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Abstract

We introduce a fractional generalization of the Erlang Queues M/Ek/1. Such process is obtained
through a time-change via inverse stable subordinator of the classical queue process. We first exploit
the (fractional) Kolmogorov forward equation for such process, then we use such equation to obtain
an interpretation of this process in the queuing theory context. Then we also exploit the transient state
probabilities and some features of this fractional queue model, such as the mean queue length, the
distribution of the busy periods and some conditional distributions of the waiting times. Finally, we
provide some algorithms to simulate their sample paths.
c⃝ 2019 Published by Elsevier B.V.

Keywords: Stable subordinator; Caputo fractional derivative; Mittag-Leffler function; Time-changed process;
Continuous time Markov chain

1. Introduction

The Erlang Queue is one of the most popular model for a queue process. It is characterized
by arrivals determined by a Poisson process and independent Erlang service times.

We introduce a non-Markovian generalization of the classical Erlang M/Ek/1 queue
process based on the fractional Poisson process, FPP for short [1]. There are essentially
three approaches to the concept of FPP. The “renewal” approach consists of considering the
characterization of the Poisson process as a sum of independent non-negative random variables
and, instead of the assumption that these random variables have an exponential distribution, we
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assume that they have the Mittag-Leffler distribution [23,28,29]. In [5,6], the renewal approach
to the FPP is developed and it is proven that its n-dimensional distributions coincide with the
solution to “fractionalized” differential–difference equations with fractional derivatives in time.
Finally, using “inverse subordination”, a FPP can be constructed as a time-changed classical
Poisson process [30].

The first fractional generalization of the classical M/M/1 queue process was proposed
in [8]. The transient behaviour of the fractional M/M/1 queues with catastrophes (which in the
classical case is studied for instance in [12] and further generalized in [10,11,16]) is investigated
in [2].

In this paper, we present a study of the transient behaviour of the fractional Erlang queue
M/Ek/1.

In Section 2, we recall the basic definitions and properties for a classical Erlang queue
M/Ek/1. In particular we recall the formulas for the transient state probabilities, the mean
queue length and the distribution of the busy period.

In Section 3 we give the definition of Fractional Erlang Queue and we determine the
fractional forward Kolmogorov equation for the transient state probabilities of such queue.

In Section 4 the Fractional Erlang Queue process is investigated in terms of interarrival times
and service times. Such investigation leads to an interpretation of this process in a queueing
theory context and the characterization of the distributions of the interarrival, interphase and
service times.

In Section 5 formulas for transient state probabilities of such process and their Laplace
transform are finally obtained. In Section 6 some characteristics of the process are studied.
In particular in Section 6.1, a fractional differential equation for the mean queue length
is provided. Moreover, we find also a formula for the mean queue length and its Laplace
transform and, by using such formula, we provide an expression for the fractional integral
of the probability that the queue is empty. In Section 6.2 we provide also a formula for the
distribution of the busy period. In Section 6.3 we focus on the waiting times, determining a
formula for a particular conditional waiting time.

Finally, in Section 7, we provide an algorithm for sample paths simulation of such process,
which is a modified version of the well-known Gillespie algorithm (see [15]).

2. Erlang queues

Let us recall the definition of Erlang queue. A M/Ek/1 queue is a queue with Poisson input
(and so exponential independent interarrival times) with parameter λ and an Erlang service
system with shape parameter k and rate µ. Such service system can be seen as a system
composed of k phases each with exponential service time with parameter kµ.

Let us denote with N (t) the number of the customers in the system at the time t ≥ 0.
Moreover, if the queue is not empty, let us denote with S(t) the phase of the customer that
is currently being served at the time t ≥ 0. If N (t) = 0 let us denote also S(t) = 0. Finally
denote Q(t) = (N (t), S(t)) for t ≥ 0, that is a sort of state-phase process with state space:

S = {(n, s) ∈ N × N : n ≥ 1, 1 ≤ s ≤ k} ∪ {(0, 0)}

and let us denote S∗
= {(n, s) ∈ N × N : n ≥ 1, 1 ≤ s ≤ k}. Let us define the transient

state-phase probability functions as

pn,s(t) = P(Q(t) = (n, s)|Q(0) = (0, 0)) (n, s) ∈ S∗, t ≥ 0
p0(t) = P(Q(t) = (0, 0)|Q(0) = (0, 0)), t ≥ 0.
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It is well known (see for instance [37]) that the function pn,s(t) and p0(t) satisfy the following
difference–differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp0
dt (t) = −λp0(t) + kµp1,1(t)

dp1,s
dt (t) = −(λ + kµ)p1,s(t) + kµp1,s+1(t) 1 ≤ s ≤ k − 1

dp1,k
dt (t) = −(λ + kµ)p1,k(t) + kµp2,1(t) + λp0(t)

dpn,s
dt (t) = −(λ + kµ)pn,s(t) + kµpn,s+1(t) + λpn−1,s(t) n ≥ 2, 1 ≤ s ≤ k − 1

dpn,k
dt (t) = −(λ + kµ)pn,k(t) + kµpn+1,1(t) + λpn−1,k(t) n ≥ 2

p0(0) = 1

pn,s(0) = 0 n ≥ 1, 1 ≤ s ≤ k.

(1)

In [18] a solution of this system is obtained by means of generalized modified Bessel functions
defined in [27] as

I k
n (t) = (t/2)n

+∞∑
r=0

(t/2)r (k+1)

r !Γ (n + rk + 1)
, t ∈ C, n = 0, 1, 2, . . . , k = 1, 2, . . . (2)

and in [17] as

I k,s
n (t) = (t/2)n+k−s

+∞∑
r=0

(t/2)r (k+1)

(k(r + 1) − s)!Γ (n + r + 1)

t ∈ C, n = 0, 1, 2, . . . , k = 1, 2, . . . , s = 1, 2, . . . , k. (3)

In particular we have:

p0(t) =

+∞∑
m=1

m
(

λ

kµ

)−
m

k+1
I k
m

(
2

(
λ

kµ

) 1
k+1

kµt
)

kµt
e−(λ+kµ)t (4)

while for n ≥ 1 and 1 ≤ s ≤ k − 1:

pn,s(t) =

(
λ

kµ

) k(n−1)+s
k+1

I k,s
n (2(λ(kµ)k)

1
k+1 t)e−(λ+kµ)t

+ kµ

(
λ

kµ

) k(n−1)+s
k+1

∫ t

0
p0(z)I k,s

n (2(λ(kµ)k)
1

k+1 (t − z))e−(λ+kµ)(t−z)dz

− kµ

(
λ

kµ

) k(n−1)+s+1
k+1

∫ t

0
p0(z)I k,s+1

n (2(λ(kµ)k)
1

k+1 (t − z))e−(λ+kµ)(t−z)dz

and finally for n ≥ 1 and s = k:

pn,k(t) =

(
λ

kµ

) kn
k+1

I k,k
n (2(λ(kµ)k)

1
k+1 t)e−(λ+kµ)t

+ kµ

(
λ

kµ

) kn
k+1

∫ t

0
p0(z)I k,k

n (2(λ(kµ)k)
1

k+1 (t − z))e−(λ+kµ)(t−z)dz

− kµ

(
λ

kµ

) kn+1
k+1

∫ t

0
p0(z)I k,1

n+1(2(λ(kµ)k)
1

k+1 (t − z))e−(λ+kµ)(t−z)dz.
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It will be useful in the following to write the Bessel functions explicitly as power series. In
this way we have

p0(t) =

+∞∑
m=1

+∞∑
r=0

mλr (kµ)m+rk−1

r !Γ (n + rk + 1)
tm+r (k+1)−1e−(λ+kµ)t (5)

while for n ≥ 1 and 1 ≤ s ≤ k − 1 we have

pn,s(t) =

+∞∑
j=0

λn+ j (kµ)k( j+1)−s

(k( j + 1) − s)!Γ (n + j + 1)
tn+k−s+ j(k+1)e−(λ+kµ)t

+

+∞∑
j=0

λn+ j (kµ)k( j+1)−s+1

(k( j + 1) − s)!Γ (n + j + 1)

×

∫ t

0
p0(z)(t − z)n+k−s+ j(k+1)e−(λ+kµ)(t−z)dz

−

+∞∑
j=0

λn+ j (kµ)k( j+1)−s

(k( j + 1) − s − 1)!Γ (n + j + 1)

×

∫ t

0
p0(z)(t − z)n+k−s−1+ j(k+1)e−(λ+kµ)(t−z)dz

(6)

and finally for n ≥ 1 and s = k we have

pn,k(t) =

+∞∑
j=0

λn+ j (kµ)k j

(k j)!Γ (n + j + 1)
tn+ j(k+1)e−(λ+kµ)t

+

+

+∞∑
j=0

λn+ j (kµ)k j+1

(k j)!Γ (n + j + 1)
×

∫ t

0
p0(z)(t − z)n+ j(k+1)e−(λ+kµ)(t−z)dz

−

+∞∑
j=0

λn+ j+1(kµ)k( j+1)

(k( j + 1) − 1)!Γ (n + j + 2)
×

∫ t

0
p0(z)(t − z)n+k+ j(k+1)e−(λ+kµ)(t−z)dz.

(7)

We can also give an equivalent representation of the queue by using the queue length process,
that is to say the process L(t) given by:

L(t) =

{
k(N (t) − 1) + S(t) N (t) > 0

0 N (t) = 0.

The queue length process gives us the length of the queue by means of phases. In particular,
since the map mk : S → N0 given by:

mk(n, s) =

{
k(n − 1) + s (n, s) ∈ S∗

0 (n, s) = (0, 0)
(8)

is bijective, each state of L(t) represents only one state of Q(t) and vice-versa, so that we can
equivalently describe the queue with Q(t) or L(t): indeed we have mk(Q(t)) = L(t). Let us
also recall that the inverse map of mk(n, s) is given by (nk(m), sk(m)) where:

sk(m) =

{
min{s > 0 : s ∈ [m]k} m > 0

0 m = 0
(9)
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where [m]k is the residual class of m modulo k and:

nk(m) =

{m−sk (m)
k + 1 m > 0

0 m = 0.
(10)

Let us define the state probabilities of L(t) as

Pn(t) = P(L(t) = n|L(0) = 0).

In [26,27] the forward equations for Pn are given as:⎧⎪⎪⎨⎪⎪⎩
dP0
dt (t) = −λP0(t) + kµP1(t)

dPn
dt (t) = −(λ + kµ)Pn(t) + kµPn+1(t) + λ

∑n
m=1 cmPn−m(t) n ≥ 1

Pn(0) = δn,0 n ≥ 0

(11)

where cm = δm,k for M/Ek/1 queues. However, the bijectivity of mk(n, s) gives us the equality

Pm(t) = pnk (m),sk (m)(t)

so that the difference–differential system (11) is just a compact rewriting of (1) where the states
of Q(t) are disposed in lexicographic order.

In [26] the mean queue length, defined as M(t) = E[L(t)|L(0) = 0], is shown to solve the
following Cauchy problem:{

d M
dt (t) = k(λ − µ) + kµP0(t)

M(0) = 0

which leads, in [27], to the formula:

M(t) = k(λ − µ)t + kµ

∫ t

0
P0(y)dy. (12)

Moreover, in [27], the distribution function of the busy period has been obtained as

B(t) =

+∞∑
r=0

kλr (kµ)k(r+1)

r !Γ (rk + k + 1)

∫ t

0
zk+r (k+1)−1e−(λ+kµ)zdz. (13)

Finally, let us also recall that the probability density function of the waiting time of a customer
that enters the system at time t > 0 has been given in [13] as:

w(ξ ; t) =

+∞∑
n=0

Pn(t)kµ
(kµt)n−1

(n − 1)!
e−kµt . (14)

The author obtained such formula by explicitly using the Markov property of the queue.

3. Fractional Erlang queues

In [8] the authors introduce a fractional version of the M/M/1 queue. In particular, such
queue has been shown useful to model some financial data for which classical birth–death
processes were not enough. Following this idea, now we give the definition of a fractional
M/Ek/1 queue. Let us consider a classical state-phase process Q(t) = (N (t), S(t)) for the
M/Ek/1 queue and define {σν(t)}t≥0 a ν-stable subordinator independent from Q(t), such that
(see, for instance, [31])

E[e−vσν (t)] = e−tvν
, v > 0, ν ∈ (0, 1).



Please cite this article as: G. Ascione, N. Leonenko and E. Pirozzi, Fractional Erlang queues, Stochastic Processes and their Applications (2019),
https://doi.org/10.1016/j.spa.2019.09.012.

6 G. Ascione, N. Leonenko and E. Pirozzi / Stochastic Processes and their Applications xxx (xxxx) xxx

Define

Lν(t) = inf{s ≥ 0 : σν(s) > t} t ≥ 0

the inverse of the ν-stable subordinator and set N ν(t) := N (Lν(t)), Sν(t) := S(Lν(t)) and

Qν(t) := (N ν(t), Sν(t)) = Q(Lν(t)).

We will say that the process Qν(t) is the state-phase process of the fractional Erlang queue
M/Ek/1. By definition, let us also set Q1(t) = Q(t).

Before giving an interpretation in the sense of the queueing theory, let us show what are
the forward equations for the state probabilities of Qν(t). Let us define:

pν
n,s(t) = P(Qν(t) = (n, s)|Qν(0) = (0, 0)) (n, s) ∈ S∗

pν
0 (t) = P(Qν(t) = (0, 0)|Qν(0) = (0, 0)).

To obtain such forward equations, we will need the fractional integral (see [25]) of order
ν ∈ (0, 1) defined, for a function x : [0, t1] ⊆ R → R, as

Iν
t x =

1
Γ (ν)

∫ t

0
(t − τ )ν−1x(τ )dτ (15)

for any t ∈ [0, t1] and the Caputo fractional derivative of order ν ∈ (0, 1)

Dν
t x =

1
Γ (1 − ν)

∫ t

0

dx
dt

(τ )
dτ

(t − τ )ν
. (16)

The classes of functions for which such operators are well-defined are discussed in [31].
Moreover, we will use a Laplace transform approach, as described in [24,35]. Let us also

remark that if x is the Laplace transform of the function x and L is the Laplace transform
operator, then:

L[Dν
t x](z) = zνx(z) − zν−1x(0). (17)

For the state probabilities we can show the following theorem.

Theorem 3.1. The state probabilities (pν
n,s)(n,s)∈S are solution of the following fractional

difference–differential Cauchy problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dν
t pν

0 = −λpν
0 (t) + kµpν

1,1(t)
Dν

t pν
1,s = −(λ + kµ)pν

1,s(t) + kµpν
1,s+1(t) 1 ≤ s ≤ k − 1

Dν
t pν

1,k = −(λ + kµ)pν
1,k(t) + kµpν

2,1(t) + λpν
0 (t)

Dν
t pν

n,s = −(λ + kµ)pν
n,s(t) + kµpν

n,s+1(t) + λpν
n−1,s(t) n ≥ 2, 1 ≤ s ≤ k − 1

Dν
t pν

n,k = −(λ + kµ)pν
n,k(t) + kµpν

n+1,1(t) + λpν
n−1,k(t) n ≥ 2

pν
0 (0) = 1

pν
n,s(0) = 0 n ≥ 1, 1 ≤ s ≤ k.

(18)

where Dν
t is the Caputo fractional derivative.

Proof. Let us define the probability generating function

Gν(z, t) =

+∞∑
n=1

k∑
s=1

zk(n−1)+s pν
n,s(t), |z| ≤ 1.
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By multiplying the second equation of (18) by zs+1, the third equation of (18) by zk+1, the
fourth equation of (18) by zk(n−1)+s+1, the fifth equation of (18) by zkn+1 and the summing
all these equations with respect to n and s we have that the state probabilities pν

n,s solve this
Cauchy problem if and only if Gν(z, t) solves the following Cauchy problem:{

zDν
t Gν(z, ·) = (1 − z)[Gν(z, t)(kµ − λ(z + · · · + zk)) − kµpν

0 (t)]

Gν(z, 0) = 0.
(19)

Denoting with G̃ν(z, v) and π ν
0 (v) the Laplace transform of Gν(z, t) and pν

0 (t), we know that
Gν(z, t) solves the Cauchy problem (19) if and only if its Laplace transform solves:

zvν G̃ν(z, v) = (1 − z)[G̃ν(z, v)(kµ − λ(z + · · · + zk)) − kµπ ν
0 (v)] (20)

where we used the formula for the Laplace transform of the Caputo derivative given in formula
(17). Now let us observe that:

pν
n,s(t) = P(Qν(t) = (n, s)|Qν(0) = (0, 0)) = P(Q(Lν(t)) = (n, s)|Q(0) = (0, 0))

=

∫
+∞

0
P(Q(y) = (n, s)|Q(0) == (0, 0))P(Lν(t) ∈ dy) =

∫
+∞

0
p1

n,s(y)P(Lν(t) ∈ dy)
(21)

and, analogously:

pν
0 (t) =

∫
+∞

0
p1

0(y)P(Lν(t) ∈ dy). (22)

Thus for the probability generating function we know that

Gν(z, t) =

∫
+∞

0
G1(z, y)P(Lν(t) ∈ dy). (23)

Let us recall from [32] the following Laplace transform

L[P(Lν(t) ∈ dy)](v) = vν−1e−yvν
dy, v > 0. (24)

Thus by using Eq. (24) in Eqs. (22) and (23) we obtain:

π ν
0 (v) =

∫
+∞

0
p1

0(y)vν−1e−yvν
dy,

G̃ν(z, v) =

∫
+∞

0
G1(z, y)vν−1e−yvν

dy.

(25)

Using these two formulas we have that G̃ν(z, v) solves Eq. (20) if and only if

zvν

∫
+∞

0
G1(z, y)e−yvν

dy =

=

∫
+∞

0
(1 − z)[G1(z, y)(kµ − λ(z + · · · + zk)) − kµp1

0(y)]e−yvν
dy.

(26)

From [18] we know that G1(z, t) is solution of the following Cauchy problem:{
z ∂G1

∂t (z, t) = (1 − z)[G1(z, t)(kµ − λ(z + · · · + zk)) − kµp1
0(t)]

G1(z, 0) = 0.
(27)
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Using such property in (26) we obtain

zvν

∫
+∞

0
G1(z, y)e−yvν

dy = z
∫

+∞

0

∂G1(z, y)
∂t

e−yvν
dy

which, by using the integration by parts formula, gives us an identity. □

Let us introduce, as we did for the classical Erlang queue, the queue length process:

Lν(t) =

{
k(N ν(t) − 1) + Sν(t) N ν(t) ̸= 0
0 N ν(t) = 0

and define Pν
m(t) := P(Lν(t) = m|Lν(0) = 0). By the equality Pν

m(t) = pν
nk (m),sk (m)(t) and

Theorem 3.1, we know that (Pν
m(t))m∈N is solution of the fractional Cauchy problem⎧⎪⎨⎪⎩

Dν
t Pν

0 = −λPν
0 (t) + kµPν

1 (t)

Dν
t Pν

n = −(λ + kµ)Pν
n (t) + kµPν

n+1(t) + λ
∑n

m=1 cmPν
n−m(t) n ≥ 1

Pν
n (0) = δn,0 n ≥ 0

(28)

where c j = δ j,k , which is equivalent to the fractional Cauchy problem (18). Since the solutions
Pν

m(t) are defined as probabilities, by using Corollary 2 of [2] and Schur’s test (see [19]) one
can prove the following:

Corollary 3.2. The fractional Cauchy problems (18) and (28) admit unique global solutions
pν(t) = (pν

n,s(t))(n,s)∈S and Pν(t) = (Pν
m(t))m∈N, where pν, Pν

: [0, +∞) → l2.

4. Interpretation of the fractional M/Ek/1 queue

By using the result given in Theorem 3.1 we can show what are the main features of a
fractional M/Ek/1 queue in terms of interarrival and service times. Let us define:

hν
n(t) := P(N ν(t) = n|Qν(0) = (0, 0)) n ≥ 1

qν
s (t) := P(Sν(t) = s|Qν(0) = (0, 0)) 1 ≤ s ≤ k.

Note that

hν
n(t) =

k∑
s=1

pν
n,s(t)qν

s (t) =

+∞∑
n=1

pν
n,s(t).

Let us work with the functions hn(t). By summing the equations of (18) with respect to s we
obtain the following fractional Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dν
t pν

0 = −λpν
0 (t) + kµpν

1,1(t)

Dν
t hν

1 = −λhν
1(t) + kµ(pν

2,1(t) − pν
1,1(t)) + λpν

0 (t)

Dν
t hν

n = −λhν
n(t) + kµ(pν

n+1,1(t) − pν
n,1(t)) + λhν

n−1(t) n ≥ 2

pν
0 (t) = 1

hν
n(t) = 0 n ≥ 1
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that, for ν = 1, gives us⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp1
0

dt (t) = −λp1
0(t) + kµp1

1,1(t)
dh1

1
dt (t) = −λh1

1(t) + kµ(p1
2,1(t) − p1

1,1(t)) + λp1
0(t)

dh1
n

dt (t) = −λh1
n(t) + kµ(p1

n+1,1(t) − p1
n,1(t)) + λh1

n−1(t) n ≥ 2

p1
0(t) = 1

h1
n(t) = 0 n ≥ 1.

Before proceeding, let us give some notation. Let T be a random variable with cumulative
distribution function given by

FT (t) = 1 − Eν(−λtν), t ≥ 0, λ > 0,

where Eν is the Mittag-Leffler function (see [21]) defined as

Eν(z) =

+∞∑
k=0

zk

Γ (νk + 1)
, ν > 0, z ∈ C; (29)

we call T a Mittag-Leffler random variable with fractional index ν and parameter λ and we
denote it by T ∼ M Lν(λ). In particular let us denote Ψ (t) = Eν(−λtν), fT the probability
density function of T and denoting with f T its Laplace transform and recalling the Laplace
transform of the Mittag-Leffler function that can be obtained from (35) by posing δ = γ = 1,
we have

f T (v) =
λ

λ + vν
, v > 0. (30)

We are interested in the interarrival times of a ν-fractional M/EK /1 queue. Following the lines
of [38], let us define the arrival times as the time instants in which a customer enters in the
system, while the interarrival times as the duration of the time intervals between two arrival
times.

Now we can show the following Theorem.

Theorem 4.1. The interarrival times of a ν-fractional M/Ek/1 queue are i.i.d. Mittag-Leffler
random variables with fractional index ν and parameter λ.

Proof. The independence of the interarrival times of a fractional M/Ek/1 queue follows easily
from the definition. Let us show that these interarrival times are Mittag-Leffler distributed.
To do this, let us introduce the process Ñ 1(t) as a modification of N 1(t) such that the state
probabilities

h̃1
n(t) := P(Ñ 1(t) = n) n ≥ 0

are solution of the following Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dh̃1
m

dt (t) = −λh̃1
m(t)

dh̃1
m+1
dt (t) = λh̃1

m

dh̃1
n

dt (t) = 0 n ≥ 0, n ̸= m, m + 1

h̃1
n(0) = δn,m
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that is to say that Ñ 1(t) is a birth process (µ = 0) that has the same birth rate λ as N 1(t), starts
at m and admits m + 1 as absorbing state. In particular the Cauchy problem can be reduced to
a couple of linear ODEs:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dh̃1
m

dt (t) = −λh̃1
m(t)

dh̃1
m+1
dt (t) = λh̃1

m(t)

h̃1
m(0) = 1

h̃1
m+1(0) = 0.

Moreover, since they are probabilities, we have also that h̃1
m(t) + h̃1

m+1(t) = 1 for any t ≥ 0.
Finally, denoting with T 1 the arrival time of the first new customer of the queue Q1 starting
from N 1(0) = m, we have that h̃1

m+1(t) = FT 1 (t).
Now let us define Ñ ν(t) = Ñ 1(Lν(t)) and

h̃ν
m(t) := P(Ñ ν(t) = m )̃hν

m+1(t) := P(Ñ ν(t) = m + 1).

By definition, Ñ ν(t) is a process that starts from m and admits m + 1 as absorbent state.
Moreover, denoting with T ν the arrival time of the first new customer in the queue Qν starting
from N ν(0) = m, we have that h̃ν

m+1(t) = FT ν (t). Indeed, since N 1(t) is a Markov process,
N ν(t) is a semi-Markov process and, denoting with Tn the nth jump time, the discrete time
process N ν(Tn) is a time-homogeneous Markov chain (see, for instance, [14]). For this reason,
T ν can be seen as the interarrival time of the queue Qν .

Now we have to show that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dν
t h̃ν

m = −λh̃ν
m(t)

Dν
t h̃ν

m+1 = λh̃ν
m(t)

h̃ν
m(0) = 1

h̃ν
m+1(0) = 0.

(31)

The initial conditions are obviously verified. Now let us work with the first equation. We know
that this equation is verified if and only if, denoting with h

ν

m the Laplace transform of h̃ν
m :

vνh
ν

m(v) − vν−1
= −λh

ν

m(v), v > 0. (32)

By using the definition of h̃ν
m(t) we have that:

h̃ν
m(t) =

∫
+∞

0
h̃1

m(y)P(Lν(t) ∈ dy)

and thus, taking the Laplace transform

h
ν

m(v) = vν−1
∫

+∞

0
h̃1

m(y)e−yvν
dy.

Using this formula, we know that Eq. (32) is verified if and only if

vν

∫
+∞

0
h̃1

m(y)e−yvν
dy − 1 =

∫
+∞

0
−λh̃1

m(y)e−yvν
dy. (33)

Recalling that h̃1
m(t) is solution of the following Cauchy problem{

dh̃1
m

dt (t) = −λh̃1
m(t)

h̃1
m(0) = 1
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we have that Eq. (33) is verified if and only if

vν

∫
+∞

0
h̃1

m(y)e−yvν
dy − 1 =

∫
+∞

0

dh̃1
m(y)
dt

e−yvν
dy

that, by using the integration by parts formula, gives us an identity. In an analogous way, one
can show that the second equation of (31) is verified.

Finally, we only have to solve the fractional Cauchy problem (31). To do this, let us observe
that the first equation is independent from the second one, so we can solve first the Cauchy
problem:{

Dν
t h̃ν

m = −λh̃ν
m(t)

h̃ν
m(0) = 1

whose solution is h̃ν
m(t) = Eν(−λtν) (see [21]). Finally:

FT ν (t) = h̃ν
m+1(t) = 1 − h̃ν

m(t) = 1 − Eν(−λtν), t ≥ 0. □

Now let us work with the functions qν
s (t), in order to obtain some information on the service

times. Summing the equations in (18) with respect to n we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dν
t pν

0 = −λpν
0 (t) + kµpν

1,1(t)

Dν
t qν

s = −kµqν
s (t) + kµqν

s+1(t) 1 ≤ s ≤ k − 1

Dν
t qν

k = −kµqν
k (t) + kµqν

1 (t) − kµpν
1,1(t) + λpν

0 (t)

pν
0 (0) = 1

qν
s (0) = 0 1 ≤ s ≤ k

that, for ν = 1, gives us⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp1
0

dt (t) = −λp1
0(t) + kµp1

1,1(t)
dq1

s
dt (t) = −kµq1

s (t) + kµq1
s+1(t) 1 ≤ s ≤ k − 1

dq1
k

dt (t) = −kµq1
k (t) + kµq1

1 (t) − kµp1
1,1(t) + λp1

0(t)

p1
0(0) = 1

q1
s (0) = 0 1 ≤ s ≤ k.

We can use the functions qν
s exactly in the same way we did with hν

n to show the following
Theorem.

Theorem 4.2. The interphase times of a ν-fractional M/Ek/1 queue are i.i.d. Mittag-Leffler
random variables with fractional index ν and parameter kµ.

Let us give some other notation. Let T be a random variable with distribution function given
by

FT (t) = 1−

k−1∑
n=0

(λtν)n

n!
E (n)

ν (−λtν) = 1−

k−1∑
n=0

+∞∑
j=1

(−1) j
(

n + j
n

)
(λtν) j+n

Γ (ν( j + n) + 1)
, t ≥ 0;

we call T a generalized Erlang random variable (as introduced in [28]) with fractional index ν,
shape parameter k and rate λ and we denote it by T ∼ G Eν(k, λ). In particular T ∼ G Eν(k, λ)
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is sum of k i.i.d. Mittag-Leffler random variable of fractional index ν and parameter λ. For this
reason, denoting with fT the probability density function of T and f T its Laplace transform,
we have, from (30),

f T (v) =
λk

(λ + vν)k
, v > 0.

From Theorem 4.2 we easily obtain the following Corollary

Corollary 4.3. The service times of a ν-fractional M/Ek/1 queue are i.i.d. generalized Erlang
random variables with fractional index ν, shape parameter k and rate kµ.

Proof. Let us simply observe that a service time is sum of k interphase times, which are i.i.d.
Mittag-Leffler random variables of fractional index ν and parameter kµ. □

From Theorems 4.1 and 4.2 and Corollary 4.3 we can conclude that a fractional M/Ek/1
queue is a single-channel queue with Mittag-Leffler interarrival times and generalized Erlang
service times in which the service is given through k phases, each one with Mittag-Leffler
distributed service time. In particular for k = 1 we obtain the fractional M/M/1 queue
introduced in [8].

We can also obtain the distribution of a general sojourn time of Lν(t) working with Pν
n (t)

as we already did with qν
s (t) and hν

n(t).

Theorem 4.4. The sojourn time of the queue length process of a ν-fractional M/Ek/1 queue
in a state n > 0 is a Mittag-Leffler random variable with fractional index ν and parameter
λ + kµ.

Remark 4.5. The sojourn time of Lν(t) in the state 0 coincides with an interarrival time, so
it is a Mittag-Leffler random variable of fractional index ν and parameter λ.

From this information on sojourn time, we can also obtain a new information on the mutual
dependence of interarrival times and interphase times.

Corollary 4.6. Interarrival times and interphase times are not independent for ν ∈ (0, 1).

Proof. Let us first remark that if two random variables T and S are independent, then

P(min{T, S} ≥ t) = P(T ≥ t, S ≥ t) = P(T ≥ t)P(S ≥ t).

Let TS be a sojourn time, TA an interarrival time and TP an interphase time. Thus we have
TS = min{TA, TP}. However

P(TS ≥ t) = Eν(−(λ + kµ)tν), P(TP ≥ t) = Eν(−kµtν), P(TA ≥ t) = Eν(−λtν)

thus we have that P(TS ≥ t) = P(TP ≥ t)P(TA ≥ t) if and only if

Eν(−(λ + kµ)tν) = Eν(−kµtν)Eν(−λtν)

that is true if and only if λ = kµ = 0 or ν = 1 (see [34]). □
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5. Transient state probabilities

Our aim is now to obtain the transient state probability functions pν
0 (t) and pν

n,s(t) in a closed
form, with the aid of the three-parameter Mittag-Leffler function Eδ

ν,µ (see [21]) defined as

Eδ
ν,µ(z) =

+∞∑
k=0

Γ (δ + k)zk

k!Γ (δ)Γ (νk + µ)
, ℜ(γ ), ℜ(ν), ℜ(δ) > 0, z ∈ C (34)

and the Laplace transform formula (see [20])

L[zγ−1 Eδ
ν,γ (wzν)](v) =

vνδ−γ

(vν − w)δ
,

γ, ν, δ, w ∈ C, ℜ(γ ), ℜ(ν), ℜ(δ) > 0, v ∈ C, |wvν
| < 1. (35)

To do this, let us first work with pν
0 (t).

Theorem 5.1. Let pν
0 (t) be the 0 state probability of a fractional M/Ek/1 queue Qν(t) and

π ν
0 (v) its Laplace transform. Then we have

pν
0 (t) =

+∞∑
m=1

+∞∑
r=0

C0
m,r tγ 0

m,r −1 E
δ0

m,r

ν,γ 0
m,r

(−(λ + kµ)tν) (36)

and

π ν
0 (v) =

+∞∑
m=1

+∞∑
r=0

C0
m,r

vνδ0
m,r −γ 0

m,r

(λ + kµ + vν)δ
0
m,r

(37)

where

C0
m,r =

m
m + r (k + 1)

(
m + r (k + 1)

m + rk

)
λr (kµ)m+rk−1,

δ0
m,r = m + r (k + 1), γ 0

m,r = ν(δ0
m,r − 1) + 1.

(38)

Proof. Let us recall that we already have a closed form for p1
0(t), given by Eq. (5). Moreover,

using this closed form in Eq. (25) we have:

π ν
0 (v) =

+∞∑
m=1

+∞∑
r=0

mλr (kµ)m+rk−1

r !Γ (m + rk + 1)
vν−1

∫
+∞

0
ym+r (k+1)−1e−(λ+kµ+vν )ydy

that, integrating, becomes

π ν
0 (v) =

+∞∑
m=1

+∞∑
r=0

mλr (kµ)m+rk−1(m + r (k + 1) − 1)!
r !Γ (m + rk + 1)

vν−1

(λ + kµ + vν)m+r (k+1) .

Now let us set C0
m,r , δ0

m,r and γ 0
m,r as in (38) and observe that

π ν
0 (v) =

+∞∑
m=1

+∞∑
r=0

C0
m,r

vνδ0
m,r −γ 0

m,r

(λ + kµ + vν)δ
0
m,r

.

Finally, by using Eq. (35) we obtain:

pν
0 (t) =

+∞∑
r=0

+∞∑
m=1

C0
m,r tγ 0

m,r −1 E
δ0

m,r

ν,γ 0
m,r

(−(λ + kµ)tν). □
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Remark 5.2. For k = 1 we have that:

C0
m,r =

m
m + 2r

(
m + 2r
m + r

)
λrµm+r−1,

δ0
m,r = m + 2r, γ 0

m,r = ν(m + 2r − 1) + 1

and then we have

pν
0 (t) =

+∞∑
r=0

m
m + 2r

(
m + 2r
m + r

)
λrµm+r−1tν(m+2r−1) Em+2r

ν,ν(m+2r−1)+1(−(λ + µ)tν).

Now, let us change variables, posing m = m + r , so we have

pν
0 (t) =

+∞∑
r=0

+∞∑
m=r+1

m − r
m + r

(
m + r

m

)
λrµm−1tν(m+r−1) Em+r

ν,ν(m+r−1)+1(−(λ + µ)tν).

This is the second formula obtained in Remark 4 in [2] for the fractional M/M/1 queue.

Remark 5.3. For ν = 1 we obtain

γ 0
m,r = δ0

m,r = m + r (k + 1)

and then, with some calculations

p1
0(t) =

+∞∑
m=1

+∞∑
r=0

C0
m,r

Γ (δ0
m,r )

tδ0
m,r −1e−(λ+kµ)t .

Let us remark that
C0

m,r

Γ (δ0
m,r )

=
mλr (kµ)m+rk−1(m + r (k + 1) − 1)!
r !Γ (m + rk + 1)Γ (m + r (k + 1))

=
mλr (kµ)m+rk−1

r !Γ (m + rk + 1)

so that

p1
0(t) =

+∞∑
r=0

mλr (kµ)m+rk−1

r !Γ (m + rk + 1)
tm+r (k+1)−1e−(λ+kµ)t

that is Eq. (5).

To get pν
n,s(t), it is useful to prove the following Lemma.

Lemma 5.4. For any n ∈ N we have∫
+∞

0

∫ y

0
p1

0(z)(y − z)ne−(λ+kµ)(y−z)e−yvν
dzdy

=

+∞∑
m=1

+∞∑
r=0

C0
m,r

n!

(λ + kµ + vν)m+r (k+1)+n+1

(39)

where C0
m,r is defined in (38).

Proof. Let us first notice that:∫
+∞

0

∫ y

0
p1

0(z)(y − z)ne−(λ+kµ)(y−z)e−yvν
dzdy =

=

∫
+∞

0

∫
+∞

0
p1

0(z)(y − z)ne−(λ+kµ+vν )(y−z)e−zvν
χ[0,y](z)dzdy
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and then we can use Fubini’s theorem to obtain∫
+∞

0

∫
+∞

0
p1

0(z)(y − z)ne−(λ+kµ+vν )(y−z)e−zvν
χ[0,y](z)dzdy =

=

∫
+∞

0

∫
+∞

0
p1

0(z)(y − z)ne−(λ+kµ+vν )(y−z)e−zvν
χ[0,y](z)dydz.

Now let us set w = y − z to obtain∫
+∞

0

∫
+∞

0
p1

0(z)(y − z)ne−(λ+kµ+vν )(y−z)e−zvν
χ[0,y](z)dydz

=

∫
+∞

0

∫
+∞

−z
p1

0(z)wne−(λ+kµ+vν )we−zvν
χ[0,z+w](z)dwdz

that, since χ[0,z+w](z) = χ[0,+∞)(w), gives us∫
+∞

0

∫
+∞

−z
p1

0(z)wne−(λ+kµ+vν )we−zvν
χ[0,z+w](z)dwdz =

=

(∫
+∞

0
p1

0(z)e−zvν
dz

) (∫
+∞

0
wne−(λ+kµ+vν )wdw

)
.

By integrating, we have∫
+∞

0
wne−(λ+kµ+vν )wdw =

n!

(λ + kµ + vν)n+1 .

Moreover, by (25) and (37) we have∫
+∞

0
p1

0(z)e−zvν
dz =

π ν
0 (v)

vν−1 =

+∞∑
m=1

+∞∑
r=0

C0
m,r

(λ + kµ + vν)m+r (k+1)

so finally we obtain∫
+∞

0

∫ y

0
p1

0(z)(y − z)ne−(λ+kµ)(y−z)e−yvν
dzdy

=

+∞∑
m=1

+∞∑
r=0

C0
m,r

n!

(λ + kµ + vν)m+r (k+1)+n+1 . □

Now we are ready to show the following Theorem.

Theorem 5.5. For any (n, s) ∈ S∗ let pν
n,s(t) = P(Qν(t) = (n, s)|Qν(0) = (0, 0)) and π ν

n,s(v)
be its Laplace transform. Then

pν
n,s(t) =

+∞∑
j=0

An,s
j tα

n,s
j −1 E

an,s
j

ν,α
n,s
j

(−(λ + kµ)tν)

+

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Bn,s
j,m,r tβ

n,s
j,m,r −1 E

bn,s
j,m,r

ν,β
n,s
j,m,r

(−(λ + kµ)tν)

−

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Cn,s
j,m,r tγ

n,s
j,m,r −1 E

cn,s
j,m,r

ν,γ
n,s
j,m,r

(−(λ + kµ)tν)
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and

π ν
n,s(v) =

+∞∑
j=0

An,s
j

v
νan,s

j −α
n,s
j

(λ + kµ + vν)an,s
j

+

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Bn,s
j,m,r

v
νbn,s

j,m,r −β
n,s
j,m,r

(λ + kµ + vν)bn,s
j,m,r

−

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Cn,s
j,m,r

v
νcn,s

j,m,r −γ
n,s
j,m,r

(λ + kµ + vν)cn,s
j,m,r

where

An,s
j =

(
n + k + k j + j − s

n + j

)
λn+ j (kµ)k( j+1)−s

an,s
j = n − s + ( j + 1)(k + 1) α

n,s
j = ν(an,s

j − 1) + 1

Bn,s
j,m,r = kµC0

m,r An,s
j bn,s

j,m,r = δ0
m,r + an,s

j β
n,s
j,m,r = ν(bn,s

j,m,r − 1) + 1

Cn,s
j,m,r =

{
kµC0

m,r An,s+1
j s ̸= k

kµC0
m,r An+1,1

j s = k
cn,s

j,m,r =

{
δ0

m,r + an,s+1
j s ̸= k

δ0
m,r + an+1,1

j s = k

γ
n,s
j,m,r = ν(cn,s

j,m,r − 1) + 1.

(40)

Proof. From Eq. (21) we easily obtain

π ν
n,s(v) = vν−1

∫
+∞

0
p1

n,s(y)e−yvν
dy, v > 0 (41)

Let us first consider 1 ≤ s ≤ k − 1; by using Eq. (6), we have

π ν
n,s(v) =

+∞∑
j=0

λn+ j (kµ)k( j+1)−s

(k( j + 1) − s)!Γ (n + j + 1)
vν−1

∫
+∞

0
yn+k−s+ j(k+1)e−(λ+kµ+vν )ydy

+

+∞∑
j=0

λn+ j (kµ)k( j+1)−s+1

(k( j + 1) − s)!Γ (n + j + 1)
vν−1

×

∫
+∞

0

∫ y

0
p1

0(z)(y − z)n+k−s+ j(k+1)e−(λ+kµ)(y−z)e−yvν
dzdy

−

+∞∑
j=0

λn+ j (kµ)k( j+1)−s

(k( j + 1) − s − 1)!Γ (n + j + 1)
vν−1

×

∫
+∞

0

∫ y

0
p1

0(z)(y − z)n+k−s−1+ j(k+1)e−(λ+kµ)(y−z)e−yvν
dzdy.

Integrating, using Eq. (39) and posing An,s
j , an,s

j , α
n,s
j , Bn,s

j,m,r , bn,s
j,m,r , β

n,s
j,m,r , Cn,s

j,m,r , cn,s
j,m,r and

γ
n,s
j,m,r as in Eq. (40) for s ̸= k we obtain

π ν
n,s(v) =

+∞∑
j=0

An,s
j

v
νan,s

j −α
n,s
j

(λ + kµ + vν)an,s
j

+

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Bn,s
j,m,r

v
νbn,s

j,m,r −β
n,s
j,m,r

(λ + kµ + vν)bn,s
j,m,r

−

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Cn,s
j,m,r

v
νcn,s

j,m,r −γ
n,s
j,m,r

(λ + kµ + vν)cn,s
j,m,r

.
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Finally, by using Eq. (35) we obtain

pν
n,s(t) =

+∞∑
j=0

An,s
j tα

n,s
j −1 E

an,s
j

ν,α
n,s
j

(−(λ + kµ)tν)

+

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Bn,s
j,m,r tβ

n,s
j,m,r −1 E

bn,s
j,m,r

ν,β
n,s
j,m,r

(−(λ + kµ)tν)

−

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Cn,s
j,m,r tγ

n,s
j,m,r −1 E

cn,s
j,m,r

ν,γ
n,s
j,m,r

(−(λ + kµ)tν).

Now, for s = k, from Eq. (41) and (7) we obtain

π ν
n,k(v) =

+∞∑
j=0

λn+ j (kµ)k j

(k j)!Γ (n + j + 1)
vν−1

∫
+∞

0
yn+ j(k+1)e−(λ+kµ+vν )ydy

+

+∞∑
j=0

λn+ j (kµ)k j+1

(k j)!Γ (n + j + 1)
vν−1

×

∫
+∞

0

∫ y

0
p1

0(z)(y − z)n+ j(k+1)e−(λ+kµ)(y−z)e−yvν
dzdy

−

+∞∑
j=0

λn+ j+1(kµ)k( j+1)

(k( j + 1) − 1)!Γ (n + j + 2)
vν−1

×

∫
+∞

0

∫ y

0
p1

0(z)(y − z)n+k+ j(k+1)e−(λ+kµ)(y−z)e−yvν
dzdy.

Integrating, using Eq. (39) and posing An,s
j , an,s

j , α
n,s
j , Bn,s

j,m,r , bn,s
j,m,r , β

n,s
j,m,r , Cn,s

j,m,r , cn,s
j,m,r and

γ
n,s
j,m,r as in Eq. (40) for s = k we obtain

π ν
n,k(v) =

+∞∑
j=0

An,k
j

v
νan,k

j −α
n,k
j

(λ + kµ + vν)an,k
j

+

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Bn,k
j,m,r

v
νbn,k

j,m,r −β
n,k
j,m,r

(λ + kµ + vν)bn,k
j,m,r

−

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Cn,k
j,m,r

v
νcn,k

j,m,r −γ
n,k
j,m,r

(λ + kµ + vν)cn,k
j,m,r

.

Finally, by using Eq. (35) we obtain

pν
n,k(t) =

+∞∑
j=0

An,k
j tα

n,k
j −1 E

an,k
j

ν,α
n,k
j

(−(λ + kµ)tν)

+

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Bn,k
j,m,r tβ

n,k
j,m,r −1 E

bn,k
j,m,r

ν,β
n,k
j,m,r

(−(λ + kµ)tν)

−

+∞∑
j=0

+∞∑
m=1

+∞∑
r=0

Cn,k
j,m,r tγ

n,k
j,m,r −1 E

cn,k
j,m,r

ν,γ
n,k
j,m,r

(−(λ + kµ)tν). □
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6. Some features of the fractional M/Ek/1 queue

In this section we want to determine some features of the fractional M/Ek/1 queue. In
particular we focus on the mean queue length (measured in phases), the distribution of the
busy period and the distribution of the waiting times.

6.1. Mean queue length

To determine the mean queue length, let us consider the queue length process Lν(t) and
define:

Mν(t) = E[Lν(t)|Lν(0) = 0].

Let us first show the following Theorem

Theorem 6.1. The function Mν(t) is solution of the following fractional Cauchy problem:{
Dν

t Mν
= k(λ − µ) + kµPν

0 (t)

Mν(0) = 0.
(42)

Proof. The initial condition follows from the definition of Mν(t).
To obtain the equation, recall that, by definition:

Mν(t) =

+∞∑
n=1

nPν
n (t).

Thus, let us consider Eq. (28), multiply the second equation by n and then sum over n to obtain

Dν
t Mν(t) = −(λ + kµ)Mν(t) + kµ

+∞∑
n=1

nPν
n+1(t) + λ

+∞∑
n=1

n∑
m=1

cmPν
n−m(t). (43)

Let us observe that
+∞∑
n=1

nPν
n+1(t) = Mν(t) −

+∞∑
n=0

Pν
n+1(t) = Mν(t) + Pν

0 (t) − 1 (44)

and
+∞∑
n=1

n∑
m=1

ncmPν
n−m(t) =

+∞∑
m=1

+∞∑
n=m

ncmPν
n−m(t).

Now let us set r = n − m to obtain
+∞∑
m=1

+∞∑
n=m

ncmPν
m−n(t) =

+∞∑
m=1

+∞∑
r=0

(r + m)cmPν
r (t)

=

+∞∑
m=1

cm

+∞∑
r=0

rPν
r (t) +

+∞∑
m=1

mcm

+∞∑
r=0

Pν
r (t).

Recalling that cm = δm,k , we have
+∞∑
m=1

cm

+∞∑
r=0

rPν
r (t) +

+∞∑
m=1

mcm

+∞∑
r=0

Pν
r (t) = Mν(t) + k. (45)

Using Eqs. (44) and (45) in (43) we obtain the first equation of (42). □
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By integrating (42), we obtain the following representation of the mean queue length:

Mν(t) =
k(λ − µ)tν

Γ (ν + 1)
+ kµIν

t Pν
0 (46)

For k = 1 we obtain the mean queue length of a fractional M/M/1 queue, as stated in Theorem
2.3 of [8]. For ν = 1 we obtain Eq. (12).

Starting from Eq. (12) we can also obtain a closed form for Mν(t).

Theorem 6.2. Let Mν(t) = E[Lν(t)|Lν(0) = 0] and denote with M
ν
(v) its Laplace transform.

Then

Mν(t) = k(λ − µ)
tν

Γ (ν + 1)
+ kµ

+∞∑
m=1

+∞∑
r=0

C0
m,r tγ M

m,r −1 E
δ0

m,r

ν,γ M
m,r

(−(λ + kµ)tν) (47)

and

M
ν
(v) = k(λ − µ)

1
vν+1 + kµ

+∞∑
m=1

+∞∑
r=0

C0
m,r

vνδ0
m,r −γ M

m,r

(λ + kµ + vν)δ
0
m,r

where

γ M
m,r = νδ0

m,r + 1 (48)

and C0
m,r and δ0

m,r are defined in (38).

Proof. From Eq. (21) and the equality Pν
m = pν

nk (m),sk (m) we easily obtain that

Mν(t) =

∫
+∞

0
M1(y)P(Lν(t) ∈ dy).

Using (12) we obtain

Mν(t) = k(λ − µ)
∫

+∞

0
yP(Lν(t) ∈ dy) + kµ

∫
+∞

0

∫ y

0
P1

0 (z)dzP(Lν(t) ∈ dy).

Taking the Laplace transform we obtain

M
ν
(v) = k(λ − µ)vν−1

∫
+∞

0
ye−yvν

dy + kµvν−1
∫

+∞

0

∫ y

0
P1

0 (z)e−yvν
dzdy. (49)

For the first integral we easily obtain∫
+∞

0
ye−yvν

dy =
1

v2ν
. (50)

For the second one we have∫
+∞

0

∫ y

0
P1

0 (z)e−yvν
dzdy =

∫
+∞

0

∫
+∞

z
P1

0 (z)e−yvν
dydz

=
1
vν

∫
+∞

0
P1

0 (z)e−zvν
dz.

(51)
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By using Eq. (5) we obtain∫
+∞

0
P1

0 (z)e−zvν
dz =

+∞∑
m=1

+∞∑
r=0

mλr (kµ)m+rk−1

r !Γ (n + rk + 1)

∫
+∞

0
zm+r (k+1)−1e−(λ+kµ+vν )zdz

=

+∞∑
m=1

+∞∑
r=0

C0
m,r

1
(λ + kµ + vν)m+r (k+1) .

(52)

Using Eqs. (52), (51) and (50) in (49) we obtain

M
ν
(v) = k(λ − µ)

1
vν+1 + kµ

+∞∑
m=1

+∞∑
r=0

C0
m,r

v−1

(λ + kµ + vν)m+r (k+1) .

Posing then γ M
m,r as in (48) we obtain

M
ν
(v) = k(λ − µ)

1
vν+1 + kµ

+∞∑
m=1

+∞∑
r=0

C0
m,r

vνδ0
m,r −γ M

m,r

(λ + kµ + vν)δ
0
m,r

.

Finally, taking the inverse Laplace transform and recalling Eq. (35) we obtain

Mν(t) = k(λ − µ)
tν

Γ (ν + 1)
+ kµ

+∞∑
m=1

+∞∑
r=0

C0
m,r tγ M

m,r −1 E
δ0

m,r

ν,γ M
m,r

(−(λ + kµ)tν). □

Comparing Eq. (46) with (47) we also obtain some information on the fractional integral of
Pν

0 (t). In particular

Iν
t Pν

0 =

+∞∑
m=1

+∞∑
r=0

C0
m,r tγ M

m,r −1 E
δ0

m,r

ν,γ M
m,r

(−(λ + kµ)tν).

6.2. Distribution of the busy period

Now we are interested in the distribution of the busy period. Following the lines of [38],
let us define the busy period as the duration of the time interval from the instant a customer
enters in the empty system to the instant in which the system becomes empty again for the
first time.

We can obtain the distribution of the busy period for a fractional M/Ek/1 queue by
following the lines of [26].

Theorem 6.3. Let Bν be the duration of the busy period of a fractional M/Ek/1 queue, Bν(t)
be its distribution function and B

ν
(v) be its Laplace transform. Then we have

Bν(t) =

+∞∑
r=0

C B
r tγ B

r −1 EδB
r

ν,γ B
r

(−(λ + kµ)tν)

and

B
ν
(v) =

+∞∑
r=0

C B
r

vνδB
r −γ B

r

(λ + kµ + vν)δB
r

where

C B
r = kµC0

k,r γ B
r = νδ0

k,r + 1 (53)

with C0
k,r and δ0

k,r defined in Eqs. (38).
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Proof. Let us consider the process L̃1(t) whose state probabilities

P̃1
n (t) = P(L̃1(t) = n|L̃1(0) = 1)

satisfy the following Cauchy problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dP̃0
dt (t) = kµP̃1(t)

dP̃1
dt (t) = −(λ + kµ)P̃1(t) + kµP̃2(t)

dP̃n
dt (t) = −(λ + kµ)P̃n(t) + kµP̃n+1(t) + λ

∑n
m=1 cmP̃n−m(t) n ≥ 2

P̃n(0) = δn,k n ≥ 0.

The process L̃1(t)behaves as L1(t) except that it starts from k (that is to say when the first
customer entered the queue) instead that from 0 and admits 0 as absorbing state. In particular,
by construction, P̃1

0 (t) = B1(t).
Now let us consider L̃ν(t) := L̃1(Lν(t)). As done with the interarrival and the interphase

times, if Tn is the nth jump time of the process Lν(t), then Lν(Tn) is a time-homogeneous
Markov chain, then, by construction, P̃ν

0 (t) = Bν(t).
From the relation between L̃1 and L̃ν , we have that

Bν(t) =

∫
+∞

0
B1(y)P(Lν(t) ∈ dy).

Thus, by using Eq. (13) we have

Bν(t) =

+∞∑
r=0

kλr (kµ)k(r+1)

r !Γ (rk + k + 1)

∫
+∞

0

∫ y

0
zk+r (k+1)−1e−(λ+kµ)zdzP(Lν(t) ∈ dy).

Taking the Laplace transform we have

B
ν
(v) =

+∞∑
r=0

kλr (kµ)k(r+1)

r !Γ (rk + k + 1)
vν−1

∫
+∞

0

∫ y

0
zk+r (k+1)−1e−(λ+kµ)ze−yvν

dzdy. (54)

Now let us consider the integral and observe that:∫
+∞

0

∫ y

0
zk+r (k+1)−1e−(λ+kµ)ze−yvν

dzdy

=

∫
+∞

0

∫
+∞

z
zk+r (k+1)−1e−(λ+kµ)ze−yvν

dydz

=
1
vν

∫
+∞

0
zk+r (k+1)−1e−(λ+kµ+vν )zdz =

1
vν

(k + r (k + 1) − 1)!
(λ + kµ + vν)k+r (k+1) .

(55)

Using Eq. (55) in Eq. (54) we obtain

B
ν
(v) =

+∞∑
r=0

kλr (kµ)k(r+1)(k + r (k + 1) − 1)!
r !Γ (rk + k + 1)

v−1

(λ + kµ + vν)k+r (k+1) .

Thus, posing C B
r and γ B

r as in (53) we obtain

B
ν
(v) =

+∞∑
r=0

C B
r

vνδB
r −γ B

r

(λ + kµ + vν)δB
r

.
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Finally, taking the inverse Laplace transform and using Eq. (35), we obtain

Bν(t) =

+∞∑
r=0

C B
r tγ B

r −1 EδB
r

ν,γ B
r

(−(λ + kµ)tν). □

6.3. Distribution of some conditional virtual waiting times

For classical single-channel queues, a method to obtain the waiting time distribution has
been presented in [13]. However, this technique makes an explicit use of the Markov property
of a classical single-channel queue. Our fractional queues are semi-Markov processes, then this
technique cannot be used in our context. However, to give some information on the waiting
times we can introduce some form of conditioning.

Before working with the waiting times, let us introduce a new distribution function that will
be useful in the following. Consider a random variable T ∼ M Lν(λ) and fix t0 > 0. Observe
that

P(T ≤ t0 + t |T ≥ t0) = 1 −
Eν(−λ(t0 + t)ν)

Eν(−λtν
0 )

.

The explicit dependence of this probability with respect to t0 is due to the lack of semigroup
property that is typical of Mittag-Leffler functions (see, for instance, [34]). This observation
leads us to the definition of a new distribution.

Consider a random variable T such that its distribution function is given by

FT (t) = 1 −
Eν(−λ(t0 + t)ν)

Eν(−λtν
0 )

;

we call such random variable residual Mittag-Leffler random variable starting from t0 with
fractional index ν and parameter λ and we denote it by T ∼ RM Lν(t0, λ). Denote

Φ(t) := Eν(−λ(t0 + t)ν)

and observe that, by the definition of Mittag-Leffler function given in (29), we have

Φ(t) =

+∞∑
k=0

(−λ)k

Γ (νk + 1)
(t0 + t)νk .

Denote with Φ(v) its Laplace transform and observe that

Φ(v) =

+∞∑
k=0

(−λ)k

Γ (νk + 1)
evt0v−1−νkΓ (νk + 1, vt0), v > 0,

where Γ (z, s) is the analytic extension of the upper incomplete gamma function on C2 (see,
for instance, [22,33]). Denote with fT (t) the probability density function of T and observe that

fT (t) = −
1

Eν(−λtν
0 )

dΦ(t)
dt

.

Denoting with f T (v) its Laplace transform, we obtain

f T (v) = 1 −
evt0

Eν(−λtν
0 )

+∞∑
k=0

(−λ)k

Γ (νk + 1)
v−νkΓ (νk + 1, vt0), v > 0.
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Finally let us also observe that if T ∼ RM Lν(t0, λ) for ν = 1, then T ∼ Exp(λ). Now we are
ready to determine such waiting times.

Let W ν
t be the virtual waiting time of a customer that enters the system at time t > 0, that

is to say how much time a customer that enters the system at time t > 0 has to spend in the
service (see [38]). Let us define the random set

Aν
t (ω) = {0 ≤ s ≤ t : Lν(s−)(ω) = Lν(s)(ω) + 1}

that is the set of the time instants that precede t in which a phase has been completed. Let us
define also the random variable

N ν
t = |Aν

t |

which is the number of phase terminated before t . Finally, let us define the random variable

Θν
t =

{
supAν

t N ν
t > 0

t N ν
t = 0

that is the last instant before t in which a phase has been completed. For fixed t , this variable
Θν

t is a Markov time whose values are always jump times for the process Sν(t) except in the
case in which Θν

t = t . In particular, since Sν(t) is a semi-Markov process, its semi-regenerative
set contains all the discontinuity points (see [9]) and, in particular, conditionally on Θν

t = t0 for
some t0 < t , the past and the future of Sν(t) are independent. Hence, besides conditioning on
the queue length, as done in [13], to obtain full information on the waiting times independently
of the full history of the queue, we need to condition also on Θν

t . Let us define:

wν(ξ ; t, t0, n)dξ = P(W ν
t ∈ dξ |Θν

t = t0,Lν(t) = n).

Since we have conditioned this probability with Lν(t) = n, we know that a customer has to
wait n independent phases to be terminated, one of which started at time t0 and has not been
completed at time t . Thus we have

E[W ν
t |Θν

t = t0,Lν(t) = n] =

n∑
j=1

T j

where T j are n independent random variables. In particular let us denote with Tn the residual
duration of the actual phase (the one that started at t0), while the other T j for 1 ≤ j ≤ n − 1
are the duration of the other n − 1 phases that still have to start. A scheme of such situation
is given in Fig. 1. For 1 ≤ j ≤ n − 1, these are just Mittag-Leffler random variables with
T j ∼ M Lν(kµ), thus, denoting W̃ =

∑n−1
j=1 T j , we know that W̃ ∼ G Eν(n − 1, kµ). For Tn ,

we know that the last time a phase has been completed is t0, since we have conditioned the
probability with Θν

t = t0. Hence the customer that is being served at time t started the actual
phase at time t0, hence the residual duration is given by Tn ∼ RM Lν(t − t0, kµ). Thus we
have, by the independence of the T j for 1 ≤ j ≤ n, that

wν(ξ ; t, t0, n) = fW̃ ∗ fTn (ξ ).

In particular we can obtain the Laplace transform wν(v; t, t0, n) of wν(ξ ; t, t0, n) as

wν(v; t, t0, n) =
(kµ)n−1

(kµ + vν)n−1 ×

×

[
1 −

ev(t−t0)

Eν(−λ(t − t0)ν)

+∞∑
k=0

(−kµ)k

Γ (νk + 1)
v−νkΓ (νk + 1, v(t − t0))

]
.
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Fig. 1. Sample plot of S(t), N (t) and L(t). In blue the time instants ti in which a phase is completed; in red the
time instant t in which the considered customer enters the system. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

For ν = 1, we know that Tn ∼ Exp(kµ) and W̃ ∼ En−1(kµ), thus Tn + W̃ ∼ En(kµ) and we
know that

w1(ξ ; t, t0, n) =
(kµ)nξ n−1e−kµξ

(n − 1)!
= w1(ξ ; t, n)

since the density is independent from t0. Thus we obtain

w1(ξ ; t) =

+∞∑
n=0

P1
n (t)w1(ξ ; t, n)

that is Eq. (14), that is the one given in [13].
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7. Sample paths simulation

In this section we want to give some algorithm to simulate such queue process. To do this, we
need to show how to simulate a Mittag-Leffler random variable. Let us show two preliminary
simple lemmas.

Lemma 7.1. Let T ∼ Exp(λ) and σν(t) be a ν-stable subordinator independent of T . Then
σν(T ) ∼ M Lν(λ)

Proof. Let us just observe that

P(σν(T ) > t) = P(T > Lν(t))

=

∫
+∞

0
P(T > y)P(Lν(t) ∈ dy)

=

∫
+∞

0
e−λyP(Lν(t) ∈ dy)

= Eν(−λtν)

where the last equality is given by the Laplace transform of the density P(Lν(t) ∈ dy) of the
inverse ν-stable subordinator with respect to y, given in [7]. □

Lemma 7.2. Let σν(t) be a ν-stable subordinator and T be a non-negative random variable
independent of σν . Then

σν(T ) d
= T

1
ν σν(1)

Proof. Let us just observe that

P(σν(T ) > t) =

∫
+∞

0
P(σν(y) > t)P(T ∈ dy)

=

∫
+∞

0
P(y

1
ν σν(1) > t)P(T ∈ dy)

= P(T
1
ν σν(1))

where the second equality is given by σν(t) d
= t

1
ν σν(1). □

By using these two lemmas it is easy to show that

Corollary 7.3. Let T ∼ M Lν(λ), σν(t) be a ν-stable subordinator and S ∼ Exp(λ)
independent from σν(t). Then T d

= S
1
ν σν(1).

To simulate the behaviour of the queue process Qν(t), we will use a modified version of
the Gillespie algorithm (see [15]). This modified version, already introduced in [8], is based
on the fact that if Tn are the jump times of Qν(t), then Qν(Tn) is still a Markov chain with the
same transition probabilities as Q1(Tn). Thus we need first to simulate the jump times Tn and
then to define what event will happen in such time. In particular we will follow these steps

Step 1 Fix Qν(0) and T0 = 0;
Step 2 Suppose have simulated the queue up to the nth event that happens in time Tn . If

Q(Tn) = (0, 0) simulate a random variable I ∼ M Lν(λ), if Q(Tn) ∈ S∗ simulate a
random variable I ∼ M Lν(λ + kµ);
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Fig. 2. Sample paths simulation. On the left, a sample path of N ν (t). On the right, its embedded Markov chain
N ν (Jn) where Jn are the jump times of N ν (t). We set k = 2, λ = 4, µ = 5 and ν = 0.75.

Fig. 3. Sample paths simulation. On the left, a sample path of N (t) for a classical M/Ek/1 queue. On the right,
a sample path of N (Lν (t)). We set k = 2, λ = 4, µ = 5 and ν = 0.75.

Step 3 Obtain the random variable Tn+1 = Tn + I ;
Step 4 If Qν(Tn) = (0, 0), set Qν(Tn+1) = (1, k). If Qν(Tn) ∈ S∗, then simulate a uniform

variable U in (0, 1). If U < λ
λ+kµ

, then set N (Tn+1) = N (Tn)+1 and S(Tn+1) = S(Tn).
If U ≥

λ
λ+kµ

, distinguish three cases:

• if S(Tn) > 1, then set N (Tn+1) = N (Tn) and S(Tn+1) = S(Tn) − 1 (Recall that
if the customer that is currently being served is not in its last phase, then when a
phase is completed the process S(t) goes backward of one step);

• if S(Tn) = 1 and N (Tn) > 1, then set S(Tn+1) = k and N (Tn+1) = N (Tn) − 1;
• if S(Tn) = 1 and N (Tn)) = 1, then set S(Tn+1) = N (Tn+1) = 0;

Step 5 To obtain the whole process Qν(t), one has just to set Qν(t) = Qν(Tn−1) for any
t ∈ [Tn−1, Tn).

In Fig. 2 we provide the simulation of a sample path of the process N ν(t) for a fractional
Erlang queue and we show its embedded Markov chain. Another way one can use to simulate
such process, is to first simulate a classical Erlang queue Q(t), then to simulate an inverse
ν-stable subordinator Lν(t) (some numerical approaches to inverse subordinators are described
in [39,40], while some simulation algorithms for the stable subordinator are given in [4])
and finally to combine the two simulated process in Qν(t) := Q(Lν(t)) (see, for instance,
[31, Example 5.21]). In this way, the fractional Erlang queue is obtained as a dilatation in time
of the classical one, thus we can explicitly see the effect of the inverse ν-stable subordinator,
as it is done in Fig. 3. The simulations in Figs. 2 and 3 have been done by using the software
R [36] with the aid of the library stabledist [41]. The functions and the scripts used to
produce such figures are available in the repository [3].
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