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Abstract 

 

Background 

It has been hypothesized that dopamine function in schizophrenia exhibits heterogeneity in excess of that seen in 

the general population. However, this hypothesis has never been systematically tested. 

 

Method 

We employed meta-analysis of variance to investigate inter-individual variability of striatal dopaminergic 

function in patients with schizophrenia and healthy controls. We included 65 studies reporting molecular imaging 

measures of dopamine synthesis or release capacities, D2/3 receptor (D2/3R) or transporter (DAT) availabilities, 

or synaptic dopamine levels, in 983 patients and 968 controls. Variability differences were quantified using 

variability ratio (VR) and coefficient of variation ratio. 

 

Results 

Inter-individual variability of striatal D2/3R (VR=1.26, p<.0001) and DAT availabilities (VR=1.31, p=.01), and 

synaptic dopamine levels (VR=1.38, p=.045), but not dopamine synthesis (VR=1.12, p=.13) or release (VR=1.08, 

p=.70) capacities, were significantly greater in patients. . Findings were robust to variability measure. Mean 

dopamine synthesis (g=0.65, p=.004) and release (g=0.66, p=.03) capacities, as well as synaptic levels (g=0.78, 

p=.0006) were greater in patients overall, but mean synthesis capacity did  not differ relative to controls in 

treatment resistant patients (p>0.3). Mean D2/3R (g=0.17, p=.14) and DAT (g=-0.20, p=.28) availabilities did not 

differ between groups. 

 

Conclusions 

Our findings demonstrate significant heterogeneity of striatal dopamine function in schizophrenia. They suggest 

that while elevated dopamine synthesis and release capacities may be core features of the disorder, altered D2/3R 
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and DAT availabilities, and synaptic dopamine levels, may occur only in a subgroup of patients. This 

heterogeneity may contribute to variation in treatment response and side-effects. 
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Introduction 

 

Schizophrenia has long been linked to abnormalities in the dopamine system(1, 2). Molecular imaging techniques 

such as positron emission tomography (PET) and single photon (computed) tomography (SPE(C)T) have 

contributed to this understanding by allowing the investigation of the nature and loci of dopaminergic alterations 

in the living brain. A majority of studies have focused on the striatum, finding pronounced patient-control 

differences in (mean) dopamine synthesis and release capacity .(3) Mean differences in  other aspects of 

dopaminergic function, such as D2/3 receptor (D2/3R) and dopamine transporter (DAT) availability, are small or 

non-significant.(3, 4) Thus, the dopaminergic abnormality in psychosis is now thought to primarily involve 

synthesis and release capacity.(2) 

 

Several studies have explicitly investigated dopamine function in putative subtypes of schizophrenia. Three 

studies comparing treatment-responsive and non-responsive patients indicate that presynaptic dopaminergic 

alterations seen in the former group are not present in the latter.(5–7) Similarly, observations suggest that D2/3R 

availability predicts response to treatment(8), and is higher in patients with poor response or side-effects.(9, 10) 

Thus, heterogeneity in the dopamine system  may delineate clinically meaningful subtypes of schizophrenia,(11, 

12) linked to treatment response or side-effects.(5–7, 13)  

 

However, while the number of such studies is relatively small, the past 30 years has seen a large number of 

patient-versus-control studies.(3) If there are indeed distinct dopaminergic subtypes,(11) we would expect to see 

this heterogeneity reflected in greater inter-individual variability in indices of dopaminergic function in patients 

relative to controls. In structural neuroimaging, several large recent studies have reported brain volumetric 

heterogeneity in patients with schizophrenia not seen in healthy controls (14–16). While individual studies have 

remarked on apparent variance differences in dopaminergic indices,(17–19) the question of dopaminergic 

heterogeneity – or indeed of other functional imaging measures – has not to our knowledge been systematically 

investigated. We therefore tested this hypothesis using meta-analysis of variance(14, 20, 21) to pool measures of 
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patient-control differences in inter-individual variability across the striatal dopaminergic molecular imaging 

literature. We additionally performed an updated meta-analysis of mean differences, including, for the first time, 

separate analyses of dopamine synthesis capacity, release capacity and synaptic dopamine levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Methods 

Study selection 

We searched MEDLINE, EMBASE and PsychINFO databases from inception to 31 December 2018, for studies 

reporting PET or SPECT measures of striatal dopaminergic function in patients with schizophrenia and controls. 

The following keywords were used: (Positron Emission Tomography OR PET OR Single photon emission 

tomography OR SPET OR Single Photon Emission Computed Tomography OR SPECT) AND (dopamine OR 

dopamine*) AND (schizophrenia OR psychosis OR schizophren*). We also searched references of previous meta-

analyses(3, 22–24) to identify additional studies. 

 

The inclusion criteria were: [1] original case-control studies reporting measures of striatal D2/3R or DAT 

availability, or dopamine synthesis or release capacity or synaptic dopamine levels, in patients and healthy 

controls; [2] studies of patients with a diagnosis of schizophrenia, schizoaffective disorder or schizophreniform 

disorder; [3] sufficient data presented to calculate mean and standard deviation of measures for both groups; [4] 

Diagnosis in accordance with Diagnostic and Statistical Manual of Mental Disorders (version III-R, IV or V) or 

International Classification of Diseases (version 9 or 10) criteria; [5] study written in English; [6] for studies 

measuring D2/3R availability, patients not taking antipsychotic medication. Studies including patients with 

comorbid substance dependence were excluded.(25)  

 

Data extraction & processing 

We extracted mean and standard deviations for patient and control groups. Data were extracted independently by 

two authors (SPB and IA); discrepancies were resolved by consensus. We also recorded details of duration of 

psychosis and of treatment, diagnoses and radioligand utilized. We combined results presented for multiple 

subgroups or sub-regions into a single measure for each study. In the latter case we assumed a correlation of 0.5 

between sub-regions, although this may be conservative.(26) We extracted data presented in graphical form using 

the Web Plot Digitizer tool (https://automeris.io/WebPlotDigitizer/). Where the details required were not available 
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or not extractable these were requested.  Where samples overlapped between studies, the study reporting the 

larger sample was included (see table S1 for further details).  

 

Outcome measures 

The meta-analytic approach we use was first employed in ecology and evolutionary biology(21) and is described 

in further detail elsewhere.(20) Our first variability outcome measure is the log variability ratio (lnVR), the log-

ratio of estimates of population standard deviations for patient and control groups,(21) as follows: 

 

ln 𝑉𝑅 = ln (
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Where �̂�𝑝 and �̂�𝑐 are estimates of population standard deviations, 𝑠𝑝 and 𝑠𝑐 are reported sample standard 

deviations and 𝑛𝑝 and 𝑛𝑐 are sample sizes, for patient and control groups respectively in each case. 

 

In biological systems, measures of dispersion frequently scale with mean, with higher means associated with 

greater variance.(27) It is therefore possible that variability differences seen using lnVR as an outcome measure, 

whilst real, may, in part, reflect differences in mean. We therefore also report results of analyses using log 

coefficient of variation ratio (lnCVR) as an outcome measure. This is the log-ratio of estimates of population 

coefficients of variation for patient and control groups, a measure which quantifies differences in variability after 

scaling to respective group means.(21) Log coefficient of variation ratio is given by: 
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Where  �̅�𝑝 and �̅�𝑐 are reported sample means for patient and control groups respectively. Details of sampling 

variance for lnVR and lnCVR may be found in Supplementary Methods. 
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We used Hedges’ g as our effect-size measure for the meta-analysis of group differences in mean values.  

 

 

Statistical analysis 

All analyses employed a univariate random-effects model. Summary effect sizes were calculated using restricted 

maximum-likelihood estimation. Where sufficient studies were found (at least 3), analyses were repeated for 

subgroups of treatment-naïve patients, treatment-responsive and treatment-resistant patients. To aid interpretation, 

summary effect sizes for lnVR and lnCVR were transformed back to a linear scale. Thus, a VR (or CVR) of 1 

indicates equal variability in patient and control groups, greater than 1 indicates greater variability in patients, and 

less than 1 indicates lower variability in patients. 

 

Meta-regression 

We examined relationships between moderators of interest and outcome measures via mixed-effects meta-

regression. Moderators included illness duration, proportion of treatment-naïve patients, proportion of patients 

with a diagnosis of schizophrenia (vs schizoaffective or schizophreniform disorders), year of publication, ligand 

utilized, and class of ligand. For D2/3R availability, ligand class included butyrophenones, benzamides, ergot 

derivatives and agonist tracers; for dopamine release studies class was restricted to benzamides vs agonist tracers. 

Ligands were of a single class for DAT availability and dopamine synthesis capacity. Given the large number of 

meta-regressions carried out, we adjusted for multiple comparisons using the Holm-Bonferroni method.(28) 

 

Publication Bias and Inconsistency 

Inconsistency was assessed using the I2 statistic (by convention, I2 values of 0%, 25%, 50% and 75% are taken as 

indicative of no, low, moderate and high inconsistency respectively(29)). Publication bias was assessed  by visual 

inspection of funnel plots, Egger’s regression test for funnel plot asymmetry,(30) the trim-and-fill method(31) and 

the p-curve method.(32, 33) The p-curve approach was applied to each meta-analytic effect size for the data as a 

whole across molecular targets. Meta-analyses were conducted using the ‘metafor’ package(34) in the R statistical 
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programming language.(35) P-curve analyses were conducted using the online app (version 4.06; http://www.p-

curve.com/app4/). 
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Results 

A total of 65 studies reporting data on 983 patients and 968 controls were included in the primary meta-analyses 

(see table 1; tables S1-2). 

 

Dopamine D2/3 Receptor Availability 

Thirty-four studies reporting data on 485 patients and 485 controls were included in the primary analysis of 

D2/3R availability. Variability was significantly higher for all patients relative to controls for both VR and CVR 

(VR=1.26, p<0.0001; CVR=1.22, p=0.007; see figure 1, figure S2-S3). Mean D2/3R availability did not differ 

significantly between patients and controls (SMD=0.17, p=0.14; see figure 2; figure S4). 

 

Dopamine Release Capacity 

Six studies reporting data from 83 patients and 89 controls were included in the primary analysis of dopamine 

release capacity. Variability was not significantly different for all patients relative to controls for VR or CVR 

(VR=1.08, p=0.70; CVR=1.31, p=0.27; see figure 1, figure S4-S5). Mean dopamine release capacity was 

significantly higher in patients relative to controls (SMD=0.66, p=0.03; see figure 2, figure S6). 

 

Dopamine Synthesis Capacity 

Fifteen studies reporting data from 197 patients and 213 controls were included in the primary analysis of 

dopamine synthesis capacity. Variability did not differ significantly in patients relative to control groups for either 

measure (VR=1.12, p=0.13; CVR=1.10, p=0.28; see figure 1, figure S7-8). Mean dopamine synthesis capacity 

was significantly higher in patients relative to controls (SMD=0.65, p=0.004; see figure 2, figure S9). 

 

Synaptic Dopamine Levels 

Three studies reporting data from 40 patients and 46 controls were included in the primary analysis of synaptic 

dopamine levels. Variability was significantly higher for all patients relative to controls for both VR and CVR 
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(VR=1.38, p=0.045; CVR=1.36, p=0.03; see figure 1, figure S10-11). Mean synaptic dopamine levels were 

significantly greater in patients than in controls (SMD=0.78, p=0.0006; see figure 2; figure S12). 

 

Dopamine Transporter Availability 

Sixteen studies reporting data on 289 patients and 277 controls were included in the primary analysis of DAT 

availability. Variability was significantly higher in patients relative to controls for both measures (VR=1.31, 

p=0.01; CVR=1.32, p=0.01; see figure 1, figure S13-14). Mean DAT availability did not differ significantly 

between patients and controls (SMD=0.20, p=0.28; see figure 2; figure S15).  

 

Subgroup Analyses of Treatment Naïve Patients 

Dopamine D2/3 Receptor Availability 

The subgroup analysis of treatment-naïve patients included 19 studies reporting data on 232 patients and 260 

controls. Variability was higher in patient groups relative to controls for VR but not CVR (VR=1.20, p=0.04; 

CVR=1.12, p=0.27; figure S15-16). Mean D2/3R availability did not differ significantly between groups 

(SMD=0.25, p=0.19; see figure S17). 

 

DAT Availability 

The subgroup analysis of treatment-naïve patients included 9 studies reporting data on 178 patients and 202 

controls. Variability was higher in patients relative to controls for both VR and CVR (VR=1.45, p=0.02; 

CVR=1.49, p=0.02; figure S18-19). Mean DAT availability did not differ significantly between groups (SMD=-

0.30, p=0.17; see figure S20). 

 

There were insufficient studies of treatment-naïve patients to perform subgroup analyses for synaptic dopamine, 

or dopamine synthesis or release capacity.  
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Subgroup analyses of resistant and treatment responsive/naïve patients 

Dopamine Synthesis Capacity 

Four studies reporting measures of dopamine synthesis capacity included patients described as treatment-resistant, 

or who were taking clozapine, which was taken to indicate resistance as it is generally restricted to such 

patients.(5, 7, 36, 37) Data for this subgroup were extractible separately for 3 studies comprising 37 patients and 

38 controls. Neither measure of variability was elevated (VR=0.94, p=0.71; CVR=0.98, p=0.87; see figures S24-

25), and mean dopamine synthesis capacity did not differ significantly between patients and controls (SMD=-

0.40, p=0.34; see figure S26).  

 

The subgroup of treatment-responsive/naive patients included 14 studies on 154 patients and 199 controls. Neither 

measure of variability was elevated (VR=1.13, p=0.12; CVR=1.11, p=0.33; see figures S21-22). A significant 

elevation in mean dopamine synthesis capacity was found (g=0.75, p=0.0004; see figure S23). Information on 

treatment resistance or clozapine use was not given in studies of other dopaminergic indices. 

 

Meta-regression  

We found a significant effect of tracer on the standardized mean difference in dopamine release capacity 

(χ2=31.56, padjusted=0.0001). This effect was driven by the results of a single study(38) utilizing the D2/3R agonist 

radiotracer [11C]N-propyl-norapomorphine ([11C]NPA). No other effect survived adjustment for multiple 

comparisons (see table S4). 

 

Publication Bias and Inconsistency 

Regression test indicated significant funnel plot asymmetry for dopamine synthesis capacity VR (z=2.02, p=0.04), 

but not for other variability measures. Asymmetry was also detected for dopamine synthesis capacity SMD 
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(z=3.09, p=0.002) and DAT availability SMD (z=2.17, p=0.03) (see figures S25-S39). The trim and fill method 

suggested 5 missing studies for dopamine synthesis capacity VR, 5 missing studies for D2/3R availability CVR, 2 

missing studies for dopamine release capacity SMD, and 2 missing studies for DAT availability SMD. P-curve 

analyses indicated the presence of evidential value for all measures. Inconsistency (between-study heterogeneity), 

ranged between low (I2=0; synaptic dopamine levels, all analyses) and high (I2=79.33, I2=76.35, I2=76.23, 

I2=71.19; DA release capacity CVR, D2/3R availability CVR, dopamine synthesis capacity SMD, DAT 

availability SMD). Further details of results of publication bias and inconsistency analyses may be found in table 

S5. 
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Discussion 

We found significantly greater inter-individual variability of striatal dopamine D2/3 receptor availability, 

dopamine transporter availability and synaptic dopamine levels in patients with schizophrenia compared to 

healthy controls. Variability of dopamine synthesis and release capacities did not differ between patients and 

controls. In contrast, standardized mean release capacity, and synaptic dopamine levels, were significantly greater 

in patients, while dopamine synthesis capacity was significantly greater in treatment responsive/naïve patients 

(and patients overall) but not in treatment resistant patients. Mean D2/3R and DAT availabilities did not differ 

between patients and controls. Variability findings were robust to choice of outcome measure, and are unlikely to 

be accounted for by methodological differences between studies, as all measures are calculated on a within-study 

basis. These results confirm findings of previous meta-analyses(3, 22) in a substantially enlarged sample, and, 

critically, extend them by demonstrating increased variability in D2/3R, DAT and synaptic dopamine levels, and 

elevation of mean synaptic dopamine levels. 

 

Much recent work has focused on elucidating biological subtypes of schizophrenia. Several studies have reported 

differences between patient sub-groups, characterized by cognitive(39, 40) or symptomatic(5, 13, 37, 41–46) 

profile. Treatment responsiveness has emerged as a key dimension,(11, 47–49) with evidence for distinct 

abnormalities in resistant vs responsive psychoses.(50, 51) However, the question of whether patients exhibit 

greater inter-individual variability per se has remained unanswered. We previously reported evidence for greater 

variability in regional brain volumes in schizophrenia.(20) The present study extends this approach to 

neurochemical measures by systematically demonstrating greater inter-individual variability for a number of 

indices of striatal dopaminergic function. 

 

These findings underscore the importance of evaluating group differences in variability alongside differences in 

mean. While we do not find significant mean differences for D2/3R or DAT availability, these measures are more 

variable in schizophrenia than in controls. This suggests that there may be a subgroup of patients in whom these 

measures do differ significantly, on average, from those of controls. While no qualitative rating of effect sizes for 
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variability differences(52) has yet been established, it is worth noting that those presented here for D2/3R and 

DAT availability, and synaptic dopamine levels, are larger than those for volumetric differences across all brain 

regions (ventricles excluded) reported previously.(20) These findings also suggest the need to routinely test for 

heteroscedasticity in case-control studies of patients with schizophrenia, and to use (potentially more efficient) 

statistical models where this is observed. 

 

 

Limitations 

Funnel plot asymmetry was found for dopamine synthesis capacity VR (but not CVR), as well as for DA release 

capacity and DAT availability SMD. Publication bias is unlikely to account for asymmetry for VR, as the present 

work is, to our knowledge, the first in which a threshold for statistical significance has been applied to measures 

of variability in this literature, meaning that a selective publication incentive is unlikely to exist. We hope that the 

findings of the present work (and greater recognition of the importance of heterogeneity in schizophrenia and 

other disorders) encourage the publication of imaging and other results in which variability differences, currently 

perceived as unimportant, are present even in the absence of mean effects. 

 

Moderate to high inconsistency was present in many analyses. Meta-regression suggests that this is unrelated to 

clinical variables, but may, in the case of dopamine release capacity SMD, relate to ligand characteristics. Several 

studies measuring dopamine synthesis capacity utilized non-quantitative analysis approaches, which may 

contribute to inconsistency. Only three studies measured synaptic dopamine levels, and this is reflected in 

relatively large summary effect size confidence intervals for this measure.  

 

Interpretation 

There are several plausible interpretations of our findings. One is that apparent greater variability in D2/3R and 

DAT availability, and synaptic dopamine levels arises due to greater (or more variable) movement or other 

measurement artifact in patients. The differential extent of movement artifact  has been associated with 
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differences in some MRI-based morphometric measurements,(53) and, while no effect has, to our knowledge, 

been reported for PET or SPECT imaging, it remains a possibility that we cannot definitively rule out. Likewise, 

we cannot definitively rule out the possibility that our finding are an artefactual effect of the greater structural 

variability seen in striatal regions in patients (20). However, if this were the case, we might expect to observe 

variability differences across all dopaminergic measures, which we do not. 

 

Another possibility is that our findings reflect artificial homogeneity among controls, rather than heterogeneity in 

patients. Mental or physical comorbidities are frequent exclusion criteria for controls, potentially leading to 

recruitment of unusually healthy and homogeneous samples.(54) Furthermore, patients may be more likely to 

have subclinical medical or psychiatric comorbidities(55), recreational substance use, or medication exposure 

which may increase variability. However, meta-regression revealed no effects of confounding factors. While in 

this case we again might expect to observe variability differences for all indices, it is plausible that factors 

associated with illness selectively affect aspects of the dopamine system – most obviously prior antipsychotic 

treatment. Long-term blockade of D2 receptors may lead to upregulation in some subjects,(9, 10, 56) and thus 

increase inter-individual variability. However, variability effects were observed in treatment-naïve patients, and 

meta-regression found no evidence for a relationship between variability and prior treatment. Meta-regression also 

did not reveal a significant effect year of publication on outcome measures. We might expect incremental 

refinement of techniques over time, resulting in improved signal-to-noise ratio, to yield increased power to detect 

(true) mean effects, as well as (true) variability effects (as measured by CVR – VR would not be affected in this 

way as sampling variance depends only on sample size; see Supplementary Methods) over time. However, we 

cannot definitively rule this out, as meta-regression generally has low power to detect moderator effects.(57) 

 

A further possibility is that out findings of greater inter-individual variability reflect greater intra-individual or 

state variability in patients. Schizophrenia is associated with state variability: for example circadian rhythm 

disruption and (58) affective instability(59), as well as symptomatic fluctuations over time. If these phenomena 

affect dopaminergic indices, then they could contribute to the greater inter-individual variability we report. 
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However, while indices of dopaminergic function have been reported to fluctuate on a circadian basis, (60) 

available evidence suggests that the magnitude of these fluctuations are if anything lower in patients with 

schizophrenia than in healthy controls.(61, 62) It has been argued that variation in mood state may relate to failure 

of dopaminergic homeostasis in the context of bipolar disorder (63), although, in the absence of longitudinal 

studies, this hypothesis remains somewhat speculative. Furthermore, while dopaminergic manipulations have 

been linked to sense of subjective well-being in both healthy and clinical samples, (64, 65) there remains no 

evidence linking dopamine homeostasis and mood variation outside of the context of a major mood disorder. In 

relation to symptomatic variation, cross-sectional studies suggest greater dopamine release capacity in acute 

relative to stabilized illness.(66) There is evidence that dopamine synthesis capacity increases in the transition 

from prodromal to frank psychosis,(67) although this does not appear to change following antipsychotic treatment 

and symptomatic improvement.(68) No other longitudinal studies examining state-related changes in 

dopaminergic indices have yet been published. 

 

Finally, our variability findings may reflect heterogeneity in the nature of dopaminergic alterations in 

schizophrenia. Taken with our mean difference findings, one interpretation is that elevated dopamine synthesis 

and release capacity are core elements of the neurobiology of schizophrenia, seen in all patients, or at least in all 

treatment responsive patients (with large mean, but no variability differences), whilst abnormalities in D2/3R and 

DAT availabilities are seen only in a subgroup (with no overall mean, but large variability differences). Putatively 

increased D2/3R or reduced DAT levels could amplify the effect of dysregulated dopamine synthesis and release 

leading to psychosis in these patients. There is evidence from dual diagnosis patients that post-synaptic aspects of 

dopaminergic signal transduction augment effects of dopamine release to induce psychotic symptoms.(69) 

Alternatively, variability in D2/3R and DAT levels may reflect compensatory mechanisms in some patients. 

While these interpretations are speculative, they could be tested by examining multiple aspects of the dopamine 

system in the same patient. Synaptic dopamine levels show both large differences in mean and variability. It is 

possible – although speculative – that this dual effect is driven by greater mean dopamine release, modulated by 
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greater variability in reuptake by DAT. Alternatively, variability in DAT may modulate dopamine release 

directly, but be masked by the reverse transport effect of the amphetamine utilized in these studies.(70) 

 

Implications 

 

A major implication of this work, in common with our previous study,(20) is that variability in the biology of 

schizophrenia is missed by solely examining group differences in mean. Previous studies have concluded that the 

primary abnormality of striatal dopamine function is one of synthesis and release, and that other aspects, such as 

D2/3R and DAT availability, do not differ from healthy controls.(3) The present work demonstrates that in a 

subset of patients these indices are also likely to fall substantially outside of the healthy range, and may be major 

components of pathophysiology in those patients. This heterogeneity, consistent with distinct dopaminergic 

subtypes of the disorder, has implications for precision medicine in schizophrenia, suggesting that a ‘one-size fits 

all’ approach to treatment may not succeed.  

 

Our findings of greater variability in D2/3R availability could have therapeutic implications given that all first-

line antipsychotic drugs act by blocking a substantial proportion of these receptors.(71) They suggest that 

variability in D2/3R availability could be an explanation for variability between patients in antipsychotic clinical 

response and susceptibility to extra-pyramidal and other D2/3R-mediated side-effects. Furthermore, they suggest 

that drug dosing based on studies in healthy volunteers may underestimate the width of therapeutic ranges, 

highlighting the need to include patients in phase I and II studies of novel drugs. 

 

The finding of unaltered dopamine synthesis capacity variability is surprising, particularly given the link to 

treatment response,(5, 7, 37) which shows significant inter-individual variability.(72) Only four studies included 

patients with known treatment-resistance, or who were (or had previously been) taking clozapine(5, 7, 37, 73). 

Treatment resistant patients may be under-represented in other samples, perhaps due to difficulties recruiting or 

scanning these more symptomatic individuals. Alternatively, while dopamine synthesis capacity may be related to 



19 
 

treatment response at the individual level, the variability of this measure may, nevertheless, be similar to that seen 

in healthy controls. While there is a tension between  the latter interpretation and the hypothesis of Howes and 

Kapur – that schizophrenia comprises at least two sub-groups, one characterized by elevated dopamine synthesis 

and release capacities and good treatment response; the other by unelevated capacities., and poor response (11) – 

our variability findings suggest that in addition, or instead, differences in D2/3R and/or DAT levels may 

contribute to incomplete or partial treatment response by increasing sensitivity to dopamine release in a subset of 

those patients with primarily dopaminergic abnormalities.. This would account for the large clinical variation in 

degree of response to and susceptibility to side-effects from treatment even within those patients who are 

classified as having responded. Further work is needed to test whether there are discrete dopaminergic sub-types 

and whether these are linked to treatment response and side-effects. Such sub-types should be manifest in the 

distribution of individual-patient data, for example as a bimodal distribution or, if one sub-group is substantially 

larger than the other, skewed data. It would be useful to test this in future individual-level patient data. 

Notwithstanding, our findings of large effect size elevations in mean striatal dopamine synthesis and release 

capacity and synaptic dopamine levels, coupled with evidence that show these are directly associated with 

symptom severity,(74, 75) identify these aspects of dopamine function as therapeutic targets.(76) However, it is 

important to note that our analyses are limited to striatum and that cortical dopamine release may be blunted.(77, 

78) 

 

Conclusions 

We demonstrate significantly greater inter-individual variability of dopamine receptor and transporter 

availabilities, and synaptic dopamine levels, coupled with large elevations in mean dopamine synthesis and 

release capacities, and synaptic dopamine levels, in patients with schizophrenia. These findings indicate that the 

pathophysiology of schizophrenia involves core alterations in dopamine synthesis and release capacity, and 

heterogeneity in other aspects of dopamine function. 
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Table & Figure Legends 

Table 1: Summary of results of meta-analyses for all measures 

 

Figure 1: Summary effect sizes for variability ratio (VR) and coefficient of variation ratio (CVR) of dopaminergic 

indices for all patients vs controls. Patients showed significantly greater variability of dopamine D2/3R 

availability (VR=1.26, p<0.0001; CVR=1.22, p=0.007), synaptic dopamine levels (VR=1.38, p=0.045; 

CVR=1.36, p=0.03) and dopamine transporter (DAT) availability (VR=1.29, p=0.01; CVR=1.30, p=0.02), but not 

of dopamine synthesis capacity (VR=1.12, p=0.13; CVR=1.10, p=0.30) or DA release capacity (VR=1.08, 

p=0.13; CVR=1.31, p=0.27), relative to controls. CI = Confidence Interval; VR = Variability Ratio; CVR = 

Coefficient of Variation Ratio. 

 

Figure 2: Summary effect sizes for standardized mean differences of dopaminergic indices for all patients vs 

controls. Patients showed significantly greater mean dopamine release capacity (SMD=0.66, p=0.03), dopamine 

synthesis capacity (SMD=0.65, p=0.004) and synaptic dopamine levels (SMD=0.78, p=0.0006) but not D2/3R 

availability (SMD=0.17, p=0.14) or dopamine transporter (DAT) availability (SMD=-0.19, p=0.30), relative to 

controls. CI = Confidence Interval; SMD = Standardized Mean Difference. 

 

Figure 3: Diagram illustrating differences in mean and variability of dopaminergic indices in patients and 

controls. Blue elements are present in healthy controls and patients; orange elements represent differences in 

mean seen in patients. Differences in mean and variability illustrated on bell curves: blue = controls; orange = 

patients. Thus, reading from left to right, greater mean dopamine synthesis capacity is seen in (treatment 

responsive) patients, but the variability of this measure is not different. Greater variability of DAT availability is 

seen in patients, but mean is not significantly different. Greater dopamine release is seen in patients, but the 
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variability of this measure is not different. Greater mean and greater variability of synaptic dopamine levels are 

seen in patients. Finally, greater variability of D2/3R availability is seen in patients, but mean is not significantly 

different. Illustration created with BioRender (https://biorender.com/). 
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Table 1 

        
Variability 
Ratio     

Coefficient 
of Variation 
Ratio     

Standardized 
Mean 
Difference     

  Analysis 
N 
studies 

n 
patients, 
controls 

Summary 
effect-size 

95% CI p-value 
Summary 
effect-size 

95% CI 
p-
value 

Summary 
effect-size 

95% CI 
p-
value 

D2/3R 
Availability 

All patients 34 485, 485 1.26 
1.13, 
1.41 

<0.0001 1.22 
1.06, 
1.41 

0.007 0.17 
-0.07, 
0.39 

0.14 

Treatment 
Naïve 

19 232, 260 1.2 
1.01, 
1.43 

0.04 1.12 
0.92, 
1.35 

0.19 0.25 
-0.12, 
0.63 

0.19 

DA 
Release 
Capacity 

All patients 6 83, 89 1.08 
0.72, 
1.63 

0.70 1.31 
0.81, 
2.10 

0.27 0.66 
0.06, 
1.25 

0.03 

DA 
Synthesis 
Capacity 

All patients 15 197, 213 1.12 
0.97, 
1.30 

0.13 1.1 
0.92 
1.32 

0.28 0.65 
0.20, 
1.10 

0.004 

Treatment 
responsive/ 
naïve 

14 154, 199 1.13 
0.97, 
1.33 

0.12 1.11 
0.91, 
1.36 

0.31 0.75 
0.34, 
1.17 

0.0004 

Treatment-
resistant 

3 37, 38 0.94 
0.67, 
1.31 

0.71 0.98 
0.73, 
1.31 

0.87 -0.4 
-1.22, 
0.42 

0.34 

DAT 
Availability 

All patients 15 289, 277 1.31 
1.07, 
1.60 

0.01 1.32 
1.06, 
1.64 

0.01 -0.2 
-0.55, 
0.16 

0.28 

Treatment 
Naïve 

9 178, 202 1.46 
1.08, 
1.97 

0.01 1.5 
1.08, 
2.08 

0.01 -0.29 
-0.71, 
0.13 

0.17 

Synaptic 
DA All patients 3 40, 46 1.38 

1.01, 
1.89 0.046 1.36 

1.03, 
1.80 0.03 0.78 

0.34, 
1.23 0.0006 

 

 

 

 


