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Sparse Data Driven Mesh Deformation
Lin Gao, Yu-Kun Lai, Jie Yang, Ling-Xiao Zhang, Shihong Xia and Leif Kobbelt

Abstract—Example-based mesh deformation methods are powerful tools for realistic shape editing. However, existing techniques
typically combine all the example deformation modes, which can lead to overfitting, i.e. using an overly complicated model to explain
the user-specified deformation. This leads to implausible or unstable deformation results, including unexpected global changes outside
the region of interest. To address this fundamental limitation, we propose a sparse blending method that automatically selects a smaller
number of deformation modes to compactly describe the desired deformation. This along with a suitably chosen deformation basis
including spatially localized deformation modes leads to significant advantages, including more meaningful, reliable, and efficient
deformations because fewer and localized deformation modes are applied. To cope with large rotations, we develop a simple but
effective representation based on polar decomposition of deformation gradients, which resolves the ambiguity of large global rotations
using an as-consistent-as-possible global optimization. This simple representation has a closed form solution for derivatives, making it
efficient for our sparse localized representation and thus ensuring interactive performance. Experimental results show that our method
outperforms state-of-the-art data-driven mesh deformation methods, for both quality of results and efficiency.

Index Terms—Data driven, sparsity, large scale deformation, real-time deformation.

F

1 INTRODUCTION

M esh deformation is a fundamental technique for ge-
ometric modeling. It has wide applicability ranging

from shape design to computer animation. For pose changes
of articulated objects, e.g. human bodies, deformation can be
modeled using skeletons, although extra effort is needed to
construct skeletons, and it is not suitable for deformation
of general shapes. For improved flexibility, cage-based de-
formation resorts to cages that enclose the mesh as proxies
(e.g. [1]). However, effort is also needed to build cages, and
it requires experience to manipulate cages to obtain desired
deformation.

Surface based methods allow general surface deforma-
tion to be obtained with an intuitive user interface. Typically,
the user can specify a few handles on the given mesh, and by
moving the handles to new locations, the mesh is deformed
accordingly. Geometry based methods produce deformed
surfaces following user constraints by optimizing some
geometry related energies (e.g. [2], [3], [4]). However, real-
world deformable objects have complex internal structures,
material properties and behavior which cannot be captured
by geometry alone. As a result, such methods either require
a large number of constraints or do not produce desired
deformation for complex scenarios.

The idea of data-driven shape deformation is to provide
explicit examples of how the input shape should look like
under some example deformations (example poses) and
then to interpolate between these poses in order to ob-
tain a specific shape/pose instead of using synthetic basis
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Figure 1. The set of possible shapes obtained by blending (all) defor-
mation modes can be illustrated as the convex hull of the input shape
samples. In many cases this is a very poor approximation of the manifold
of plausible shapes. By imposing sparsity, only a small number of modes
are blended leading to a tighter approximation.

functions or variational principles to drive the deformation.
From the data interpolation perspective, we can consider
each example deformation as a sample in a very high
dimensional space (e.g. three times the number of vertices
dimensional). Obviously, not all coordinates in this high
dimensional space represent meaningful shapes. In fact, the
effective shape space, i.e. the set of all meaningful deforma-
tions forms a relatively low dimensional sub-manifold in the
high dimensional space of all possible deformations.

While in some papers [8] the shape space is modeled
mathematically, the data-driven approach reduces to a so-
phisticated weighted blending of the input poses. The ex-
isting methods in this area differ in how they represent
deformations, i.e., how they encode a deformation by some
high dimensional feature vector. The implicit underlying
assumption for the blending operation is that any shape in
the convex hull of the example deformations is meaningful.
This, however, is not true in many cases. The most intuitive
morphing path from one shape to another is not straight
but follows a geodesic path on the shape space manifold as
explored in [8], [9].

In this paper, given a set of basis deformation modes,
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(a) (b) (c) (d) (e)
Figure 2. Our interactive modeling technique deforms meshes by blending deformation modes derived from a number of input meshes. This data-
driven approach avoids complex mathematical deformation models/energies and ensures plausibility of the deformation. While existing methods like
(a) [5], (b) [6], and (c) [7] use globally supported deformation modes and always compute a blend of all available modes, we use deformation modes
with local support (d) and only blend the most relevant modes (e) for user-specified shape deformation. The sparsity of our method effectively avoids
artifacts and side-effects that other methods (including those with localized deformation bases (d)) produce, like unintended changes in regions that
should not be affected by the edit (see yellow arrows).

we propose sparsity as an effective mechanism to select a
compact subset of suitable deformation modes, which when
blended effectively satisfy the boundary conditions (i.e. han-
dle movement). By using fewer basis modes, the deformed
models are more likely to stay on the manifold, as illustrated
in Fig. 1. Moreover, it avoids overfitting and produces more
robust deformation results. The basis deformation modes
can have a variety of sources: example shapes themselves,
as well as global and/or local deformation modes extracted
from examples. Our method is able to choose suitable ba-
sis deformations, including suitable scales when multiscale
deformation modes are provided, to produce meaningful
results.

To represent large-scale deformations effectively, we fur-
ther propose a simple and effective deformation represen-
tation which is able to cope with large-scale rotations. The
ability to represent large-scale deformations is essential for
data-driven deformation, since to fully exploit latent knowl-
edge of example shapes, it is often needed to blend shapes
with relatively large rotations, such as movement of the tail
of a cat, and movement of hands (where deformation is
driven by shoulder and elbow joints). The representation
is well defined using an as-consistent-as-possible global op-
timization and has a closed form solution for derivatives, al-
lowing efficient optimization for deformation. Our method
has significant advantages, including realistic and control-
lable deformation avoiding side effects because suitable ba-
sis deformations are chosen automatically, and being much
more efficient due to our deformation representation and
precomputation, making it possible to exploit substantially
larger bases than state-of-the-art methods while still per-
forming at interactive rates. Figure 2 shows an example of
data-driven deformation using the MPI DYNA dataset [10]
with shapes of one subject as examples. Note that our
algorithm is a general example-based deformation method.
In addition to articulated deformation, the human example
in Fig. 2 also involves non-articulated deformation (e.g. the
tummy); more non-rigid deformations of general shapes
will be shown later in the paper. Compared with state-of-
the-art data-driven deformation methods [5], [6], [7], our
method avoids unexpected deformation (e.g. the movement
of head in (a) and the movement of right foot in (a-c)). Our

sparsity regularization term ensures the unedited regions
remain unchanged (e), which is not achieved without this
regularization (d).

Our contributions are threefold:

• We propose a novel embedding (encoding) of defor-
mations of triangle meshes that can handle arbitrarily
large rotations in a stable way.

• We introduce sparsity in the weighted shape blend-
ing operator which leads to more plausible deforma-
tions.

• We present a highly efficient scheme to compute the
involved operations in realtime. This is achieved by
pre-computing all terms that do not depend on the
position of the handles that the user moves to control
the shape.

In Sec. 2, we review the most related work. We then
give the detailed description of our novel mesh deformation
representation in Sec. 3, followed by sparse data-driven
deformation in Sec. 4. We present experimental results,
including extensive comparisons with state-of-the-art meth-
ods in Sec. 5. Finally we draw conclusions in Sec. 6.

2 RELATED WORK

Mesh deformation has received significant attention. A com-
prehensive survey is beyond the scope of this paper. For
interested readers, please refer to [11], [12]. We review the
work most related to ours.

Geometry-based mesh deformation. Geometry-based
methods formulate mesh deformation as a constrained op-
timization problem with user specified handles and their
locations as constraints. Terzopoulos et al. [13] optimize a
shell energy to obtain deformed meshes. Kobbelt et al. [14]
firstly propose a multi-resolution Laplacian-based deforma-
tion method. Sorkine et al. [15] deform surfaces by minimiz-
ing differences of Laplacian coordinates before and after de-
formation. Since the representation is not rotation invariant,
heuristics are needed to estimate the deformed Laplacian
coordinates, which can be inaccurate. Yu et al. [16] obtain
deformed meshes by interpolating gradient fields derived
from user constraints, fused using Poisson reconstruction.
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Iterative dual Laplacian [17] and volumetric graph Lapla-
cian [18] are also proposed to improve rotation and volume
preservation. Sorkine and Alexa [2] develop a mesh defor-
mation method based on minimizing an as-rigid-as-possible
(ARAP) energy, which measures non-rigid distortions in
local 1-ring neighborhoods of each vertex. This ARAP has
also been applied to the linear deformation spaces [19]. This
is further improved by [3], [20] with enhancement of smooth
rotations. The work [21] instead generalizes ARAP to use
different neighborhood sizes for achieving different levels
of stiffness. Such ARAP based methods can cope with large
rotations well. However, all these geometry based methods
fail to capture the deformation behavior of the objects, so
can produce undesirable results, especially for complicated
objects and large-scale deformations. Physical principles
such as modal analysis are also employed for interactive
shape editing [22], although fundamental challenges remain
as the properties and behavior of deformed objects are not
captured. For deformation of specific shapes such as skin
and muscle, dedicated simulation can be used to capture the
natural and subtle deformation during animation [23]; how-
ever, such techniques cannot be applied to general shapes.
In order to model the complex properties of the deforming
objects, some example-based methods are proposed [24],
[25]. Compared with our method, these methods are not
designed to deform the shapes in real time. Techniques for
interpolating images [26], [27], [28] and mesh models [29]
are also based on the the non-linear deformation methods.

Data-driven mesh deformation. To address the limi-
tations of geometry-based methods, data-driven methods
learn typical deformations from examples and thus can
produce more realistic deformation results. Sumner et al. [5]
propose a method for mesh deformation by blending defor-
mation gradients of example shapes. The method is able
to handle rotations, but fails to produce correct results
for large rotations (of more than 180◦), mainly because
these methods [5], [30] cannot blend large scale deforma-
tions properly. To overcome this limitation, several meth-
ods [31], [32] are proposed to handle the interpolation of
mesh models with large scale deformations; however, these
methods mainly focus on shape interpolation rather than
shape deformation. Fröhlich et al. [6] instead use rotation
invariant quantities, namely edge lengths, dihedral angles
and volumes, to represent deformed meshes. The method
is effective in interpolating (blending) example shapes, but
does not handle extrapolation well, as this may lead to
negative edge lengths. Gao et al. [7] develop a method based
on blending rotation differences between adjacent vertices
and scaling/shear at each vertex. As rotation differences
cancel out global rotations, the representation is rotation
invariant. The method is able to handle both interpolation
and extrapolation, thus produces improved deformation
results. However, all of these methods are based on global
blending of all the basis modes extracted from examples.
Therefore, they tend to overfit and introduce unintended
deformations, e.g. in areas far from user constraints during
local fine-tuning. They also tend to use a large number of
basis modes to represent even relatively local editing, and
can produce deformation sequences which are not smooth
with sudden changes when different sets of basis modes
are chosen. Such methods [5], [7] use Principal Component

Analysis (PCA) to analyze example datasets which can help
reduce basis modes, but they still have similar drawbacks
since all the modes are still used.

For articulated mesh models, Lewis et al. [33] augment
the Skeletal Subspace Deformation (SSD) method with dis-
placements which are obtained by interpolating exemplar
models created by artists. Weber et al. [34] propose a skele-
ton based data driven deformation method for articulated
mesh models, which works well with a small number of
exemplar models. Sloan et al. [35] provide a shape mod-
eling system by interpolation of exemplar models using
a combination of linear and radial basis functions. Unlike
such methods, our proposed representation handles general
deformations beyond articulation.

Sparsity based geometric modeling. The pioneering
work by [36] proposes to use a spatially localized basis
to represent deformations. However, they represent shapes
in the Euclidean coordinates, which are translation and
rotation sensitive. Hence the method cannot handle large-
scale deformations well. Huang et al. [37] extend [36] with
a deformation gradient representation to handle larger rota-
tions. However, this work cannot cope with rotations larger
than 180◦ due to the limitation of deformation gradients.
Wang et al. [38] extend [36] using rotation invariant features
based on [6], and hence have a similar limitation when
extrapolation of examples is required. Different from these
works [36], [37], [38] which explore sparsity to localize
deformation components, our method instead introduces
sparse promoting regularization which prefers fewer ba-
sis modes for representing deformed shapes. This ensures
suitable compact basis modes are chosen, which helps pro-
duce more meaningful deformation. When combined with
sparse localized bases, our method avoids unwanted global
deformations. Our method is also substantially faster than
existing methods, thanks to our deformation representation
and precomputation. Sparsity has shown to be an effective
tool for a variety of geometric modeling and processing
tasks such as localized shape deformation [39], [40]. Please
refer to [41] for a recent survey.

Recent work [42] generalizes as-rigid-as-possible defor-
mation [2] to take multiple examples and allow contribu-
tions of individual examples to vary spatially over the de-
formed surface. This helps make the method more descrip-
tive. However, fundamental limitations such as potential
non-local deformation effect and high complexity with a
large number of examples remain. The method uses convex
weights summed to one, which has side effect of sparsity.
However, sparsity is not directly optimized, nor the effect
studied in their paper. In comparison, we introduce the
sparsity regularization explicitly and on purpose, and our
method is also able to handle shapes with large rotations
especially when extrapolation is involved which are not
supported by [42].

Deformation representation. Deformation representa-
tion is important for effective data-driven deformation. Eu-
clidean coordinates are the most straightforward way [36],
[43], although with obvious limitations for rotations. More
effective deformation gradients are used to represent shape
deformations [5], [37], which still cannot handle large ro-
tations. Another stream of research considers local frame
based rotation-invariant representations [44], [45], [46]
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which are capable of representing shapes with large rota-
tions. However, such methods need to specify local frames
compatibly with handle positions as constraints. They are
suitable for mesh interpolation, but for mesh deformation,
they require the user to specify not only positional con-
straints but also orientations of local frames compatibly,
which can be a difficult task, making them unsuitable for
mesh deformation.

As an improvement, Gao et al. [7] use rotation differ-
ences to represent deforming shapes which can deform
shapes with only positional constraints. It has a main
drawback that the energy function to reconstruct surfaces
from the representation is complicated, with no closed
form derivative formulation. As a result, they resort to
numerical derivatives, which makes it expensive to optimize
the deformation energy. To address such limitations, we
propose a new deformation representation based on an as-
consistent-as-possible (ACAP) formulation, which is able to
cope with large rotations. It also has significant advantages:
it is efficient to compute and its derivatives have closed form
solutions.

3 DEFORMATION REPRESENTATION

We first introduce the formulation of our deformation rep-
resentation, and describe a simple algorithm to calculate the
representation given a deformed mesh. Finally, we convert
the deformation representation into the form of a feature
vector.

Our method starts from deformation gradients, which
are widely used in geometric modeling. Given a dataset
with n singly connected deformed shapes, each shape is
denoted as Sk, k ∈ [1, . . . , n]. We assume that they have the
same connectivity, which is often the case for shape datasets
and can be obtained by consistent remeshing through estab-
lishing correspondences between meshes and transferring
the deformation to the reference mesh. Without loss of
generality, we select the first mesh model as the reference
model. Denote by pk,i ∈ R3 the ith vertex on the kth mesh.
Then the deformation gradient Tk,i ∈ R3×3 defined on
the 1-ring neighborhood of pk,i can be calculated by the
following least squares formulation:

arg min
Tk,i

∑
j∈N(i)

cij‖(pk,i − pk,j)−Tk,i(p1,i − p1,j)‖22. (1)

N(i) is the neighborhood vertex index set of the ith vertex.
cij = cotαij+cotβij is the cotangent weight, where αij and
βij are angles in the adjacent triangles opposite to the edge
(i, j) on the shape S1. This is used to avoid discretization
bias in deformation [3], [7]. For the rank-deficient case,
we add the normal of the plane to the 1-ring edges for
computing the deformation gradient to ensure a unique
solution.

The main drawback of the deformation gradient repre-
sentation is that it cannot handle large-scale rotations. By
polar decomposition, the deformation gradient Tk,i can
be decomposed into a rigid rotation matrix Rk,i and a
scale/shear matrix Sk,i: Tk,i = Rk,iSk,i. The scale/shear
matrix Sk,i is uniquely defined. However, given the rigid
rotation R, there are infinite corresponding rotation angles.
To ensure uniqueness, typical formulations constrain the

rotation angles to be within [0, π] which are unsuitable for
smooth large-scale deformations.

In order to handle large-scale rotations, we take the axis-
angle representation to represent the rotation matrix Rk,i.
The rotation matrix Rk,i can be represented using a rotation
axis ωk,i and rotation angle θk,i pair with the mapping φ:

φ(ωk,i, θk,i) = Rk,i, (2)

where ωk,i ∈ R3 and ‖ωk,i‖ = 1. Given Rk,i, assuming
φ(ωk,i, θk,i) = Rk,i is an equivalent representation, then
any representation in the set is also a possible value,

Ωk,i = {(ωk,i, θk,i + t · 2π), (−ωk,i,−θk,i + t · 2π)} (3)

where t is an arbitrary integer.
As-consistent-as-possible (ACAP) deformation repre-

sentation. In order to handle large-scale rotations, the ori-
entations of rotation axes and rotation angles of adjacent
vertices need to be as consistent as possible. For 2D defor-
mation, some pioneering work [47], [48] exploits a similar
idea to consistently set rotation angles of vertices to deal
with large-scale deformation. However, 3D deformation is
much more challenging. Instead of using a greedy approach
as these 2D methods, we model this problem using an as-
consistent-as-possible principle and formulate the optimiza-
tion problem as one that maximizes the overall consistency.
More specifically, the consistency for deformation means
that the difference of rotation angles and the angle between
rotation axes should be as small as possible.

We first consider consistent orientation for axes. Assum-
ing ωk,i is an arbitrarily oriented axis direction for the ith

vertex on the kth mesh. Denote by ok,i a scalar indicating
potential orientation reversal of the axis, where ok,i = 1
(resp. −1) means the orientation of ωk,i is unchanged (resp.
inverted). Then consistent orientation of axes is turned
into a problem of finding a set of ok,i that maximizes the
compatibility of axis orientations between adjacent vertices:

arg max
ok,i

∑
(i,j)∈E

ok,iok,j · s(ωk,i · ωk,j , θk,i, θk,j) (4)

s.t. ok,1 = 1, ok,i = ±1(i 6= 1)

where E is the edge set, and s(·) is a function measuring
orientation consistency, and is defined as follows:

s(·) =


0, |ωk,i · ωk,j | ≤ ε1 or θk,i < ε2 or θk,j < ε2

1, Otherwise if ωk,i · ωk,j > ε1

−1, Otherwise if ωk,i · ωk,j < −ε1
(5)

The rationale of the definition above is based on the
following cases: In general, when the angle between the
rotation axes of adjacent vertices is less than 90◦ (resp.
greater than 90◦), the function value is 1 (resp.−1), meaning
such cases are preferred (resp. not preferred). However,
there are two exceptions: If the axes are near-orthogonal
(ε1 = 10−6 in our experiments), the function value is set to 0,
which improves the robustness to noise. Another situation
is when one of the vertices has near zero rotation (ε2 = 10−3

in our experiments), the axis for such vertices can be quite
arbitrary, so we do not penalize inconsistent orientation in
such cases. Note that s(·) can be precomputed, and only ok,i
needs to be optimized.
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After optimizing the orientation of rotation axes, the
rotation angles of adjacent vertices also need to be optimized
to keep consistency. Once the axis orientation is fixed, the ro-
tation angle can differ by a multiple of 2π. The optimization
is defined as follows:

arg min
tk,i

∑
(i,j)∈E

‖(tk,i · 2π + ok,iθk,i)− (tk,j · 2π + ok,jθk,j)‖22

s.t. tk,i ∈ Z, tk,1 = 0 (6)

where tk,i is the cycle number for the ith vertex of the kth

model. Both integer optimization problems can be solved
by the constrained integer solver (CoMISo) [49] effectively.
CoMISo optimizes constrained interger problems succes-
sively by solving relaxed problems in the real value domain.
The rotation angle optimization in Eqn. 6 is in a positive
definite quadratic form which is a convex optimization
problem during each iteration. Therefore, this optimiza-
tion is insensitive to the initial value. In contrast, the axis
orientation optimization in Eqn. 4 is non-convex in each
optimization iteration, so good initialization is useful to
speed up the convergence of this optimization. We use a
simple and effective greedy algorithm based on breadth-
first search to generate the initial solution. The algorithm
repeatedly accesses an unvisited vertex adjacent to a visited
one and selects the orientation which (locally) minimizes
Eqn. 4. This process repeats until all the vertices have their
axes assigned.

The axis-angle representation is well defined, i.e. unique
up to a global shift of multiples of 2π for θ, and/or si-
multaneous negating of ω and θ globally. Equivalently, the
representation is unique once the axis-angle representation
of one vertex is fixed. Without loss of generality, we choose
the rotation angle of the first vertex in [0, 2π) and orientation
to be +1. In the result section, we will demonstrate that this
method is effective to handle large-scale deformations and
high-genus models, and is robust to noise.

Feature Vector Representation. It is not suitable to blend
rotations in the axis-angle representation directly, so we con-
vert the axis ω and angle θ to the matrix log representation:

logR = θ


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (7)

Due to the matrix anti-symmetry, for the kth shape, we
collect the upper triangular matrix of logRk,i excluding
the diagonal elements as they are always zeros, and the
upper triangular matrix of scaling/shear matrix Sk,i (in-
cluding the diagonal elements) to form the deformation
representation feature vector fk, where the transformation
at each vertex is encoded using a 9-dimensional vector.
Using logarithm of rotation matrices makes it possible to
linearly combine the obtained feature vectors [50], [51]. The
rotation matrix Rk,i can be recovered by matrix exponential
Rk,i = exp(logRk,i), where logRk,i is part of the feature
vector. The dimension of f is denoted as m = 9|V|, where
|V| is the number of vertices.

Figure 3. Comparison of different localized principal component analysis
methods, with the first four principal components of each method shown.
First row: results of [36], second row: results of [37], third row: results of
our method. The methods [36], [37] cannot cope with large rotations, re-
sulting in distorted basis deformations. In contrast, our method capable
of handling large rotations produces reasonable basis deformations.

4 SPARSE DATA DRIVEN DEFORMATION

Given n example shapes Sk, k ∈ [1, . . . , n], we can obtain n
feature vectors F = {fk} using the as-consistent-as-possible
(ACAP) representation described in Sec. 3. We first extract
a basis of deformation modes from the given examples.
C = {ck} , ck ∈ R9|V|, k ∈ [1, . . . ,K] in our representation
space, where K is the number of basis deformations, which
can be specified by the user. To produce a deformed mesh,
assuming H is the handle set, for each h ∈ H , the user
specifies its location to be vh. Our data-driven deformation
aims to find a shape compactly represented as a linear
combination of basis modes, while satisfying the given user
specification as hard constraints.

4.1 Extraction of basis deformations
Our method can take basis deformations C from different
sources. If global deformation is desired, we can take all the
example shapes in our deformation representation, i.e. F as
the basis, or when the number of examples is large, PCA-
based dimensionality reduction of F. When local editing is
desired, we employ the method [36] on our ACAP represen-
tation to obtain the basis deformations C by optimizing the
following:

min
W,C
‖F−CW‖2F + Ω(C)

s.t. max
i∈[1,n]

(|Wk,i|) = 1,∀k
(8)

where Fm×n is the matrix with each column corresponding
to the deformation feature representation of each example,
Cm×K is the basis deformation components to be extracted.
WK×n is the weight matrix. The condition on Wk,i avoids
trivial solutions with arbitrarily large W values and arbi-
trarily small C values. The locality term Ω(C) is defined
similar to [36]:

Ω(C) =
K∑

k=1

m∑
i=1

Λk,i‖c(i)k ‖2. (9)
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As in [36], Λk,i is defined to linearly map the range of
geodesic distances from the kth centroid sample vertex in
a given range [dmin, dmax] to [0, 1] (with geodesic distances
out of the range capped). c(i)k represents the local deforma-
tion for the ith vertex of the kth basis deformation. Please
refer to [36] for more details regarding parameter settings
and implementation.

The major difference between our method and existing
methods is to use the `2,1 norm in our deformation represen-
tation, instead of the vertex displacement in the Euclidean
coordinates [36] or the deformation gradient [37]. With
our representation, we can deal with datasets with large-
scale deformations much more effectively. As demonstrated
in Fig. 3, we apply [36], [37] to the SCAPE dataset [52]
with the first four components shown, and the limitation
is clearly visible. Our method produces plausible localized
basis deformations.

4.2 Sparse shape deformation formulation

To obtain the deformed mesh, we formulate the deformation
gradient of the deformed mesh as a linear combination of
the basis deformations; similar linear blending operators
have been employed in [5], [34]:

Ti(w) = exp(
K∑
l=1

wl log R̃l,i)
K∑
l=1

wlS̃l,i, (10)

where w is the combination weight vector, log R̃l,i and S̃l,i

are part of the lth basis cl.
The vertex positions p

′

i ∈ R3 of the deformed mesh can
be calculated by minimizing the following energy:

E(p
′

i,w) =
∑
i

∑
j∈N(i)

cij‖(p
′

i − p
′

j)−Ti(w)(p1,i − p1,j)‖22.

(11)

For each vertex h in the handle set H , its target vertex
position p

′

h = vh is specified by the user and does not
change over the optimization. This formulation however
only aims at choosing basis deformations that minimize
non-rigid distortions, and more basis deformations than
necessary may be chosen. To produce more natural and
realistic deformation and avoid overfitting, we further intro-
duce the sparse regularization term such that the solution
will prefer to use fewer basis deformations if possible.
This along with sparse localized basis means that local
deformation tends to be represented using local basis only,
thus avoiding the unexpected global effect with traditional
methods. The resulting formula with sparse regularization
is given as follows:

Ẽ(p
′

i,w) =
∑
i

∑
j∈N(i)

cij‖(p
′

i − p
′

j)−Ti(w)(p1,i − p1,j)‖22

+ λ‖w‖1. (12)

λ is a parameter to control the importance of the sparsity
regularization. Except for the experiments for analyzing its
effect, λ = 0.5 is used in all our experiments.

4.3 Algorithmic solution without sparsity regulariza-
tion

To make it easier to follow, we first describe the algorithmic
solution to the problem E(p

′

i,w) without the sparse regu-
larization term ‖w‖1. We use the Gauss-Newton method to
solve the optimization. In each step, we will solve a least
squares problem. We derive this procedure with the Taylor
expansion:

Ti(wt + ∆wt) = Ti(wt) +
∑
l

∂Ti(wt)

∂wt,l
∆wt,l. (13)

wt is the weights in the tth Gauss-Newton iteration, ∆wt =

wt+1 −wt. The derivative ∂Ti(wt)
∂wt,l

is defined as follows:

∂Ti(wt)

∂wt,l
= exp(

∑
l

wl log R̃l,i) log R̃l,i

∑
l

wt,lS̃l,i

+ exp(
∑
l

wt,l log R̃l,i)S̃l,i (14)

For simplicity, we take the notation eij = pi − pj . Eqn. 11
can be derived as:

E(p
′

i,wt+1) = (15)∑
i

∑
j∈N(i)

cij‖e
′

ij − (Ti(wt)+
∑
l

∂Ti(w)

∂wt,l
(wt+1,l − wt,l))e1,ij‖2

Eqn. 15 leads to a least squares problem in the following
form:

arg min
x

‖Ax− b‖22 (16)

which can be efficiently solved using a linear system. Here,
A ∈ R3|E|×(3|E|+K), x ∈ R3|E|+k, b ∈ R3|E|. The matrix A
has the following form:

L −J1

L −J2

L −J3

 (17)

where x = [p
′

x,p
′

y,p
′

z,wt+1]
T

. L is a matrix of size |E| ×
|V|, where |E| and |V| are the numbers of half edges and
vertices respectively. L is highly sparse, with only two non-
zero elements in each row i.e. the cotangent weights cij and
−cij for the row corresponding to edge (i, j). Three copies
of L appear in the matrix (17), corresponding to x, y and
z coordinates. Ji (i = 1, 2, 3) ∈ R|E|×K is the product of
the Jacobian matrix ∂Ti(w)

∂wt,l
and e1,ij . Minimizing Eqn. 16 is

equivalent to solving the following normal equation:

ATAx = ATb. (18)

The matrix ATA can be written as:
LTL −LTJ1

LTL −LTJ2

LTL −LTJ3

−JT
1 L −JT

2 L −JT
3 L

∑3
i=1 J

T
i Ji


(19)
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We compute the Cholesky decomposition of ATA:
VTV = ATA, where the upper triangular matrix V
∈ R(3|E|+K)×(3|E|+K) has the following structure:

U U1

U U2

U U3

U4

 (20)

and the following equations hold:

UTU = LTL (21)

UTUi = −LTJi i ∈ {1, 2, 3} (22)

UT
4 U4 =

3∑
i=1

JT
i Ji (23)

The matrix L is constant during deformation once the
handle set H is fixed, so we precompute the Cholesky
decomposition UTU = LTL before real-time deformation,
U ∈ R|V|×|V|. During deformation, Ui ∈ R|V|×K can be
efficiently calculated by back substitution. The most time-
consuming operation is

∑3
i=1 J

T
i Ji, because two dense ma-

trices are multiplied. However, we develop an efficient tech-
nique to solve this problem with precomputation, because
J only changes when w is changed. For a typical scenario,
this reduces the deformation time from 190ms to 5ms (see
the Appendix for details). After the above computation, we
get the upper triangular matrix (Eqn. 20), which can be used
to obtain the positions p

′
and the weight w efficiently, using

back substitution.

4.4 Optimization of the sparse deformation formulation

We now consider the formula Ẽ(p
′

i,w) with sparse reg-
ularization (Eqn. 12). We similarly use the Gauss-Newton
method as described in Sec. 4.3. To cope with the sparse term
on the weights, we incorporate the Alternating Direction
Method of Multipliers (ADMM) optimization [53] into the
iteration of Gauss-Newton optimization. Similar to Eqn. 16,
Ẽ(p

′

i,w) can be rewritten in the form of

‖Ax− b‖22 + λ ‖w‖1 . (24)

To solve this Lasso problem [53], we employ the ADMM
as follows. x0 is the initial value for x, z and u are two
auxiliary vectors initialized as 0. x, z, u ∈ R3|E|+K . ADMM
method is used to work out x that optimizes Eqn. 24 by
optimizing the following subproblems alternately:

xk+1 = (ATA + ρI)−1 · (ATb + ρ(zk − uk)) (25)
zk+1 = shrink(xk+1 + uk, λ/ρ) (26)

uk+1 = uk + xk+1 − zk+1. (27)

In the above formulas, shrink(x, a) is a function defined as
shrink(x, a) = (x − a)+ − (−x − a)+, where the function
(x)+ = max(0, x). This ADMM algorithm is solved very
efficiently in each Gauss-Newton iteration, because the ma-
trix (ATA + ρI) is unchanged during ADMM optimization
iterations. We use an approach similar to Sec. 4.3 with pre-
computation described in the Appendix, by replacing ATA
with (ATA + ρI). The calculation of xk+1 is very efficient
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Figure 4. Generalization of deformation bases to new shapes. We plot
the reconstruction error (y-axis) with respect to the number of compo-
nents used (x-axis) on a set of human shapes from [52] that are not part
of the training data. Our method outperforms alternative methods with
significantly lower reconstruction errors.

by using back substitution. The pseudocode for sparse data
driven deformation is given in Algorithm 1. The parameter
ρ = 0.5 is used in our experiments. In practice, we perform
the outer Gauss-Newton iterations for 4 times and the inner
ADMM iterations for 4 times, which is sufficient to produce
good deformation results.

ALGORITHM 1: Sparse Data Driven Deformation
Input: K deformation modes analyzed

e.g. using Eqn. 8
Input: Deformation handles H .
Output: The deformed mesh model.
Preprocessing:
Precompute the upper triangular matrix U by Cholesky
decomposition with Eqn. 21
Precompute the unchanged terms in Eqns. 28 and 29
Real-Time Deformation:
for each Gauss-Newton iteration do

Compute Ui i ∈ {1, 2, 3} by back substitution with
Eqn. 22
Compute

∑3
i=1 J

T
i Ji with Eqn. 31

Compute U4 by Cholesky decomposition with Eqn. 23
Initialize x0, z0 and u0, set k = 0
for each ADMM optimization iteration do

Set k = k + 1
Calculate xk+1 by back substitution with Eqn. 25
Calculate auxiliary variables zk+1 and uk+1 with
Eqns. 26 and 27

end for
end for

5 EXPERIMENTAL RESULTS

Our experiments were carried out on a computer with an
Intel-i7 6850K and 16GB RAM. Our code is CPU based,
carefully optimized with multi-threading, which will be
made available to the research community. We use both
synthetic shapes and shapes from existing datasets, includ-
ing the SCAPE dataset [52] and the MPI Dyna dataset [10].
We simplify the SCAPE dataset to 4K triangles and Dyna
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Figure 5. A synthetic basis containing 25 deformation modes, each is a
deformed square with a 2D Gaussian distribution offset, centered in a
regular grid.

(a)

w = 0.62

w = 0.82

w = 1

w = -1.89

(b)

w = 0.34

w = 0.38

w = 0.91

w = -1.03

(c)

w = 1.01

(d)
Figure 6. Deformation results with the bases from Fig. 5 using different
methods with the same control point trajectory. The green handles
are fixed while the red handle is being moved. (a) input shape, (b)
result of [7], (c) result of our optimization without the sparsity term,
(d) our deformation result with the sparsity term. We also visualize
the dominant basis modes and their contribution weights. With sparsity
regularization, our method produces plausible deformation with fewer
basis modes involved, which ensures the resulting deformation is closer
to the examples.

dataset to 6K triangles using [54], as this provides faster
response while ensuring deformation quality.

To produce deformation results with more details,
we also implemented multiresolution optimization similar
to [7]. As shown in Fig. 29, the original model is with
13700 triangles, and the simplified coarse mesh contains
6528 triangles. With 30 deformation modes, our data-driven
deformation method takes 117ms on the coarse mesh, and
takes another 12ms to drive the original dense mesh, so
in total it takes 129ms to achieve rich deformation with
fine details. For other cases, meshes with 4K-6K triangles
produce visually similar results as with high resolution
meshes.

(a) (b)
Figure 7. Deformation running times of different methods w.r.t. an in-
creasing number of basis modes and triangle faces for the example in
Fig. 20. (a) the running times w.r.t. an increasing number of basis modes
with a fixed number (4K) of triangle faces, (b) the running times w.r.t.
an increasing number of triangle faces with fixed (20) components. Our
method scales well in both cases and is significantly faster than existing
data-driven deformation methods, especially with larger numbers of
basis modes and triangle faces.
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Figure 8. Deformation energy over Gauss-Newton iterations for the
example in Fig. 19. The energy monotonically decreases and converges
over a few iterations.

Evaluation of localized basis extraction. We analyze
the localized basis extracted using our rotation represen-
tation. We use the SCAPE dataset with 71 human shapes
containing various large scale deformations [52]. As shown
in Fig. 3, the sparsity localized deformation component
method [36] produces shrinkage artifacts because it uses
Euclidean coordinates directly and cannot handle rotations
well. The method [37] analyzing in the deformation gradient
domain is better than [36] in the leg region. However for
the arm region with diverse large rotations, both of these
existing methods fail to extract meaningful deformation
components. Our method works well, extracting a basis
with meaningful deformations. We further test the gener-
alizability of our extracted bases. To achieve this, we split
the SCAPE dataset into a training set and a test set. 36
shapes are randomly selected to form the training set and
the rest are taken as the test set. As demonstrated in Fig. 4,
the reconstruction error (measured by the average Euclidean
distance of every vertex between the reconstructed mesh
and the original mesh) for the new shapes in the test set re-
duces with an increasing number of basis modes. Moreover,
with our method the reconstruction error drops much more
quickly than [36], [37].

To demonstrate how our sparse data-driven deformation
method works, we show an example with synthetic basis
modes, in the form of Gaussian function offsets over a
square shape, centered at a 5×5 grid. Figure 5 shows all the
basis modes. In Fig. 6, we compare the deformation results
with different methods. The method [7] (b) and our method
without the sparsity term (c) tend to have a large number of
basis modes involved to represent the deformed shape. Our
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TABLE 1
Statistics of deformation running times

Face Number #. Basis Modes Deformation Time (ms)
Fig. 15 2304 2 7

Fig. 18 2304 10 12

Fig. 20 4300 26 57

Fig. 2 6796 21 106

Fig. 22 4360 20 61

Fig. 24 4100 20 56

TABLE 2
The average running times for the optimization of axis orientations and
rotation angles of each mesh model with different number of triangle

faces in the SCAPE dataset [52].

Face Number 2044 6140 12284 24572
Average Running Time (s) 1.08 2.78 9.80 32.25

method with the sparsity term (d) on the other hand prefers
to use fewer basis modes if possible. The contribution of
each basis mode and dominant modes are shown on the
right. By using the sparsity promoting term, our method
uses a smaller number of basis modes, leading to more
localized data-driven deformation results.

Time efficiency. Our data-driven deformation is much
more efficient and scalable than existing methods [5], [6],
[7]. To evaluate time efficiency, we use the SCAPE dataset
simplified to 4K triangles with up to 30 deformation modes
(or examples depending on the method) as the basis. Fig-
ure 7 shows the average deformation time to increasing
numbers of deformation basis modes and mesh triangles,
using different methods. Compared with the other three
state-of-the-art data-driven methods, our method performs
fastest, especially when the size of the basis is larger and/or
the mesh contains more triangles. With the help of precom-
putation and parallelization, our method performs faster
than [5]. For [6], since the Jacobian matrix changes after
each optimization iteration, it cannot be pre-decomposed,
which slows down the computation. The computation time
of [7] grows quickly with increasing size of deformation
basis. This is because they compute the energy gradient with
respect to weights numerically. Our approach is much more
efficient as the gradients are calculated analytically. Table 1
shows the average running times for different examples
in the paper. Our method achieves real-time deformation
performance whereas alternative methods cannot cope with
input such as the SCAPE datasets with a larger number
of basis modes in real time. The real time performance
helps the user to get the deformation results immediately
while dragging the handles. As shown in the accompanying
video, the deformation results are dependent on handle
paths, like many other methods. Nevertheless, The user can
easily deform the model as they want thanks to the real
time feedback. Figure 8 shows how the deformation energy
changes over iterations, which is reduced monotonically
and converges in several iterations.

We also report the preprocessing times for the results in
Fig. 2 with 6796 triangle faces. These only need to be per-
formed once. The as-consistent-as-possible optimization of
Eqns. 4 and 6 takes 1.39s and 9.92s, respectively. This ACAP
optimization has good scalability as shown in Table 2 which

Figure 9. The exemplar models with large-scale deformation: a cylinder
(t = 0), and the cylinder with five cycles of rotation (t = 1).

(a) (b)
Figure 10. The interpolation and extrapolation results of Fig. 9 which
demonstrate that our representation can represent and blend very large-
scale deformations. (a) the blended model with parameter t = 0.5, (b)
the blended model with parameter t = 2.

records the average running times for the mesh models in
the SCAPE [52] dataset with different triangle face numbers
by mesh simplification. The time for precomputation of
Eqn. 15 takes 5.02s. The Cholesky decomposition of the
matrix A takes 0.83s on average.

Evaluation of our deformation representation. Our
novel representation is effective to represent shapes with
large-scale deformations. Given two exemplar models (a
cylinder and a cylinder rotated by five cycles) in Fig. 9,
thanks to this representation, the interpolation and extrap-
olation results shown in Fig. 10 are correctly produced,
even for such excessive deformations. Figure 11 shows an
example of blending the Buddha models with multiple
topological handles. Figure 12 shows an example of in-
terpolating SCAPE models with substantial added noise.
These examples demonstrate that our representation can
cope with high-genus models and is robust to noise. In all

(a) (b) (c) (d)
Figure 11. Interpolation and extrapolation of high-genus models using
our representation. (a)(b) two exemplar models to be blended, (c) the
interpolated model with t = 0.5, (d) the extrapolated model with t =
−0.5.

(a) (b) (c)
Figure 12. Interpolation result for models with substantial Gaussian
noise. (a)(b) noisy exemplar models, (c) the interpolated model.
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(a)

w = 1 w = 0.31w = 0.17w = 0.05w = 0.01

(b)

w = 0.48w = 0.35w = 0.30w = 0.26w = 0.02

(c)

w = 0.38w = 0.33w = 0.28

(d)
Figure 14. Comparison of deformation results using the SCAPE dataset [52]. (a) input shape, (b) result of [7], (c) our result without the sparsity
term, (d) our result with the sparsity term. We also visualize the contribution weight of each basis mode and the dominant basis modes. [7] uses
global bases, whereas our method uses localized bases. By using sparsity regularization, our method produces deformation results with much
fewer active modes, avoiding unintended global deformation produced by alternative methods.

Figure 15. Comparison of deformation results using the examples from the first row. Second row: our results, third row: [7], fourth row: [5], fifth row:
[42]. Please refer to the video. Thanks to our representation, our data-driven deformation method follows the handle movement and successfully
generates the deformed cylinder with multiple cycles of twisting, which cannot be produced by state-of-the-art methods.

(a) (b) (c) (d) (e)
Figure 13. Interpolation results for models with large scale deformations
from [31] (the first row) and substantial added Gaussian noise (the
second row). (a)(b) exemplar models, (c) the interpolated models with
the BFS initialization only, (d) the interpolated models using the features
obtained by the global integer programming with the BFS initialization,
(e) the interpolated models using the features from the global integer
optimization with the trivial initialization.

of these examples, we linearly blend the two models with
contributions of 1− t and t from these models.

Evaluation of Initialization Strategies for Integer Pro-
gramming. We compare the breadth-first search (BFS)
based initialization used in our implementation with trivial
initialization (setting all ok,i = 1 and all θk,i = 0). With
the help of the BFS-based initialization, the running time for
axis orientation optimization in Eqn. 4 is greatly reduced.

For the SCAPE dataset [55], the average running time of
optimizing Eqn. 4 for each mesh is 14.80s with the BFS
initialization while the running time is 544.89s with the
trivial initialization. As explained in Sec. 3, BFS initialization
has much less benefit for speeding up the optimization of
Eqn. 6 where the average running time for each mesh model
in the SCAPE dataset [55] is only reduced to 17.44s from
18.60s with the trivial initialization.

Although the BFS initialization speeds up the conver-
gence for optimization significantly, the initialization itself
is not robust enough and the global optimization of Eqns. 4
and 6 are necessary. As shown in Fig. 13, for the shape
with large scale deformations or substantial noise, the ini-
tial solution obtained using BFS produces artifacts for the
interpolated shapes (c), while after the global optimization
the interpolated shapes are plausible (d). We also show
that the final optimized results are not dependent on the
initialization: the interpolated results are also correct with
trivial initialization despite taking much longer time (e).
Note that the times reported here are one-off for a given
dataset.

Comparison with state-of-the-art methods. We now
show several examples of our sparse data-driven defor-
mation results and compare them with state-of-the-art
methods. Figure 14 shows an example using the SCAPE
dataset [52] as examples. All the green handles are fixed
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(a) (b) (c) (d)
Figure 16. Comparison of shape interpolation with different methods. (a)
and (b) are the source (t = 0) and target (t = 1) models with large-scale
deformation to be interpolated. (c) is the interpolation result (t = 0.5)
with the deformation gradient method [5], (d) is the interpolation result
by our method.

and the red handle is moved. The method [7] (b) does
not produce satisfactory result because the basis modes
are global and even local movement of one handle causes
global deformation with obvious distortion on the arm. Our
method without the sparsity term (c) produces a more local
result around the arm, due to the use of a localized basis.
However, the deformation result is obtained with contribu-
tions of a large number of basis modes. Even if individual
basis modes are spatially sparse, their overall effect can still
involve an unexpected global effect. In this case, it is clear
that the knee is bent with no user indication of preference.
Our method with the sparsity promoting term (d) produces
a localized deformation result. The contributing basis modes
are also visualized. Figure 15 shows different data-driven
deformation results with two examples in its first row. Our
rotation representation is able to handle very large rotations
where the rod is twisted several times, which cannot be
achieved using existing methods [5], [7], [42]. The work [42]
is not designed for large scale deformations. The result
of [42] in the fifth row clearly shows that it performs poorly
for exemplar models with large deformations. Moreover, the
method [42] applies weights to the energy, and as such their
weights must be non-negative. Our weights are applied in
the gradient domain, where negative weights are not only
acceptable, but also important, to allow extrapolation which
is essential to fully exploit latent knowledge in the examples.
Our `1 sparse regularization minimizes an energy formu-
lated in the `1 norm for promoting to choose a minimum
set of basis modes to produce plausible deformation, which
has the benefit of avoiding over-fitting, as demonstrated by
various examples throughout the paper. This however is
very different from [42], as their weights are non-negative
and always summed to 1, so do not explicitly promote
sparsity.

In Fig. 16, we demonstrate the interpolation result with
a deformation gradient based method [5], which shows that
without our as-consistent-as-possible optimization the de-
formation gradient based method cannot handle the shape
blending with large scale deformations. Another example is
shown in Fig. 18 with 10 example shapes given in Fig. 17.
By avoiding overfitting, our sparse data-driven deformation
method produces smooth and intuitive deformation. The
result of [5] has significant artifacts because it cannot handle
large rotations properly. For [7], the produced result has
inconsistent cross sections caused by a large number of
basis modes. This is less natural than the consistent ellipse
shaped cross section produced by our method. We use faded
rendering for the initial shape and a dashed line to visualize

䔀氀氀椀瀀猀攀ⴀ瘀攀爀琀椀挀愀氀䔀氀氀椀瀀猀攀ⴀ栀漀爀椀稀漀渀琀愀氀匀焀甀愀爀攀吀爀椀愀渀最氀攀刀漀甀渀搀

Figure 17. Example cylinders with different styles.

Figure 18. Comparison of deformation results with examples from
Fig. 17. First row: [5], second row: [7], third row: our result. Please
refer to the accompanying video. [5] cannot handle large rotations thus
produces distorted output. [7] uses a large number of bases which
are underconstrained and generates inconsistent cross sections. Our
method produces natural deformation result with consistent cross sec-
tions.

(a) (b) (c) (d) (e)
Figure 19. A data-driven deformation sequence produced using our
method. Natural local editing is generated without unintended deforma-
tion.

the handle movement. When a large number of exemplar
models are used, such mixed exemplars are common, e.g.
when humans with different body shapes and poses are
included. This also occurs naturally when basis modes of
multiple scales are considered simultaneously, as we will
demonstrate later in the paper.

Figure 19 shows a sequence of deformed models with
the MPI Dyna dataset [10] using our sparse data-driven
deformation method. Even with a small number of handles,
our sparse deformation result produces desired local editing
as specified by user handles. As shown in Fig. 2, unexpected
deformation occurs for the results of alternative methods,
including turning of the head in the result of [5] and the
substantial movement of the right leg in the result of [7] de-
spite no movement of related handles. Our method without
the sparsity term produces less unexpected deformation due
to the use of a localized basis, however, visible deformations
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(a) (b) (c) (d) (e)
Figure 20. Comparison of deformation results using the SCAPE dataset.
(a) input shape, (b) [5], (c) [6], (d) [7], (e) our result. The methods [5],
[6] produce visible distortions due to large rotations involved in the
deformation. Thanks to the sparsity regularization, our result suppresses
unintended movement, which happens in the results of existing meth-
ods.

(a) (b) (c)
Figure 21. Comparison of deformation results with [42] using the SCAPE
dataset. (a) [42] with a global PCA basis, (b) [42] with a spatially
localized basis, (c) our method.

(a) (b) (c)
Figure 22. Comparison of deformation results using different methods
with a localized basis. (a) results of [36], (b) results of [37], (c) our
results. Top row: results without the sparse regularization term, bottom
row: results with the sparse regularization term. The methods [36], [37]
cannot handle large rotations well, whereas our method produces nat-
ural deformation. Using sparsity regularization (bottom row) effectively
suppresses unintended deformation (top row).

also occur for the head and the right leg. Another example
is shown in Fig. 20 using the SCAPE dataset [52]. Due to the
larger rotations involved, existing data driven methods [5],
[6] and to a lesser extent [7] have artifacts of unnatural de-
formation. In the results of [6], [7], the left foot is turned with
no movement of the related handle. Our method produces
natural deformation and shapes are preserved for unmod-
ified regions, thanks to the sparse deformation. Figure 21
compares our result with the result of [42]. Either with the
global PCA bases or with the same spatially localized bases
as our method, [42] produces artifacts on the arm due to the
limitation of handling large-scale deformations.

We compare our method with [36], [37] with localized
bases in Fig. 22. The method [36] uses Euclidean coordinates
which cannot represent rotations correctly. As a result, the
extracted basis deformations are inappropriate, leading to
significant deformation artifacts. The method [37] based on
deformation gradients can represent rotations but fails to
handle large rotations. The method produces reasonable

(a) (b) (c) (d)
Figure 23. Comparison of deformation results with different parameter λ:
(a) λ = 0 (NZM = 18), (b) λ = 0.05 (NZM = 13), (c) λ = 0.5 (NZM = 3), (d)
λ = 20 (NZM = 2). NZM refers to the number of basis deformation modes
with non-zero weights. Stronger sparsity regularization is obtained with
increasing λ. When λ is too large, the deformation result favors sparsity
over distortion and produces artifacts.

(a) (b) (c)
Figure 24. Our sparse data driven deformation results with different
number of basis modes K. (a) K = 10, (b) K = 20, (c) K = 30.
With too few basis modes (K = 10), the method cannot cover plausible
deformations, which causes artifacts. With reasonably large K (20 or
30), the results look plausible.

results for the paw movement, but obvious artifacts with the
tail movement. Our method generates natural deformation.
Although the original methods [36], [37] do not have the
sparsity term we introduce in this paper, we demonstrate
the effect of adding this regularization to each method.
By incorporating this term, unexpected global movement
is substantially suppressed.

Parameters. In our sparse data driven deformation, the
parameter λ is essential to control sparseness. Figure 23
shows the results of our method with different settings of
λ. Note that in this example, the deformation constraint
only involves moving an arm. With increasing λ, the sparse
regularization becomes stronger, which leads to reduced
global movement out of the region of interest, as well as the
reduced number of basis deformation modes with non-zero
weights (implemented by testing if the weight is > 10−8).
Figure 23 uses an extreme setting with λ = 10, which ends
up with only 2 basis modes and severely distorts the shape.
λ = 0.5 works well, and is used for all the other examples
in this paper. It is clear that our algorithm is insensitive
to the choice of λ. It has large changes when λ changes
by 10 times, but for values around 0.5 (0.4-0.6), it gives
almost the same results. Another parameter is the number
of basis modesK. Figure 24 shows an example of our sparse
data-driven deformation with different K values. It can be
seen that when too few basis modes are used (K = 10)
it produces artifacts as the basis is insufficient to cover
plausible deformation space. When K is sufficiently large,
high quality deformation results are produced. Increasing
K from 20 to 30 produces almost identical result, although
with longer running time.

More experiments. Our algorithm can be directly ap-
plied to the deformation of 2D models. An example is



ACCEPTED BY IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

(a) (b) (c) (d)
Figure 25. 2D deformation using our method. (a)(b) exemplar models in
the 2D space, (c)(d) deformed models with our method.

(a) (b) (c)
Figure 26. Deformation of a 3D face model. (a) is the reference model
to be deformed, (b) and (c) are the deformed models with our method.

(a) (b) (c) (d) (e) (f)
Figure 27. Exemplar models for deformation of garment in Fig. 28.

Figure 28. Our deformation results of garment with exemplars in Fig. 27.

shown in Fig. 25. We also show that our method works well
for non-articulated models, such as deformation of faces (see
Fig. 26) using the dataset from [56] as well as garment (see
Fig. 28 with exemplars shown in Fig. 27).

Figure 29 shows an example of our sparse deformation
when the basis involves multiscale deformation modes,
which are extracted by adjusting the range parameters
(see [36]). This demonstrates the capability of our sparse
regularization: by using a compact set of deformation modes
to interpret handle movements, our method automatically
selects suitable basis modes for both small-scale facial
expression editing and large-scale pose editing (see also
the accompanying video). We also use the multiresolution
technique in this example to further improve deformation
details.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a simple and effective repre-
sentation to handle large rotations, which is formulated as
an as-consistent-as-possible optimization problem. This new
representation has advantages of both efficient to compute
and optimize, and can handle very large rotations (e.g.
several cycles) where even recent existing rotation invariant
methods fail. We further propose an approach to sparse
data-driven deformation. By incorporating sparsity regu-
larization, fewer essential basis modes are used to drive
deformation, which helps to make the deformation more
stable and produce a more plausible deformation results.

As realtime performance is essential for interactive defor-
mation, we develop a highly efficient solution using pre-
computation, which allows realtime deformation with larger
size of basis than existing methods. Extensive experiments
show that our method produces substantially better data-
driven deformation results than state-of-the-art methods,
suppressing unintended movement.

In addition to shape deformation, our ACAP repre-
sentation can also be used along with graph convolution
neural networks [57] for shape analysis [58] and shape
synthesis [59], [60]. We will explore further applications of
the ACAP representation in the future.

APPENDIX
EFFICIENT SOLUTION OF EQN. 15 USING PRECOM-
PUTATION

Some computations in Sec. 4.3 can be pre-computed, making
the algorithm much more efficient. Details are given below.
For simplicity, let R̃i(wt) = exp(

∑
l wt,l log R̃l,i). Then,

terms in Eqn. 15 can be rewritten as:

Ti(wt)e1,ij = R̃i(wt)
∑
l

wt,lS̃l,ie1,ij (28)

We use the underscore for the term S̃l,ie1,ij to indicate that
it can be pre-computed before optimization to save time.
The derivative term multiplied by the edge vector becomes:

∂Ti(wt)

∂wl
e1,ij=R̃i(wt)(

∑
l

wt,llog R̃l,iS̃l,ie1,ij+S̃l,ie1,ij) (29)

One of the most time consuming step is to calculate∑3
i=1 J

T
i Ji. This calculation is equivalent to the following:

(
∑
l

wt,le
T
1,ijS̃

T
l,i log R̃l,i)

T + eT1,ijS̃
T
l,i)R̃i(wt)

T (30)

×R̃i(wt)(
∑
l

wt,llog R̃l,iS̃l,ie1,ij + S̃l,ie1,ij)

With some derivation, this formulation can be further
rewritten as:

(
∑
l

wt,le
T
1,ijS̃

T
l,i log R̃T

l,i + eT1,ijS̃
T
l,i)R̃i(wt)

T (31)

×R̃i(wt)(
∑
l

wt,llog R̃l,iS̃l,ie1,ij + S̃l,ie1,ij)

=
∑
l

w2
t,le

T
1,ijS̃

T
l,i log R̃T

l,i log R̃l,iS̃l,ie1,ij

+
∑
l1,l2

wl1wl2e
T
1,ijS̃

T
l1,i log R̃l1,i)

T log R̃l2,iS̃l2,ie1,ij

+
∑
l

wle
T
1,ijS̃

T
l,i log R̃T

l,iS̃l,ie1,ij

+
∑
l

wle
T
1,ijS̃

T
l,i log R̃l,iS̃l,ie1,ij + eT1,ijS̃

T
l,iS̃l,ie1,ij .

The underlined terms do not change during iterative op-
timization so can be calculated in advance, and only the
remaining terms involving wt need to be calculated. This
makes the algorithm over 10 times faster (see the details
in the experiments). Our precomputation significantly im-
proves the efficiency. For the case with 30 deformation basis
modes, each containing 4300 triangle faces, the size of the
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(a) (b) (c) (d) (e)
Figure 29. Our sparse data driven deformation results using multiscale deformation modes as the basis modes. (a) is the reference model. (b) is
the deformation result with the simplified mesh. (c)-(e) are the deformed results on the high resolution mesh with both facial and body deformation.
The mouth of (c) is opened, the left eye of (d) is closed, and both eyes of (e) are closed. Our method automatically selects suitable basis modes for
both small-scale facial expression editing and large-scale pose editing.

matrix J is 12900 × 30, where the number of rows is the
number of half edges (i.e. three times the number of faces),
and the number of columns is the number of deformation
basis modes. Since J is a dense matrix, the time to calculate∑3

i=1 J
T
i Ji directly costs 38ms. For a typical scenario of

five Gauss-Newton steps, it takes 190 ms, impeding real
time performance. With precomputation, it only takes 1
ms for each Gauss-Newton step, sufficient for real-time
deformation.
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