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SUMMARY  

 

Background: Epidemiological studies have linked lifestyle, cardiometabolic, 

reproductive, developmental and inflammatory factors with colorectal cancer (CRC) 

risk. However, it is unclear which specific factors influence risk and the strength of 

effects.  

 

Methods: Under a random-effects model we examined the relationship between 39 

potentially modifiable risk factors and CRC using genetic variants as instruments 

using two-sample Mendelian randomisation (MR), thereby limiting bias from 

confounding and reverse causation. Using genetic data on 26,397 CRC patients and 

41,481 controls, we calculated odds ratios of CRC risk per genetically predicted 

standard deviation unit increase in each putative risk factor (ORSD). Evidence of MR 

assumption violation was sought using MR-Egger regression. A Bonferroni-corrected 

threshold of P=1.3x10-3 was considered significant, and P<0.05 considered suggestive 

of an association. 

 

Findings: No putative risk factors were significantly associated with CRC risk after 

correction for multiple testing. Suggestive associations were however seen between 

genetically predicted body fat percentage (ORSD=1.14, 95% confidence interval 

[CI]=1.03-1.25, P=0.0086), BMI (ORSD=1.09, 95% CI=1.01-1.17, P=0.023), waist 

circumference (ORSD=1.13, 95% CI=1.02-1.26, P=0.018) and basal metabolic rate 

(ORSD=1.10, 95% CI=1.03-1.18, P=0.0079) with higher CRC risk. Low-density 

lipoprotein cholesterol level (ORSD=1.14, 95% CI=1.04-1.25, P=0.0056) and circulating 

serum iron (ORSD=1.17, 95% CI=1.00-1.36, P=0.049) also showed suggestive 

associations with increased CRC risk. A suggestive association was observed between 

serum vitamin B12 concentration and increased CRC risk (ORSD=1.21, 95% CI=1.04–

1.42, P=0.016), although potential pleiotropy amongst genetic variants used as 

instruments for this factor constrains the finding. Low blood selenium concentration 

also showed suggestive association with CRC (ORSD=0.85, 95% CI=0.75-0.96, 

P=0.0078), albeit based on a single variant. CRC risk was not associated with any 
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reproductive factor, serum calcium or circulating 25-hydroxyvitamin D 

concentrations.  

 

Interpretation: This analysis highlights a number of modifiable targets for primary 

prevention of CRC, including lifestyle, obesity and cardiometabolic factors that 

should inform public health policy.   
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RESEARCH IN CONTEXT 

 

Evidence before this study: We searched PubMed to identify dietary, lifestyle, 

obesity-related, inflammatory, reproductive and developmental factors that had 

been assessed in observational epidemiological studies potentially influencing 

colorectal cancer (CRC) risk. Studies provide strong evidence for body mass index 

(BMI) and hypercholesterolaemia being associated with increased CRC risk. For most 

other factors there is inconclusive evidence from conventional observational studies 

to reliably establish specific associations. 

 

Added value of this study: Mendelian randomisation exploits germline genetic 

variants as instrumental variables for putative risk factors. Because these genetic 

variants are randomly assorted at conception they are not influenced by reverse 

causation and so can provide evidence for causal relationships. We used genetic 

variants for 39 potentially modifiable CRC risk factors in 26,397 CRC patients and 

41,481 controls. There was suggestive evidence for associations of serum vitamin 

B12, iron and selenium concentrations with CRC. In addition to providing suggestive 

evidence for a causal relationship between higher BMI and increased CRC risk, we 

found evidence for an association between genetically predicted low-density 

lipoprotein with risk of CRC. No associations with CRC risk were identified for any 

reproductive factor. 

 

Implications of all the available evidence: These data provide two main findings: 

Firstly, genetic corroboration of causal relationships between higher BMI and 

hypercholesterolaemia and elevated CRC risk. Secondly, findings support the 

assertion that vitamin B12 supplementation should be limited to individuals with a 

known indication, such as proven deficiency. Our analysis highlights important 

targets for primary prevention of CRC, including lifestyle, obesity and 

cardiometabolic factors. 
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INTRODUCTION 

 

Colorectal cancer (CRC) is the third most common diagnosed malignancy and the 

second leading cause of cancer-related death in the world, accounting for around 1.8 

million new cases and 860,000 deaths in 2018(1). Based on current demographic 

trajectories, it is projected that the global burden of CRC will increase by 72% to over 

3 million new cases and by 82% to 1.6 million cancer deaths annually by 2040(1). 

Differences in CRC incidence between countries and migration studies have 

implicated dietary and other lifestyle factors in CRC development(2). In view of this 

there is increasing interest in developing public health programs to reduce CRC 

incidence by targeting modifiable risk factors. 

 

The World Cancer Research Fund (WCRF) and The American Institute for Cancer 

Research (AICR) have concluded that there is convincing evidence for body mass 

index (BMI) and alcohol intake being causally associated with increased CRC risk, and 

physical activity being causally associated with reduced CRC risk(3). Furthermore, it 

is probable that red meat intake is causally associated with increased CRC risk, 

whereas dietary fibre, dairy products and calcium supplements are causally 

associated with a lower risk(3). For most other factors there is inconclusive evidence 

from these conventional observational studies to reliably establish associations(3). 

 

Much of the available evidence for a causal relationship between potentially 

modifiable factors and CRC risk is derived from observational studies(3), which are 

susceptible to confounding bias and reverse causation(4). Moreover, data from 

randomised trials tend to be scarce and often inconclusive(5, 6). Finally, establishing 

which specific components of risk factors such as diet are important is notoriously 

problematic in conventional observational epidemiological studies(7).  

 

Mendelian randomisation (MR) is an analytical approach, whereby germline genetic 

variants are used as proxies, or instrumental variables, for putative risk factors(8). 

Because these genetic variants are randomly assorted at conception they are not 

influenced by reverse causation, and in the absence of pleiotropy (i.e. genetic 



 

 7 

variants being associated with the disease through alternative pathways) they can 

provide unconfounded estimates of disease risk(8). Since MR-based studies can 

circumvent many limitations of conventional observational studies the methodology 

is increasingly being employed as an effective strategy to examine the potential 

impact of interventions on disease risk.  

 

We have investigated potentially causal and modifiable CRC risk factors using a two-

sample MR framework (Supplementary Figure 1) whereby genetic variants 

associated with relevant risk factors as instrumental variables were first identified 

from genome-wide association studies (GWAS). We then evaluated the association 

of these instrumental variables with CRC in a large GWAS comprising 26,397 cases of 

CRC and 41,481 control subjects(9). 
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METHODS 

 

Identification of potentially modifiable risk factors 

As well as evaluating dietary, lifestyle, obesity-related, inflammatory, reproductive 

and developmental factors that had been the subject of the report by the WCRF and 

AICR(3), we also searched PubMed to identify additional modifiable CRC risk factors 

that have been reviewed in published epidemiological meta-analyses or MR analyses 

(Supplementary Table 1; Supplementary Information).  

 

Genetic instruments for putative risk factors  

Single nucleotide polymorphisms (SNPs) associated with putative risk factor traits 

suitable for use in MR analysis were identified from the largest GWAS or meta-

analysis of each trait conducted to date (Table 1; Supplementary Table 2; 

Supplementary Information). Traits were only considered if the proportion of 

variance explained (PVE) by the associated SNPs was >0.1%. PVE estimates were 

either obtained from the publication or computed directly from the association 

statistics (Table 1)(10). Suitable genetic instruments were not available for many risk 

factors, such as physical activity, dietary patterns and vitamin C intake, precluding 

their inclusion in this study (Supplementary Table 1). We considered only 

continuous traits, as analysis of binary traits (such as disease status) with binary 

outcomes in two-sample MR frameworks can result in inaccurate causal 

estimates(11). Only SNPs associated with each trait at P<5×10−8 in GWAS of 

European populations with a minor allele frequency >0.01 were considered as 

potential instruments. To mitigate against co-linearity between SNPs, which can bias 

causal effect estimates, we used MR-Base to exclude correlated SNPs at a linkage 

disequilibrium threshold of r2>0.01, retaining those SNPs with the strongest effect on 

the associated trait(12).  

 

Colorectal cancer genotyping data  

To examine the association of each genetic instrument with CRC risk, we used 

summary CRC effect estimates and corresponding standard errors (SEs) from a 

recent meta-analysis of 15 CRC GWAS(9). After imputation, this meta-analysis 
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related >10 million genetic variants to CRC in individuals of European ancestry. UK 

BioBank data were used to obtain genetic instruments for age at menarche, basal 

metabolic rate, birth weight, body fat percentage and waist circumference, as well 

as in one of the CRC GWAS meta-analysed by Law et al.(9). To avoid sample overlap 

biasing this two-sample MR analysis(13) we therefore excluded the UK BioBank CRC 

GWAS and recomputed association statistics using the remaining 14 CRC GWAS 

(Supplementary Table 3) with an inverse variance weighted (IVW) fixed-effects 

model, as described by Law et al.(9).  After exclusion of the UK BioBank CRC GWAS, 

the meta-analysis comprised 26,397 patients and 41,481 controls. SNPs with poor 

imputation quality (i.e. info score <0.8) were not considered in the MR analysis. As 

some potentially modifiable reproductive risk factors are female-specific, where sex 

data were available we further computed CRC association statistics using only 7,952 

female cases and 11,680 female controls. We used MR-Base to harmonize SNPs to 

ensure that the effect estimates of each SNP on each trait and CRC risk 

corresponded to the same allele(12). Effect estimates for the association of each 

trait SNP with CRC risk are shown in Supplementary Table 2. For vitamins, positive 

beta values indicate that the effect allele is associated with increased serum 

concentration. 

 

Statistical analysis 

The MR methodology is predicated on the assumption that genetic variants used as 

instruments for a risk factor are associated with the risk factor and not with a 

confounder or alternative causal pathway (Figure 1). Additionally, to accurately 

estimate the size of the causal effect, the associations depicted in Figure 1 must be 

linear and unaffected by statistical interactions(14). We estimated causal effects for 

each SNP using the Wald ratio (Supplementary Figure 2). For traits with multiple 

SNPs available as instruments, causal effects were estimated using the random-

effects maximum likelihood estimation (MLE-RE) method(15). To assess the 

robustness of our findings, we also obtained weighted median estimates (WME)(16) 

and mode-based estimates (MBE)(17). We used the MR-Egger regression approach 

to evaluate the extent to which directional pleiotropy may affect the causal 

estimates(18). Finally, we conducted leave-one-out analysis using the multiplicative 
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random-effects inverse variance weighted method(12) to examine the impact of 

outlying and pleiotropic SNPs on causal estimates (Supplementary Table 4). I2 

statistics were computed to estimate the proportion of variance across SNPs due to 

heterogeneity (Figure 2; Supplementary Table 5). Results are reported as odds 

ratios (ORSD) and 95% confidence intervals (CIs) per genetically predicted standard 

deviation (SD) unit increase in each putative risk factor. To address the issue of 

multiple testing, we applied a Bonferroni-corrected significance threshold computed 

as 0.0013 (i.e. 0.05/39 putative risk factors). 0.0013<P<0.05 was considered as 

suggestive of a potential association. The power of MR to demonstrate a causal 

effect depends on the proportion of variance in the risk factor explained by the 

genetic variants used as instruments, and we therefore estimated study power at an 

alpha of 0.05 for each risk factor a priori (Table 1)(19). Statistical analyses were 

performed using R v3.4.0 and MR analyses were performed using MR-Base(12). 

 

Role of the funding sources 

Funders had no role in study design, in the collection, analysis and interpretation of 

data, or in writing the report. The corresponding author had full access to all of the 

data and the final responsibility to submit for publication.  
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RESULTS 

 

Diet and lifestyle factors 

Under a MLE-RE model, a suggestive association was seen between genetically 

predicted serum vitamin B12 concentration and higher CRC risk (ORSD=1.21, 95% 

CI=1.04–1.42, P=0.016), however substantial heterogeneity exists between the SNPs 

used as IVs (I2=79.1). Leave-one-out analysis identified SNP rs602662 at a known CRC 

risk locus as having a strong influence on the causal estimate (Supplementary Table 

4)(9). Expression quantitative trait loci analysis has indicated that variation at this 

potentially pleiotropic locus may influence CRC risk through FUT2 and interactions 

with intestinal bacteria and viruses(9). There was a suggestive association between 

genetically predicted greater serum iron concentration and higher CRC risk 

(ORSD=1.17, 95% CI=1.00-1.36, P=0.049), with no outlying genetic variant identified 

(Supplementary Figure 2). There was also a suggestive association between higher 

serum selenium concentration and lower CRC risk (ORSD=0.85, 95% CI=0.75-0.96, 

P=0.0078) albeit based on only one SNP. Genetically predicted alcohol and coffee 

consumption, and blood methionine, zinc, 25-hydroxyvitamin D, carotenoids, 

calcium and vitamins A (retinol), B6 and E concentrations, showed no evidence for 

association with CRC risk (Figure 2). Causal effect estimates for serum vitamin B12 

concentration was similar in sensitivity analyses using the WME and MBE methods 

(Supplementary Table 5). MR-Egger regression showed no evidence of directional 

pleiotropy in the analyses of vitamin B12 or serum iron concentration 

(Supplementary Table 6). The causal effects estimated by MR-Egger were non-

significant for vitamin B12 (Supplementary Table 5), possibly as a result of the 

reduced power of MR-Egger to detect causal effects when compared to other MR 

methodologies(18).  

 

Fatty acid profile and metabolism 

Fatty acid (FA) metabolism involves sequential enzymatic conversions 

(Supplementary Figure 3), and SNPs influencing the metabolism of one FA are 

therefore often associated with circulating concentrations of multiple FAs(20). 

Additionally, many genes involved in FA desaturation and elongation form parts of 
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numerous FA pathways, and hence influence circulating concentrations of multiple 

classes of FA (Supplementary Figure 3). To limit bias introduced by such vertical and 

horizontal pleiotropy, we restricted our analysis to classes of FAs (such as omega-6 

polyunsaturated FAs [PUFAs] and monounsaturated FAs [MUFAs]), rather than 

individual fatty acids, and excluded SNPs known to be associated with multiple FA 

classes (Supplementary Table 7). In this restricted analysis, no association were 

observed for omega-6 PUFA or MUFA concentrations, or for blood levels of the fatty 

acid transport molecule carnitine (Figure 2). After removal of potentially pleiotropic 

SNPs, only a single SNP was suitable for use as an instrumental variable for MUFA 

concentration, prohibiting sensitivity analysis using WME and MBE approaches.  

 

Cardiometabolic and inflammatory factors 

Using information on all genetic variants associated with cardiometabolic factors, we 

observed that measures of obesity and hyperlipidaemia were suggestively associated 

with CRC (Figure 2). Specifically, suggestive associations were seen between 

genetically predicted basal metabolic rate (ORSD=1.10, 95% CI=1.03-1.18, P=0.0079), 

body fat percentage (ORSD=1.14, 95% CI=1.03-1.25, P=0.0086), BMI (ORSD=1.09, 95% 

CI=1.01-1.17, P=0.023) and waist circumference (ORSD=1.13, 95% CI=1.02-1.26, 

P=0.018), and higher odds of CRC. No association between birth weight or 

adiponectin levels and CRC risk was seen (Figure 2). Causal estimates for basal 

metabolic rate, BMI and waist circumference were broadly concordant in sensitivity 

analyses using the WME and MBE methods (Supplementary Table 5).  Conversely, 

the effect estimate for body fat percentage from the MBE approach (ORSD=0.98, 95% 

CI=0.72-1.33, P=0.90) differed in direction to the estimates from other MR 

implementations (Supplementary Table 5), suggesting that some of the instruments 

used to assess the causal effects of body fat percentage may be invalid. MR-Egger 

regression did not identify evidence of horizontal pleiotropy for body fat percentage 

or any other obesity-related trait (Supplementary Table 6). 

 

Genetically predicted low-density lipoprotein (LDL) cholesterol (ORSD=1.14, 95% 

CI=1.04-1.25, P=0.0056) and total cholesterol (ORSD=1.09, 95% CI=1.01-1.18, 

P=0.025) showed suggestive associations with higher odds of CRC. No association 
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between high-density lipoprotein (HDL) cholesterol or total triglyceride levels was 

seen (Figure 2). Similarly, genetically predicted metrics of glycaemia - fasting 

glucose, fasting proinsulin, and HbA1c - were not associated with CRC risk (Figure 2).  

 

Based on a single SNP, a suggestive association was observed between plasma levels 

of interleukin 6 (IL-6) receptor subunit alpha and lower CRC risk (ORSD=0.98, 95% 

CI=0.98-1.00, P=0.035). Associations between circulating C-reactive protein and 

serum immunoglobulin E and CRC risk were not however demonstrated (Figure 2). 

 

Sex hormones and reproduction 

It has been hypothesised that sex-specific differences in CRC incidence may be partly 

attributable to differential sex hormone exposure(21). However, we observed no 

association between age at menarche, a surrogate for endogenous estrogen 

exposure, and CRC risk (ORSD=0.99, 95% CI=0.84-1.18, P=0.92) using CRC data from 

females only. Similarly, we did not observe associations between plasma estradiol 

and progesterone and CRC risk in sex-specific analyses (Figure 2). The genetic 

variants used as instruments for these traits explain only a small proportion of their 

variance (Table 1) and we are therefore unable to exclude a small to moderate effect 

of sex hormone exposure on CRC risk. MR-Egger regression analysis of genetic 

instruments for age at menopause provided evidence of horizontal pleiotropy 

(P=0.01; Supplementary Table 6) and we therefore did not consider this trait in our 

MR analysis. 

 

Developmental and growth factors 

Whilst height is not modifiable once stabilised in adulthood, it is influenced by 

developmental factors and growth processes, which may themselves be modifiable. 

In concordance with evidence reviewed by the WCRF and AICR(3), we observed a 

suggestive association between greater genetically predicted adult height and 

increased odds of CRC (ORSD=1.04, 95% CI=1.00-1.08, P=0.032), further supporting 

the notion that factors during childhood may influence CRC risk. We observed no 

association between plasma insulin-like growth factor 1 (IGF-1) and CRC risk (Figure 

2), although this analysis was conducted using a single genetic variant explaining 
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only a small proportion of IGF-1 variance, and therefore had limited power to detect 

an effect (Table 1). 
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DISCUSSION 

 

With genetic variants as proxies for the putative risk factors, this MR study provides 

suggestive evidence for associations between higher body fat percentage, BMI, waist 

circumference and basal metabolic rate and increased CRC risk. We also found 

suggestive evidence for associations between genetically predicted LDL and total 

cholesterol and risk of CRC, but no evidence of associations with HDL or total 

triglyceride levels. The suggestive association between genetically determined 

higher serum vitamin B12 levels and increased CRC risk is intriguing. There was also 

suggestive evidence for possible associations of genetically predicted serum iron and 

selenium concentrations. 

 

Strengths of this study include examination of multiple factors in relation to CRC risk, 

by exploiting data from large GWAS of risk factors and CRC. Many of the putative risk 

factors considered in this study have not previously been assessed using MR 

frameworks (Supplementary Table 8). Of those factors for which suggestive 

associations were seen (Figure 2), body fat percentage, waist circumference, basal 

metabolic rate, iron status, and blood selenium, serum vitamin B12 and plasma IL-6 

subunit alpha concentrations have not previously been considered in MR analyses of 

CRC risk (Supplementary Table 8). For those CRC risk factors that have previously 

been considered in MR analyses(22) the number of CRC cases and controls we 

consider here affords us greater power to detect causal relationships and allows us 

to more accurately estimate effect magnitudes. For example, while Rodriguez-

Broadbent et al.(23) reported a non-significant association between LDL cholesterol 

and risk of CRC (ORSD=1.05, 95% CI=0.92-1.18, P=0.49), herein a suggestive 

relationship was identified (ORSD=1.14, 95% CI=1.04-1.25, P=0.0056), possibly due to 

increased power of the present analysis. By comparing the results of this study to 

those of previous MR analyses of CRC risk we are also able to identify previously 

reported causal relationships that may represent false positives, such as an 

association between genetically predicted C-reactive protein concentrations and CRC 

risk(24) (Figure 2; Supplementary Table 8).  
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Although F-statistics were high (>10) for all considered traits (Table 1), we cannot 

exclude the possibility that some of our findings may have been affected by weak 

instrument bias. For 19 of the traits for which we identified no association with CRC 

risk, our study had <80% power to identify ORSD<0.91 or >1.10 (Table 1), and we are 

therefore unable to exclude the possibility that these traits have a small effect on 

CRC risk.  

 

As with all MR studies, excluding pleiotropy or an alternative direct causal pathway 

as the basis of association is a challenge. High I2 statistics for many traits indicate the 

presence of such pleiotropy in this analysis (Figure 2). To address this issue we 

implemented the WME and MBE methods, which can provide unbiased causal effect 

estimates even when many genetic variants used represent invalid instruments(16, 

17). For the majority of traits with either a significant or suggestive association with 

CRC risk, the effects estimated were similar using MLE-RE, WME and MBE methods 

(Supplementary Table 5), supporting causal relationships with CRC. It is important to 

note that there exists overlap between the CRC cases and controls considered in this 

study, and those considered in some previous MR analyses(22), and that results from 

this study therefore cannot be considered independent replication.  

 

Our study provides no evidence for an association between genetically predicted 

fasting glucose and proinsulin and risk of CRC, suggesting that metabolic syndrome 

may not influence CRC risk through these factors. However, due to the limited power 

of this analysis, we cannot preclude these factors having small effects on CRC risk 

(Table 1).  

 

Our estimate that an SD increment in adult height increases CRC risk by 4% is 

concordant with many observational studies(3), with greater exposure to growth 

hormones and insulin-like growth factors during childhood being posited as potential 

mechanisms for this association(26). Whilst we observed no significant association 

between plasma IGF-1 and CRC risk (Figure 2), the limited power of this analysis 

means that we are unable to exclude small to moderate effect sizes (Table 1). Taller 
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adults tend to have larger colons, and so greater at-risk cell populations might also 

explain the apparent causal inference. 

 

Of the nutritional factors analysed, a relationship between genetically predicted 

vitamin B12 levels and CRC risk was shown (Supplementary Table 5). Our findings 

are concordant with a randomized trial that found vitamin B12 supplementation 

increases CRC risk(29). Although less convincing, we also found suggestive evidence 

to support high selenium levels having a beneficial effect and greater iron status 

being detrimental (Supplementary Table 5).  

 

Inevitably, further research is required to decipher the biological pathways 

underpinning associations. However, irrespective of the exact functional basis of 

associations using a genetic approach, our analysis highlights important targets for 

primary prevention of CRC in the population. Firstly, between obesity and CRC risk, 

the strong corroboration for obesity being a major risk factor for CRC supports 

reducing the population incidence of obesity a priority. Secondly, our findings are 

consistent with hypercholesterolemia being causally linked to risk and therefore 

support the hypothesis that the increasing use of statins in the population for 

prevention of cardiovascular disease will have the added bonus of reducing CRC 

burden. The limited power of this study to refine robustly the relationship between 

some putative risk factors provides motivation for larger MR studies to demonstrate 

relationships for the spectrum of colorectal neoplasia. Such work may shed 

additional light on other potentially modifiable factors to reduce the overall burden 

of CRC.  
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FIGURES 

 

Figure 1: Principles of Mendelian randomisation and the assumptions that need to 

be satisfied to derive unbiased causal effect estimates. Dashed lines represent 

direct causal and potential pleiotropic effects that would violate Mendelian 

randomisation assumptions. A1: Genetic variants used as instrumental variables are 

associated with the risk factor; A2: Genetic variants influence the risk of colorectal 

cancer only through the risk factor; A3: Genetic variants are not associated with any 

measured or unmeasured confounders. SNP: single nucleotide polymorphism.  
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Figure 2: Odds ratios for associations between genetically predicted risk factors 

and colorectal cancer. Results reported as odds ratios (ORSD) and 95% confidence 

intervals (CIs) per genetically predicted standard deviation (SD) unit increase in the 

risk factor. A maximum likelihood estimate random-effects (MLE-RE) method was 

used to summarize Wald ratio estimates from individual single nucleotide 

polymorphisms (SNPs). IL-6 sRa: interleukin 6 receptor subunit alpha; IGF: insulin-like 

growth factor. * P < 0.05;  ‡ ORSD from restricted analysis, which excludes SNPs 

known to be associated with other classes of fatty acid. † ORSD computed using CRC 

data from female cases and controls.   
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