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ABSTRACT: We have employed density functional theory 

calculations to analyze the possible tautomerization of phenol 

mediated by three diff erent Lewis acid sites at the external  
(10) surface of zeolite MFI. A silicon atom of the silanol 

group was substituted by Sc, Fe, and Ga metal atoms, which 

adopted a formal charge of 3+. This substituted silanol was 

dehydrated in order to form three-coordinated Lewis acid 

sites. The tautomerization of phenol involves the adsorption 

of the molecule on the Lewis site, the dissociation of the 

phenolic O−H bond and the transfer of the proton to the 

zeolite framework. This proton is transferred from the zeolite 

to the C atom at ortho positions to the phenolic O atom, thus 

generating the tautomer. The acidity of the substituted Lewis  
sites follows a strength order of Ga < Fe < Sc, where the Sc substitution provides the lowest energy barriers: 33 kJ/mol for the 

dissociation of the O−H bond, and 32 kJ/mol for the formation of the C−H bond, calculated with the GGA functional PBE 

including Grimme’s dispersion corrections. We observed that the GGA functional PBE produces binding energies and energy 

barriers with a diff erence of less than 13 kJ/mol compared to the meta-GGA TPSS and rev-TPSS and the hybrid-GGA HSE06. 
 

 

 

 

1. INTRODUCTION 
 
The conversion of lignin may provide a sustainable and 
renewable route to chemicals and fuels. However, the 
polymeric structure of lignin consists of interlinked phenolic 
monomers, with high oxygen content, which requires 
appropriate catalysts to guarantee selectivity and high yields 

during its processing.
1−3

 In the case of fuel-oriented 

utilization, it is desirable to increase the H:C and C:O ratios of 
the lignin-derived products in order to improve the efficiency 

of combustion.
1
 Several experimental methods have been 

designed to depolymerize, deoxygenate and hydrogenate 
lignin. For instance, the pyrolysis of lignin-derived compounds 
has been performed in the presence of catalytically active 
zeolites in order to decrease the oxygen content. However, this 
method generates a high number of diff erent products without 
apparent selectivity, and has the drawback of generating solid 

residues that decrease the lifetime of the catalyst.
4−7

 On the 

other hand, the hydrodeoxygenation (HDO) of organosolv 
lignin and lignin-derived compounds, using bifunctional 
catalysts consisting of transition metal nanoparticles deposited 
on acid supports, outperforms the pyrolytic method in 

selectivity, yields and a reduction of solid byproducts.
8−11 

 
The bifunctional catalysts comprise transition metal nano-

particles, which promote the hydrogenation, supported on solid 
acids that mediate the dehydration and alkylation of the 

hydrogenation intermediates.
8,12−14

 Examples of bifunctional 
catalysts include Pt supported on zeolite HY (in short Pt/ 

HY),
8
 Ru/HZSM-5,

10
 Ni/HZSM-5, and Ni/HBEA,

11
 as well  

 

 

as a combination of Pd/C and zeolite HZSM-5.
9
 A mixture 

of monocyclic and bicyclic alkanes are obtained with these 
methods, highlighting the dehydration function of the 
support and the hydrogenation by the metallic component.  

The HDO of phenolic monomers, such as phenol and cresol, 
have been the subject of extensive research, both experimental 
and theoretical, because they are good examples of the major 

recalcitrant species derived from the upgrading of lignin.
15−19

 
The modifications occurring to the phenolic species depend on 
the metal and support. For example, 3-methylcyclohexanone is 

the main product of the processing of m-cresol on Ni/SiO2 or 

Pt/SiO2, while selectivity toward toluene is highest when the 

conversion takes place on Fe/SiO2 or Pt/ZrO2.
17,18

 This 

outcome has been explained by the occurrence of keto−enol 
tautomerism (represented in Figure 1) that transforms m-cresol 
into 3-methyl-3,5-cyclohexadie-none. The cyclohexadienone 
may follow two diff erent pathways: (i) hydrogenation of the C 
C bonds, producing 3-methyl-cyclohexanone or (ii) the 
hydrogenation of the C  
O group followed by dehydration, generating toluene.

17,18
 

However, recent DFT calculations have shown that the most 

probable pathway to obtain toluene consists of the direct 

deoxygenation of m-cresol, promoted by the oxophilicity of the  
 
 
 

  



 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Representation of the tautomerization of phenol.  
 

metal particle’s surfaces, such as Ru(0001);
19

 this logic could 
also be applied to the selectivity observed on oxophilic 

supports such as ZrO2.
17,20

 Nevertheless, the keto−enol 
tautomerism is still an appropriate approach to explain the 
product selectivity of the hydroprocessing, especially when 

there are no oxophilic components within the catalysts.
17−20 

 
Considering the importance of the keto−enol tautomeriza-

tion during the hydroprocessing, we have performed a 
computational study of the possible isomerization of phenol on 

zeolite Socony Mobil-five (MFI)
21−23

 doped with diff erent 

metal atoms, which is based on the wide utilization of this 
zeolite as a support during the HDO of lignin-derived 
compounds. Computer simulations, using either quantum 
mechanics or classical methods, have provided crucial insights 
into the physical and chemical properties of zeolites. For 
example, calculations of aluminum siting and substitution 
configurations have complemented experimental techniques, 

such as nuclear magnetic resonance.
23−

 
25

 Furthermore, the 

analysis of proton transfer in zeolites is important owing to 
their solid acid character, and computer modeling has been 
essential in providing understanding of this process at the 

atomic level.
26−30

 The elucidation of the adsorption config-

urations and reaction pathway in the transformation of 
environmentally and industrially important molecules inside 
the pore system of zeolites is another area, where theoretical 

predictions have been extremely valuable.
30−33

 The present 

work falls under this latter topic.  
Previously, we have shown that three-coordinated Lewis acid 

sites in aluminum-substituted zeolite MFI reduce by at least four 

times the activation energy of phenol tautomerization compared to 

direct isomerization in the gas phase.
34

 In the present work, we 

have extended this study in order to consider other dopants with a 

formal charge of 3+. Experimental intraframework substitutions of 

zeolites with Sc, Fe and Ga have been reported, and thus we have 

used these metals to study the tautomerization of phenol on their 

Lewis acid forms.
35−37

 We have placed these Lewis acid sites at 

the external surface of the zeolite, where they are more easily 

accessible to medium-sized molecules, such as phenol. 

Incidentally, recent experimental reports on Pt nanoparticles 

confined in the cavities of zeolite-A have shown the importance of 

the external Lewis acid sites for the adsorption and hydrogenation 

of unsaturated molecules through a hydrogen spillover 

mechanism.
38−40

 Zeolite A (framework type LTA) and zeolite 

MFI have diff erent pore dimensions: while LTA is characterized 

by eight-membered ring (8MR) pore apertures,
41

 eff ectively 

hindering the diffusion of molecules such as phenol into its pore 

system, MFI shows 10MR openings, which does allow the access 

of phenol to the interior of the zeolite. However, in the present 

work, we have exclusively analyzed the adsorption of phenol at 

the external surface of zeolite MFI. 

 
Our choice is based on the size of the metal nanoparticles, 

with diameters larger than 2 nm,
12,42

 which therefore 
cannot diff use into the pore system of the zeolite and can 
only be supported at the outer surface of the microporous 
material. In addition, the selectivity and pathway during 
hydroprocessing have been ascribed to the synergy that 

occurs at the metal−support interface.
20,43

 Hence, Lewis 
acid sites located at the external surface of the zeolite and at 
close distance from the metal clusters should have an 
important role to play in the HDO process.  

The first part of the discussion is dedicated to the formation 

of three-coordinated Lewis acid sites resulting from the 

dehydration of metal-substituted silanol groups at the external 
surface of zeolite MFI. It is followed by the adsorption of 

phenol and the analysis of its proficiency to substitute water at 

the Lewis site. Then, the tautomerization is discussed on the 
basis of a three-step process that involves (i) dissociation of 

the O−H bond of phenol, (ii) rotation of the aromatic ring, and  
(iii) formation of the C−H bond following the transfer of 

the phenolic H back to the molecule.
34

 A similar pathway 
has been proposed for the tautomerization of phenol and m-

cresol on the surfaces Pt(111), Pd(111), and Ru(0001).
19,44

 
A comparison between GGA, meta-GGA, and hybrid-GGA 
functionals is also discussed and rationalized, which 
measures the precision of the GGA compared to higher tier 
functionals with increased accuracy. 
 

2. COMPUTATIONAL METHODS 
 

2.1. DFT Calculations. We have employed density 
functional theory (DFT) methods to perform all calculations 
presented in this work, as implemented in the Vienna Ab-Initio 

Simulation Package (VASP).
45−48

 We have used the 

derivation of Perdew, Burke, and Ernzerhof (PBE) of the 
general gradient approximation (GGA) to obtain the exchange-

correlation energy of the systems.
49

 Although most of the 

calculations presented in this work were generated using the 
GGA functional PBE, we have also used the GGA functional 

PBE optimized for solids (PBEsol),
50,51

 the meta-GGA 

functional proposed by Tao, Perdew, Staroverov, and Scuseria 

(TPSS)
52

 and its revised version (rev-TPSS),
53

 and the hybrid 

functional proposed by Heyd, Scuseria, and Ernzerhof 

(HSE06),
54,55

 to compare and validate the results generated by 

PBE. We observed that the PBE functional produced binding 
energies and energy barriers with diff erences no bigger than 
13 kJ/mol compared to the values calculated by the higher tier 
functionals; for more information see section S1 of the 
Supporting Information, where the data derived from PBEsol, 
TPSS, rev-TPSS, and HSE06 are compiled. The PBE 
functional was accompanied by the Grimme method (DFT-D3) 

to include the long-range dispersion forces.
56−59

 This 

approach incorporates first-principle computing and geometry 
information into the parametrization of the pairwise 
coefficients and cutoff  radii, as well as three-body terms to 
avoid the overestimation of the attractive forces. A basis set of 
plane waves was used to describe the valence electrons, 
employing the projector-augmented-wave method (PAW) to 
account for the nodal features of the valence wave functions 

and their interaction with the inner part of the atoms.
60

 
,61

 The 

precision of the basis set was assured by a plane wave kinetic 
energy cutoff  of 550 eV. The Brillouin zone was only sampled 
with the Gamma point considering the large size of the 
supercell under study. Gaussian smearing of the electronic 
states was employed to improve the self-consistent field 
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convergence, with band widths of 0.01 and 0.1 eV for isolated 
molecules (water and phenol) and zeolite MFI (with and 

without adsorbate), respectively.
62,63

 During the geometry 

optimization, we adopted the thresholds 10
−5

 eV and 0.03 eV/  
Å as fair convergence criteria for the electronic and ionic 
relaxations, respectively. All calculations were performed 
under spin polarization conditions.  

In the case of the Fe-substituted zeolite, we performed 
two sets of calculations: the first one used Dudarev’s 

approach
64,65

 to deal with the electron correlation, which is 
derived from the on-site Coulomb repulsion of the 3d 
electrons of the Fe atom, whereas we did not use this 
approach in the second set of calculations. We employed a 

value of 4.0 eV for Ueff in accordance with previous reports 

of diff erent iron oxides.
66,67

 The calculations without on-
site Coulomb correction were used together with the results 
for Sc- and Ga-substituted zeolites to discuss the structural 
features along the tautome-rization pathway.  

The molecular binding free energy was calculated with 
the following equation: 
 

F
Bind . 

=
  
F

molecule /zeolite 
−

  
(F

zeolite 
+

  
F

molecule
gas) 

(1) 

where Fmolecule/zeolite is the free energy of the zeolite with an 

adsorbed molecule of water or phenol, Fzeolite is the free energy of 

the bare zeolite and Fgas
molecule is the free energy of a molecule of 

water or phenol in the gas phase; we considered as the gas 

phase an isolated molecule in a box with dimensions 20 × 21 × 

22 Å
3
. The free energies were computed by including the zero-

point energy correction and the entropic contributions at 473 
K; this temperature is a reasonable representation of the array 
of values normally used in hydroprocessing experi-

ments.
9,12,13,68

 Only the vibrational entropy was considered 

for the zeolite-related systems, while the rotational and 
translational entropies were also computed for the molecules in 
the gas phase, assuming them as ideal gases. The vibrational 
frequencies were calculated by the finite diff erence method, 
using small enough displacements to keep the system within 
the harmonic approximation. During the vibrational calcu-
lations, we only allowed atomic displacements for the metal 

substituent, the first-neighbor SiO4 tetrahedra surrounding the 

metal and the molecule adsorbed on the Lewis acid site. This 
constraint was introduced to speed up the calculations without 

introducing serious errors.
34

 The derived thermodynamic 

quantities (thermal energies, enthalpies, entropies and free 
energies) are reported in section S2 of the Supporting 
Information.  

The energy barriers along the reaction pathways were 
calculated by combining the nudged elastic band (NEB) 

method and the improved dimer method (IDM).
69−72

 We 

tested from one to three images between reactants and products 
to perform the transition state (TS) geometry optimization 
under the NEB algorithm. We found that the utilization of a 
single image was enough to start the exploration of the TS. 
Thereafter, the output of the NEB calculation was used as a 
reasonable TS guess structure, which was refined by the IDM. 
During the search of the TS, only the metal substituent, the 

three SiO4 tetrahedra binding the metal, and the phenol or 

water molecule adsorbed on the Lewis site were allowed to 
relax, the rest of the structure was kept frozen. We adopted this 
scheme because the freedom of movement that phenol retains 
while it is adsorbed makes the relaxation of the TS less 
dependent on the long-range flexibility of the framework. The 
reactant and product of each reaction step 

 
were optimized without geometry constraints. This procedure 

increases considerably the speed of the search for the TS, 

mainly during the frequency calculations needed for the IDM, 

which incurs in an overestimation of the energy barriers of less 

than 4 kJ/mol compared to the systems without constraints.  
2.2. Simulation Model. All simulations were carried out 

using periodic boundary conditions. The input coordinates and 
unit cell of zeolite MFI, which were used for the geometry 
optimization, were obtained from the database of the 

International Zeolite Association.
73

 We optimized the unit cell 

by creating a set of fixed volume calculations, allowing the 
atomic positions and the cell shape to relax. Afterward, the 
correlation between the energies of the cells and their volumes 

was fitted to the Birch−Murnaghan equation of state.
74

 This 

procedure avoids the drawbacks related to the Pulay stress,
75

 
and gives the bulk modulus as an adjustable parameter. The 
relaxed equilibrium cell had values of 20.272, 19.942, and 
13.400 Å for the parameters a, b, and c, respectively, with a 

volume of 5417 Å
3
, which was less than 1% larger than the 

experimental value.
76

 At the same time, we calculated a bulk 
modulus of 18.4 GPa, in good agreement with an experimental 

measurement of 18.2 GPa.
76 

 
We have used the slab model to analyze the adsorption of 

phenol at the (010) surface of zeolite MFI, which is the 

exposed face in MFI nanosheets.
25,77

 The slab was built by 

cutting the structure along the [010] direction and keeping the 
periodicity over the (010) plane, saturating the cleaved Si−O 
bonds with hydroxyl groups. This procedure to create the slab 
resembles the methodology of previous computational 
simulations, where the external surfaces of zeolites have been 

considered explicitly.
78−81

 This type of morphology has been 
experimentally synthesized in the form of single unit cell 

nanosheets.
77

 In previous publications, we have shown that the 
external surface of zeolite MFI is well-described by a slab 

formed by one pentasil layer,
34

 which closely resembled the 
results obtained using a more realistic slab constituted of two 

pentasil layers.
25,30

 Therefore, we have used one-pentasil slabs 
in this work, placing a vacuum layer of 20 Å along the normal 
direction to the surface in order to minimize the interaction 
between periodic images, leading to unit cell parameters for 
the slab model of 20.272, 34.971, and 13.400 Å along the a, b 
and c directions, respectively.  

Studying the Al substitution of the T-sites in a one-pentasil 
slab, we observed that the T9 site, which is shown in Figure 2, 
was the most stable Al-substituted silanol out of four diff erent 

available positions per unit cell: T7, T9, T10, and T12.
34

 

Therefore, we have used this site to substitute Sc, Fe, and Ga 
and compare them to our previous results on the 
tautomerization of phenol on Al-substituted MFI.  

The visualization of all structures shown in this work was 
obtained with the code Visualization for Electronic and 

Structural Analysis (VESTA 3).
82 

 
3. RESULTS AND DISCUSSION 
 

3.1. Formation of the Lewis Acid Sites. A spare negative 
charge is introduced within the zeolite framework after the 
metal atoms Sc, Fe and Ga, with a formal charge of 3+, 
substitute a Si atom. A Brønsted acid is generated when this 

negative charge is neutralized by H
+
 upon ion-exchange with 

NH4
+
 followed by calcination. Substituted silanol groups at the 

external surface of zeolites are the precursors of three-

coordinated Lewis acid sites.
25,78

 These Lewis acids are 

produced following the transfer of the acidic H
+
 to the OH 
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Figure 2. Representation of the (010) surface of zeolite MFI: (a) 
top and (b) lateral views. The T9 site is represented in light gray, 
silanol O atoms in red, H in white, and Si by orange sticks.  
 
group of the metal-substituted silanol with the subsequent 

formation of water, as shown in Figure 3. In the present study,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Binding free energies along the dehydration pathway of 

three metal-substituted silanols: Sc (black line), Fe (red line), Fe with 

the +U correction (green line), and Ga (blue line). The barrier and 

reaction energies are shown within parentheses. The horizontal dashed 

line marks the reference energy (shifted to zero), constituted by the 

bare Lewis acid site and a molecule of water in the gas phase. Close-

ups showing the relevant structural features along the dehydration 

pathway are presented at the bottom of the graph. The T9 site is 

represented in light gray, silanol and acidic O atoms in red, H in 

white, and Si by orange sticks.  
 
this transformation is exothermic, releasing energies of 10, 21, 

and 23 kJ/mol, and overcoming small energy barriers of 26, 

23, and 18 kJ/mol for substitutions with Sc, Fe, and Ga, 

respectively (see Figure 3). The inclusion of the on-site 

Coulomb correction (hereafter referred as +U) for Fe 

decreased the absolute energy of the reactant, TS and product 

by 5 to 7 kJ/mol, yielding an exothermic energy of 22 kJ/mol 

and a barrier of 19 kJ/mol, thus retaining the trends of the 

calculation without +U. The activation energies in Figure 3 are 

similar to the equivalent transformation for Al-substituted 

 
silanol T9, where values between 10 and 20 kJ/mol have 

been calculated.
25

 Thus, we can conclude that the 
dehydration of the metal-substituted silanols is 
thermodynamically and kinetically favored. 

The water molecule is desorbed from the Lewis acid site 
upon thermal treatment of the material, leading to the 

generation of three-coordinated M
3+

 centers.
83

 Therefore, 
we have used the bare three-coordinated Lewis centers, 
shown in Figure 4, as reference structures to calculate the 
binding free energies along the tautomerization process.  
 
 
 
 
 
 
 
 

 

Figure 4. Optimized, three-coordinated Lewis acid sites after 

dehydration and water desorption of substituted silanol T9. Important 

O atoms are represented in red, H atoms in white, Sc atom in light 

gray, Fe atom in brown, Ga atom in light blue, and Si by orange 

sticks. Relevant interatomic distances are shown for each geometry.  
 

3.2. Adsorption of Phenol. Two diff erent configurations 

were examined for the adsorption of phenol on the Lewis sites: 

the nonplanar configuration, which places the plane of the 

aromatic ring perpendicular to the plane created by the three 

framework O atoms that bind the metal substituent (see Figure 

5a), and the coplanar configuration, which places the plane of 

the aromatic ring almost parallel to the plane created by the 

three framework O atoms (see Figure 5b).  
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Representation of the adsorption of phenol with (a) 
nonplanar and (b) coplanar configurations before geometry 
optimization. Important O atoms are represented in red, C atoms 
in dark gray, H atoms in white, metal substituent in light gray, and 
Si by orange sticks.  
 

Phenol adsorbs preferentially on the three Lewis acid 
sites with a coplanar configuration, as indicated by the 
calculated binding free energies of −34, −14, and −6 kJ/mol 
against values of −7, +11, and +17 kJ/mol for the nonplanar 
configuration on the Sc, Fe, and Ga sites, respectively. The 
+U approach reduced the stability of the bare, Fe-
substituted Lewis acid site, and thus increased the strength 
of the adsorption by 5−6 kJ/mol. These results agree with 
the preferential coplanar adsorption of phenol on Al-
substituted zeolite MFI, which is 30 kJ/mol stronger than 

the nonplanar configuration.
34 

 
The binding energy has been identified as a convenient 

descriptor to characterize the Lewis acidity in zeolites.
84

 
Consequently, according to the values of binding free energies 

  



Table 1. Bader Atomic Charges Calculated with the Functionals PBE and HSE06     
            

   PBE      HSE06   

M q(M)a q(ph)b q(M)c q(3O)d q−/q+
e  q(M)a q(ph)b q(M)c q(3O)d q−/q+

e 

Al +2.445 +0.034 +0.024 −0.014 0.24 +2.484 +0.040 +0.017 −0.013 0.23 

Sc +2.025 +0.072 +0.009 −0.049 0.60 +2.147 +0.067 +0.008 −0.046 0.61 

Fe +1.639 +0.113 +0.030 −0.099 0.69 +1.853 +0.094 +0.031 −0.090 0.72 

Fe (+U) +1.759 +0.102 +0.032 −0.094 0.70  − − − − − 

Ga +1.847 +0.102 +0.050 −0.118 0.78 +1.955 +0.096 +0.040 −0.101 0.74  
aq(M): Bader atomic charges (e− units) of the Al, Sc, Fe, and Ga atoms before the adsorption of phenol. bq(ph): Total charge of phenol after 

adsorption. 
c
   q(M): Variation of q(M) after the adsorption of phenol. 

d
   q(3O): Variation of the total charge of the three O atoms that bind the 

metal substituent after the adsorption of phenol. eq−/q+: Ratio between the negative and positive charges, calculated using eq 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Projected density of states (PDOS) of (a) Sc-substituted and (b) Al-substituted MFI nanosheet: (top graphs) total projection onto 
phenol atoms, (middle graphs) projection onto the 3s orbitals of Al and the 4s orbitals of Sc, and (bottom graphs) projection onto the 3p 
orbitals of Al and the 3d orbitals of Sc. (c) Molecular orbitals (MO) of phenol within each of the four regions shadowed in light gray in the 
PDOS profiles of phenol. The MO HOMO−6 was not detected within any of the four regions, and we reason that it was rehybridized with 
the rest of the MO after adsorption.  
 
calculated in this work, combined with the results of phenol 

adsorption on Al-substituted zeolite MFI,
34

 we can establish 
the following order of Lewis acid strength: Ga < Fe < Sc < Al.  

We have used the Bader atomic charges
85−88

 to analyze the 

charge transfer between phenol and the Lewis acid sites, 

compiling the values derived by PBE and HSE06 in Table 1. 

In the case of HSE06, the PBE-optimized geometries were 

used as input coordinates for single-point calculations. Before 

adsorption of phenol, the charge of the metal centers q(M) 

yielded by PBE followed the order: Fe (+1.639 e
−
 and +1.759 

e
−
 with the +U correction) < Ga (+1.847 e

−
) < Sc (+2.025 e

−
) 

 

< Al (+2.445 e
−
), which almost correlates with the ranking 

of adsorption energies except for the Fe−Ga swap at the 
 
beginning of the series; HSE06 produced similar results. 

After adsorption of phenol, the variation of the atomic 
 
charges was calculated with the following equations: 
 

q(M)
 
=

  
q(M)

after ads . 
−

  
q(M)

before ads. (2) 

q(3O)
 
=

  
q(3O)

after ads . 
−

  
q(3O)

before ads. (3)   



 
 

q− /q+  = 

 q(3O) 

 q(M) +  q(ph)  

 
 
 

We also compared the thermodynamic viability of the 
coplanar adsorption of phenol against the adsorption of 
water  

(4) on the Lewis acid sites, adopting the condition that the 
translational and rotational degree of freedoms of the 
physisorbed molecules are frustrated.

90
 Therefore, we 

only included the vibrational contribution to the entropy 
and the thermic energy in eq 1 for molecules optimized 
in the gas phase. Under these conditions, and at 473 K, 
the binding free energies of phenol were stronger than 
those of water by 31 to 35 kJ/mol for the three metal 
substitutions. Hence, according to our calculations, the 
Lewis site preferentially adsorbs phenol over water. 

 

Figure 7 shows the most stable coplanar configurations after 

geometry optimization. After the adsorption of phenol, the  
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 7. Most stable coplanar adsorptions of phenol on the three Lewis 
centers after geometry optimization: (a) Sc, (b) Fe, and (c) Ga. 
Important O atoms are represented in red, C atoms in dark gray, H 
atoms in white, and Si by orange sticks. Relevant interatomic distances 

are shown for each geometry. The bonds Oph−C1 and Oph− Hph of 
phenol in the gas phase have calculated values of 1.376 and 0.973 Å, 
respectively.  
 

 

Oph−C1 and Oph−Hph bonds lengthened by 0.041−0.048 and 

0.004−0.007 Å, respectively (Oph and Hph refer to the OH group 

of phenol). Upon interaction between Oph and the metal atom, 
increments of 0.026, 0.035, and 0.036 Å were observed for the 
bonds Sc−O8, Fe−O8, and Ga−O8, respectively (the framework 

O8 atom was the closest to Hph among the set binding the metal 

substituent). The Oph remained at a distance of 2.239 Å from Sc, 
decreasing to 1.837 and 1.810 Å for Fe and Ga, respectively.  

3.3. Dissociation of Phenol. We considered the dissociation of 

the Oph−Hph bond of phenol, followed by the transfer of Hph to the 

closest framework O atom that bound the metal substituent, as the 
first step toward tautomerization (see Figure 8). After the 
dissociation, the strength of the binding free energies decreased by 7 
and 9 kJ/mol for Sc and Ga, respectively, while increasing by 9 
kJ/mol for Fe (by 4 kJ/ mol when considering the +U approach). The 
energy barriers of these processes remained below 40 kJ/mol, 
reaching a minimum of 33 kJ/mol for Sc and Fe (see Figure 8). In 
comparison, the activation energy on the Al-substituted T9 site has a 

value of 49 kJ/mol.
34

 Similarly, the cleavage of the Oph− Hph bond 
of phenol has activation energies of 46 and 19 kJ/ mol on Pt(111) 

and Pd(111), respectively,
44

 while the equivalent process in m-

cresol shows values of 39 and 45 kJ/ mol on Pt(111) and 

Ru(0001).
19

 This highlights the fact that the dissociation of phenol 
on three-coordinated Lewis acid sites at the external surface of 
zeolite MFI is as probable as on a range of extended metal surfaces. 
  

where q(M) is the variation of the metal atomic charge q(M) 
before and after the adsorption of phenol, q(3O) is the 
variation of the total atomic charge of the three O atoms 
q(3O) that bind the metal before and after the adsorption of 

phenol, and q−/q+ is the ratio between the variations in 
negative and positive charges after adsorption, including the 
charge of phenol q(ph). This ratio provides an indication of 
the fraction of the charge that is transferred to the O atoms 
directly binding the metal (see Table 1). 

Upon adsorption of phenol, we observed a net charge transfer 
from phenol to the zeolite, which, according to PBE and HSE06, 
increased along the series Al < Sc < Fe ≈ Ga. However, despite this 
net movement of electronic charge into the zeolite framework, the 
positive charge of the metal centers increased after the interaction 
with phenol, with Sc reporting the smallest variation q(M) (PBE: + 

0.009 e− and HSE06 + 0.008 e−), followed by Al and Fe, and with 

Ga yielding the largest growth (PBE: + 0.050 e− and HSE06 + 

0.040 e−). In the case of Sc, Fe, and Ga, more than half of the net 
charge transferred from phenol and the metal substituent to the rest 
of the zeolite was located in the three O atoms binding the metal 

center, yielding q−/q+ values between 0.60 and 0.80. In contrast, 
only approximately 20% of this net charge remained in the three O 
atoms binding the Al atom. We have rationalized these 
observations as follows: the smaller the electronegativity of the 
metal the stronger the adsorption energy within the series Sc, Fe 
and Ga, where the three atoms are in the same row of the periodic 

table;
89

 a similar correlation has been reported before for M
4+

-

substituted zeolite MFI.
84

 This relation holds for substitutions with 
elements in the same group of the periodic table: the 
electronegativity of Al is lower than Ga, and consequently its 
adsorption energy is higher. This eff ect may be related to the 
capacity of the Lewis acid site to back-transfer part of the 
electronic charge that is received from phenol. However, when Al 
is compared to Sc, the opposite trend is observed, Al has a higher 
electronegativity and also has a stronger adsorption energy than 

Sc.
34,89

 Figure 6 shows the projected density of states (PDOS) onto 
the valence states of Al and Sc, where we have observed 
diff erences in their hybridization state with phenol. 

The PDOS of adsorbed phenol can be divided into four 

regions that span approximately from −22 to 0.0 eV, with the 

Fermi energy shifted to zero, and contain the profiles associated 

with the molecular orbitals of phenol (see Figure 6). Regions II 

and III show the strongest signs of hybridization between the 

molecular orbitals of phenol and the electronic states of Al and 

Sc. While region III, spanning from approximately −3 to −2 

eV, is very similar in Al and Sc, the profile of region II 

indicates marked diff erences between the two metal 

substituents. In the case of phenol on Al, region II shows a 

strong scattering of the states associated with the molecular 

orbitals, which is a measure of important electronic 

hybridization and phenol−Al interaction. On the other hand, in 

the case of phenol on Sc, region II is mainly characterized by 

single peaks, suggesting a weaker phenol−Sc interaction. This 

feature highlights the more efficient hybridization of phenol 

with the electronic states Al(3s,3p) in comparison to Sc(4s,3d), 

and thus justifies the stronger binding energy of phenol to Al 

than to Sc. 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Binding free energies along the tautomerization pathway for 
the three Lewis centers: Sc (black line), Fe (red line), Fe with the +U 
correction (green), and Ga (blue line). The barrier and reaction 

energies for the dissociation of phenol (TS1) and the formation of the 

final tautomer (TS2) are shown within parentheses. The horizontal 

dashed line marks the reference energy (shifted to zero), constituted 
by the bare Lewis acid site and a molecule of phenol in the gas phase. 
Close-ups showing relevant structural features along the pathway are 
presented at the bottom of the graph. Important O atoms are 
represented in red, C atoms in dark gray, H atoms in white, metal 
substituent in light gray, and Si by orange sticks.  
 

Figure 9 shows the optimized geometries of transition states 

(TS1) and products of the dissociation of phenol for the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9. Optimized structures of (a−c) transition states (TS1 in 

Figure 8) and (d−f) products of the dissociation of phenol using the 
coplanar configuration as input geometry: (a, d) Sc, (b, e) Fe, and (c,  
f) Ga. Important O atoms are represented in red, C atoms in dark 
gray, H atoms in white, and Si by orange sticks. Relevant 
interatomic distances are shown for each geometry.  
 

diff erent metal centers. In TS1, Hph was at an intermediate 

position between Oph and O8, at no more than 1.31 Å away 
from either of the two O atoms. This range of distances was 
achieved by the movement of the phenol molecule toward 

the O8 atom, which shortened the O8−Oph distance and 
distorted the metal-centered tetrahedron. After dissociation, 

the bond length O8−Hph remained between 0.973 and 0.976 
Å, which increased the distance between O8 and the metal 

substituents above 2.0 Å. As a consequence of the Hph 

transfer, the Oph−C1 bond was shortened by 0.047−0.061 
Å, depending on the metal substituent. 

 
3.4. Formation of Cyclohexa-2,4-dien-1-one. In order 

to complete the tautomerization, the dissociated phenol 

rotates around the dihedral angle C1−Oph−M−O8 to 

decrease the distance between Hph and C2, and to favor the 
transfer that produces the final tautomer. Previously, we 
have observed that this rotation has the lowest barrier along 

the tautomerization pathway with 12 kJ/mol.
34

 The rotation 
avoids the regeneration of phenol by placing the molecule 

in an unfavorable orientation to retrieve Hph from O8. 
Hence, we did not examine the value of the rotation barrier 

here, assuming it is also lower than the transfer of Hph and 
we focused instead on the geometrical optimization of 
phenol upon rotation and formation of the tautomer.  

Figure 10 shows the optimized geometries after the rotation 

of phenol around the dihedral angle C1−Oph−M−O8. The  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Optimized structures after the rotation of phenol around the 

dihedral angle C1−Oph−M−O8 using the structures after the 
dissociation of phenol shown in Figure 9 as input geometries: (a) Sc,  
(b) Fe, and (c) Ga. Important O atoms are represented in red, C 
atoms in dark gray, H atoms in white, and Si by orange sticks. 
Relevant interatomic distances are shown for each geometry.  

 
binding free energy strengthened by 7 kJ/mol for Sc while 

remaining unchanged for Fe and Ga. The distance C2−Hph 
decreased to 2.503, 2.335, and 1.986 Å for Sc, Fe and Ga, 

respectively. These short separations between Hph and the 

aromatic ring caused increments in the O8−Hph bond by 
0.008−0.024 Å (see Figure 10). We associated these 
increments with the perturbation that the electron-rich π 

cloud of phenol exerts on Hph. We have observed a similar 

elongation of up to 0.031 Å for the O8−Hph bond when the  
adsorption takes place on the three-coordinated Al-

substituted T9 site.
34 

 
The final step of the tautomerization of phenol involves the 

breaking of the O8−Hph bond and the Hph transfer to C2, 

weakening the adsorption on the Lewis acid sites (see Figure 
8). The binding free energy remained negative only for Sc, 
while increasing to +10 (+4 with the +U approach) and +25 
kJ/mol for Fe and Ga, respectively. In the gas phase, the 
tautomer is highly unstable when compared to phenol, hence it 
should be stabilized on the Lewis site in order to span its 
lifetime long enough to go through further hydrogenation; in 
this regard, Sc is the best candidate among the three 
substitutions discussed here. The energy barrier for the transfer 

of Hph to C2 showed the smallest value for Sc with 32 kJ/mol, 

followed by Ga and Fe with 35 and 47 kJ/mol, respectively. 
The inclusion of the +U correction on Fe decreased the barrier 
by only 6 kJ/mol compared to the noncorrected one, showing a 
value of 41 kJ/mol. On Sc, this activation energy is 5 kJ/mol 
larger than on Al, which is still 

  



 
 
reachable at relatively low temperatures.

34
 Likewise, the 

equivalent C−Hph combination for phenol and m-cresol 
mediated by the metal surfaces Pt(111), Pd(111), and 
Ru(0001) has higher activation energies, with values ranging 

from 63 to 93 kJ/mol.
19,44

 On these extended metallic 

surfaces, the Hph atom and dissociated phenol are more 
strongly stabilized by multiple interactions with the surface 

metal atoms, which increases the energy of the C−Hph bond 
formation compared to the zeolite Lewis acid sites, where only 

the highly polarized O8−Hph bond needs to be broken.  
Figure 11 shows the optimized geometries of transition 

states (TS2) and products for the transfer of Hph to C2. In the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. Optimized structures of (a−c) transition states (TS2 in 

Figure 8) and (d−f) products of the final step of the 
tautomerization of phenol using the configurations shown in 
Figure 10 as input geometries: (a, d) Sc, (b, e) Fe, and (c, f) Ga. 
Important O atoms are represented in red, C atoms in dark gray, H 
atoms in white, and Si by orange sticks. Relevant interatomic 
distances are shown for each geometry.  
 

TS2, Hph kept a distance from the C2 and O8 atoms 
between 1.26 and 1.42 Å for the three dopants (see Figure 

11). Once the Hph transfer was completed, the C2−Hph 
bond length remained between 1.114 and 1.117 Å, and the 

Oph−C1 bond reduced to values between 1.280 and 1.288 
Å. These changes occurred together with an increase of the 

Oph−M distance, with elongations of 0.155, 0.120, and 
0.125 Å for Sc, Fe, and Ga, respectively.  

According to the pathways summarized in Figure 8, the 
three metal substitutions are able to catalyze the 
tautomeriza-tion very eff ectively compared to the direct 
isomerization in the gas phase, which has an activation 

energy of 242 kJ/mol.
34

 Our calculated activation energies 
for the tautomerization of phenol remained between 33 and 
47 kJ/mol. Thus, the isomerization of phenol may be easily 
attainable on metal-substituted zeolites acting as supports. 
Although we have studied here substitutions with metal 
atoms with a formal charge of 3+, other Lewis acids with 

formal charge 4+ may also facilitate the tautomerization.
84 

 
The presence of other molecules, such as water, could assist 

the tautomerization of phenol in a single-step reaction instead 
of a three-step process as proposed here. For instance, the 

 
calculated energy barrier for the water-assisted 

tautomerization of phenol at the Ru−TiO2(110) interphase is 

37 kJ/mol, which is within the range of our calculated 

activation energies for the Hph transfer.
43

 We have not 

explicitly considered the eff ect of solvents on the 
tautomerization mechanism of phenol at the Lewis acid sites, 
but we could hypothesize that, once phenol is adsorbed on the 
Lewis acid site, water could facilitate the tautomerization by 
simultaneously accepting the phenol proton, while donating its 
own to one of the carbon atoms at ortho positions. This step 
would eff ectively reduce the activation energy of the hydrogen 

hopping.
91

 However, this suggestion considers a single water 

molecule only, whereas more complex mechanisms could be 

devised by adding more molecules to the system.
92

 Only the 

explicit treatment of the solvent would allow us to draw more 
specific conclusions. This is beyond the scope of the current 
study, but will be considered in future work. 
 

4. CONCLUSIONS 
 
We have performed density functional theory calculations in 

order to investigate the proficiency of three-coordinated Lewis 

acid sites in zeolite MFI to catalyze the tautomerization of 

phenol. The Lewis acid site was formed from the dehydration 

of the metal-substituted silanol group at the T9 site exposed at 

the external (010) surface of the zeolite. Three diff erent 

metals, with formal charge 3+, were used to replace silicon in 

the T9 site: scandium, iron, and gallium. We have shown that 

phenol is able to substitute water on the Lewis site once the 

dehydration of the silanol group has taken place.  
The tautomerization is conceived as a three-step process 

consisting of (i) dissociation of the Oph−Hph bond of phenol 

and the Hph transfer to one of the framework O atoms binding 

the metal, (ii) rotation of the molecule to reduce the distance 

between the Hph atom bound to the zeolite and one of the ortho 

C atoms of phenol, and (iii) transfer of the Hph atom from the 

zeolite to the phenoxide to form the C−Hph bond. The entire 

process has activation energies below 47 kJ/mol for any of the 
three dopants. In particular, the Sc gives the strongest binding 
free energy for phenol, the lowest activation energies during 
the tautomerization, and is the substituent that better stabilizes 
the final tautomer, followed by Fe and Ga. Furthermore, the 
three metals show a lower activation energy than Al for the 
first step of the tautomerization process, by 9 to 16 kJ/mol, 
although they simultaneously raise the barrier for the second 

Hph transfer, with increments that range from 5 kJ/ mol for Sc 

to 20 kJ/mol for Fe (without +U correction). These results 
indicate that Sc could potentially be used as a dopant in 
zeolites with a promising performance to promote the 
tautomerization of phenol.  

The utilization of the +U approach to describe the on-site 
Coulomb repulsion of the 3d electrons of Fe does not 
significantly modify quantitative results, which are mainly 
limited to the increase of the binding energy of phenol by 
no more than 10 kJ/mol. Finally, we have observed that the 
PBE functional is suitably accurate to describe the analyzed 
tautomerization pathway, compared to other functionals of 
higher hierarchy within the density functional theory, i.e., 
TPSS, rev-TPSS, and HSE06. 
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