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In an earlier work [S. Kastha et al., Phys. Rev. D 98, 124033 (2018)], we developed the parametrized
multipolar gravitational wave phasing formula to test general relativity, for the nonspinning compact
binaries in quasicircular orbit. In this paper, we extend the method and include the important effect of spins
in the inspiral dynamics. Furthermore, we consider parametric scaling of post-Newtonian (PN) coefficients
of the conserved energy for the compact binary, resulting in the parametrized phasing formula for
nonprecessing spinning compact binaries in quasicircular orbit. We also compute the projected accuracies
with which the second and third generation ground-based gravitational wave detector networks as well as
the planned space-based detector LISA will be able to measure the multipole deformation parameters and
the binding energy parameters. Based on different source configurations, we find that a network of third-
generation detectors would have comparable ability to that of LISA in constraining the conservative and
dissipative dynamics of the compact binary systems. This parametrized multipolar waveform would be
extremely useful not only in deriving the first upper limits on any deviations of the multipole and the
binding energy coefficients from general relativity using the gravitational wave detections, but also for

science case studies of next generation gravitational wave detectors.
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I. INTRODUCTION

Mergers of compact binaries are unique probes of the
predictions of general relativity (GR) in the strong-gravity
regime [1-5]. The gravitational wave (GW) detections
made so far [6—12] by advanced LIGO [13] and advanced
Virgo [14], have been used in various ways to test GR by
employing different methods [8,9,15-18] to find very good
agreement with the predictions of GR within the statistical
uncertainties. With several more of such events expected to
be detected in the future observing runs, developing
efficient methods to carry out such tests will play a central
role in extracting the best science from these observations.
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Ongoing developments of the science case for third-
generation ground-based detectors such as FEinstein
Telescope [19] and Cosmic Explorer [20], and space-based
LISA interferometer [21,22] further motivates developing
generic methods to test GR using GWs.

There are a wide variety of tests proposed in the literature
to assess GR using GW observations. These are often broadly
classified as model independent tests (or theory-agnostic
tests) and theory-dependent tests. Parametrized tests of GR
[23-30], Parametrized post-Einsteinian framework [26,31],
and inspiral-merger-ringdown consistency tests [32] are
examples of the first kind whereas and the model dependent
tests include tests aimed at looking for signatures of a specific
alternative theory (or a class of alternative theories) such as
those suggested in Refs. [33-36].

Recently, we proposed a new theory-agnostic test to
probe the multipolar structure of compact binaries in GR
[37]. The basic idea is to ask using GW observations how
well we can infer the multipole structure of the gravitational
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field of the compact binary and search for potential
deviations. In order to answer this question, we computed
a parametrized gravitational waveform model explicitly
keeping track of the contributions to the gravitational
waveform from different radiative-multipole moments of
the compact binary following the formalism developed in
Refs. [38-43]. This prescription is built on the post-
Newtonian (PN) approximation developed for compact
binary systems with nonspinning component masses in
quasicircular orbits. By introducing seven independent
parameters associated to the deviation of the seven radi-
ative-multipole moments from GR, we rederived the
GW flux. This parametrized multipolar waveform facili-
tates tests of GR in a model independent way with GW
observations [37]. We computed the projected accuracies
on the measurements of these multipole coefficients for
various ground-based and space-based detectors [37].

There is a strong astrophysical evidence that stellar mass
black hole (BH) binaries [44,45] as well as supermassive BH
binaries [46] may have highly spinning binary constituents.
The spins of the compact binary components affect the binary
dynamics and give rise to a very different radiation profile as
compared to their nonspinning counterparts. Hence a physi-
cally realistic waveform model should account for the spin
dynamics of compact binaries. Within the PN formalism, the
gravitational waveform has been calculated considering the
point masses with arbitrary spins up to a very high accuracy
[47-73]. Hence, in this paper, we extend our parametrized
multipolar GW energy flux as well as PN waveform model,
presented in Ref. [37], with spin-orbit and spin-spin con-
tributions from binary components. We assume that the
component spins are either aligned or antialigned with
respect to the orbital angular momentum of the binary which
is inspiraling in quasicircular orbit. Here, in addition to the
multipolar structure, we present the phasing formula which
also parametrizes the conservative dynamics of the binary.
This is achieved by introducing free parameters at each PN
order in the binding energy expression which take value unity
in GR, by definition.

Having included the effects of spins in our parametrized
test of multipole structure, we use the Fisher information
matrix based parameter estimation scheme to compute
projected bounds on the various multipolar parameters.
Along with the complete study on the bounds of the
multipolar parameters, we also provide the bounds on
the parameters associated to conservative sector for the first
time in this paper. We consider GW observation through
networks of the various second and third generation
ground-based detectors as well the proposed space-based
LISA mission [22]. Inclusion of spin effects not only
increases the dimensionality of the parameter space but also
degrades the measurement accuracy of parameters. We find
that a network of third-generation ground-based detectors
and the space-based LISA mission would have comparable
sensitivity to detect potential deviations in the multipolar
structure of compact binaries.

This paper is organized as follows. In Sec. II we discuss
our computational scheme for the multipolar parametrized
gravitational wave energy flux. In Sec. IIl we explore the
modifications in the parametrized frequency domain
(TaylorF2) waveform due to the various contributions from
spins. Thereafter, in Sec. IV we briefly describe the parameter
estimation techniques we use in this paper. Section V
provides a detailed description about the various GW detector
configurations used for our analysis. In Sec. VI we discuss the
bounds on the multipole coefficients for various GW detec-
tors and Sec. VII presents our concluding remarks.

II. PARAMETRIZED GRAVITATIONAL
WAVE ENERGY FLUX

During the inspiral phase of the compact binary dynam-
ics, the radiation reaction time scale is much longer than the
timescale for orbital motion. Due to this separation of
timescales, two vital ingredients for computing the phase
evolution are the conserved orbital energy of the binary and
the gravitational wave energy flux from the system. While
the former characterizes the conservative dynamics of the
binary, the latter describes the dissipative dynamics.

The computation of the multipolar parametrized flux
formula makes use of the entire machinery of the multipolar
post-Minkowskian and post-Newtonian formalism devel-
oped over past several years [39,42,43,52,74-78] (see [79]
for a review.) Following Ref. [37], we use the GW energy
flux parametrized in terms of the various radiative multipole
moments of compact binary while including contributions
from the spins of the binary components in quasicircular
orbits. More explicitly, to capture the generic deviations
from GR, parametric deviations are introduced at the level of
mass-type (U;) and current-type (V) radiative multipole
moments through simple scaling relationships of the kind

U, - mUGR,

Vi — €lV€’R,

(2.1)
(2.2)

where y; = 1+ 68U, JUSR and ¢; = 1 + 6V / VSR take the
value unity in GR. The conservative dynamics of the binary
also gets imprinted on the GW phasing formula via the PN
expression for conserved energy. If the underlying theory of
gravity is not GR, the corresponding PN coefficients could
be different. In our framework, these are parametrized by a
set of parameters {a;} which are all unity in GR.

A modifed theory of gravity could predict one or more of
these multipole moments to be different from that of GR. It
may also predict the conserved energy of the binary to be
different from GR. In our formalism the set of parameters
{us, €, a;} parametrize all such differences. Hence a
measurement of these coefficients would give us a direct
handle on possible deviations of the multipole moments
and/or conservative dynamics from the GR predictions.
Indeed, it is possible that these coefficients may be

044007-2



TESTING THE MULTIPOLE STRUCTURE AND CONSERVATIVE ...

PHYS. REV. D 100, 044007 (2019)

functions of the binary parameters (masses, spins etc.) in a
modified theory. However, since we have no prior knowl-
edge about the “true” underlying theory of gravity, any
method to look for its signatures has to be theory-agnostic
which motivates our parametrization. (A more generic
parametrization may involve introducing free parameters
at every PN order of all the multipole moments. Obviously,
given the large number of free parameters, this would result
in bounds which are uninformative.)

In this paper we focus on the contributions to the flux
from spin angular momentum of the binary components
and hence quote only the spin-dependent part of the
parametrized GW energy flux which may be added to
the nonspinning results of [37] to get the complete phasing.
Among the few different approaches to consider the PN
spin corrections to the conservative dynamics as well as
gravitational radiation from a compact binary system, we
adopt the PN iteration scheme in harmonic coordinates [58]
to obtain spin contributions to the radiative moments in GR
which we further rescale as described in Eqgs. (2.1)—(2.2).

We closely follow the prescription given in
Refs. [52,54,56-58] to account for the contributions to
the conservative and dissipative sectors of the compact
binary dynamics from the individual spins. In our notation,
the individual spins of the component masses, m; and m,
are S; and S, with quadrupolar polarizabilities x; and x,,
respectively, which are unity for Kerr black holes. We
denote the total mass for the system to be m = m; + m,,
relative mass difference, § = (m; — m,)/m and the sym-
metric mass ratio, v = m;m,/m?. Furthermore following
the usual notation, we present our results in terms of the
symmetric combination of the quadrupolar polarizabilities,
kK, =k; +k, and the antisymmetric combination,
K_ = K1 — k5. Our results are expressed in the center of
mass frame where the spin variables S and X have the

|
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following relations with the spins of each of the constituent
masses of the binary,

S:SI‘I—Sz,

L)
my mg

and S; =S- L and X=X L are the projections along
the direction (with L. = L/|L|) of orbital angular momen-
tum (L).

Depending on the order of spin corrections, the GW flux
schematically has the following structure,

(2.3)

(2.4)

F =Fns +Fso+ Fss+ Fsss+ -, (2.5)

where Fys is the nonspinning contribution computed in
Eq. (2.8) of Ref. [37], F g is the spin-orbit (SO) contribution
which linearly depends on the spins, and F gg is quadratic in
spins arising due to the spin-spin (SS) interactions. Similarly
Fsss denotes the cubic-in-spin effects on the GW energy
flux. Here we report the parametrized multipolar flux
accounting for spin-orbit effects up to 3.5PN order and
quandratic-in-spin contributions up to 3PN order. We do not
provide the cubic spin and the partial quadratic-in-spin
contribution at 3.5PN order. The nonspinning flux computed
in Ref. [37] should be added to these to obtain the total flux.
We provide explicit expressions for the spin-orbit and
quadratic-in-spin contributions to multipolar parametrized
GW fluxes in the following subsections.

A. Spin-orbit contribution

Considering the leading order spin corrections to the
multipole moments as well as in the equation of motion
(EOM) and following the same technique as prescribed in
Refs. [52,54,56], we recompute the parametrized SO part of
the energy flux, which is given as
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Spin-orbit corrections to the flux first appear at 1.5PN
order due to spin-dependent terms in mass quadrupole
moments at 1.5PN order and current quadrupole
moment at 0.5PN order. Hence the leading order SO
corrections bring in the y, and €, in the parametrized
GW flux at 1.5PN. As clearly stated in Ref. [52], at
2.5PN order the SO contributions come from mass- and
current-type quadrupole and octupole moments, which
is evident from Eq. (2.6) since only u,, u3, €,, and €5 are
present up to 2.5PN order. At 3PN order, the spin
dependences come from the 1.5PN tail integral per-
formed on mass quadrupole moment and the 2.5PN tail
integral performed on current quadrupole moment [54].
Hence at 3PN order only u, and e, are present. As
we go to higher order we find that at 3.5PN order, p,
and ¢, are also present along with the lower order
coefficients. As a check on the calculation, in the

Fss= G

1
VX’ {x2 <S%[4+2K+] + 8.5, 26,6+ 46— 2k_] —I—ZL[

1367k,

limit pp =p3 =ps =ps =€, = €3 =€4 =1, Eq. (2.0)
reduces to Eq. (4) of Ref. [52].

B. Spin-spin contribution

Quadratic-in-spin corrections first appear at 2PN order to
the GW flux and the waveform (see Refs. [47,49,51,66,80]
for details), whereas SS terms at 3PN are first calculated
in Ref. [57].

Along with the terms quadratic-in-spin in the EOM, the
complete SS contributions to the flux are generated from the
four leading multipole moments, /;;,/;j,J;j, and J;j.
Hence Fg is completely parametrized by p,, ys, €,, and
€3 [see Eq. (2.7)]. We have also written the SS contribution at
3.5PN order arising from the two leading order tail integrals
performed on mass and current quadrupole moments.
However, at 3.5PN order SS contributions are partial.
Hence these contributions will be neglected for the wave-
form computations.
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As an algebraic check, in the limit, p, = p5
Us =€ =e3=¢€,=1 for Eq. (2.7), we confirm
the recovery of the accurate expression for SS
contribution to GW flux in GR reported in Eq. (4.14)
of Ref. [57].

III. PARAMETRIZED MULTIPOLAR
GRAVITATIONAL WAVE PHASING

The GW phase and its frequency evolution are obtained
by using the energy conservation law which essentially
balances the rate of change of conserved orbital energy E
and the emitted GW flux,

(1562 619, 2335k_

41k, 82

144
1367 12305k, 82030x_
168 1008 1008

1367k, | |2 ki
T ]“2[3+3m)

42
,[1367
42

(2.7)

|
d

F=-

(3.1)
Hence an accurate model for conserved orbital energy is
needed to obtain the GW phasing formula.

In GR, for a nonspinning compact binary inspiraling in
quasicircular orbit, the expression for the conserved energy
per unit mass is given in Refs. [78,81-86], whereas the SO
corrections up to 3.5PN order and the SS corrections up to
3PN order are quoted in Refs. [52,54,56,57].

In alternative theories of gravity, along with the defor-
mations at the level of multipole moments, we expect the
conserved orbital energy to be deformed as well. In order to
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incorporate theses effects, we introduce free parameters o,
characterizing the deviations at different PN orders in the
expression of conserved energy defined in GR for compact
binaries in aligned (or antialigned)-spin configuration.
|

For spin corrections to conservative dynamics we consider
SO contributions upto 3.5PN order and SS contributions at
3PN order to the energy. The 3.5PN closed-form expression
for the parametrized conserved energy reads as

A

1 3 1 R 14 a
E(v) = —El/aovz [1 - <4+121/>a2112 + {3SL +252L}Gn3121)3
27 19 1 52 S, x 2 1 1) .
_{8_8I/+24D2+GZIL114(K++2)+GL2mL4(6K++25_K_)+GZan4<2K+_2K__U[K++2]>}a4v4
61 10 ds
+{|:11—3U:|SL+ |:3_?U:|5ZL}WUS
675 34445 205 2 +155 ’ 35 S,% 55 +25 50 5 +5
- — | —— 7" v+ —v — —O0k_ +—kKk, ——| —V|=K —
64 576 96 96 5184 G*m* \ |3 ) 6" '3
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with @; = @;/ay. To obtain the gravitational waveform in
frequency domain under the stationary phase approxima-
tion [87], we use the standard prescription outlined in
Refs. [88,89]. The important difference here is that we use
the parametrized expressions for the GW flux and con-
served energy given by Eq. (2.5) and (3.2) respectively.
Further we consider the amplitude to be at the leading
quadrupolar order. The standard restricted PN waveform in
frequency domain, thus, reads as

hs(f) = Appf77/0etvs\), (3.3)
with A=M/¢/\/30n> D ; M= (mymy )5 | (my +my) /5
and D; are the chirp mass and luminosity distance. In the
case of LISA, to account for its triangular geometry,
we multiply the gravitational waveform by a factor of
V/3/2 while calculating the Fisher matrix for LISA
[90]. The parametrized multipolar phasing, ws(f), has the
same structure as that of the energy flux [see Eq. (2.5)].
Schematically the parametrized phasing formula can be
written as,

ws(f) = 2afi. .~
300

+ 3y 5 s ) o) +wss(l. (3:4)

|
where the parametrized nonspinning part, s (f) is given by
Eq. (A.2) in Ref. [37]. Here we show only the SO and SS
parts: wso(f) and wgs(f). As mentioned earlier, we do not
account for the partial contribution due to the spin-spin
interactions to the phasing formula at the 3.5PN order.

To evaluate the parametrized TaylorF2 phasing for
aligned spin binaries, we use the conventional notations
for the spin variables (xp,x,), with the following redefi-
nitions,

X1 = Gm%Sl, (35)
X2 = Gni3S,. (3.6)
Furthermore, we use y,= (v +x2)/2 and y,=

(x1 —x»)/2 to present the phasing formula, where y;
and y, are the projections of y; and y, along the orbital
angular momentum, respectively. These spin variables have
the following relations,

S, = Gm*[5y, + (1 = 2v)y], (3.7)

I = _sz[@(s +)(a]' (38)

Finally we write down the expressions for ygq and g,
the main results of this paper, below
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As a consistency check, we confirm the recovery of the
corresponding GR expression for the TaylorF2 phasing for
aligned spin binaries (see Refs. [53,91,92]) in the limit,
Ho=H3 =Hqg = U5 =€ = €3 =64 =0y = Ay =03 = 0y =
as = ag =a; = 1. We also update Table I of Ref. [37]
to explicitly show the appearances of the parameters y;
and ¢; at various PN order of the phasing formula (see
Table I).

One of the salient features of the parametrized multipolar
spinning phasing derived here is the presence of €, at 1.5PN
order and e; at 2.5PN order (logarithmic) due to the
spin-orbit interactions and hence not present in the
nonspinning phasing. Though at 2PN and 3PN order,
due to the spin-spin interactions, there are no additional
multipole moments compared to the nonspinning sys-
tems, these are the orders at which x, _ appear. This has

06835 6835) (470 5 [340 35

TABLE I. Update of the summary given in Table I of Ref. [37]
for the multipolar structure of the PN phasing formula. Con-
tribution of various multipoles to different phasing coefficients
and their frequency dependences are tabulated. The additional
multipole coefficients appearing due to spin are underlined.
Following the definitions introduced in Ref. [37], u; refer to
mass-type multipole moments and ¢; refer to current-type multi-
pole moments.

PN order  Frequency dependences  Multipole coefficients
0 PN Fanle "y

1 PN ! Has M3, €2

1.5 PN f23 Hos €2

2PN o Has 13> H4, €2, €3
2.5 PN log log f oy H3, €2, €3
3PN 13 Moy M3, Has s, €2, €3, €4
3 PN log f3logf Ha

3.5 PN 3 Hos M3, Ha, €2, €3, €4
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l
an interesting interpretation as x, _ can be thought of as
parametrizing potential deviations from BH nature
[93,94] as binaries comprising of non-BHs will have

 to be different from 2 and 0, respectively, which are
the unique values corresponding to binary black holes.
The cross-terms of the multipole coefficients with x _
showcase the degeneracy between binary black holes in
alternative theories and non-BHs in GR. As one can see
from Eq. (3.10), u,, u3, and e, are the multipole
coefficients which are sensitive to the non-BH nature
(vis-a-vis the above mentioned parametrization). As can
be seen from the phasing formula, these imprints will be
higher order corrections to the multipole coefficients and
may not influence their estimates unless the values of
k. _ are sufficiently high.

IV. PARAMETER ESTIMATION SCHEME

In this section, we briefly describe the semianalytical
Fisher information matrix based parameter estimation
scheme [95-98] used in our analysis. We also discuss
the leading order bounds on the systematics of the
estimated parameters due to the difference between the
spinning and nonspinning waveforms in the Appendix
for LISA.

For 0 being the set of parameters defining the GW signal

iz( f; 5) the Fisher information matrix is defined as

 /Oh(f;0) Oh(f;06)

T = (g LN )
where (..., ...) is the inner product weighted by the detector
noise. To be precise,

Shigh * *
J low Sh (f)
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[Tk

Here “x” denotes the complex conjugation and S),(f) is the
one-sided noise power spectral density (PSD) of the
detector while fy,, and fy;,, denote the lower and upper
limits of the integration. Though f},, arises from the
detector sensitivity, fpisn is defined by the frequency at
the last stable orbit of the binary beyond which the PN
approximation would break down. In the large signal-to-
noise ratio (SNR) limit, the distribution of the inferred
parameters follow a Gaussian distribution around their
respective true values for which the variance-covariance
matrix of the errors on the parameters is simply the inverse
of the Fisher matrix,

cmn — (F_l )mn ,

and the 1o statistical error is, Ay, 0, = vVC™".

Fisher information matrix method, by default, assumes
a flat prior distribution in the range [—oo, o0 on all the
parameters to be estimated [97,99]. In contrast, in the
large SNR limit, a Gaussian prior can also be imple-
mented on the desired parameter as described in
Ref. [97]. For our purpose, we employ a Gaussian prior
on ¢, centered around ¢. = 0 with a variance of about
#%. This choice is somewhat adhoc but ensures that the
width of the Gaussian is not too small to significantly
influence the result but helps us deal with the ill-
conditionedness of the Fisher matrix. This also restricts
the prior range to exceed to the unphysical domain
beyond +z. Hence our modified Fisher matrix has the
following form,

I'=r+T10), (4.3)

where I'®) is a diagonal matrix with only one nonzero

element corresponding to Ffﬁo)‘p component. We use this

modified Fisher matrix (I") for the estimation of lo
statistical errors which also can be interpreted as the lo
upper bounds on any deviation of these coefficients from
GR value.

We estimate the statistical errors on various multipole
coefficients while considering an eight dimensional param-
eter space, {t.,¢.,10g.A,10g M, 108V, ¢, Y us Jr OTELOTQ,, }
to specify the true GW signal.

V. DETECTOR CONFIGURATIONS

We describe here the various detector configurations we
considered in the present study.

A. Ground-based second generation detector network

As a representative case, we consider a worldwide
network of five second-generation ground based detectors:
LIGO-Hanford, LIGO-Livingston, Virgo, KAGRA [100],
and LIGO-India [101]. We assume the noise PSD for
LIGO-Hanford, LIGO-Livingstone and LIGO-India to be

the analytical fit given in Ref. [102] whereas the following
fit is used for Virgo PSD,

. 16\ 10
SV () = 1.5344 x 1047 [1 + 1871 x <f>

30\° 502
+11.72 x (—) +0.7431 x <—)
f f

70 100\ 9>
+ 0.9404 x <7> + 0.2107 x (T)

+26.02 (L)Z] Hz !, (5.1)

500

where f is in units of Hz. We consider the lower cut off
frequency fj,, = 10 Hz for these detectors. For the
Japanese detector KAGRA we use the noise PSD given
in Ref. [103] with f,, = 1 Hz. For all the detectors, fyg, i8
taken to be the frequency at the last stable orbit,
fiso = 1/(zm63/%). As opposed to the single detector
Fisher matrix analysis, for a network of detectors, the
Fisher matrix is evaluated for each detector and then added
to obtain the network-Fisher-matrix. To estimate the
individual Fisher matrices we use a waveform that is
weighted with the correct antenna pattern functions
F_. /(0. ¢,y) of the detectors, where 6, ¢, and y are the
declination, the right ascension and the polarization angle
of the source in the sky. More precisely we use the
following waveform

- 1 2 ~
W) = =52 F (0.4 (1)
FesF0.pWh(f) (52
with
() = Ao TI5e (53
h(f) = =i (f) (54)

The individual F, ;. (6, ¢, ) for each detector are estimated
incorporating their location on Earth and Earth’s rotation as
given in Ref. [104]. We calculate the Fisher matrix for each
detector considering an eight dimensional parameter
space, {t.,¢.,log A, log M, 108V, ys, Xa, hr OT €7 OT 1, }
specifying the GW signal. Here we fix the four angles,
0,¢,w,1tobe n/6,7/3,7/6, n/5 respectively and do not
treat them as parameters in the Fisher matrix estimation.
These four angles, being the extrinsic parameters, have
small correlation with the intrinsic ones especially with the
multipole or the energy coefficients, and hence have
negligible effect on their measurement.

044007-10



TESTING THE MULTIPOLE STRUCTURE AND CONSERVATIVE ...

PHYS. REV. D 100, 044007 (2019)

seee 21=09,0=08,g=12 = x=03,00=02,g=12

102

10!

A

10°

107!

20 30 40 506070

10°

20 30 40 506070 20 30 40 506070

wene 1 =09,2=08,g=5 x1=03,0=02,9g=5

et 103 /

o
4 102

10! st )

Ay

109 it 10!

20 30 40 506070

1025 ,

> 10!

Aoy

a
0 ettt
10 ere2ilas
&

30 40 506070

20 30 40 506070 20

Total Mass (M)

FIG. 1.

Projected 1o errors on the multipole and the energy coefficients as a function of total mass for two different mass ratios

qg=m;/my, =12, 5 and two spin configurations, y; = 0.9, y, = 0.8 and y; = 0.3, y, = 0.2 for the second generation detector
network. All the sources are at a fixed luminosity distance of 100 Mpc with the angular position and orientations to be
0=n/6,¢p =n/3,w =mr/6,1=n/5 To obtain the numerical estimates showed in this plot, we also consider a prior distribution
on ¢,.. To be precise, we assume the prior on ¢, for each detector in the network to follow a Gaussian distribution with a zero mean and a

variance of 1/7°.

B. Ground-based third generation
detector network

As arepresentative case for the third generation ground-
based detector network, we consider three detectors: one
Cosmic Explorer-wide band (CE-wb) [105] in Australia,
one CE-wb in Utah-USA, and one Einstein Telescope-D
(ET-D) [106] in Europe. We use the noise PSD given in
Ref. [106] for ET-D and the analytical fit given in
Ref. [37] for the CE-wb. We assume f},, to be 1 and
5 Hz for the ET-D and CE-wb, respectively. To evaluate
the Fisher matrix for this network configuration we
use the same waveform as given in Eq. (5.2) except for
the estimation of Fisher matrix in case of ET-D, we
multiply the waveform by sin(z/3) because of its tri-
angular shape. We follow the same scheme as described in
Sec. VA to estimate the 16 bounds on u,, p3, py, €, and oy,
Ay, A3, Q4.

C. Space-based LISA detector

For the space-based detector, LISA, we use analytical fit
given in [107] and choose fi,,, in such a way that the signal
stays in the detector band for one year or less depending on
the frequency at the last stable orbit. More specifically, we
assume fi,, to be [90,108]

~5/8
f]ow = max 10_5, 4.149 x 1075 #
105 Mg

T -3/8
o [ Lobs ,
I yr

(5.5)

where T, is the observation time which we consider to be
one year. We assume the upper cutoff frequency, g, to be
the minimum of [0.1, f| s0]. The waveform we employ for
LISA is given in Eq. (3.3) except we multiply it by an
additional factor of /3 /2 in order to account for the
triangular shape of the detector. We do not account for the
orbital motion of LISA in our calculations and consider
LISA to be a single detector.

We next discuss the Fisher matrix projections for the
various deformation coefficients parametrizing the
conservative and dissipative sectors in the context of
advanced ground-based and space-based gravitational
wave detectors.

VI. RESULTS

Our results for the ground-based detectors are depicted
in Figs. 1 (second generation) and 2 (third generation)
and those for the space-based LISA detector are presented
in Figs. 3-7. For the second and third generation
ground-based detectors configurations, we choose the
binary systems with two different mass ratios ¢ = 1.2, 5
for two sets of spin configurations: high spin case
(x1 =09, x =0.8) and low spin case (y; =0.3,
x> = 0.2). We also assume the luminosity distance to all
these prototypical sources to be 100 Mpc. We consider
these sources are detected with a network of second or third
generation detectors as detailed in the last section. For
LISA, we consider our prototypical supermassive BHs to
be at the luminosity distance of 3 Gpc with three different
mass ratios of ¢ = 1.2, 5, 10. For these mass ratios, we
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FIG. 2. Projected 1o errors on the multipole and the energy coefficients as a function of total mass for two different mass ratios
q = m;/m, = 1.2, 5 and two spin configurations, y; = 0.9, y, = 0.8 and y; = 0.3, y, = 0.2 for the third generation detector network.
All the sources are at a fixed luminosity distance of 100 Mpc with the angular position and orientations to be
0=un/5¢=nr/6,y =r/4,1=nr/4 To obtain the numerical estimates showed in this plot, we also consider a prior distribution
on ¢.. To be precise, we assume the prior on ¢, for each detector in the network to follow a Gaussian distribution with a zero mean and a
variance of 1/

investigate both high spin (y; = 0.9, y, =0.8) and low  generation detectors perform comparably, though for
spin (y; = 0.3, y, = 0.2) scenarios. totally different source configurations. The bounds on

First we discuss the qualitative features in the plots. As  the multipole coefficients describing the dissipative dynam-
expected, the third generation detector network which has  ics broadly follows the trends seen in the nonspinning study
better band width and sensitivity does better than the  carried out in Ref. [37]. The mass-type multipole moments
second generation detectors whereas LISA and third  are measured better than the current-type ones appearing at
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FIG. 3. Projected 1o errors on the multipole coefficients as a function of total mass for three different mass ratios ¢ = m;/m, = 1.2, 5,
and 10 in case of LISA noise PSD. We assume y; = 0.9, y, = 0.8. All the sources are considered to be at a fixed luminosity distance of
3 Gpc. To obtain the numerical estimates showed in this plot, we also consider a prior distribution on ¢.. To be precise, we assume ¢,. to
follow a Gaussian distribution with a zero mean and a variance of 1/7°.
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FIG. 4. Projected 1o errors on the multipole coefficients as a function of total mass for three different mass ratios ¢ = m;/m, = 1.2, 5,
and 10 in case of LISA noise PSD. We assume y; = 0.3, y, = 0.2. All the sources are considered to be at a fixed luminosity distance of
3 Gpc. To obtain the numerical estimates showed in this plot, we also consider a prior distribution on ¢,.. To be precise, we assume ¢, to
follow a Gaussian distribution with a zero mean and a variance of 1/7°.
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FIG. 5. Projected 1o errors on the energy coefficients as a function of total mass for three different mass ratios g = m;/m, = 1.2, 5,
and 10 in case of LISA noise PSD. We assume y; = 0.9, y, = 0.8. All the sources are considered to be at a fixed luminosity distance of
3 Gpe. To obtain the numerical estimates showed in this plot, we also consider a prior distribution on ¢,.. To be precise, we assume the
prior on ¢, to follow a Gaussian distribution with a zero mean and a variance of 1/z7.
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FIG. 6. Projected 1o errors on the energy coefficients as a function of total mass for three different mass ratios ¢ = m;/m, = 1.2, 5,
and 10 in case of LISA noise PSD. We have considered y; = 0.3, y, = 0.2. All the sources are considered to be at a fixed luminosity
distance of 3 Gpc. To obtain the numerical estimates showed in this plot, we also consider a prior distribution on ¢... To be precise, we
assume the prior on ¢, to follow a Gaussian distribution with a zero mean and a variance of 1/7°.

the same PN order with p, (corresponding to the mass
quadrupole) yielding the best constraint as it is the
dominant multipole which contribute to the flux and the
phasing. Due to the interplay between the sensitivity and
mass dependent upper cutoff frequency, the errors increase
as a function of mass in the regions of the parameter space
we explore. The errors improve as the mass ratio increases
for all cases except p,. As argued in Ref. [37], u, is the
only multipole parameter which appears both in the
amplitude and the phase of the waveform and hence
shows trends different from the other multipole coeffi-
cients. Inclusion of spins, on the whole, worsens the
estimation of the multipole coefficients compared to the
nonspinning case. This is expected as the spins increase
the dimensionality of the parameter space but does not
give rise to new features that helps the estimation. Effects
such as spin-induced precession, which bring in a new
time scale and associated modulations, may help counter
this degradation in the parameter estimation. But this will
be a topic for a future investigation. We also find that as a
function of the spin magnitudes, the parameter estimation
improves and hence highly spinning systems would yield
stronger constraints on these coefficients. The estimation
of various a;, parametrizing the conservative dynamics,
also broadly follow these trends. However, there is an

important exception. The bounds on a3 is consistently
worse than those of @. This may be attributed to the
important difference between them that @3 parametrizes
the 1.5PN term in the conserved energy which has only
spin-dependent terms whereas the 2PN term contains both
nonspinning and spinning contributions. Hence though a4
is subleading in the PN counting, and hence the bounds
are better.

We now discuss the quantitative results from these
plots. One of the most interesting results is the projected
constraints on coefficients that parametrize conservative
dynamics. For third generation ground-based detectors,
and for the prototypical source specifications, the bounds
on 2PN conservative dynamics can be ~1072 which is
comparable to or even better than the corresponding
bounds expected from LISA. On the multipole coeffi-
cients side, the quadrupole coefficient u, may be con-
strained to <107'(1072) for second (third) generation
detector network while the bounds from LISA are also
~1072. The best bounds for u; are ~10~', 1072, 1072 for
second generation, third generation and LISA, respec-
tively, corresponding to highly spinning binaries. The
projected bounds on the higher multipole coefficients
from third generation detector network and LISA are
comparable in all these cases, though one should keep in
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FIG.7. Projected 1o errors on multipole coefficients as a function of the spin of the heavier black hole, y,, for LISA noise PSD. All the
sources are considered to be at a fixed luminosity distance of 3 Gpc with a total mass of 2 x 10> M. The green dots are for mass ratio 10
and the cyan dots denotes mass ratio 20. The vertical spread in the bounds at each y; value is due to different y, in the range [—1, 1].
To obtain the numerical estimates showed in this plot, we also consider a prior distribution on ¢,.. To be precise, we assume the prior on
¢, to follow a Gaussian distribution with a zero mean and a variance of 1/7°.

mind the specifications of the sources we consider for
these two cases are very different.

VII. CONCLUSION

We extend our previous work [37] by including spin
effects in the inspiral dynamics and provide a waveform
model, parametrized in terms of multipole and PN binding
energy coefficients, for nonprecessing compact binaries in
quasicircular orbit. The spin-orbit contributions are com-
puted up to 3.5PN order while the spin-spin contributions
are obtained up to 3PN order. We also provide the projected
lo bounds on the multipole coefficients as well as the
PN deviation parameters in the conserved energy for the
second generation ground based detector network, the third
generation ground based detector network and the space-
based detector LISA, using the Fisher matrix approach. We
find that the four leading order multipole coefficients and
the four leading order PN conserved energy coefficients
are measured with reasonable accuracy using these GW
detectors.

We are currently in the process of implementing this
parametrized waveform model presented in this paper in
LALInference [109] to carry out tests of GR proposed here

on real GW data. As a follow up, it will be interesting to
compute the parametrized waveform within the effective-
one-body formalism and investigate the possible bounds on
these coefficients. Inclusion of higher modes of the
gravitational waveforms, which contain these multipole
coefficients in the amplitude of the waveform, will also be
an interesting follow up in the future.
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APPENDIX: SYSTEMATIC BIAS DUE TO
THE USE OF NONSPINNING
WAVEFORM MODEL FOR GW
DETECTIONS BY PLANNED
SPACE-BASED DETECTOR LISA

The use of inaccurate waveform model may lead to
systematic biases in the parameter estimation [110,111].
For a detector data stream, s, consisting of a true waveform
hy(f; 5T) and recovered with an approximate waveform
ap(f;0°'™), the systematic errors on various param-
eters can be obtained by minimizing ([hp(f;0") -
Biap (£ 07 ™)), [ (£:07) = hap(f: 6 ™)]) [110]. Since
we are interested in quantifying the systematics due
to the difference between the spinning and non-
spinning waveforms, we adopt the minimization scheme
developed in Ref. [110]. The basic assumption behind
this scheme is to define a one parameter family of
waveform models (7*(f;#)) that interpolate between both
hr(f;0") = I*=1(£;0) and hap(f;0) = F0(f;0). As it
turns out, after a set of approximations, the linearized

estimate for the systematic error is (see Eq. (29) in
Ref. [110])

H=gbest fit ’

Asysgm = (Fz_\%’)mk<iAﬂ2f_7/6Al//eiw

a]leP (f, ébest fit)>

50, (A1)

g=10,M = 10°M,

g=10,M = 10°M,

where (I'ap),, is the Fisher matrix obtained from the

approximate waveform hap(f; é) and Ay =y — wap.
All the quantities are evaluated at the best fit values of
the parameters which coincide with the true values in the
large SNR limit.

To quantify the systematic bias, we consider a six
dimensional parameter space consists of {¢.,¢.,In A,
In M., Inv,u,ore,} to completely specify the approxi-

mate waveform Jiap(f; 6™ ™), for our purpose the para-
metrized nonspinning TaylorF2 waveform. We use the
same approximate waveform to estimate the six dimen-
sional Fisher matrix, I'yp. On the other hand, we consider
the parametrized nonprecessing TaylorF2 waveform to be
our true waveform model.

In Fig. 8 we show the systematic biases on u, and 5 for
binaries with three different total masses, M = 10° Mo,
10° Mg, 107 M, and mass ratio ¢ = 10 as a function of
individual spin parameter y; = y, = y for LISA. Due to a
smaller total mass (M = 10° M) a large number of inspiral
cycles reside in the LISA band. Hence even with very small
spin values y ~O(107%), the systematic errors become
larger than the statistical errors, which demands a para-
metrized spinning waveform model. In contrast, for larger
total masses of about 10° Mg or 10’ My, the systematics
affect the parameter estimation when the spin magnitude
is slightly larger ~O(107"), as expected. Hence it is very
crucial to incorporate the spin corrections in the waveform to
reduce the effects of systematics when extracting the
information about the multipole coefficients. We also find
that as the total mass of binary increases the slope of the
systematic bias curves changes from positive to negative
for p, and vice-versa for us3. This could be due to the nature
of the correlation (positive or negative) between these
multipole coefficients and the binary parameters (such as
masses and spins) with increasing total mass. We quote the
leading order estimates for the systematic biases in case of
LISA only. Since the Fisher matrix-based leading order

g=10,M =10"M
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FIG. 8.

Numerical estimates of systematic biases on the two leading multipole coefficients u, and y5 as a function of y; = y, = y for

LISA noise PSD. We consider systems with three different total masses, m = 10°,10°, 107 M having mass ratio g = 10. All the
sources are considered to be at a fixed luminosity distance of 3 Gpc.
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estimation of systematic biases for network configuration
demands reformulation of the prescription, we postpone
these for future study in a more rigorous and accurate
Bayesian framework.

We give the inputs needed to compute the phasing for

TaylorT2, TaylorT3 and TaylorT4 in a Mathematica file
(supl-Multipole-spin.m) which serves the Supplemental
Material [112] to this paper.
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