(r)ϕν,�(y) (2.17)
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and furthermore

‖ f (z)‖2L2(Y )
=
∑

ν∈χ∞

d(ν)∑
�=1

|aν,�(r)|2. (2.18)

Note that the Riemannian metric h on Y is independent of r , we can use the separation
of variable method [15] to write LV in the coordinate (r , y) as

LV = −∂2r − n − 1

r
∂r + 1

r2
(
�h + V0(y)

)
. (2.19)

Let ν > − 1
2 and r > 0 and define the Bessel function of order ν by

Jν(r) = (r/2)ν

�
(
ν + 1

2

)
�(1/2)

∫ 1

−1
eisr (1 − s2)(2ν−1)/2ds. (2.20)

Lemma 2.3 Let Jν(r) be the Bessel function defined in (2.20) and R � 1, then there
exists a constant C independent of ν and R such that

|Jν(r)| ≤ Crν

2ν�
(
ν + 1

2

)
�(1/2)

(
1 + 1

ν + 1/2

)
, (2.21)

and ∫ 2R

R
|Jν(r)|2dr ≤ C . (2.22)

Proof The first one is obtained by a direct computation. The inequality (2.22) is a direct
consequence of the asymptotically behavior of Bessel function; see [45, Lemma 2.2].

��
Let f ∈ L2(X), define the Hankel transform of order ν by

(Hν f )(ρ, y) =
∫ ∞

0
(rρ)−

n−2
2 Jν(rρ) f (r , y)rn−1dr . (2.23)

On the space Hν , we see

LV = Aν := −∂2r − n − 1

r
∂r + ν2 − ( n−2

2

)2
r2

. (2.24)

Briefly recalling functional calculus on cones [58], for well-behaved functions F , we
have by (8.45) in [58]

F(LV )g(r , y) =
∑

ν∈χ∞

d(ν)∑
�=1

ϕν,�(y)
∫ ∞

0
F(ρ2)(rρ)−

n−2
2 Jν(rρ)bν,�(ρ)ρn−1dρ

(2.25)
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where bν,�(ρ) = (Hνaν,�)(ρ) with g(r , y) = ∑
ν∈χ∞

d(ν)∑
�=1

aν,�(r) ϕν,�(y).

For u0 ∈ L2(X), we write it in the form of separation of variables by (2.17)

u0(z) =
∑

ν∈χ∞

d(ν)∑
�=1

aν,�(r)ϕν,�(y),

therefore we can write the half-wave operator by using (2.25) with F(ρ) = eitρ

eit
√LV u0 =

∑
ν∈χ∞

d(ν)∑
�=1

ϕν,�(y)
∫ ∞

0
(rρ)−

n−2
2 Jν(rρ)eitρbν,�(ρ)ρn−1dρ

=
∑

ν∈χ∞

d(ν)∑
�=1

ϕν,�(y)Hν

[
eitρbν,�(ρ)

]
(r). (2.26)

where bν,�(ρ) = (Hνaν,�)(ρ).
Although we have the expression of the half-wave operator, it is not easy to obtain

a dispersive estimate due to the complicated asymptotic behavior of the Bessel func-
tion. In our previous paper [66], we derived a microlocalized dispersive estimate for
Schrödinger from a micro-localized spectral measure expression associated with L0.
The result about the micro-localized spectral measure is an analogue of [35, Propo-
sition 1.5] on the asymptotically conic setting. We record the result on the spectral
measure below for convenience.

Proposition 2.5 (Proposition 3.1 [66]). Let (X , g) be metric cone manifold and L0 =
�g. Then there exists a λ-dependent operator partition of unity on L2(X)

Id =
N∑
j=0

Q j (λ),

with N independent of λ, such that for each 1 ≤ j ≤ N we can write

(Q j (λ)dE√L0
(λ)Q∗

j (λ))(z, z′) = λn−1
(∑

±
e±iλd(z,z′)a±(λ, z, z′) + b(λ, z, z′)

)
,

(2.27)
and 0 ≤ j ′ ≤ N

(Q0(λ)dE√L0
(λ)Q∗

j ′(λ))(z, z′) = λn−1c(λ, z, z′), (2.28)

with estimates

∣∣∂α
λ a±(λ, z, z′)

∣∣ ≤ Cαλ−α(1 + λd(z, z′))−
n−1
2 , (2.29)∣∣∂α

λ b(λ, z, z′)
∣∣ ≤ Cα,Xλ−α(1 + λd(z, z′))−K for any K > 0, (2.30)
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and ∣∣∂α
λ c(λ, z, z′)

∣∣ ≤ Cα,Xλ−α. (2.31)

Here d(·, ·) is the distance on X.

2.4 The Littlewood–Paley square function inequality

As a usual reduction to prove Strichartz estimate for wave equation, we may assume
the initial data u0 and u1 are frequency localized in an annulus {λ ∼ 2k} by using a
Littlewood–Paley square function inequality. To this end, we prove the Littlewood–
Paley square function inequality associated with the positive Laplacian L0 = �g on
metric cone. In [43], Li has proved the Gaussian boundedness of heat kernel of L0.
One can follow the argument in [6,65] to obtain an appropriate Mikhlin–Hörmander
multiplier theorem from a spectral multiplier theorem of Alexopolous [1] and the heat
kernel estimate and then to prove the Littlewood–Paley inequality. Here we provide
an alternative method to show the Littlewood–Paley inequality. The method is based
on an estimate on the spectral measure rather than the heat kernel.

Now we state the Littlewood–Paley square function estimate. Let ϕ ∈ C∞
0 (R\{0})

take values in [0, 1] and be supported in [1/2, 2] such that

1 =
∑
j∈Z

ϕ(2− jλ), λ > 0. (2.32)

Proposition 2.6 Let (X , g) be a metric cone of dimensional n ≥ 3 as above, and
suppose thatL0 = �g is the Laplace–Beltrami operator on (X , g). Then for 1 < p <

∞, there exist constants cp and Cp depending on p such that

cp‖ f ‖L p(X) ≤
∥∥∥∥
⎛
⎝∑

j∈Z
|ϕ(2− j

√
L0) f |2

⎞
⎠

1
2 ∥∥∥∥

L p(X)

≤ Cp‖ f ‖L p(X) (2.33)

and

cp‖ f ‖L p,2(X) ≤
∥∥∥∥
⎛
⎝∑

j∈Z
|ϕ(2− j

√
L0) f |2

⎞
⎠

1
2 ∥∥∥∥

L p,2(X)

≤ Cp‖ f ‖L p,2(X). (2.34)

Remark 2.1 In this result, we do not consider the influence of the inverse-square poten-
tialV = V0(y)r−2.We remark that the inverse-square typepotential plays an important
role in the range of p when the potential is negative, for example [40, Theorem 5.3].

Proof To prove the Littlewood–Paley square function inequality (2.33), one can fol-
low Stein’s [56] classical argument (in R

n) involving Rademacher functions and an
appropriate Mikhlin–Hörmander multiplier theorem in the following Lemma 2.4. For
more details, we refer the reader to [6,56].
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Lemma 2.4 Let m ∈ CN (R) satisfy the Mikhlin-type condition for N ≥ n
2 + 1

sup
0≤k≤N

sup
λ∈R

∣∣∣(λ∂λ

)k
m(λ)

∣∣∣ ≤ C < ∞. (2.35)

Then for all 1 < p < ∞

m(
√
L0) : L p(X) → L p(X) (2.36)

is a bounded operator where

m(
√
L0) =

∫ ∞

0
m(λ)dE√

L0
(λ).

Then the inequality (2.34) follows from the general Marcinkiewicz interpolation
theorem [5, Theorem 5.3.2] and dual argument. Indeed, define the quadratic functional
operator for f ∈ L p(X)

GL0( f ) =
⎛
⎝∑

j∈Z
|ϕ(2− j

√
L0) f |2

⎞
⎠

1/2

,

then the operator GL0 is sublinear and is bounded on L1+ and L∞− respectively.
Therefore, using the general Marcinkiewicz interpolation theorem [5, Theorem 5.3.2],
the operator GL0 is bounded on L p,r (X) for all 1 < p < ∞ and 0 < r ≤ ∞, hence
the case r = 2 shows the second inequality in (2.34). The other side can be obtained
by dual argument. ��

Now our main task here is to show Lemma 2.4.

Proof We adopt the argument which are in spirit of [28] and [12]. We first prove the
spectral measure estimate by using the T T ∗ argument as given in [28]

‖dE√L0
(λ)‖L1(X)→L∞(X) ≤ Cλn−1, λ > 0. (2.37)

By Proposition 2.5, it is easy to see that

‖Q j (λ)dE√L0
(λ)Q∗

j (λ)‖L1(X)→L∞(X) ≤ Cλn−1, λ > 0.

Let P(λ) be the Poisson operator associated with L0, then dE√L0
(λ) = (2π)−1P(λ)

P(λ)∗ as shown in [33]. By using T T ∗ argument again, it follows that

‖Q j (λ)P(λ)‖L2(X)→L∞(X) ≤ Cλ(n−1)/2, λ > 0.
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Note that the partition of unity I d = ∑N
j=0 Q j in Proposition 2.5, therefore we have

‖P(λ)‖L2(X)→L∞(X) ≤
N∑
j=0

‖Q j (λ)P(λ)‖L2(X)→L∞(X) ≤ Cλ(n−1)/2, λ > 0.

By T T ∗ argument again, we show (2.37).
From [15, formula (0.13)], it follows the finite propagation speed of solutions to

(∂2t +L0)u = 0. Hence the operatorL0 satisfies the finite speed propagation property.
By (2.37) and using [12, Propositions 2.4, 9.1 and Theorems 4.1, 5.1], we have that
m(

√L0) is bounded on L p(X) for all 1 < p < ∞. ��

3 Sobolev inequality and a generalized Riesz transform

For our purpose, we consider the Sobolev space, Sobolev inequality and a boundedness
of generalized Riesz transform associated with LV in this section. Recall the notation
z = (r , y) and z′ = (r ′, y′).

For s ∈ R, the operator L
s
2
V is defined by

Ls/2
V =

∫ ∞

0
λsdE√LV

(λ) (3.1)

where dE√LV
is the spectral measure of the operator

√LV .

Definition 3.1 (Sobolev space). For 1 ≤ p < ∞ and s ∈ R, we define the homo-

geneous Sobolev space Ḣ s
p(X) := L− s

2
V L p(X) over L p(X) which consists of the

functions f such that Ls/2
V f ∈ L p(X). In particular p = 2, define Ḣ s(X) :=

Ḣ s
2 (X) = L− s

2
V L2(X).

Remark 3.1 For all general 1 ≤ p < ∞, due to the influence of the inverse-square
potential, the Sobolev norm defined here is not equivalent to the analogue one defined
by the operator L0 without the potential. For example, we refer the reader to [40] for
the Euclidean Laplacian with the inverse-square potential. But for p = 2, the two
norms are equivalent.

The equivalent of the two Sobolev spaces is closely related to a topics about the
boundedness of the generalized Riesz transform operator

�
s
2
gL− s

2
V : L p(X) → L p(X), (3.2)

and its reverse operator L
s
2
V�

− s
2

g . In [40], the authors studied the equivalent norms in
which we replace LV by �+ ar−2 in Euclidean space by starting from its heat kernel
estimate. However, as far as we know, there is no result about heat kernel estimate
of LV , even though Li [43] proved the heat kernel estimate for �g on metric cone.
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Rather than from heat kernel, we study the problem from the asymptotical behavior
of the resolvent (LV + 1)−1(z, z′); see [30, Theorem 4.11, Lemma 5.4].

When 0 < s < n, we can define the operator L− s
2

V by the Riesz potential kernel

L− s
2

V (z, z′) :=
∫ ∞

0
λ1−s(LV + λ2)−1(z, z′)dλ.

Before stating the main results of this section, we show the estimates on the kernels

Lemma 3.1 Let Q(z, z′) and G(z, z′) be the kernels of the operatorsL− s
2

V and∇g�
s−1
2

g
respectively. Assume 0 < s < 2, then Q(z, z′) satisfies

Q(z, z′) �

⎧⎪⎨
⎪⎩
r ′−nrs(r/r ′)1− n

2+ν0−s, r < r ′
2 ;

d(z, z′)−(n−s), r ∼ r ′;
r−n+s(r ′/r)1− n

2+ν0 , r > 2r ′;
(3.3)

and if 0 < s ≤ 1 then G(z, z′) satisfies

G(z, z′) �

⎧⎪⎨
⎪⎩
r ′−nr−s(r/r ′)s− n

2+ν′
0 , r ′ > 2r;

r−1d(z, z′)−(n−1+s), r ∼ r ′;
r−n−s(r ′/r)1− n

2+ν′
0 , r ′ < r

2 ;
(3.4)

where ν0 (resp. ν′
0) is the square root of the smallest eigenvalue of the operator �h +

V0(y) + (n − 2)2/4 (resp. �h + (n − 2)2/4).

Remark 3.2 Note that ν′
0 ≥ (n − 2)/2, as mentioned in [30, Remark 4.13], one can

improve (3.4) through replacing ν′
0 by ν′

1, the square root of the second smallest
eigenvalue of �h + (n − 2)2/4.

Proof We first estimate Q(z, z′). Let χ [0,∞) → [0, 1] be a smooth cutoff function
such that χ([0, 1/2]) = 1 and χ([1,∞)) = 0. Define

Q1(z, z
′) = χ(4r/r ′)

∫ ∞

0
λ1−s(LV + λ2)−1(z, z′)dλ; (3.5)

Q2(z, z
′) = χ(4r ′/r)

∫ ∞

0
λ1−s(LV + λ2)−1(z, z′)dλ; (3.6)

and

Q0(z, z
′) = (1 − χ(4r/r ′) − χ(4r ′/r))

∫ ∞

0
λ1−s(LV + λ2)−1(z, z′)dλ. (3.7)

Since LV is homogeneous of degree −2, then by scaling we have

(LV + λ2)−1(z, z′) = λn−2(LV + 1)−1(λz, λz′).
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Now we consider the boundedness of Q1. By [30, Theorem 4.11], for any N > 0, we
have

|χ(4r/r ′)(LV + 1)−1(z, z′)| � r1−
n
2+ν0r ′1− n

2−ν0〈r ′〉−N . (3.8)

Therefore, for any N > 1 − s and s < 2, we have by (3.9)

∣∣Q1(z, z
′)
∣∣ �

∣∣∣∣
∫ ∞

0
λn−1−sχ(4r/r ′)(LV + 1)−1(λz, λz′)dλ

∣∣∣∣
� r ′2−n(r/r ′)1−

n
2+ν0

(∫ 1/r ′

0
λ1−sdλ + r ′−N

∫ ∞

1/r ′
λ1−s−Ndλ

)

� r ′−nrs(r/r ′)1−
n
2+ν0−s . (3.9)

Similarly we consider the boundedness of Q2. By [30, Theorem 4.11] again, we have
for any N > 0

|χ(4r ′/r)(LV + 1)−1(z, z′)| � r ′1− n
2+ν0r1−

n
2−ν0〈r〉−N . (3.10)

Therefore similarly as estimating (3.9), for s < 2, we have∣∣Q2(z, z
′)
∣∣ � r−nrs(r ′/r)1−

n
2+ν0 . (3.11)

Finally we estimate Q0. Recall [30, Lemma 5.4], for any N > 0, we have

∣∣∣(1 − χ(4r/r ′) − χ(4r ′/r))(LV + 1)−1(z, z′)
∣∣∣ �

{
d(z, z′)2−n, d(z, z′) ≤ 1;
d(z, z′)−N , d(z, z′) ≥ 1.

Therefore, we compute that by using d(λz, λz′) = λd(z, z′)

∣∣∣(1 − χ(4r/r ′) − χ(4r ′/r))(LV + 1)−1(λz, λz′)
∣∣∣ �

{
λ2−nd(z, z′)2−n, d(z, z′) ≤ 1/λ;
λ−Nd(z, z′)−N , d(z, z′) ≥ 1/λ.

We estimate the kernel Q0(z, z′) for s < 2 and N > n − s

|Q0(z, z
′)| �

(
d(z, z′)2−n

∫ 1/d(z,z′)

0
λ1−sdλ + d(z, z′)−N

∫ ∞
1/d(z,z′)

λn−1−s−N dλ

)

� d(z, z′)−(n−s).

We need a modification to prove (3.3) due to the support of χ . For instance, from
Q1, we directly see that Q(z, z′) � r ′−nrs(r/r ′)1− n

2+ν0−s when r < r ′/8. On the
region r ′/8 ≤ r ≤ r ′/2, since r ′/2 ≤ |r − r ′| ≤ d(z, z′) ≤ r + r ′ � r ′ thus
d(z, z′) ∼ r ∼ r ′. Therefore we prove the boundedness of Q on r ≤ r ′/2. We also
can prove the boundedness on r ≥ 2r ′ through the samemodification argument. Hence
we prove (3.3).
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We next estimate G. Notice that the derivative ∇g is of the form that r−1 times a
smooth b-derivative for small r , and is a smooth scattering vector field for r large; we
refer the reader to [30] for the b-derivative and scattering vector field. Since 0 < s < 1,
we can replace the s (resp. ν0) by 1 − s (resp. ν′

0) to obtain the estimate of the kernel

�
(s−1)/2
g . Therefore, we finally obtain the estimate of G by multiplying r−1, thus we

prove (3.4). ��

Lemma 3.2 Let 0 ≤ s < n, 1 ≤ p, q ≤ +∞. Let K (r , r ′, y, y′) be a kernel on the
cone X. Define the operator

T f =
∫
X
K (z, z′) f (z′)dμ(z′).

If

|K (r , r ′, y, y′)| �
{
r−αr ′−β, r ≤ r ′

0, r > r ′,
(3.12)

and α + β = n − s, β > 0, then

‖T f ‖Lq (X) ≤ C‖ f ‖L p(X), s = n

p
− n

q
, (3.13)

with
p ≤ q <

n

max{α, 0} . (3.14)

Similarly, if

|K (r , r ′, y, y′)| �
{
0, r < r ′

r−αr ′−β, r ≥ r ′,
(3.15)

and α + β = n − s, α > 0, then (3.13) holds for

s = n

p
− n

q
, q >

n

min{α, n} . (3.16)

Remark 3.3 In particular s = 0, then q = p. This special result has been proved in [30,
Corollary 5.9]. Here, we extend such result to q ≥ p.

Proof We use the argument of [30, Corollary 5.9]. Noting that dμ = rn−1dr dh and
the section Y is a compact set, we get
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‖T f ‖Lq (X) =
( ∫

X

∣∣∣ ∫
X
K (z, z′) f (z′) dμ(z′)

∣∣∣q dμ(z)
)1/q

�
( ∫ ∞

0

∣∣∣ ∫
r<r ′

K̃ (r , r ′) f̃ (r ′)r ′−1 dr ′
∣∣∣q r−1dr

)1/q
, (3.17)

where

f̃ (r ′) = r ′ np
∫
Y

| f (r ′, y)| dh

and

K̃ (r , r ′) = r−αr ′−βr
n
q r

′ n
p′ = (r/r ′)

n
q −α

.

Perform a substitution r̃ = ln r , r̃ ′ = ln r ′, then

‖T f ‖Lq (X) �
( ∫

R

∣∣∣ ∫
r̃<r̃ ′

K̃1(r̃ , r̃
′) f̃ (er̃ ′

) dr̃ ′
∣∣∣q dr̃

)1/q
, (3.18)

with

K̃1(r̃ , r̃
′) = e(r̃−r̃ ′)( nq −α)

.

Then, it is easy to see that

sup
r̃∈R

∫
r̃<r̃ ′

|K̃1(r̃ , r̃
′)|σ dr̃ ′ + sup

r̃ ′∈R

∫
r̃<r̃ ′

|K̃1(r̃ , r̃
′)|σ dr̃ < +∞, (3.19)

with
( n
q −α

)
σ > 0 guaranteed by (3.14). Especially, taking 1

σ
= 1+ 1

q − 1
p ≥ 1, and

using generalised Young’s inequality, we obtain

‖T f ‖Lq (X) �
( ∫

R

| f̃ (es′)|p ds′)1/p
�
( ∫ +∞

0

∫
Y

| f (r ′, y)|pr ′n−1 dr ′ dh
)1/p

� ‖ f ‖L p(X).

Similarly, we obtain the other case. Hence, Lemma 3.2 follows. ��
We prove the following Sobolev inequality which is well-known in the Euclidean

space.

Proposition 3.1 (Sobolev inequality for LV ). Let n ≥ 3 and ν0 be as above. Suppose
0 < s < 2, and 1 < p, q < ∞. Then

∥∥ f (z)∥∥Lq (X)
�
∥∥L s

2
V f
∥∥
L p(X)

(3.20)
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holds for s = n
p − n

q and

n

min{1 + n
2 + ν0 − s, n} < q <

n

max{ n2 − 1 − ν0, 0} . (3.21)

Proof The proof follows from Lemma 3.1. The estimate (3.20) is equivalent to

‖T f ‖Lq (X) � ‖ f ‖L p(X) (3.22)

where the operator T = L− s
2

V is defined by the Riesz potential kernel

L− s
2

V (z, z′) :=
∫ ∞

0
λ1−s(LV + λ2)−1(z, z′)dλ.

By using Lemma 3.1, we have for 0 < s < 2

L− s
2

V (z, z′) �

⎧⎪⎨
⎪⎩
r ′−nrs(r/r ′)1− n

2+ν0−s, r < r ′
2 ;

d(z, z′)−(n−s), r ∼ r ′;
r−n+s(r ′/r)1− n

2+ν0 , r > 2r ′.

Then by using(3.21), we obtain Proposition 3.1 from Lemma 3.2 when r < r ′/2 and
r > 2r ′ and from the Hardy–Littlewood–Sobolev inequality in Proposition 2.1 when
r ∼ r ′. ��
Corollary 3.1 (Sobolev inequality for LV ). If q ≥ 2 and p ≥ 2 satisfying (3.21), the
above result holds for s > 0.

Remark 3.4 The restriction on s is 0 < s < 1 + ν0. Indeed, from the facts p ≥ 2 and
2 ≤ q < n/max{ n2 − 1 − ν0, 0}, it follows s = n

p − n
q < 1 + ν0.

Proof Choose {s j }kj=0 with s0 = 0, sk = s such that 0 < s j+1 − s j < 1 and and

{q j }kj=0 with q0 = q, qk = p such that 2 ≤ q j < n/max{ n2 − 1 − ν0, 0} for
j = 0, · · · k − 1. Thus, we apply Proposition 2.1 to obtain

‖Ls j /2
V f ‖Lq j (X) � ‖L(s j+1−s j )/2

V Ls j /2
V f ‖Lq j+1 (X) = ‖Ls j+1/2

V f ‖Lqk (X).

Therefore, we show

‖ f (z)‖Lq (X) � ‖Ls1/2
V f ‖Lq1 (X) � · · · � ‖Lsk/2

V f ‖Lqk (X) = ‖Ls/2
V f ‖L p(X).

��
In the rest of this subsection, we consider the boundedness of the operator

�
s
2
gL− s

2
V : L p(X) → L p(X), 0 < s < 1. (3.23)
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When s = 1, the boundedness of this operator has been established by Lin–
Hassell [30]. For the following purpose of the establishment of Strichartz estimate,
we need the following result

Proposition 3.2 Let n ≥ 4 and suppose that s = 2
n−1 and ν0 is in above such that

ν0 > 1
n−1 . Then the operator

�
s
2
gL− s

2
V : L p(X) → L p(X), p = 2(n − 1)

n + 1
(3.24)

is bounded.

Before proving this proposition, we show

Lemma 3.3 The following inequality holds for q ∈ (1,∞)

‖√L0 f ‖Lq := ‖�
1
2
g f ‖Lq � ‖∇g f ‖Lq . (3.25)

Proof Indeed partial result is a dual consequence of Riesz transform boundedness.
More precisely, Lin–Hassell [30, Theorem 1.1], [42] has shown

∇gL−1/2
0 : L p(X) → L p(X)

is bounded for p ∈ (1, n/max{ n2 − ν′
1, 0}) where ν′

1 > 0 is the square root of the
second smallest eigenvalue of the operator �h + (n − 2)2/4. If Y = S

n−1, then
ν′
1 > n

2 since the kth eigenvalue of �Sn−1 is k(k + n − 2). However, for the general
Y , ν′

1 > (n − 2)/2, one has the boundedness for p ∈ (1, n) at least. By the dual
argument [2], we have

‖√L0 f ‖Lq � ‖∇g f ‖Lq (3.26)

for all q ∈ (n/(n−1),∞). On the other hand, one can use the method in [23] to show
the following Poincaré inequalities for p = 1

∫
B

| f − fB |pdμ(z′) � r p
∫
B

|∇ f |pdμ (3.27)

where B = B(z, r) and fB = 1
μ(B)

∫
B f dμ. A result in [2, Theorem 0.7] claimed that

the doubling condition and Poincaré inequality implies the reverse Riesz transform
boundedness. Hence (3.25) holds for q ∈ (1,∞) which also was stated in [2, Page
535] for our setting. ��

Now we prove Proposition 3.2. Write �
s
2
g = �

1
2
g �

s−1
2

g , by using (3.25), it suffices
to establish

∇g�
s−1
2

g L− s
2

V : L p(X) → L p(X), s = 2

n − 1
, p = 2(n − 1)

n + 1
, n ≥ 4. (3.28)
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Let G(z, z′) denote the kernel of the operator ∇g�
s−1
2

g and Q(z′, z′′) denote the kernel
of the operator L− s

2
V . Recall z = (r , y), therefore by using Lemma 3.1, the kernel

G(z, z′) and Q(z′, z′′) satisfy

G(z, z′) �

⎧⎪⎨
⎪⎩
r ′−nr−s(r/r ′)s− n

2+ν′
0 , r ′ > 2r;

r−1d(z, z′)−(n−1+s), r ∼ r ′;
r−n−s(r ′/r)1− n

2+ν′
0 , r ′ < r

2 ;
(3.29)

and

Q(z′, z′′) �

⎧⎪⎨
⎪⎩
r ′′−nr ′s(r ′/r ′′)1− n

2+ν0−s, r ′ < r ′′
2 ;

d(z′, z′′)−(n−s), r ′ ∼ r ′′;
r ′−n+s(r ′′/r ′)1− n

2+ν0 , r ′ > 2r ′′;
(3.30)

Define the operator

T f (z) :=
∫
X
K (z, z′′) f (z′′) dμ(z′′),

where the kernel K (z, z′′) is given by

K (z, z′′) :=
∫
X
G(z, z′)Q(z′, z′′) dμ(z′).

To prove Proposition 3.2, it suffices to show

Proposition 3.3 For 0 < s < 1, there exists a constant C

‖T f (z)‖L p(X) ≤ C‖ f ‖L p(X), (3.31)

provided

n

min{n, n
2 + ν0 + 1, n

2 + 1 + ν′
0 + s} < p <

n

max{0, n
2 − ν′

0,
n
2 − 1 − ν0 + s}

(3.32)

We postpone the proof for a moment. Note ν0 > 1/(n − 1), ν′
0 = (n − 2)/2 and

s = 2/(n−1), the p = 2(n−1)/(n+1) satisfies the condition (3.32), hence it proves
Proposition 3.2 once we have shown this proposition.

The proof of Proposition 3.3. We divide the kernel K (z, z′′) into several cases.
Case1: 2r ≤ r ′′

2 . A simple computation shows

K (z, z′′) =
( ∫

r ′< r
2

+
∫

r
2≤r ′≤2r

+
∫
r ′>2r

)
G(z, z′)Q(z′, z′′) dμ(z′)

= K1,1(z, z
′′) + K1,2(z, z

′′) + K1,3(z, z
′′).
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The estimate of K1,1(z, z′′): In this case, since r ′ < r
2 < r ′′

2 , we have

G(z, z′) � r−n−s(r ′/r)1−
n
2+ν′

0 ,

and

Q(z′, z′′) � r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s .

Hence, we get

K1,1(z, z
′′) �

∫
r ′< r

2

r−n−s(r ′/r)1−
n
2+ν′

0r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s dμ(z′)

�r− n
2−1−s−ν′

0r ′′− n
2−1−ν0+s

∫
r ′< r

2

r ′2−n+ν′
0+ν0 dμ(z′)

�r− n
2+1+ν0−sr ′′− n

2−1−ν0+s

Thus, an application of Lemma 3.2 yields the L p-boundedness for K1,1(z, z′′).
The estimate of K1,2(z, z′′): In this case, since r

2 < r ′ < 2r < r ′′
2 , we have

G(z, z′) � r−1d(z, z′)−(n−1+s),

and

Q(z′, z′′) � r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s .

Hence, by Lemma 2.2, we obtain

K1,2(z, z
′′) �

∫
r
2≤r ′≤2r

r−1d(z, z′)−(n−1+s)r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s dμ(z′)

�r−1r ′′− n
2−1−ν0+s

∫
r
2≤r ′≤2r

d(z, z′)−(n−1+s)r ′1− n
2+ν0 dμ(z′)

�r− n
2+1+ν0−sr ′′− n

2−1−ν0+s .

Hence, by using Lemma 3.2 again, we obtain the L p-boundedness for K1,2(z, z′′).
The estimate of K1,3(z, z′′): We can further decompose

K1,3(z, z
′′) =

( ∫
2r<r ′< r ′′

2

+
∫

r ′′
2 ≤r ′≤2r ′′

+
∫
r ′>2r ′′

)
G(z, z′)Q(z′, z′′) dμ(z′)

= K1,31(z, z
′′) + K1,32(z, z

′′) + K1,33(z, z
′′).

We first consider K1,31(z, z′′). In this case, we have 2r < r ′ < r ′′
2 . Thus,

G(z, z′) � r ′−nr−s(r/r ′)s−
n
2+ν′

0
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and

Q(z′, z′′) � r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s .

This implies

K1,31(z, z
′′) �

∫
2r<r ′< r ′′

2

r ′−nr−s(r/r ′)s−
n
2+ν′

0r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s dμ(z′)

�r− n
2+ν′

0r ′′− n
2−1−ν0+s

∫
2r<r ′< r ′′

2

r ′1−n−s−ν′
0+ν0 dμ(z′)

�
{
r− n

2+ν′
0r ′′− n

2−ν′
0 , −s + ν0 − ν′

0 + 1 > 0;
r− n

2+ν0+1−sr ′′− n
2−1−ν0+s − s + ν0 − ν′

0 + 1 < 0.

Thus, an application of Lemma 3.2 yields the L p-boundedness for K1,31(z, z′′).
Next consider K1,32(z, z′′). In this term, we have 2r < r ′′

2 < r ′ < 2r ′′. Thus,

G(z, z′) � r ′−nr−s(r/r ′)s−
n
2+ν′

0

and

Q(z′, z′′) � d(z′, z′′)−(n−s).

This implies

K1,32(z, z
′′) �

∫
r ′′
2 <r ′<2r ′′

r ′−nr−s(r/r ′)s−
n
2+ν′

0d(z′, z′′)−(n−s) dμ(z′)

�r− n
2+ν′

0

∫
r ′′
2 <r ′<2r ′′

r ′− n
2−ν′

0−sd(z′, z′′)−(n−s) dμ(z′)

�r− n
2+ν′

0r ′′− n
2−ν′

0 .

Finally, we consider K1,33(z, z′′). In this case, we have 2r < 2r ′′ < r ′. Thus,

G(z, z′) � r ′−nr−s(r/r ′)s−
n
2+ν′

0

and

Q(z′, z′′) � r ′−n+s(r ′′/r ′)1−
n
2+ν0 .

Since ν′
0 > (n − 2)/2, this implies

K1,33(z, z
′′) �

∫
r ′>2r ′′

r ′−nr−s(r/r ′)s−
n
2+ν′

0r ′−n+s(r ′′/r ′)1−
n
2+ν0 dμ(z′)
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�r− n
2+ν′

0r ′′1− n
2+ν0

∫
r ′>2r ′′

r ′−(n+ν′
0+ν0+1) dμ(z′)

�r− n
2+ν′

0r ′′− n
2−ν′

0 .

Therefore, by using Lemma 3.2, we obtain the boundedness of K1,3. In sum, in the
case 2r < r ′′

2 , we prove K (z, z′′) is bounded as an operator on L p(X) provided

p <
n

max{0, n
2 − ν′

0,
n
2 − 1 − ν0 + s} . (3.33)

Case 2 r
2 > 2r ′′. We decompose

K (z, z′′) =
( ∫

r ′< r ′′
2

+
∫

r ′′
2 ≤r ′≤2r ′′

+
∫
r ′>2r ′′

)
G(z, z′)Q(z′, z′′) dμ(z′)

= K2,1(z, z
′′) + K2,2(z, z

′′) + K2,3(z, z
′′).

The estimate of K2,1: In this region, we have r ′ < r ′′
2 < r

2 . And so

G(z, z′) � r−n−s(r ′/r)1−
n
2+ν′

0

and

Q(z′, z′′) � r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s .

Hence, we get

K2,1(z, z
′′) �

∫
r ′< r ′′

2

r−n−s(r ′/r)1−
n
2+ν′

0r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s dμ(z′)

�r− n
2−s−1−ν′

0r ′′− n
2−1−ν0+s

∫
r ′< r ′′

2

r ′2−n+ν′
0+ν0 dμ(z′)

�r− n
2−s−1−ν′

0r ′′− n
2+s+1+ν′

0 .

The estimate of K2,2: In this region, we have r ′′
2 < r ′ < 2r ′′ < r

2 . And so

G(z, z′) � r−n−s(r ′/r)1−
n
2+ν′

0

and

Q(z′, z′′) � d(z′, z′′)−(n−s).

Hence, we get

K2,1(z, z
′′) �

∫
r ′′
2 <r ′<2r ′′

r−n−s(r ′/r)1−
n
2+ν′

0d(z′, z′′)−(n−s) dμ(z′)
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�r− n
2−1−s−ν′

0

∫
r ′′
2 <r ′<2r ′′

r ′1− n
2+ν′

0d(z′, z′′)−(n−s) dμ(z′)

�r− n
2−1−ν′

0−sr ′′− n
2+1+ν′

0+s .

The estimate of K2,3: We further decompose

K2,3(z, z
′′) =

( ∫
2r ′′<r ′< r

2

+
∫

r
2≤r ′≤2r

+
∫
r ′>2r

)
G(z, z′)Q(z′, z′′) dμ(z′)

= K2,31(z, z
′′) + K2,32(z, z

′′) + K2,33(z, z
′′).

The contribution of K2,31: In this region, we have 2r ′′ < r ′ < r
2 . And so

G(z, z′) � r−n−s(r ′/r)1−
n
2+ν′

0

and

Q(z′, z′′) � r ′−n+s(r ′′/r ′)1−
n
2+ν0 .

Hence, we get

K2,31(z, z
′′) �

∫
2r ′′<r ′< r

2

r−n−s(r ′/r)1−
n
2+ν′

0r ′−n+s(r ′′/r ′)1−
n
2+ν0 dμ(z′)

�r− n
2−1−s−ν′

0r ′′1− n
2+ν0

∫
2r ′′<r ′< r

2

r ′−n+ν′
0+s−ν0 dμ(z′)

�
{
r− n

2−ν0−1r ′′1− n
2+ν0 , s − ν0 + ν′

0 − 1 > 0;
r− n

2−ν′
0−1−sr ′′− n

2+1+s+ν′
0 s − ν0 + ν′

0 − 1 < 0.

The contribution of K2,32: In this region, we have 2r ′′ < r
2 < r ′ < 2r . And so

G(z, z′) � r−1d(z, z′)−(n−1+s)

and

Q(z′, z′′) � r ′−n+s(r ′′/r ′)1−
n
2+ν0 .

Hence, we get

K2,32(z, z
′′) �

∫
r
2<r ′<2r

r−1d(z, z′)−(n−1+s)r ′−n+s(r ′′/r ′)1−
n
2+ν0 dμ(z′)

�r− n
2−2+s−ν0r ′′1− n

2+ν0

∫
r
2<r ′<2r

d(z, z′)−(n−1+s) dμ(z′)

�r− n
2−1−ν0r ′′1− n

2+ν0 .
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The contribution of K2,33: In this region, we have 2r ′′ < 2r < r ′. And so

G(z, z′) � r ′−nr−s(r/r ′)s−
n
2+ν′

0

and

Q(z′, z′′) � r ′−n+s(r ′′/r ′)1−
n
2+ν0 .

Hence, we get

K2,33(z, z
′′) �

∫
2r<r ′

r ′−nr−s(r/r ′)s−
n
2+ν′

0r ′−n+s(r ′′/r ′)1−
n
2+ν0 dμ(z′)

�r− n
2+ν′

0r ′′1− n
2+ν0

∫
2r<r ′

r ′−n−ν′
0−ν0−1 dμ(z′)

�r− n
2−1−ν0r ′′1− n

2+ν0 .

Overall, in the case r
2 > 2r , by using Lemma 3.2, we show K (z, z′′) is bounded as an

operator on L p(X) provided

p >
n

min{n, n
2 + ν0 + 1, n

2 + 1 + ν′
0 + s} . (3.34)

Case 3 r ′′
4 ≤ r ≤ 4r ′′. We decompose

K (z, z′′) =
( ∫

r ′< r
2

+
∫

r
2≤r ′≤2r

+
∫
r ′>2r

)
G(z, z′)Q(z′, z′′) dμ(z′)

= K3,1(z, z
′′) + K3,2(z, z

′′) + K3,3(z, z
′′).

The estimate of K3,1: In this region, we have r ′ < r
2 ≤ 2r ′′. If r ′ ≥ r ′′

2 , then one

has r ∼ r ′ ∼ r ′′ which can be done as treating K3,2. Hence we only consider r ′ < r ′′
2 ,

and so

G(z, z′) � r−n−s(r ′/r)1−
n
2+ν′

0

and

Q(z′, z′′) � r ′′−nr ′s(r ′/r ′′)1−
n
2+ν0−s .

Hence, we get

K3,1(z, z
′′) �

∫
r ′< r ′′

2

r−n−s(r ′/r)1−
n
2 +ν′

0r ′′−nr ′s(r ′/r ′′)1−
n
2 +ν0−s dμ(z′)

�r− n
2 −1−s−ν′

0r ′′− n
2 −1−ν0+s

∫
r ′< r ′′

2

r ′2−n+ν′
0+ν0 dμ(z′)

�r− n
2 −1−ν′

0−sr ′′− n
2 +1+ν′

0+s .
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When r ∼ r ′′, it is easy to prove that

∫
r∼r ′′

K3,1(z, z
′′)dμ(z′′) � 1;

∫
r∼r ′′

K3,1(z, z
′′)dμ(z) � 1.

The estimate of K3,2: In this region, we have r ′ ∼ r ∼ r ′′. And so

G(z, z′) � r−1d(z, z′)−(n−1+s)

and

Q(z′, z′′) � d(z′, z′′)−(n−s).

Therefore, we prove

∫
r∼r ′′

K3,2(z, z
′′)dμ(z′′) �

∫
r∼r ′′

∫
r ′∼r

r−1d(z, z′)−(n−1+s)d(z′, z′′)−(n−s) dμ(z′)dμ(z′′)

�r−1
∫
r ′∼r

d(z, z′)−(n−1+s)
∫
r ′∼r ′′

d(z′, z′′)−(n−s)dμ(z′′) dμ(z′)

�1.

Similarly, we can prove
∫
r∼r ′′ K3,2(z, z′′)dμ(z) � 1.

The estimate of K3,3: In this region, we have r ′ > 2r ≥ r ′′
2 . Similarly, we only

consider r ′ > 2r ′′. And so

G(z, z′) � r ′−nr−s(r/r ′)s−
n
2+ν′

0

and

Q(z′, z′′) � r ′−n+s(r ′′/r ′)1−
n
2+ν0 .

Hence, we get

K3,3(z, z
′′) �

∫
r ′>2r

r ′−nr−s(r/r ′)s−
n
2+ν′

0r ′−n+s(r ′′/r ′)1−
n
2+ν0 dμ(z′)

�r− n
2+ν′

0r ′′1− n
2+ν0

∫
r ′>2r

r ′−n−1−ν′
0−ν0 dμ(z′)

�r− n
2−1−ν0r ′′1− n

2+ν0 .

Note that r ∼ r ′′, it is easy to prove that

∫
r∼r ′′

K3,1(z, z
′′)dμ(z′′) � 1;

∫
r∼r ′′

K3,1(z, z
′′)dμ(z) � 1.
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To conclude, in the case that r ∼ r ′′, by using Schur test lemma, we prove K (z, z′′) is
bounded on L p(X) for all 1 < p < ∞. Collecting all the cases, therefore we finish
the proof of Proposition 3.3. ��

4 Strichartz estimates for wave equation withL0

In this section, we prove the Strichartz estimates for wave equation associated with
L0, i.e. without potential, that is, the result (i) of Theorem 1.1 when V = 0. The
argument here is close to [35,65] but with necessary modifications. For the sake of
being self-contained and convenient, we sketch the main steps.

4.1 Microlocalized propagator

We begin to decompose the half-wave propagator by using the partition of unity
1 = ∑

k∈Z ϕ(2−kλ) as in (2.32). Define

Uk(t) =
∫ ∞

0
eitλϕ(2−kλ)dE√L0

(λ), k ∈ Z. (4.1)

We further microlocalize (in phase space) the half-wave propagators adapting to the
partition of unity operator

Uj,k(t) =
∫ ∞

0
eitλϕ(2−kλ)Q j (λ)dE√L0

(λ), 0 ≤ j ≤ N , (4.2)

where Q j (λ) is as in Proposition 2.5. Then the operator Uj,k(t)Uj,k(s)∗ is given

Uj,k(t)Uj,k(s)
∗ =

∫
ei(t−s)λϕ(2−kλ)Q j (λ)dE√L0

(λ)Q j (λ)∗. (4.3)

4.2 L2-estimate and dispersive estimate

In this subsection, we prove the two key estimates, i.e. the energy estimate and dis-
persive estimate. Before stating our result, we recall two results in [35]. The results
can be directly applied to our setting if we consider the problems on the region away
from the cone tip, in which as mentioned in the introduction they almost are the same.
Recall that Q j with j ≥ 1 are micro-localized away from the cone tip.

By using [35, Lemma 8.2] (see also [26, Lemmas 5.3 and 5.4]), we can divide
( j, j ′), 1 ≤ j, j ′ ≤ N into three classes

{1, . . . , N }2 = Jnear ∪ Jnot−out ∪ Jnot−inc,

so that
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• if ( j, j ′) ∈ Jnear , thenQ j (λ)dE√L0
(λ)Q j ′(λ)∗ satisfies the conclusions of Propo-

sition 2.5;
• if ( j, j ′) ∈ Jnon−inc, then Q j (λ) is not incoming-related to Q j ′(λ) in the sense
that no point in the operator wavefront set (microlocal support) of Q j (λ) is related
to a point in the operator wavefront set of Q j ′(λ) by backward bicharacteristic
flow;

• if ( j, j ′) ∈ Jnon−out , then Q j (λ) is not outgoing-related to Q j ′(λ) in the sense
that no point in the operator wavefront set of Q j (λ) is related to a point in the
operator wavefront set of Q j ′(λ) by forward bicharacteristic flow.

And we further exploit the not-incoming or not-outgoing property of Q j (λ) with
respect to Q j ′(λ) to obtain the Schwartz kernel of Q j (λ)dE√L0

(λ)Q j ′(λ)∗

Lemma 4.1 For λ > 0 and ( j, j ′) ∈ Jnon−out . Then, we can write the Schwartz kernel
of Q j (λ)dE√L0

(λ)Q j ′(λ)∗ as a multiple of |dgdg′|1/2|dλ| as the sum of a finite
number of terms of the form

∫
Rk

eiλr�(y,y′,σ,r ,v)λn−1+k/2r−(n−1)/2+k/2a(λ, y, y′, σ, r , v)dv or (4.4)

∫
Rk−1

∫ ∞

0
eiλr�(y,y′,σ,r ,v,s)λn−1+k/2

(
1

rs

)(n−1)/2−k/2

sn−2a(λ, y, y′, σ, r , v, s) ds dv

(4.5)

in the region σ = r ′/r ≤ 2, r ≥ δ, or∫
Rk

eiλ�(z,z′,v)λn−1+k/2a(λ, z, z′, v) dv (4.6)

in the region r ≤ δ, r ′ ≤ δ, where in each case, � < −ε < 0 and a is a smooth
function compactly supported in the v and s variables (where present), such that
|(λ∂λ)

Na| ≤ CN . In each case, we may assume that k ≤ n − 1; if k = 0 in (4.4) or
(4.6), or k = 1 in (4.5) then there is no variable v, and no v-integral. Again, the key
point is that in each expression, the phase function is strictly negative.

If, instead, Q j is not incoming-related to Q j ′ , then the same conclusion holds with
the reversed sign: the Schwartz kernel can be written as a finite sum of terms with a
strictly positive phase function.

Remark 4.1 For σ ≥ 1/2, the Schwartz kernel has a similar description, as follows
immediately from the symmetry of the kernel under interchanging the left and right
variables.

Proof Note ( j, j ′) ∈ Jnon−out , thus j, j ′ ≥ 1. Since j, j ′ ≥ 1 away from cone
tip, this result is essentially proved in [35, Lemma 8.3, Lemma 8.5]. Since our
setting has scaling symmetry, we do not need to state the result in high and low
frequency respectively. The key point is that the sign of the phase function can be
determined. ��

The main results of this subsection are the L2-estimate and dispersive estimates.
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Proposition 4.1 Let U j,k(t) be defined in (4.2). Then there exists a constant C inde-
pendent of t, z, z′ for all j, j ′ ≥ 0, k ∈ Z such that

‖Uj,k(t)‖L2→L2 ≤ C, (4.7)

and the following dispersive estimates on U j,k(t)Uj ′,k(s)∗ hold:

• If ( j, j ′) ∈ Jnear or ( j, j ′) = (0, j ′), ( j, 0), then for all t 
= s we have

∥∥Uj,k(t)U
∗
j ′,k(s)

∥∥
L1→L∞ ≤ C2k(n+1)/2(2−k + |t − s|)−(n−1)/2, (4.8)

• If ( j, j ′) such that Q j is not outgoing related to Q j ′ , and t < s, then

∥∥Uj,k(t)U
∗
j ′,k(s)

∥∥
L1→L∞ ≤ C2k(n+1)/2(2−k + |t − s|)−(n−1)/2, (4.9)

• Similarly, if ( j, j ′) such that Q j is not incoming related to Q j ′ , and s < t , then

∥∥Uj,k(t)U
∗
j ′,k(s)

∥∥
L1→L∞ ≤ C2k(n+1)/2(2−k + |t − s|)−(n−1)/2. (4.10)

Remark 4.2 The dispersive inequalities (4.9) and (4.10) are used to prove endpoint to
endpoint inhomogeneous Strichartz estimate; see Sect. 6.

Proof The inequalities (4.7) and (4.8) are essentially proved [65, Section 3]. Indeed,
note that the operators ϕ(2−kλ) and Q j (λ) are bounded on L2, thus themicrolocalized

propagatorUj,k(t) is bounded from L2(X) to itself due to the spectral theory onHilbert
space. From above result, if ( j, j ′) ∈ Jnear or ( j, j ′) = (0, j ′), ( j, 0), we have the
expression of microlocalized spectral mearsue in Proposition 2.5 which is same as the
one used in [65]. Then by the stationary phase argument, we have

∣∣∣ ∫ ∞

0
eitλϕ(2−kλ)

(
Q j (λ)dE√L0

(λ)Q∗
j ′(λ)

)
(z, z′)dλ

∣∣∣
≤ C2k(n+1)/2(2−k + |t |)−(n−1)/2 (4.11)

where ϕ ∈ C∞
c ([1/2, 2]) and takes value in [0, 1]. We refer the reader to [65, Section

3] for details.
We only prove (4.10) since the argument to prove (4.9) is analogous. Assume that

Q j is not incoming-related to Q j ′ , and then consider (4.10). By [35, Lemma 5.3],
Uj,k(t)Uj ′,k(s)∗ is given by

∫ ∞

0
ei(t−s)λϕ̃(2−kλ)

(
Q j (λ)dE√L0

(λ)Q∗
j ′(λ)

)
(z, z′)dλ, ϕ̃ = ϕ2. (4.12)

Then we need to show that for s < t and k ∈ Z
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∣∣∣ ∫ ∞

0
ei(t−s)λϕ̃(2−kλ)

(
Q j (λ)dE√L0

(λ)Q∗
j ′(λ)

)
(z, z′)dλ

∣∣∣
≤ C2k(n+1)/2(2−k + |t − s|)−(n−1)/2.

By scaling, it suffices to show k = 0, that is

∣∣∣ ∫ ∞

0
ei(t−s)λϕ̃(λ)

(
Q j (λ)dE√L0

(λ)Q∗
j ′(λ)

)
(z, z′)dλ

∣∣∣ ≤ C(1 + |t − s|)−(n−1)/2.

(4.13)
If t − s < 1, since ϕ̃ is compactly supported, the estimate follows from the uniform
boundedness of (4.4)–(4.6). Now we consider t − s ≥ 1. Let φ ∈ C∞

c ([ 12 , 2]) be such
that

∑
m φ(2−m(t − s)λ) = 1, define

φ0((t − s)λ) =
∑
m≤0

φ(2−m(t − s)λ).

Plug the decomposition

1 = φ0((t − s)λ) +
∑
m≥1

φm((t − s)λ), φm(λ) := φ(2−mλ)

into the integral (4.13). In addition, we substitute for Q j (λ)dE√L0
(λ)Q∗

j ′(λ) one of
the expressions in Lemma 4.1 to obtain

∣∣∣ ∫ ∞

0
ei(t−s)λϕ̃(λ)φ0((t − s)λ)

(
Q j (λ)dE√L0

(λ)Q∗
j ′(λ)

)
(z, z′)dλ

∣∣∣
≤
∫ ∞

0
λn−1ϕ̃(λ)φ0((t − s)λ)dλ ≤ C |t − s|−n . (4.14)

Hence it implies (4.13) since |t − s| > 1.
For m ≥ 1, we substitute again one of the expressions in Lemma 4.1. Since the

other cases follow from the similar argument, we only consider the expression (4.6).
Define λ̄ = (t − s)λ, we obtain by scaling

∫ ∞

0

∫
Rk

ei(t−s)λeiλ�(z,z′,v)λn−1+k/2ϕ̃(λ)a(λ, z, z′, v)φm((t − s)λ) dv dλ

= (t−s)−n− k
2

∫ ∞

0

∫
Rk

ei
(
λ̄+ λ̄�(z,z′,v)

t−s

)
λ̄n−1+k/2ϕ̃

×
(

λ̄

t−s

)
a

(
λ̄

t−s
, y, y′, σ, v

)
φm(λ̄) dv dλ̄.

We observe that the overall exponential factor is invariant under the differential oper-
ator

L = −i

1 + �/(t − s)

∂

∂λ̄
.
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Note that its adjoint is Lt = −L , we apply LN to the exponential factors, and integrate
by parts N times. Since� ≥ 0 according to Lemma 4.1, and since we have an estimate
|(λ̄∂λ̄)

N (ϕ̃a)| ≤ CN , we gain a factor λ̄−1 ∼ 2−m each time, thus we estimate for
t − s > 1

(t − s)−n− k
2

∫ ∞

0

∫
Rk

ei λ̄
(
1+ �(z,z′,v)

t−s

)

LN
(
λ̄n−1+k/2ϕ

(
λ̄

t − s

)
a

(
λ̄

t − s
, y, y′, σ, v

)
φm(λ̄)

)
dv dλ̄

� (t − s)−n2−m(N−n−k/2)

Hence we prove (4.13) by summing over m ≥ 0, thus (4.10) follows. ��

4.3 Abstract Stirchartz estimate on Lorentz space

To prove the Strichartz estimate, we sharpen the semiclassical version of Strichartz
estimates [65, Proposition 4.1] to Lorentz space Lr ,2 by following abstract Keel–Tao’s
Strichartz estimates theorem.

Proposition 4.2 Let (X ,M, μ) be a σ -finite measured space and U : R →
B(L2(X ,M, μ)) be a weakly measurable map satisfying, for some constants C,
α ≥ 0, σ, h > 0,

‖U (t)‖L2→L2 ≤ C, t ∈ R,

‖U (t)U (s)∗ f ‖L∞ ≤ Ch−α(h + |t − s|)−σ ‖ f ‖L1 . (4.15)

Then for every pair q, r ∈ [2,∞] such that (q, r, σ ) 
= (2,∞, 1) and

1

q
+ σ

r
≤ σ

2
, q ≥ 2,

there exists a constant C̃ only depending on C, σ , q and r such that

( ∫
R

‖U (t)u0‖qLr,2dt
) 1

q ≤ C̃�(h)‖u0‖L2 (4.16)

where �(h) = h−(α+σ)( 12− 1
r )+ 1

q .

Proof For convenience, we write down the proof by repeating the argument in [65]
but with minor modification of the interpolation. If (q, r, σ ) 
= (2,∞, 1) is on the line
1
q + σ

r = σ
2 , we replace (|t − s|+h)−σ by |t − s|−σ and then we closely follow Keel–

Tao’s argument [38, Sections 3–7] to show (4.16). We remark here that the alternative
interpolation argument in [38, Section 6] shows the inequalities sharpened to Lorentz
space. So we only consider 1

q + σ
r < σ

2 . By the T T ∗ argument, it suffices to show
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∣∣∣ ∫∫ 〈U (s)∗ f (s),U (t)∗g(t)〉dsdt
∣∣∣ � �(h)2‖ f ‖

Lq′
t Lr′,2‖g‖Lq′

t Lr′,2 .

Using the bilinear interpolation of (4.15) in [38, Lemma 6.1], we have

〈U (s)∗ f (s),U (t)∗g(t)〉 ≤ Ch
−α
(
1− 2

r

)
(h + |t − s|)−σ

(
1− 2

r

)
‖ f ‖Lr′,2‖g‖Lr′,2 .

Therefore, we see by Hölder’s and Young’s inequalities for 1
q + σ

r < σ
2

∣∣∣ ∫∫ 〈U (s)∗ f (s),U (t)∗g(t)〉dsdt
∣∣∣

� h
−α
(
1− 2

r

) ∫∫
(h + |t − s|)−σ

(
1− 2

r

)
‖ f (t)‖Lr′,2‖g(s)‖Lr′,2dtds

� h
−α
(
1− 2

r

)
h

−σ
(
1− 2

r

)
+ 2

q ‖ f ‖
Lq′
t Lr′,2‖g‖Lq′

t Lr′,2 .

This proves (4.16). ��

4.4 Homogeneous Strichartz estimates

Now we show the homogeneous Strichartz estimate. Let u solve

∂2t u + L0u = 0, u(0) = u0, ∂t u(0) = u1, (4.17)

then for q, r ≥ 2, the square function estimates (2.34) and Minkowski’s inequality
show that

‖u‖Lq (R;Lr,2(X)) �
(∑
k∈Z

‖uk‖2Lq (R;Lr,2(X))

) 1
2

(4.18)

where uk is defined by
uk(t, ·) = ϕ(2−k

√
L0)u(t, ·), (4.19)

where ϕ is as in (2.32). Applying the operator ϕ(2−k√L0) to the wave equation, we
obtain

∂2t uk + L0uk = 0, uk(0) = fk(z), ∂t uk(0) = gk(z), (4.20)

where fk = ϕ(2−k√L0)u0 and gk = ϕ(2−k√L0)u1. Let U (t) = eit
√L0 , then we

write

uk(t, z) = U (t) +U (−t)

2
fk + U (t) −U (−t)

2i
√L0

gk . (4.21)

For our purpose, we need the following

Proposition 4.3 Let f = ϕ(2−k√L0) f for k ∈ Z and U (t) = eit
√L0 , we have

‖U (t) f ‖Lq
t L

r,2
z (R×X)

� 2ks‖ f ‖L2(X), (4.22)
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where the admissible pair (q, r) ∈ [2,∞]2 satisfies (1.3) and s = n( 12 − 1
r ) − 1

q .

Proof Let α = (n + 1)/2, σ = (n − 1)/2 and h = 2−k , by Proposition 4.1, we have
the estimates (4.15) for Uj,k(t). Then it follows from Proposition 4.2 that

‖Uj,k(t) f ‖Lq
t (R:Lr,2(X)) � 2k[n( 12− 1

r )− 1
q ]‖ f ‖L2(X).

On the other hand, we have

U (t) =
N∑
j=0

∑
k∈Z

Uj,k(t).

Let ϕ̃ ∈ C∞
0 (R\{0}) take values in [0, 1] such that ϕ̃ϕ = ϕ, hence we can write

U (t) f =
∑
j

∑
k∈Z

∫ ∞

0
eitλϕ(2−kλ)Q j (λ)dE√L0

(λ)ϕ̃(2−k
√
L0) f .

Notice f = ϕ(2−k√L0) f , then ϕ̃(2−k′√L0) f vanishes if |k − k′| � 1. Hence we
obtain

‖U (t) f ‖Lq
t (R:Lr,2(X)) � 2

k
[
n
(
1
2− 1

r

)
− 1

q

]
‖ f ‖L2(X).

Therefore, we prove this proposition. ��
By (4.18) and (6.2) and (4.22), we have that

‖u‖Lq (R;Lr,2(X))

�
(∑
k∈Z

(
22ks‖ϕ(2−k

√
L0)u0‖2L2(X)

+ 22k(s−1)‖ϕ(2−k
√
L0)u1‖2L2(X)

)) 1
2
.

By Littlewood-Paley theory again (2.34), we prove

‖u‖Lq (R;Lr,2(X)) � ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X).

4.5 Inhomogeneous Strichartz estimates

In this subsection, we derive the inhomogeneous Strichartz estimate from the homo-
geneous Strichartz estimate by using Christ–Kiselev lemma [17]. Recall the half-wave
operator U (t) = eit

√L0 : L2 → L2 and in last subsection we have just proved that

‖U (t)u0‖Lq
t L

r,2
z

� ‖u0‖Ḣ s (4.23)

holds for all (q, r, s) satisfying (1.3) and (1.4). Given s ∈ R and (q, r) ∈ �s , define
the operator Ts by

Ts : L2
z → Lq

t L
r,2
z , f �→ L− s

2
0 eit

√L0 f . (4.24)
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By the dual of Lorentz space in Proposition 2.3, we have

T∗
1−s : Lq̃ ′

t L r̃′,2
z → L2, F(τ, z) �→

∫
R

L
s−1
2

0 e−iτ
√L0F(τ )dτ, (4.25)

where 1 − s = n( 12 − 1
r̃ ) − 1

q̃ . It shows that

∥∥∥ ∫
R

U (t)U∗(τ )L− 1
2

0 F(τ )dτ

∥∥∥
Lq
t L

r,2
z

= ∥∥TsT∗
1−s F

∥∥
Lq
t L

r,2
z

� ‖F‖
Lq̃′
t L r̃′,2

z
.

Note that s = n( 12 − 1
r ) − 1

q and 1 − s = n( 12 − 1
r̃ ) − 1

q̃ , thus (q, r), (q̃, r̃) satisfy
(1.4). By the Christ-Kiselev lemma [17], we thus obtain for q > q̃ ′,

∥∥∥ ∫
τ<t

sin (t − τ)
√L0√L0

F(τ )dτ

∥∥∥
Lq
t L

r,2
z

� ‖F‖
Lq̃′
t L r̃′,2

z
. (4.26)

Notice that for all (q, r), (q̃, r̃) ∈ �s , one must have q > q̃ ′.
Therefore, we conclude that:

Proposition 4.4 For any s ∈ R, let (q, r), (q̃, r̃) ∈ �s and let u be the solution to

∂2t u + L0u = F, u(0) = u0, ∂t u(0) = u1, (4.27)

the following Strichartz estimates hold:

‖u(t, z)‖Lq (R;Lr,2(X)) ≤ C
(
‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X) + ‖F‖Lq̃′

(R;L r̃′,2(X))

)
.

(4.28)

Remark 4.3 This result concludes the full range set of global-in-time Strichartz esti-
mates both in homogenous and inhomogeneous inequalities when V = 0. Hence, by
embedding inequality of Lorentz space, we prove Theorem 1.1 when V = 0.

5 Inhomogeneous Strichartz estimates with q = q̃ = 2

In the next section,weneed the following result on the double endpoint inhomogeneous
Strichartz estimate.

Proposition 5.1 Let r = 2(n − 1)/(n − 3) and F = ϕ(2−k√L0)F, we have the
following inequality

∥∥∥ ∫
τ<t

sin (t − τ)
√L0√L0

F(τ )dτ

∥∥∥
L2
t L

r,2
z

� 2
k
[
2n
(
1
2− 1

r

)
−2
]
‖F‖

L2
t L

r′,2
z

. (5.1)

As a consequence, we have
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Corollary 5.1 Let r = 2(n − 1)/(n − 3), the following inequality holds

∥∥∥L− 1
n−1

0

∫
τ<t

sin (t − τ)
√L0√L0

F(τ )dτ

∥∥∥
L2
t L

r,2
z

� ‖F‖
L2
t L

r′,2
z

. (5.2)

Proof This is a consequence of the Littlewood–Paley theory in Lemma 2.6. ��
Remark 5.1 This inhomogeneous inequality is not included in the above estimate(4.28)
since if q = q̃ = 2, then at least, one of (q, r), (q̃, r̃) is not in �s . However, if we only
consider the inhomogeneous Strichartz estimate, we can obtain this endpoint estimate
(5.2) by following the argument of [38] and [35], although at this moment we only
have the microlocalized dispersive estimates (4.8)–(4.10). For more inhomogeneous
estimates, we refer the reader to [22,61] where the propagator satisfies the classical
dispersive estimate.

Proof Recall U (t) = eit
√L0 , then

sin (t − τ)
√L0√L0

= L− 1
2

0 (U (t)U (τ )∗ −U (−t)U (−τ)∗)/2i .

Hence to show (5.2), it suffices to show the bilinear form estimate

|Tk(F,G)| ≤ 2
2k
[
n
(
1
2− 1

r

)
− 1

2

]
‖F‖

L2
t L

r′,2
z

‖G‖
L2
t L

r′,2
z

, (5.3)

where r = 2(n − 1)/(n − 3) and Tk(F,G) is the bilinear form

Tk(F,G) =
∫∫

s<t
〈Uk(t)U

∗
k (τ )F(τ ),G(t)〉L2 dτdt (5.4)

where Uk = ∑
0≤ j≤N U j,k defined in (4.1).

On the other hand, we have proved that for all (q, r) ∈ �s with s = n( 12 − 1
r ) − 1

q

‖Uj,k(t) f ‖L2
t (R:Lr,2(X)) � 2

k
[
n
(
1
2− 1

r

)
− 1

q

]
‖ f ‖L2(X).

By duality, we have

∥∥∥ ∫
R

Uj,k(t)U
∗
j ′,k(τ )F(τ )dτ

∥∥∥
Lq
t L

r,2
z

� 2
2k
[
n
(
1
2− 1

r

)
− 1

q

]
‖F‖

Lq′
τ Lr′,2

z
,∀0 ≤ j, j ′ ≤ N .

In particular q = 2, r = 2(n−1)
n−3 , it follows that for all 0 ≤ j, j ′ ≤ N ,

∫∫
R2

〈Uj,k(t)U
∗
j ′,k(τ )F(τ ),G(t)〉L2 dτdt ≤ C2

2k
[
n
(
1
2− 1

r

)
− 1

2

]
‖F‖

L2
τ L

r′,2
z

‖G‖
L2
t L

r′,2
z

.

(5.5)
We need the following bilinear estimates
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Lemma 5.1 Let U j,k(t) be defined as in (4.2), then for each pair ( j, j ′) ∈
{0, 1, . . . , N }2 there exists a constant C such that, for each k, either

∫∫
τ<t

〈Uj,k(t)U
∗
j ′,k(τ )F(τ ),G(t)〉L2 dτdt ≤ C2

2k
[
n
(
1
2− 1

r

)
− 1

2

]
‖F‖

L2
τ L

r′,2
z

‖G‖
L2
t L

r′,2
z

,

(5.6)
or

∫∫
τ>t

〈Uj,k(t)U
∗
j ′,k(τ )F(τ ),G(t)〉L2 dτdt ≤ C2

2k
[
n
(
1
2− 1

r

)
− 1

2

]
‖F‖

L2
τ L

r′,2
z

‖G‖
L2
t L

r′,2
z

.

(5.7)

We postpone the proof for a moment. Hence for every pair ( j, j ′), we have by (5.6)
or subtracting (5.7) from (5.5)

∫∫
τ<t

〈Uj,k(t)U
∗
j ′,k(τ )F(τ ),G(t)〉L2 dτdt ≤ C2

2k
[
n
(
1
2− 1

r

)
− 1

2

]
‖F‖

L2
τ L

r′,2
z

‖G‖
L2
t L

r′,2
z

.

Finally by summing over all j and j ′, we obtain (5.3). Once we prove Lemma 5.1, we
complete the proof of Proposition 5.1. ��
Proof of Lemma 5.1 Without loss of generality, by scaling argument, we may assume
k = 0. In the case that ( j, j ′) ∈ Jnear or ( j, j ′) = ( j, 0) or ( j, j ′) = (0, j ′), we have
the dispersive estimate (4.8). We apply the argument of [38, Sections 4–7] to obtain
(5.6). If ( j, j ′) ∈ Jnon−out , we obtain (5.6) adapting the argument in [38] due to the
dispersive estimate (4.10) when τ < t . Finally, in the case that ( j, j ′) ∈ Jnon−inc,
we obtain (5.7) since we have the dispersive estimate (4.9) for τ > t . We mention
here that we have sharpened the inequality to the Lorentz norm by the interpolation
as remarked in [38, Sections 6 and 10]. ��

6 Strichartz estimates for wave equation withLV

In this section, we prove the Strichartz estimate for LV by using Proposition 4.4 and
establishing a local smoothing estimate.

6.1 A local-smoothing estimate

In this subsection,we prove a global-in-time local-smoothing estimate. It worths point-
ing out that we directly prove the local smoothing estimate avoiding the usual method
via resolvent estimate of LV .

Proposition 6.1 Let u be the solution of (1.1), then there exists a constant C indepen-
dent of (u0, u1) such that

‖r−βu(t, z)‖L2
t (R;L2(X)) ≤ C

(
‖u0‖

Ḣβ− 1
2 (X)

+ ‖u1‖
Ḣβ− 3

2 (X)

)
, (6.1)
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where z = (r , y) ∈ X, 1/2 < β < 1 + ν0 with ν0 > 0 such that ν20 is the smallest
eigenvalue of �h + V0(y) + (n − 2)2/4.

Remark 6.1 In [10], Burq et al. established the resolvent estimate and thus proved a
same estimate, called Morawetz estimate, in Euclidean space with β = 1.

Proof Wemodify the proof of the argument in our previous paper [66] for Schrödinger.
A key observation is that the norms in the both sides of the local smoothing are based
on L2-space which allows us to use orthogonality of eigenfunctions. Without loss of
generality, we assume u1 = 0. Since

u(t, z) = 1

2

(
eit

√LV + e−i t
√LV

)
u0, (6.2)

we only consider the estimate of eit
√LV u0. Recall

u0(z) =
∑

ν∈χ∞

d(ν)∑
�=1

aν,�(r)ϕν,�(y), bν,�(ρ) = (Hνaν,�)(ρ).

By (2.25) with F(ρ) = eitρ , we will estimate

eit
√LV u0 =

∑
ν∈χ∞

d(ν)∑
�=1

ϕν,�(θ)

∫ ∞

0
(rρ)−

n−2
2 Jν(rρ)eitρbν,�(ρ)ρn−1dρ. (6.3)

By the Plancherel theorem with respect to time t , it suffices to estimate

∫
X

∫ ∞

0

∣∣∣∣ ∑
ν∈χ∞

d(ν)∑
�=1

ϕν,�(θ)(rρ)−
n−2
2 Jν(rρ)bν,�(ρ)ρn−1

∣∣∣∣
2

dρr−2βdμ(z)

Using the orthogonality, one has

∫
Y

∣∣∣∣ ∑
ν∈χ∞

d(ν)∑
�=1

ϕν,�(θ)Jν(rρ)bν,�(ρ)

∣∣∣∣
2

dθ =
∑

ν∈χ∞

d(ν)∑
�=1

∣∣∣∣Jν(rρ)bν,�(ρ)

∣∣∣∣
2

then we see that the above is equal to

∑
ν∈χ∞

d(ν)∑
�=1

∫ ∞

0

∫ ∞

0

∣∣∣∣(rρ)−
n−2
2 Jν(rρ)bν,�(ρ)ρn−1

∣∣∣∣
2

dρrn−1−2βdr .

To estimate it, wemake a dyadic decomposition into the integral. Let χ be a smoothing
function supported in [1, 2], we see that the above is less than
∑

ν∈χ∞

d(ν)∑
�=1

∑
M∈2Z

∫ ∞

0

∫ ∞

0

∣∣(rρ)−
n−2
2 Jν(rρ)bν,�(ρ)ρn−1χ

( ρ

M

) ∣∣2dρrn−1−2βdr
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�
∑

ν∈χ∞

d(ν)∑
�=1

∑
M∈2Z

∑
R∈2Z

Mn−1+2β Rn−1−2β
∫ 2R

R

∫ ∞

0

∣∣(rρ)−
n−2
2 Jν(rρ)bν,�(Mρ)χ(ρ)

∣∣2dρdr .

(6.4)

Let

Qν,�(R, M) =
∫ 2R

R

∫ ∞

0

∣∣(rρ)−
n−2
2 Jν(rρ)bν,�(Mρ)χ(ρ)

∣∣2dρdr . (6.5)

Then we have the following inequality

Qν,�(R, M) �
{
R2ν−n+3M−n‖bν,�(ρ)χ

(
ρ
M

)
ρ

n−1
2 ‖2

L2 , R � 1;
R−(n−2)M−n‖bν,�(ρ)χ

(
ρ
M

)
ρ

n−1
2 ‖2

L2 , R � 1.
(6.6)

We postpone the proof for a moment. By (6.6) we turn to estimate

∑
ν∈χ∞

d(ν)∑
�=1

∑
M∈2Z

∫ ∞

0

∫ ∞

0

∣∣(rρ)−
n−2
2 Jν(rρ)bν,�(ρ)ρn−1χ

( ρ

M

) ∣∣2dρrn−1−2βdr

�
∑

ν∈χ∞

d(ν)∑
�=1

∑
M∈2Z

∑
R∈2Z

Mn−1+2β Rn−1−2βQν,�(R, M)

�
∑

ν∈χ∞

d(ν)∑
�=1

∑
M∈2Z

( ∑
R∈2Z,R�1

Mn−1+2βRn−1−2β R2ν−n+3M−n

+
∑

R∈2Z,R�1

Mn−1+2β Rn−1−2β R−(n−2)M−n
)
‖bν,�(ρ)χ

( ρ

M

)
ρ

n−1
2 ‖2L2

�
∑

ν∈χ∞

d(ν)∑
�=1

∑
M∈2Z

( ∑
R∈2Z,R�1

M2β−1R2(1+ν−β) +
∑

R∈2Z,R�1

M2β−1R1−2β
)

‖bν,�(ρ)χ
( ρ

M

)
ρ

n−1
2 ‖2L2 .

Note that if 1
2 < β < 1+ ν0 the summations in R converges and further converges to

‖u0‖2
Ḣβ− 1

2 (X)
. Hence we prove (6.1). Now we are left to prove (6.6). To this end, we

break it into two cases.

• Case 1: R � 1. Since ρ ∼ 1, thus rρ � 1. By (2.21), we obtain

Qν,�(R, M) �
∫ 2R

R

∫ ∞

0

∣∣∣ (rρ)ν(rρ)− n−2
2

2ν�
(
ν + 1

2

)
�
( 1
2

)bν,�(Mρ)χ(ρ)

∣∣∣2dρdr

� R2ν−n+3M−n‖bν,�(ρ)χ
( ρ

M

)
ρ

n−1
2 ‖2L2 .
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• Case 2: R � 1. Since ρ ∼ 1, thus rρ � 1. We estimate by (2.22) in Lemma 2.3

Qν,�(R, M) � R−(n−2)
∫ ∞

0

∣∣bν,�(Mρ)χ(ρ)
∣∣2 ∫ 2R

R

∣∣Jν(rρ)
∣∣2drdρ

� R−(n−2)
∫ ∞

0

∣∣bν,�(Mρ)χ(ρ)
∣∣2dρ

� R−(n−2)M−n‖bν,�(ρ)χ
( ρ

M

)
ρ

n−1
2 ‖2L2 .

Thus we prove (6.6). Therefore, we prove the local smoothing estimate.

��

Remark 6.2 By constructing the similar counterexample as in Sect. 6.3, we can see
the restriction β < 1 + ν0 is necessary for (6.1). However,

(i) if V = 0, then β < n
2 is required since the positive square root of the smallest

eigenvalue of �h + (n − 2)2/4 is greater than (n − 2)/2;

(ii) if the initial data, say u0, belongs to
⊕

ν∈χ∞,ν>k Hν ∩ Ḣβ− 1
2 (X) where k > ν0,

then one can relax the restriction on β to β < 1 + k.

6.2 The proof of Strichartz estimates

Let v be as in Proposition 4.4 with F = 0 and suppose that u solves the equation

∂2t u + LV u = 0, u(0) = u0, ∂t u(0) = u1,

we have by the Duhamel formula

u(t, z) = eit
√LV + e−i t

√LV

2
u0 + eit

√LV − e−i t
√LV

2i
√LV

u1

= v(t, z) +
∫ t

0

sin (t − τ)
√L0√L0

(V (z)u(τ, z))dτ. (6.7)

From the spectral theory on L2, we have the Strichartz estimate for (q, r) = (∞, 2).
By using the Sobolev inequality in Proposition 3.1, we obtain

‖u(t, z)‖L∞(R;Lr(X)) � ‖L
s
2
V u(t, z)‖L∞(R;L2(X))

� ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X)

where s = n(1/2 − 1/r) < 2 and 2 ≤ r < n/max{ n2 − 1 − ν0, 0}. Note that the
restriction s < 2 implies r < 2n/(n − 4) which is a artificial restriction, thus we can
get rid of this restriction by using an iterating argument as in Corollary 3.1.
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If ν0 > 1/(n − 1), then we have

2 ≤ r <

{
∞, n = 3;
n/max{ n2 − 1 − ν0, 0}, n ≥ 4,

(6.8)

which is corresponding to 0 < s < 1+ ν0. On the other hand, by Proposition 4.4 with
s ∈ R and Hölder’s inequality in Proposition 2.2, we show that

‖u(t, z)‖Lq (R;Lr(X))

� ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X) +
∥∥∥ ∫ t

0

sin (t − τ)
√L0√L0

(V (z)u(τ, z))dτ

∥∥∥
Lq (R;Lr (X))

Now our main task is to estimate

∥∥∥ ∫ t

0

sin (t − τ)
√L0√L0

(V (z)u(τ, z))dτ

∥∥∥
Lq (R;Lr (X))

. (6.9)

Note that if the set �s is not empty, we must have s ≥ 0. Indeed, if (q, r) ∈ �s , then

s = n
(1
2

− 1

r

)
− 1

q
≥ 1

2
(n + 1)

(1
2

− 1

r

)
≥ 0. (6.10)

Therefore, without loss of generality, we may assume s > 0.
Now we argue Theorem 1.1 by considering the following four cases.

Case I 0 < s < 1
2 + ν0, q > 2. Let 1

2 < β < n/2, by using Proposition 6.1 and
Remark 6.2, we define the operator

T : L2(X) → L2(R; L2(X)), T f = r−βeit
√L0L

1
2

(
1
2−β

)
0 f .

Thus from the proof of the local smoothing estimate, it follows that T is a bounded
operator. By the duality, we obtain that for its adjoint T ∗

T ∗ : L2(R; L2(X)) → L2, T ∗F =
∫

τ∈R
L

1
2

(
1
2−β

)
0 e−iτ

√L0r−βF(τ )dτ

which is also bounded. Define the operator

B : L2(R; L2(X)) → Lq(R; Lr (X)), BF =
∫

τ∈R
ei(t−τ)

√L0

√L0
r−βF(τ )dτ.
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Hence by the Strichartz estimate with s = 3
2 − β, one has

‖BF‖Lq (R;Lr(X))

= ∥∥eit√L0

∫
τ∈R

e−iτ
√L0

√L0
r−βF(τ )dτ

∥∥
Lq (R;Lr(X))

�
∥∥ ∫

τ∈R
e−iτ

√L0

√L0
r−βF(τ )dτ

∥∥
Ḣ

3
2−β

(X)
= ‖T ∗F‖L2 � ‖F‖L2(R;L2(X)). (6.11)

Now we estimate (6.9). Note that

sin(t − τ)
√
L0 = 1

2i

(
ei(t−τ)

√L0 − e−i(t−τ)
√L0

)
,

thus by (6.11), we have a minor modification of (6.9)

∥∥∥ ∫
R

sin (t − τ)
√L0√L0

(V (z)u(τ, z))dτ

∥∥∥
Lq (R;Lr(X))

� ‖B(rβV (z)u(τ, z))‖Lq (R;Lr(X)) � ‖rβ−2u(τ, z))‖L2(R;L2(X))

� ‖u0‖
Ḣ

3
2−β

(X)
+ ‖u1‖

Ḣ
1
2−β

(X)

whereweuse the local smoothing estimate inProposition 6.1 again in the last inequality
and we need 1 − ν0 < β < 3/2 such that 1/2 < 2 − β < 1 + ν0. Therefore the
above statement holds for all max{1/2, 1 − ν0} < β < 3/2. By the Christ-Kiselev
lemma [17], thus we have shown that for q > 2 and (q, r) ∈ �s,ν0 = �s with
s = 3

2 − β

(6.9) � ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X). (6.12)

We remark that we have proved all (q, r) ∈ �s with q > 2 and s such that 0 < s <

min{1, 1
2 + ν0}. Now we relax the restriction to s < 1

2 + ν0 when ν0 ≥ 1/2. For
1 ≤ s < 1

2 + ν0 and any (q, r) ∈ �s , then there exists a pair (q, r̃) ∈ �s̃ with s̃ = 1−
such that

‖u(t, z)‖Lq (R;Lr(X)) � ‖L(s−s̃)/2
V u(t, z)‖Lq (R;L r̃(X))

� ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X).

Indeed, the Sobolev inequality of Corollary 3.1 shows the first inequality and the above
result implies the second one.

Therefore we have proved all (q, r) ∈ �s and s such that 0 < s < 1
2 + ν0 except

the endpoint admissible pair with q = 2 when s ≥ s0 := (n+ 1)/2(n− 1) and n ≥ 4.
Case II 0 < ν0 ≤ 1

n−1 . In this case, if (q, r) ∈ �s,ν0 , then q > 2. Hence it suffices

to fix the gap 1
2 + ν0 ≤ s < 1 + ν0. To this end, we split the initial data into two

parts: one is projected to Hν with ν ≤ 1 + ν0 and the other is the remaining terms.
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Without loss of generality, we assume u1 = 0 and divide u0 = u0,l + u0,h where
u0,h = u0 − u0,l and

u0,l =
∑
ν∈A

d(ν)∑
�=1

aν,�(r)ϕν,�(y), A = {ν ∈ χ∞ : ν ≤ 1 + ν0}. (6.13)

For the part involving u0,h , we can repeat the argument of Case I. In this case, as in
Remark 6.2, we can use Proposition 6.1 with 1/2 < 2 − β < 2 + ν0. Thus we obtain
the Strichartz estimate on eit

√LV u0,h for �s,ν0 with s ∈ [ 12 + ν0, 1+ ν0). We remark
here that the set �s,ν0 is empty when s ≥ 1 + ν0.

Next we consider the Strichartz estimate for eit
√LV u0,l . We follow the argument

of [50] which treated a radial case. Recall

eit
√LV u0,l =

∑
ν∈A

d(ν)∑
�=1

ϕν,�(y)
∫ ∞

0
(rρ)−

n−2
2 Jν(rρ)eitρHν(aν,�)ρ

n−1dρ,

=
∑
ν∈A

d(ν)∑
�=1

ϕν,�(y)Hν[eitρHν(aν,�)](r). (6.14)

Since ν ∈ A, therefore there exists a constant Cν0 depending on ν0 such that

‖eit
√LV u0,l‖Lq (R;Lr(X)) ≤ Cν0

∑
ν∈A

d(ν)∑
�=1

∥∥∥Hν[eitρHν(aν,�)](r)
∥∥∥
Lq (R;Lr

rn−1dr
)
.

(6.15)
Let μ = (n − 2)/2 and recall HμHμ = I d, then it suffices to estimate

∑
ν∈A

d(ν)∑
�=1

∥∥∥(HνHμ)Hμ[eitρHμ(HμHν)(aν,�)](r)
∥∥∥
Lq (R;Lr

rn−1dr
)
. (6.16)

For our purpose, we recall [50, Theorem 3.1] which claimed that the operatorK0
μ,ν :=

HμHν is continuous on L p
rn−1dr

([0,∞)) if

max{((n − 2)/2 − μ)/n, 0} < 1/p < min{((n − 2)/2 + ν + 2)/n, 1}.

Notice μ = n−2
2 , on one hand, we have that both K0

μ,ν and K0
ν,μ are bounded in

L p
rn−1dr

([0,∞)) provided 1
p > 1

2 − 1+ν
n . One can check that 1

r > 1
2 − 1+ν0

n satisfies

the condition since ν ≥ ν0. On the other hand, Hμ[eitρHμ] is a classical half-wave
propagator in the radial case which has Strichartz estimate with (q, r) ∈ �s . In sum,
for (q, r) ∈ �s,ν0 , we have
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‖eit
√LV u0,l‖Lq (R;Lr(X))

≤ Cν0

∑
ν∈A

d(ν)∑
�=1

∥∥∥(HνHμ)Hμ[eitρHμ(HμHν)(aν,�)](r)
∥∥∥
Lq (R;Lr

rn−1dr
)

≤ Cν0

∑
ν∈A

d(ν)∑
�=1

∥∥(HμHν)(aν,�)](r)
∥∥
Ḣ s ≤ Cν0

⎛
⎝∑

ν∈A

d(ν)∑
�=1

∥∥aν,�(r)
∥∥2
Ḣ s

⎞
⎠

1/2

≤ Cν0‖u0,l‖Ḣ s . (6.17)

In the second inequality, we use [50, Theorem 3.8].
Case III ν0 > 1

n−1 , q = 2 and n ≥ 4. In this case, we aim to prove

‖u(t, z)‖
L2(R;L

2(n−1)
n−3 (X))

� ‖u0‖
Ḣ

n+1
2(n−1) (X)

+ ‖u1‖
Ḣ

n+1
2(n−1) −1

(X)
. (6.18)

Before proving this, we first prove

‖L− 1
n−1

0 u(t, z)‖
L2(R;L

2(n−1)
n−3 (X))

� ‖u0‖
Ḣ

n−3
2(n−1) (X)

+ ‖u1‖
Ḣ

n−3
2(n−1) −1

(X)
. (6.19)

Indeed, it follows from Corollary 5.1 and Proposition 6.1 with β = (n − 2)/(n − 1)
(n ≥ 4) that

∥∥∥L− 1
n−1

0

∫ t

0

sin (t − τ)
√L0√L0

(V (z)u(τ, z))dτ

∥∥∥
L2

(
R;L

2(n−1)
n−3 (X)

)

� ‖V (z)u(τ, z)‖
L2
t L

2(n−1)
n+1 ,2

z

� ‖r− n−2
n−1 u(τ, z)‖L2

t L2
z

� ‖u0‖
Ḣ

n−3
2(n−1) (X)

+ ‖u1‖
Ḣ

n−3
2(n−1) −1

(X)
.

Hence this shows (6.19). On the other hand, from Proposition 3.2, we have shown that
the operator

L
1

n−1
0 L− 1

n−1
V : L 2(n−1)

n+1 (X) → L
2(n−1)
n+1 (X), ν0 > 1/(n − 1)

is bounded. Note that the operators LV and L0 are self-adjoint, by dual argument, we
see the boundedness of the operator

L− 1
n−1

V L
1

n−1
0 : L 2(n−1)

n−3 (X) → L
2(n−1)
n−3 (X).
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Therefore we obtain

‖u(t, z)‖
L2(R;L

2(n−1)
n−3 (X))

= ‖L− 1
n−1

V L
1

n−1
0 L− 1

n−1
0 L

1
n−1
V u(t, z)‖

L2

(
R;L

2(n−1)
n−3 (X)

)

� ‖L
1

n−1
V u0‖

Ḣ
n−3

2(n−1) (X)
+ ‖L

1
n−1
V u1‖

Ḣ
n−3

2(n−1) −1
(X)

� ‖u0‖
Ḣ

n+1
2(n−1) (X)

+ ‖u1‖
Ḣ

n+1
2(n−1) −1

(X)
.

This gives (6.18).
Let s0 = (n + 1)/2(n − 1) and apply the operator L(s−s0)/2

V with s0 ≤ s < 1
2 + ν0

to the wave equation, thus by using the above Strichartz estimate, we obtain

‖L(s−s0)/2
V u(t, z)‖

L2

(
R;L

2(n−1)
n−3 (X)

) � ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X).

Consider (2, 2n
n−2s−1 ) ∈ �s with s0 ≤ s < 1

2 + ν0. One can verify that 0 ≤ s − s0 <

min{2, 1+ν0} and 2n
n−2s−1 satisfies that (3.21). By the Sobolev inequality in Corollary

3.1, we show

‖u(t, z)‖
L2(R;L 2n

n−2s−1 (X))
� ‖L(s−s0)/2

V u(t, z)‖
L2

(
R;L

2(n−1)
n−3 (X)

)

� ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X).

In sum, under the condition ν0 > 1/(n − 1), we have proved the Strichartz estimate
(1.2) with F = 0 for all (q, r) ∈ �s with s ∈ [0, 1/2 + ν0).

Case VI: ν0 > 1
n−1 and (q, r) ∈ �s,ν0 with s ∈ [1/2 + ν0, 1 + ν0). For s ∈

[1/2 + ν0, 1 + ν0) and (q, r) ∈ �s ∩ {(q, r) : 1
r > 1

2 − 1+ν0
n }, as using the Sobolev

inequality of Corollary 3.1 as before, we have that there exists a pair (q, r̃) ∈ �s̃ with
s̃ = (1/2 + ν0)− such that

‖u(t, z)‖Lq (R;Lr(X)) � ‖L(s−s̃)/2
V u(t, z)‖Lq (R;L r̃(X))

� ‖u0‖Ḣ s (X) + ‖u1‖Ḣ s−1(X).

Thus we prove the homogeneous Strichartz estimate stated in Theorem 1.1. We show
the inhomogeneous Strichartz estimate by using T T ∗-method as in Sect. 4.5. Therefore
we complete the proof of the second conclusion in Theorem 1.1.

6.3 The sharpness of the restriction (1.5)

In this subsection, we construct a counterexample to claim the restriction (1.5) is
necessary for Theorem 1.1.

Proposition 6.2 (Counterexample). If (q, r) ∈ �s but (q, r) /∈ {(q, r) : 1
r > 1

2− 1+ν0
n }.

Then the Strichartz estimate possibly fails.
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Proof Assume u0 = (Hν0χ)(s) is independent of y, where χ ∈ C∞
c ([1, 2]) is valued

in [0, 1]. Due to the compact support of χ and the unitarity of the Hankel transform
Hν0 on L2, we obtain ‖u0‖Ḣ s ≤ C . Now we conclude that

‖eit
√LV u0‖Lq (R;Lr(X)) = ∞ (6.20)

when 1
r ≤ 1

2 − 1+ν0
n . We write that

eit
√LV u0 =

∫ ∞

0
(sρ)−

n−2
2 Jν0(sρ)eitρ(Hν0u0)(ρ)ρn−1dρ

=
∫ ∞

0
(sρ)−

n−2
2 Jν0(sρ)eitρχ(ρ)ρn−1dρ. (6.21)

We recall the behavior of Jν(r) as r → 0+. For the complex number ν with Re(ν) >

−1/2, see [27, Section B.6], then we have that

Jν(r) = rν

2ν�(ν + 1)
+ Sν(r) (6.22)

where

Sν(r) = (r/2)ν

�
(
ν + 1

2

)
�(1/2)

∫ 1

−1
(eisr − 1)(1 − s2)(2ν−1)/2ds (6.23)

satisfies

|Sν(r)| ≤ 2−ReνrReν+1

(Reν + 1)
∣∣� (ν + 1

2

)∣∣� ( 12 ) . (6.24)

Now we compute for any 0 < ε � 1

‖eit
√LV u0‖Lq (R;Lr) =

∥∥∥∥
∫ ∞

0
(sρ)−

n−2
2 Jν0 (sρ)eitρχ(ρ)ρn−1dρ

∥∥∥∥
Lq (R;Lr)

≥
∥∥∥∥
∫ ∞

0
(sρ)−

n−2
2 Jν0 (sρ)eitρχ(ρ)ρn−1dρ

∥∥∥∥
Lq ([0,1/2];Lr

sn−1ds
[ε,1])

≥c

∥∥∥∥
∫ ∞

0
(sρ)−

n−2
2 (sρ)ν0eitρχ(ρ)ρn−1dρ

∥∥∥∥
Lq ([0,1/2];Lr

sn−1ds
[ε,1])

−
∥∥∥∥
∫ ∞

0
(sρ)−

n−2
2 Sν0 (sρ)eitρχ(ρ)ρn−1dρ

∥∥∥∥
Lq ([0,1/2];Lr

sn−1ds
[ε,1])

.

We first observe that by (6.24)
∥∥∥∥
∫ ∞

0
(sρ)−

n−2
2 Sν0 (sρ)eitρχ(ρ)ρn−1dρ

∥∥∥∥
Lq ([0,1/2];Lr

sn−1ds
[ε,1])

≤ C

∥∥∥∥
∫ ∞

0
(sρ)−

n−2
2 (sρ)ν0+1χ(ρ)ρn−1dρ

∥∥∥∥
Lq ([0,1/2];Lr

sn−1ds
[ε,1])

≤ C max
{
εν0+1− n−2

2 + n
r , 1

}
. (6.25)
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Next we estimate the lower boundedness

∥∥∥∥
∫ ∞

0
(sρ)−

n−2
2 (sρ)ν0eitρχ(ρ)ρn−1dρ

∥∥∥∥
Lq ([0,1/4];Lr

sn−1ds
[ε,1])

= Cν0

(∫ 1
4

0

(∫ 1

ε

∣∣∣∣
∫ ∞

0
(sρ)−

n−2
2 (sρ)ν0eitρχ(ρ)ρn−1dρ

∣∣∣∣
r

sn−1ds

)q/r

dt

)1/q

≥ Cν0

(∫ 1
4

0

∣∣∣∣
∫ ∞

0
ρ− n−2

2 ρν0eitρχ(ρ)ρn−1dρ

∣∣∣∣
q

dt

)1/q

×
{

εν0− n−2
2 + n

r if 1
r < 1

2 − ν0+1
n

ln ε if 1
r = 1

2 − ν0+1
n

≥ c

{
εν0− n−2

2 + n
r if 1

r < 1
2 − ν0+1

n ;
ln ε if 1

r = 1
2 − ν0+1

n

where we have used the fact that cos(ρt) ≥ 1/2 for t ∈ [0, 1/4] and ρ ∈ [1, 2], and
∣∣∣∣
∫ ∞

0
ρ− n−2

2 ρν0eitρχ(ρ)ρn−1dρ

∣∣∣∣ ≥ 1

2

∫ ∞

0
ρ− n−2

2 ρν0χ(ρ)ρn−1dρ ≥ c. (6.26)

Hence, we obtain if 1
r < 1

2 − ν0+1
n

‖eit
√LV u0‖Lq (R;Lr) ≥ cεν0− n−2

2 + n
r − C max

{
εν0+1− n−2

2 + n
r , 1
}

≥ cεν0− n−2
2 + n

r → +∞ as ε → 0 (6.27)

And when 1
r = 1

2 − ν0+1
n , we get

‖eit
√LV u0‖Lq (R;Lr) ≥ c ln ε − C → +∞ as ε → 0.

��

7 Applications: well-posedness and scattering theory

In this section, we prove Theorem 1.2 by using the Strichartz estimates established
in Theorem 1.1. We follow the standard Banach fixed point argument to prove this
result. For any small constant ε > 0, let I = [0, T ), there exists T > 0 such that

BI :=
{
u ∈ C(I , Ḣ1) : ‖(u, ∂t u)‖Ḣ1×L2 ≤ 2C‖(u0, u1)‖Ḣ1×L2 , ‖u‖Lq

t Lr
z(I×X) ≤ 2Cε

}
.
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To this end, we consider the map

�(u(t)) = K̇ (t)u0 + K (t)u1 +
∫ t

0
K (t − s)(|u| 4

n−2 u(s))ds (7.1)

on the complete metric space BI with the metric d(u, v) = ∥∥u − v
∥∥
Lq
t Lr

z(I×X)
and

where the pair (q, r) is given by (1.10). We can check that (q, r) ∈ �1. On the other
hand, we observe that if the initial data has small enough size δ, then by Strichartz
estimate ∥∥K̇ (t)u0 + K (t)u1

∥∥
Lq
t Lr

z(I×X)
≤ Cε (7.2)

holds for T = ∞; if not, the inequality holds for some small T > 0 by the dominated
convergence theorem. We need to prove that the operator � defined by (7.1) is well-
defined on BI and is a contraction map under the metric d for I .

Let u ∈ BI with 0 < ε � 1. We first consider 3 ≤ n ≤ 6. Then, we have by
Strichartz estimate

‖�(u(t))‖
L(n+2)/(n−2)
t L2(n+2)/(n−2)

z (I×X)

≤ ∥∥K̇ (t)u0 + K (t)u1
∥∥
L(n+2)/(n−2)
t L2(n+2)/(n−2)

z (I×X)
+ C

∥∥|u| 4
n−2 u

∥∥
L1
t L2

z (I×X)

≤ Cε + ‖u‖
n+2
n−2

L(n+2)/(n−2)
t L2(n+2)/(n−2)

z (I×X)
≤ 2Cε,

and

sup
t∈I
∥∥(�(u), ∂t�(u))

∥∥
Ḣ1×L2 ≤C

∥∥(u0, u1)‖Ḣ1×L2 + C
∥∥|u| 4

n−2 u
∥∥
L1
t L2

z (I×X)

≤2C
∥∥(u0, u1)‖Ḣ1×L2 .

Next we consider the case n ≥ 7. By using the Strichartz estimate again, we show

‖�(u(t))‖
L2
t L

2n/(n−3)
z (I×X)

≤ ∥∥K̇ (t)u0 + K (t)u1
∥∥
L2
t L

2n/(n−3)
z

+ C
∥∥|u| 4

n−2 u
∥∥
L2(n−2)/(n+2)
t L2n(n−2)/(n−3)(n+2)

z

≤ Cε + ‖u‖
n+2
n−2

L2
t L

2n/(n−3)
z (I×X)

≤ 2Cε,

and

sup
t∈I
∥∥(�(u), ∂t�(u))

∥∥
Ḣ1×L2

≤ C
∥∥(u0, u1)‖Ḣ1×L2 + C

∥∥|u| 4
n−2 u

∥∥
L2(n−2)/(n+2)
t L2n(n−2)/(n−3)(n+2)

z (I×X)

≤ 2C
∥∥(u0, u1)‖Ḣ1×L2 .
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Hence for n ≥ 3we have�(u) ∈ BI . On the other hand, forω1, ω2 ∈ BI , by Strichartz
estimate and choosing ε sufficiently small, we obtain for 3 ≤ n ≤ 6

d
(
�(w1),�(w2)

)
≤ C

∥∥|w1| 4
n−2 w1 − |w2| 4

n−2 w2
∥∥
L1
t L2

z (I×X)

≤ C‖w1 − w2‖L(n+2)/(n−2)
t L2(n+2)/(n−2)

z(‖w1‖
4

n−2

L(n+2)/(n−2)
t L2(n+2)/(n−2)

z
+ ‖w2‖

4
n−2

L(n+2)/(n−2)
t L2(n+2)/(n−2)

z

)
≤ C̃ε

4
n−2 d(w1, w2) ≤ 1

2d(w1, w2),

and for n ≥ 7

d
(
�(w1),�(w2)

)
≤ C

∥∥|w1| 4
n−2 w1 − |w2| 4

n−2 w2
∥∥
L2(n−2)/(n+2)
t L2n(n−2)/(n−3)(n+2)

z

≤ C‖w1 − w2‖L2
t L

2n/(n−3)
z

(‖w1‖
4

n−2

L2
t L

2n/(n−3)
z

+ ‖w2‖
4

n−2

L2
t L

2n/(n−3)
z

)
≤ C̃ε

4
n−2 d(w1, w2) ≤ 1

2d(w1, w2),

The standard fixed point argument gives a unique solution u of (1.6) on I × X which
satisfies the bound (1.9). Therefore if δ is small enough, we obtain the global solution;
otherwise, we have the local existence.

Next, we turn to show the scattering result. We just prove that u scatters at +∞,
the proof for the scattering at −∞ is similar. Using Duhaml’s formula, the solution
with initial data (u(0), u̇(0)) = (u0, u1) ∈ Ḣ1 × L2 of (1.6) can be written as

(
u(t)

u̇(t)

)
= V0(t)

(
u0
u1

)
−
∫ t

0
V0(t − s)

(
0

F(u(s))

)
ds, (7.3)

where V0 is defined by (1.12). Denote the scattering data (u+
0 , u+

1 ) by

(
u+
0

u+
1

)
=
(
u0
u1

)
−
∫ ∞

0
V0(−s)

(
0

F(u(s))

)
ds.

Then, by Strichartz estimate, we can obtain for 3 ≤ n ≤ 6

∥∥∥(u
u̇

)
− V0(t)

(
u+
0

u+
1

)∥∥∥
Ḣ1×L2

=
∥∥∥ ∫ ∞

t
V0(t − s)

(
0

F(u(s))

)
ds
∥∥∥
Ḣ1×L2

�
∥∥∥(|u| 4

n−2

)
u
∥∥∥
L1
t L2

z ((t,∞)×X)
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� ‖u‖
4

n−2

L(n+2)/(n−2)
t L2(n+2)/(n−2)

z ((t,∞)×X)

→ 0, as t → ∞.

and for n ≥ 7

∥∥∥(u
u̇

)
− V0(t)

(
u+
0

u+
1

)∥∥∥
Ḣ1×L2

=
∥∥∥ ∫ ∞

t
V0(t − s)

(
0

F(u(s))

)
ds
∥∥∥
Ḣ1×L2

�
∥∥∥(|u| 4

n−2

)
u
∥∥∥
L2(n−2)/(n+2)
t L2n(n−2)/(n−3)(n+2)

z

� ‖u‖
4

n−2

L2
t L

2n/(n−3)
z ((t,∞)×X)

→ 0, as t → ∞.

Thus we prove that u scatters.
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