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Experimental organometallic gold(I) compounds hold promise for anticancer therapy. This study 

reports the synthesis of two novel families of gold(I) complexes, including N1-substituted bis-N-

heterocyclic carbene (NHCs) complexes of general formula [Au(N1-TBM)2]BF4 (N1-TBM = N1-

substituted 9-methyltheobromin-8-ylidene) and mixed gold(I) NHC-alkynyl complexes, [Au(N1-

TBM)alkynyl]. The compounds were fully characterized for their structure and stability in aqueous 

environment and in the presence of N-acetyl cysteine by nuclear magnetic resonance (NMR) 

spectroscopy. The structures of bis(1-ethyl-3,7,9-trimethylxanthin-8-ylidene)gold(I), (4-

ethynylpyridine)(1,9-dimethyltheobromine-8-ylidene)gold(I) and of (2,8-Diethyl-10-(4-

ethynylphenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinine)(1,3,7,9-tetramethylxanthin-8-ylidene)gold(I) were also confirmed by X-ray 

diffraction analysis. The compounds were studied for their properties as DNA G-quadruplexes (G4s) 

stabilisers by fluorescence resonance energy transfer (FRET) DNA melting. Only the cationic 

[Au(N1-TBM)2]BF4 family showed moderate G4 stabilization properties with respect to the 

previously reported benchmark compound [Au(9-methylcaffein-8-ylidene)2]
+ (AuTMX2). However, 

the compounds also showed marked selectivity for binding to G4 structures with respect to duplex 

DNA in competition experiments. For selected complexes, the interactions with G4s were also 

confirmed by circular dichroism (CD) studies. Furthermore, the gold(I) complexes were assessed for 

their antiproliferative effects in human cancer cells in vitro, displaying moderate activity. Of note, 

among the mixed gold(I) NHC-alkynyl compounds, one features a fluorescent boron-dipyrromethene 

(BODIPY) moiety which allowed determining its uptake into the cytoplasm of cancer cells by 

fluorescence microscopy.  
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1. INTRODUCTION 

The medicinal use of gold is known since ancient Egyptian times and in the 17th century colloidal 

gold was applied for treatment of fever and sickness [1,2]. At the beginning of the 1900s, Koch and 

co-workers described the bacteriostatic activity of K[Au(CN)2], and 30 years later, a gold(I) 

phosphane-thiolate complex, Auranofin (Fig. 1), was recognised as an anti-rheumatic 

metallopharmaceutical capable of reducing inflammation and the progression of this chronic disease 

[3]. Subsequently, Auranofin has been evaluated in vitro for its anticancer properties [4,5]. It is 

nowadays actively being repurposed in pilot trials and clinical studies for anticancer therapy against 

chronic lymphocytic leukaemia and ovarian cancer among others [6,7].  

Potential gold-based pharmaceuticals are prepared in the oxidation states +1/+3. In both redox 

states, gold complexes can be easily reduced to colloidal gold, which leads to metallodrug inactivation 

or to unselective cellular damage. In order to achieve the control of the metal complex’s reactivity 

and speciation in biological environment, organometallic compounds, featuring a direct metal-carbon 

bond which further stabilises the metal centre, have been widely explored in medicinal chemistry 

[8,9]. In this context, various families of gold(I) and gold(III) organometallic compounds have been 

recently designed as a source of stable and biologically active molecules [9–11]. For example, gold(I) 

N-heterocyclic carbenes (NHCs) are of particular interest since the strong electron-donating 

properties of the carbene ligand stabilises the gold(I) centre against reduction, even under 

physiological conditions [10,12]. Moreover, the NHC core structure can be chemically modified 

conferring different physicochemical and functional properties to the resulting 

metallopharmaceutical. Thus, since their first report, several gold(I) NHC complexes have been 

shown to possess promising cytotoxic properties against cancer cells, or even antibacterial effects 

[13–24]. The proposed mechanism of action of this class of oganometallic complexes has been linked 

to their affinity for binding to thiol and selenol groups in protein targets. For example, the seleno-

enzyme thioredoxin reductase (TrxR), involved in maintaining the redox homeostasis in cells, has 
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been shown to be efficiently inhibited by gold(I)/gold(III) complexes [25–27], including gold(I) 

NHCs [21,28–30].  

In the last years, metal NHCs complexes derived from xanthines, including of platinum(II) 

and silver(I), have attracted much attention for therapeutic applications. In fact, the easy 

functionalization of xanthines, combined with their biological activity, makes their metal derivatives 

excellent candidates for the development of novel metallodrugs[31]. Recently, we reported on a 

cationic gold(I) bis-NHC complex [Au(9-methylcaffein-8-ylidene)2]
+ (AuTMX2, Fig. 1) that is 

selectively cytotoxic against the ovarian cancer cell line A2780. Moreover, the compound was 

reported to selectively stabilize human telomeric (hTelo) G-quadruplexes (G4s), a type of DNA 

secondary structure present in the telomeric regions of the chromosomes [32]. G4s are non-canonical 

DNA secondary structures formed in guanine rich sequences and have been identified in human 

telomeres and promoter regions of many genes. They are supposed to regulate important biological 

processes such as telomere homeostasis, gene transcription and DNA replication [33–35]. Stabilizing 

these DNA secondary structures by small molecules may interfere with their physiological function 

and induce potential anticancer effects, e.g. by inhibiting telomere extensions or oncogene expression 

[34–36].  

Initial structure activity relationship studies revealed that any modification at the N9-position 

of the xanthine in the AuTMX2 scaffold leads to a loss of G4 binding potency and selectivity. From 

X-ray diffraction analysis, it was found that any bulky modification at the N9-position of the xanthine 

scaffold would force the two carbenes ligands coordinating the gold(I) centre out of planarity, 

probably reducing the strength of the interaction with the flat aromatic hTelo-G4 surface. This was 

also corroborated by experimental evidences in solution [37]. Furthermore, via a combination of 

computational and experimental assays, the binding energy of  AuTMX2 with hTelo was elucidated 

[37]. 

In the present study, we reasoned that modifications at the N1-position of the xanthine ligand 

would retain the planar geometry of the resulting gold(I) bis-NHCs, constituting a promising path for 
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obtaining further structure-activity relationships for this class of G4-stabilising compounds. 

Therefore, eight new complexes were synthesized and characterized by different techniques. Next to 

four cationic N1-modified AuTMX2 analogues [Au(N1-TBM)2]BF4 (N1-TBM = N-1 substituted 9-

methyltheobromin-8-ylidene), we explored the effect of replacing one of the NHC ligands with an 

alkynyl moiety on the G4s stabilizing potency in the new series of general formula [Au(N1-

TBM)alkynyl]. It should be noted that the latter family of compounds is neutral. In a previous work, 

a mixed NHC-alkynyl gold(I) complex showed potent cytotoxic activity in human cancer cells while 

being scarcely toxic in healthy rat liver tissues ex vivo [20]. Thus, four gold(I) organometallics 

featuring mixed NHC-alkynyl ligands were also synthesized and characterized by different methods. 

The stability of all the new compounds was studied in aqueous environment and in the presence of 

N-acethyl-cysteine (NAC), used as model nucleophile, by NMR spectroscopy. Afterward, the two 

families were comparatively evaluated with respect to their G4-stabilization in vitro. It should be 

noted that, since the G4-stabilization of AuTMX2 was previously assessed only on telomeric G4s, 

the present study evaluates the new gold(I) compounds towards both telomeric (hTelo) and promoter 

G4s (C-KIT1 and hTERT) by fluorescence resonance energy transfter (FRET) DNA melting, and in 

selected cases also by circular dichroism (CD). Finally, the cytotoxic properties of the compounds 

have been studied in a small panel of human cancer cells in vitro, and one of the derivatives, endowed 

with fluorescence properties, also charcaterized for its uptake in melanoma cells by fluorescence 

microscopy. 

Figure 1. 

 

2. MATERIALS AND METHODS 

General.  

Solvents and reagents (reagent grade) were all commercially available and used without further 

purification. 1H, 11B and 13C NMR spectra were recorded in CD3CN (deuterated acetonitrile), CDCl3 

(detuterated chloroform), DMSO-d6 (deuterated dimethyl sulfoxide) or acetone-d6 solution, with 
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tetramethylsilane (TMS) as an internal reference, on a Bruker Avance NMR spectrometer (300–500 

MHz, Fig. S1-S33). Electrospray ionization (ESI) mass spectra were recorded on a Synapt G2-Si 

time-of-flight mass spectrometer (Waters Corporation, Milford, USA). Elemental analysis were 

performed by the Microanalytical Laboratory at the Technical University of Munich. Au(tht)Cl (tht 

= tetrahydrothiophene) and AuTMX2, AuTMXI ( [Au(9-methylcaffein-8-ylidene)Iodide], Fig. 1), 

and the BODIPY-alkynyl ligand were synthesised according procedures already published in 

literature [37,38]. 

 

Synthesis and characterisation.  

1-Ethyl-3,7-dimethylxanthine (1a): Theobromine (200 mg, 1.1 mmol) and potassium carbonate 

(228 mg, 2.4 mmol) were suspended in dimethylformamide (DMF, 4 mL) in a round bottom flask. 

30 min later, iodoethane (176 μL, 1.6 mmol) was added dropwise and the reaction stirred overnight 

at room temperature. The resulting suspension was filtered to achieve a clear solution which was 

completely evaporated. The off-white solid was washed 3 times with isopropanol to obtain the 

product as a white solid (150 mg, 65%). 

1H NMR (400 MHz, CDCl3) δ 7.43 (s, 1H, Ar), 4.02 (q, J = 7.1 Hz, 2H, CH2), 3.92 (d, J = 0.6 Hz, 

3H, CH3), 3.51 (s, 3H, CH3), 1.19 (t, J = 7.1, Hz, 3H, CH3). 

13C NMR (101 MHz, DMSO-d6) δ 154.71 (Ar), 151.13 (Ar), 148.68 (Ar), 143.36 (Ar), 107.17 (Ar), 

35.99 (CH2), 33.64 (CH3), 29.81 (CH3), 13.60 (CH3). 

 

1-(2-Cyclohexylethyl)-3,7-dimethylxanthine (1b): Theobromine (200 mg, 1.1 mmol) and 

potassium carbonate (500 mg, 3.6 mmol) were suspended in DMF (8 mL) for 30 min prior to the 

addition of (2-bromoethyl)cyclohexane (208 μL, 1.3 mmol). The reaction mixture was heated to 

reflux overnight. The day after the suspension was filtered off and the resulting clear yellow solution 

was dried to achieve a sticky solid. A white solid was isolated after recrystallization in isopropanol 

(240 mg, 75%). 
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1H NMR (400 MHz, DMSO-d6) δ 7.99 (s, 1H, Ar), 3.86 (s, 3H, CH3), 3.39 (s, 3H, CH3), 1.66 (dt, 

J = 28.2, 15.6 Hz, 6H, CH2), 1.43 – 1.36 (m, 2H, CH2), 1.34 – 1.05 (m, 5H, CH and CH2), 0.97 –0.83 

(m, 2H, CH2).  

13C NMR (101 MHz, DMSO-d6) δ 154.77 (Ar), 151.19 (Ar), 148.62 (Ar), 143.33 (Ar), 107.11 (Ar), 

35.66 (CH2), 35.41 (CH2), 33.61 (CH3), 33.39 (CH2), 33.13 (CH2), 29.81 (CH3), 26.53 (CH2), 26.13 

(CH2).  

Unfortunately, the synthesis of this compound was succesfull only once and could not be reproduced 

to perform complete characterization by mass spectrometry and elemental analysis.  

 

 

1-Benzyl-3,7-dimethylxanthine (1c): Theobromine (200 mg, 1.1 mmol) and potassium carbonate 

(228 mg, 2.4 mmol) were suspended in DMF (4 mL) in a round bottom flask. 30 min later, benzyl 

bromide (142 μL, 1.6 mmol), was added dropwise and the reaction stirred overnight at room 

temperature. The resulting suspension was completely evaporated and water (20 mL) was added. The 

product was afterwards extracted with dichloromethane (DCM, 3 ×15 mL), dried over magnesium 

sulfate and fully evaporated. The resulting product was obtained after recrystallization in methanol 

(268 mg, 89%). 

1H NMR (400 MHz, DMSO-d6) δ 8.05 (s, 1H, Ar), 7.29 (t, J = 4.2 Hz, 4H, Ar), 7.27 – 7.21 (m, 1H, 

Ar), 5.06 (s, 2H, CH2), 3.89 (s, 3H, CH3), 3.43 (s, 3H, CH3).  

13C NMR (101 MHz, DMSO-d6) δ 154.89 (Ar), 151.45 (Ar), 148.91 (Ar), 143.65 (Ar), 138.09 (Ar), 

128.74 (Ar), 127.97 (Ar), 127.50 (Ar), 107.14 (Ar), 44.01 (CH2), 33.68 (CH3), 29.97 (CH3). 

 

3,7-Dimethyl-1-(4-trifluoromethyl)benzylxanthine (1d): A suspension of theobromine (360 mg, 

2.0 mmol) in DMF (15 mL) was heated to 50 °C for 10 min before adding 3 equiv. of potassium 

carbonate (830 mg, 6 mmol). After 30 min, an equimolar amount of 4-(trifluoromethyl)benzyl 

bromide (309 μL, 2.0 mmol) was added and the reaction mixture stirred overnight at 50 °C. Thus, the 
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suspension was filtered off and the resulting clear solution was dried to achieve a white solid. Further 

recrystallization in isopropanol allowed to isolate the final product as an off-white solid (423 mg, 

63%). 

1H NMR (300 MHz, CDCl3) δ 7.65 – 7.49 (m, 4H, Ar), 5.25 (s, 2H, CH2), 4.01 (s, 3H, CH3), 3.60 (s, 

3H, CH3).  

13C NMR (101 MHz, CDCl3) δ 154.12 (Ar), 150.54 (Ar), 148.03 (Ar), 140.75 (Ar), 140.19 (Ar), 

128.74 (q, J = 32.32 Hz, Ar, Cα-CF3), 128.02 (Ar), 126.03 (q, J = 272.7 Hz, CF3), 124.37 (q, J = 

3.8 Hz, Ar, Cβ-CF3), 106.59 (Ar), 43.02 (CH2), 32.62 (CH3), 28.82 (CH3). 

 

1-Ethyl-3,7,9-trimethylxanthinium tetrafluoroborate (2a): Compound 1a (214 mg, 1.0 mmol) 

was dissolved in acetonitrile (MeCN, 8 mL) prior to the addition of trimethyl-oxonium 

tetrafluoroborate (243 mg, 1.6 mmol). After 5 min, sodium carbonate (200 mg, 1.9 mmol) was added 

and the mixture stirred for 1 h at room temperature under an inert atmosphere. The resulting 

suspension was filtered to achieve a clear solution which was further dried. The solid was washed 

with Et2O and DCM to afford a sticky solid. The final white solid was obtained after recrystallization 

in isopropanol (226 mg, 74%).  

1H NMR (400 MHz, CD3CN) δ 8.47 (s, 1H, Ar), 4.08 (s, 6H, CH3), 4.02 (q, J = 7.1 Hz, 2H, CH2), 

3.73 (s, 3H, CH3), 1.21 (t, J = 7.1 Hz, 3H, CH3).  

13C NMR (126 MHz, CD3CN) δ 154.21 (Ar), 151.02 (Ar), 140.55 (Ar), 139.58 (Ar), 109.48 (Ar), 

38.16 (CH3), 37.86 (CH3), 36.59 (CH2), 31.99 (CH3), 12.92 (CH3). 

Elemental analysis for C10H19BF4N4O4 (2a  2H2O): C 35.02%, H 5.68%, N 16.37% (calc. C 34.70%, 

H 5.53%, N 16.19%) 

 

1-(2-Cyclohexylethyl)-3,7,9-trimethylxanthinium tetrafluoroborate (2b): Compound 1b 

(500 mg, 1.7 mmol) was dissolved in MeCN (7 mL) prior to the addition of trimethyloxonium 

tetrafluoroborate (267 mg, 1.8 mmol). After 5 min, sodium carbonate (288 mg, 2.7 mmol) was added 
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and stirred for 4 h at 40 °C under an inert atmosphere. The resulting suspension was filtered to achieve 

a clear solution which was further dried. A final recrystallization in isopropanol allowed to obtain the 

final product as a white solid (304 mg, 89%).  

1H NMR (400 MHz, CD3CN) δ 8.43 (s, 1H, Ar), 4.05 (t, J = 2.6 Hz, 6H, CH3), 3.99 – 3.93 (m, 2H, 

CH2), 3.69 (s, 3H, CH3), 1.83 – 1.61 (m, 5H, CH and CH2), 1.50 – 1.42 (m, 2H, CH2), 1.38 – 1.13 

(m, 4H, CH2), 1.03 - 0.90 (m, 2H, CH2). 

13C NMR (101 MHz, CD3CN) δ 154.37 (Ar), 151.16 (Ar), 140.57 (Ar), 139.53 (Ar), 109.50 (Ar), 

41.25 (CH2), 37.94 (CH3), 36.68 (CH2), 36.41 (CH3), 35.58 (CH2), 33.82 (CH2), 32.09 (CH3), 27.20 

(CH2), 26.93 (CH2). 

Unfortunately, due to the impossibility to reproduce the synthesis of compound 1b (see above), this 

compound was not obtained in sufficient quantity to perform complete characterization by mass 

spectrometry and elemental analysis.  

 

1-Benzyl-3,7,9-trimethylxanthinium tetrafluoroborate (2c): Compound 1c (273 mg, 1.0 mmol) 

was dissolved in MeCN (8 mL) prior to the addition of trimethyloxonium tetrafluoroborate (243 mg, 

1.6 mmol). After 5 min, sodium carbonate (288 mg, 2.7 mmol) was added and stirred for 4 h at 40 °C 

under an inert atmosphere. The resulting suspension was filtered to achieve a clear solution which 

was further dried. The solid was washed with Et2O and DCM. Recrystallization from isopropanol 

yielded a white solid (357 mg, 93%). 

1H NMR (400 MHz, CD3CN) δ 8.48 (s, 1H, Ar), 7.47 – 7.24 (m, 5H, Ar), 5.16 (s, 2H, CH2), 4.14 –

4.02 (m, 6H, CH3), 3.73 (s, 3H, CH3).  

13C NMR (101 MHz, CD3CN) δ 154.09 (Ar), 150.97 (Ar), 140.40 (Ar), 139.35 (Ar), 137.10 (Ar), 

129.04 (Ar), 128.57 (Ar), 128.23 (Ar), 109.14 (Ar), 45.56 (CH2), 37.59 (CH3), 36.36 (CH3), 31.87 

(CH3).  

Elemental analysis for C15H25BF4N4O6 (2c  4H2O): C 40.73%, H 5.41%, N 12.55% (calc. C 40.56%, 

H 5.67%, N 12.61%) 
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3,7,9-Trimethyl-1-(4-trifluoromethyl)benzylxanthinium tetrafluoroborate (2d): Compound 1d 

(202 mg, 0.6 mmol) was dissolved in MeCN (6 mL) prior to the addition of trimethyloxonium 

tetrafluoroborate (262 mg, 1.8 mmol). After 5 min, sodium carbonate (288 mg, 2.7 mmol) was added 

and stirred for 5 h at 50 °C under an inert atmosphere. The resulting suspension was filtered to achieve 

a clear solution which was further dried. The final white solid was obtained after recrystallization in 

isopropanol (154.7 mg, 62%).  

1H NMR (400 MHz, CD3CN) δ 8.47 (s, 1H, Ar), 7.63 (dd, J = 45.5, 8.1 Hz, 4H, Ar), 5.23 (s, 2H, 

CH2), 4.09 (s, 3H, CH3), 4.08 (s, 3H, CH3), 3.74 (s, 3H, CH3). 

13C NMR (101 MHz, CD3CN) δ 154.06 (Ar), 150.97 (Ar), 141.62 (Ar), 140.49 (Ar), 139.50 (Ar), 

129.69 (q, J = 32.32 Hz, Ar, Cα-CF3), 125.88 (q, J = 3.0 Hz, Ar, Cβ-CF3), 125.25 (q, J = 272.7 Hz, 

CF3), 125.88 (Ar), 125.84 (Ar), 123.55 (Ar), 109.15 (Ar), 45.20 (CH2), 37.63 (CH3), 36.37 (CH3), 

31.93 (CH3). 

Elemental analysis for C16H20BF7N4O4 (2d  2H2O): C 40.14%, H 4.17%, N 11.43% (calc. C 40.36%, 

H 4.23%, N 11.77%) 

 

Bis(1-ethyl-3,7,9-trimethylxanthin-8-ylidene)gold(I) tetrafluoroborate (3a): Ligand 2a (100 mg, 

0.32 mmol) and Ag2O (59.79 mg, 0.26 mmol) were suspended in dry acetonitrile (10 mL) with 

molecular sieves (4 Å) under an inert atmosphere. After 6 h at room temperature, Au(tht)Cl (51.7 mg, 

0.16 mmol) was added and the suspension stirred overnight. The day after potassium iodide (27 mg, 

0.16 mmol) was added and the mixture was left under vigorous stirring for further 30 min. The final 

dark grey suspension was filtered over Celite® and washed with acetonitrile and DCM to give a clear 

colourless solution. After concentration to ca. 1 mL, an excess of Et2O was added to precipitate the 

final white solid (46 mg, 39%).  
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1H NMR (400 MHz, CD3CN) δ 4.22 (s, 3H, CH3), 4.19 (s, 3H, CH3), 4.03 (d, J = 6.9 Hz, 2H, CH2), 

3.77 (s, 3H, CH3), 1.21 (t, J = 7.0 Hz, 3H, CH3). 

13C NMR (126 MHz, CD3CN) δ 188.37 (Ar), 154.35 (Ar), 151.45 (Ar), 141.62 (Ar), 110.28 (Ar), 

39.70 (CH3), 38.04 (CH3), 37.91 (CH2), 32.30 (CH3), 13.12 (CH3). 

ESI-MS (CH3CN, pos. mode) for C20H27AuN8O4: exp. 641.1909 (calc. 641.1875). 

Elemental analysis for C20H32AuBF4N8O6 (3a  2H2O): exp. C 31.87%, H 4.34%, N 14.33% (calc. C 

31.43%, H 4.22 %, N 14.66%) 

 

Bis(1-(2-cyclohexylethyl)-3,7,9-trimethylxanthin-8-ylidene)gold(I) tetrafluoroborate (3b): 

Ligand 2b (133 mg, 0.32 mmol) and Ag2O (67 mg, 0.29 mmol) were suspended in dry MeCN 

(10 mL) with molecular sieves (4 Å) under an inert atmosphere. After 6 h at room temperature, 

Au(tht)Cl (81 mg, 0.25 mmol) was added and the suspension stirred overnight. Thus, potassium 

iodide (42 mg, 0.25 mmol) was added and the mixture was left under vigorous stirring for further 30 

min. The final dark grey suspension was filtered over Celite® and washed with MeCN and DCM to 

give a clear colourless solution. After concentration to ca. 1 mL, an excess of Et2O was added to 

precipitate the final white compound (57 mg, 38%).  

1H NMR (400 MHz, CD3CN) δ 4.19 (s, 3H, CH3), 4.15 (s, 3H, CH3), 4.13 (s, 3H, CH3), 4.04 (s, 3H, 

CH3), 3.95 (ddd, J = 9.8, 7.8, 5.5 Hz, 4H, CH2), 3.73 (s, 3H, CH3), 3.69 (s, 3H, CH3), 1.82 – 1.60 (m, 

10H, CH and CH2), 1.50 – 1.40 (m, 4H, CH2), 1.37 – 1.10 (m, 9H, CH2), 1.03 – 0.89 (m, 4H, CH2). 

13C NMR (126 MHz, CD3CN) δ 188.34 (Ar), 176.95 (Ar), 154.46 (Ar), 154.42 (Ar), 151.53 (Ar), 

141.60 (Ar), 141.16 (Ar), 110.25 (Ar), 109.71 (Ar), 109.24 (Ar), 40.98 (Ar), 40.90 (CH3), 39.82 

(CH3), 39.70 (CH2), 38.16 (CH2), 38.05 (CH2), 36.47 (CH2), 35.75 (CH2), 33.84 (CH3), 32.33 (CH 

and CH3), 27.20 (CH3), 26.92 (CH3). 

Unfortunately, due to the impossibility to reproduce the synthesis of ligand 2b (see above), this 

compound was not obtained in sufficient quantity to perform complete characterization by mass 

spectrometry and elemental analysis.  



12 

 

 

Bis(1-benzyl-3,7,9-trimethylxanthin-8-ylidene)gold(I) tetrafluoroborate (3c): Ligand 2c 

(159 mg, 0.42 mmol) and Ag2O (80 mg, 0.35 mmol) were suspended in dry MeCN (10 mL) with 

molecular sieves (4 Å) under an inert atmosphere. After 6 h at room temperature, Au(tht)Cl (89 mg, 

0.28 mmol) was added and the suspension stirred overnight. Thus, potassium iodide (48 mg, 

0.28 mmol) was added and the mixture was left under vigorous stirring for further 30 min. The final 

dark grey suspension was filtered over Celite® and washed with acetonitrile and DCM to give a clear 

colourless solution. After concentration to ca. 1 mL, an excess of Et2O was added to precipitate out 

the final white compound (34 mg, 20%).  

1H NMR (400 MHz, CD3CN) δ 7.34 – 7.15 (m, 5H, Ar), 5.06 (s, 2H, CH2), 4.12 (s, 3H, CH3), 4.08 

(s, 3H, CH2), 3.67 (s, 3H, CH3). 

13C NMR (101 MHz, CD3CN) δ 188.61 (Ar), 154.57 (Ar), 151.76 (Ar), 141.85 (Ar), 137.98 (Ar), 

129.36 (Ar), 128.89 (Ar), 128.45 (Ar), 110.27 (Ar), 45.72 (CH2), 39.76 (CH3), 38.11 (CH3), 32.50 

(CH3). 

Elemental analysis for C30H36AuBF4N8O6 (3c  2H2O): exp. C 40.34%, H 3.75%, N 12.90% (calc. C 

40.56%, H 4.08%, N 12.61%) 

 

Bis(3,7,9-trimethyl-1-(4-trifluoromethyl)benzylxanthin-8-ylidene)gold(I) tetrafluoroborate 

(3d): Ligand 2d (130 mg, 0.30 mmol) and Ag2O (54.8 mg, 0.24 mmol) were suspended in dry MeCN 

(10 mL) with molecular sieves (4 Å) under inert atmosphere. After 6 h at room temperature, 

Au(tht)Cl (48 mg, 0.15 mmol) was added and the suspension stirred overnight. Thus, potassium 

iodide (25 mg, 0.15 mmol) was added and the mixture was left under vigorous stirring for further 30 

min. The final dark grey suspension was filtered over Celite® and washed with acetonitrile and DCM 

to give a clear colourless solution. After concentration to ca. 1 mL, an excess of Et2O was added to 

precipitate out the final white compound (100 mg, 66%).  
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1H NMR (500 MHz, CD3CN) δ 7.60 (dd, J = 52.1, 8.1 Hz, 2H, Ar), 5.20 (s, 2H, CH2), 4.21 (s, 3H, 

CH3), 4.16 (s, 3H, CH3), 3.75 (s, 3H, CH3). 

13C NMR (126 MHz, CD3CN) δ 188.75 (Ar), 154.52 (Ar), 151.76 (Ar), 142.53 (Ar), 141.96 (Ar), 

129.94 (q, J = 32.76 Hz, Ar, Cα-CF3), 129.51 (Ar), 126.23 (q, J = 3.8 Hz, Ar, Cβ-CF3), 125.32 (q, 

J = 270.9 Hz, CF3) 110.29 (Ar), 45.40 (CH2), 39.80 (CH3), 38.14 (CH3), 32.58 (CH3). 

ESI-MS (CH3CN, pos. mode) for C32H30AuF6N8O4: exp. 901.1976 (calc. 901.1960). 

Elemental analysis for C32H40AuBF10N8O9 (3d  H2O): C 38.37%, H 3.13%, N 11.35% (calc. C 

38.19%, H 3.21%, N 11.13%) 

 

 

(Ethynylphenyl)(1,3,7,9-tetramethylxanthin-8-ylidene)gold(I) (4a): Phenylacetylene (16 μL, 

0.14 mmol), was added to NaOH (40 mg, 1 mmol) in methanol (10 mL). After stirring for 15 min at 

room temperature, AuTMXI (75 mg, 0.14 mmol) was added and the mixture stirred under reflux 

overnight. After filtration, the final product was collected as an off-white solid (50 mg, 69%).  

1H NMR (400 MHz, DMSO-d6) δ 7.25 (dd, J = 7.8, 4.1 Hz, 4H, Ar), 7.23 – 7.16 (m, 1H, Ar), 4.20 

(s, 3H, CH3), 4.05 (s, 3H, CH3), 3.73 (s, 3H, CH3), 3.23 (s, 3H, CH3). 

13C NMR (101 MHz, DMSO-d6) δ 190.70 (Ar), 153.68 (Ar), 150.92 (Ar), 140.82 (Ar), 132.36 (Ar), 

131.60 (Ar), 128.67 (Ar), 126.60 (Ar), 126.49 (Ar), 108.80 (C-sp), 104.47 (C-sp), 38.92 (CH3), 37.33 

(CH3), 31.92 (CH3), 28.67 (CH3). 

ESI-MS (CH3CN, pos. mode) for for C17H18AuN4O2: exp. 507.1096 (calc. 507.1095). 

Elemental analysis for C17H19AuN4O3 (4a  ½ H2O): exp. C 39.47%, H 3.45%, N 10.72% (calc. C 

39.62%, H 3.52%, N 10.87%) 

 

(4-Ethynylpyridine)(1,3,7,9-tetramethylxanthin-8-ylidene)gold(I) (4b): 4-Ethynylpyridine 

(16 mg, 0.14 mmol) was added to NaOH (40 mg, 1 mmol) in methanol (10 mL). After stirring for 15 
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min at room temperature, AuTMXI (75 mg, 0.14 mmol) was added and the mixture stirred under 

reflux overnight. After filtration, the final product was collected as an off-white solid (33 mg, 46%). 

1H NMR (400 MHz, DMSO-d6) δ 8.41 (dd, J = 4.5, 1.6 Hz, 2H, Ar), 7.19 (dd, J = 4.5, 1.6 Hz, 2H, 

Ar), 4.19 (s, 3H, CH3), 4.03 (s, 3H, CH3), 3.71 (s, 3H, CH3), 3.21 (s, 3H, CH3). 

13C NMR (101 MHz, DMSO-d6) δ 190.00 (Ar), 153.67 (Ar), 150.89 (Ar), 149.86 (Ar), 140.81 (Ar), 

139.34 (Ar), 133.97 (Ar), 126.06 (Ar), 108.89 (C-sp), 102.18 (C-sp), 38.95 (CH3), 37.35 (CH3), 31.91 

(CH3), 28.65 (CH3). 

Elemental analysis for C16H18AuN5O3 (4b  H2O): exp. C 36.17%, H 3.39%, N 13.07% (calc. C 

36.58%, H 3.45%, N 13.33%) 

 

(3-Ethynylpyridine)(1,3,7,9-tetramethylxanthin-8-ylidene)gold(I) (4c): 3-Ethynylpyridine 

(16 mg, 0.14 mmol) was added to NaOH (40 mg, 1 mmol) in methanol (10 mL). After stirring for 15 

min at room temperature, AuTMXI (75 mg, 0.14 mmol) was added and the mixture stirred under 

reflux overnight. After filtration, the final product was collected as an off-white solid (43 mg, 60%).  

1H NMR (400 MHz, DMSO-d6) δ 8.46 – 8.41 (m, 1H, Ar), 8.36 (dd, J = 4.8, 1.5 Hz, 1H, Ar), 7.65 – 

7.60 (m, 1H, Ar), 7.27 (dd, J = 7.9, 4.8 Hz, 1H, Ar), 4.20 (s, 3H, CH3), 4.04 (s, 3H, CH3), 3.71 (s, 

3H, CH3), 3.20 (s, 3H, CH3). 

13C NMR (101 MHz, DMSO-d6) δ 189.79 (Ar), 153.20 (Ar), 151.67 (Ar), 150.42 (Ar), 146.47 (Ar), 

140.35 (Ar), 137.98 (Ar), 136.01 (Ar), 123.22 (Ar), 122.74 (Ar), 108.37 (C-sp), 100.55 (C-sp), 38.49 

(CH3), 36.89 (CH3), 31.45 (CH3), 28.20 (CH3). 

Elemental analysis for C16H18AuN5O3 (4c  H2O): exp. C 36.91%, H 3.21%, N 13.12% (calc. C 

36.58%, H 3.45%, N 13.33%) 

 

 

(2,8-Diethyl-10-(4-ethynylphenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-

c:2',1'-f][1,3,2]diazaborinine)(1,3,7,9-tetramethylxanthin-8-ylidene)gold(I) (4d): 2,8-Diethyl-
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10-(4-ethynylphenyl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-4λ4,5λ4-dipyrrolo[1,2-c:2',1'-

f][1,3,2]diazaborinine (55 mg, 0.14 mmol) was added to NaOH (40 mg, 1 mmol) in MeOH (10 mL). 

After stirring for 15 min at room temperature, AuTMXI (75 mg, 0.14 mmol) was added and the 

mixture stirred under reflux overnight. After filtration, the final product was collected as a dark red 

solid. (75.0 mg, 68%).  

1H NMR (400 MHz, acetone-d6) δ 7.53 (d, J = 8.4 Hz, 2H, Ar), 7.26 (d, J = 8.2 Hz, 2H, Ar), 4.35 (s, 

3H, CH3), 4.13 (s, 3H, CH3), 3.91 (s, 3H, CH3), 3.31 (s, 3H, CH3), 2.49 (s, 6H, CH3), 2.36 (q, 

J = 7.6 Hz, 4H, CH2), 1.40 (s, 6H, CH3), 0.99 (t, J = 7.5 Hz, 6H, CH2CH3). 

13C NMR (126 MHz, acetone-d6) δ 192.51 (Ar), 154.43 (Ar), 154.29 (Ar), 151.70 (Ar), 141.58 (Ar), 

139.14 (Ar), 134.59 (Ar), 133.77 (Ar), 133.57 (Ar), 133.22 (Ar), 133.15 (Ar), 131.47 (Ar), 129.00 

(Ar), 128.73 (Ar), 109.60 (C-sp), 103.89 (C-sp), 39.22 (CH3), 37.55 (CH3), 32.13 (CH3), 28.58 (CH3), 

17.49 (CH3), 14.95 (CH3), 12.61 (CH2), 12.08 (CH3).
 

11B NMR (128 MHz, acetone-d6) δ 0.77. 

ESI-MS (CH3CN, pos. mode) for C34H39AuBF2N6O2: exp. 809.2877 (calc. 809.2867). 

Elemental analysis for C34H44AuBF2N6O5 (4d  4H2O): exp. C 46.81%, H 4.85%, N 9.58% (calc. C 

46.38%, H 5.27%, N 9.54%) 

 

X-ray diffraction analysis. Complex 3a, 4b and 4d were allowed to form crystals by slow 

evaporation of acetonitrile at room temperature. The crystals were analysed at the UK National 

Crystallography Service in Southampton. A suitable colourless irregular-shaped crystal of 3a 

(0.260×0.110×0.060 mm3) and a colourless plate-shaped crystal of 4b (0.150×0.080×0.020 mm3) 

were selected and mounted on a MITIGEN holder in perfluoroether oil on a Rigaku 007HF 

diffractometer equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 

6000HE detector. The crystal was kept at a steady T = 100.01(10) K during data collection. In the 

case of complex 4d, several orange plate-shaped crystals with approximate dimensions 

0.040×0.025×0.015 mm3 were mounted on a glass fibre in perfluoroether oil. Data were collected at 
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the Diamond beamline I19 diffractometer equipped with a Helix cryostat low-temperature device 

operating at T = 30(2) K. The data was collected using 360 degree phi scans at 5%, and crystal 1 also 

using a 45 degree phi scan at 2%. Since the first crystal was affected by radiation damage, data sets 

for several crystals were collected, and had to be scaled accordingly. Data were measured using 

monochromatic Si(111) radiation ( = 0.6889 Å). The maximum resolution that was achieved was 

 = 23.905° (0.85 Å).The structures of 3a and 4 b were solved with the ShelXD [39] structure solution 

program using the Dual Space solution method and by using Olex2 [40] as the graphical interface. 

Each model was refined with version 2014/7 of ShelXL [41] using Least Squares minimisation. The 

structure of 4d was solved and the space group P21/c (# 14) determined by the ShelXT (Sheldrick, 

2015) structure solution program [41] using Intrinsic Phasing and by using Olex2 (Dolomanov et al., 

2009) as the graphical interface [40].  The model was refined by Least Squares using version 2014/7 

of ShelXL (Sheldrick, 2015) [42]. All non-hydrogen atoms were refined anisotropically. Hydrogen 

atom positions were calculated geometrically and refined using the riding model. There was a large 

volume (1094 Å3) for solvents. No obvious solvents were identified, and the structure was 

SQUEEZEd. CCDC codes are 1916760, 1913564 and 1940532. 

 

1H NMR stability studies. 1H NMR were recorded in a mixture DMSO-d6 : D2O (80 : 20), with TMS 

as an internal reference, on a Bruker Avance 400 NMR spectrometer (Bruker Daltonics, Bremen, 

Germany). The gold complexes 3a-d and 4a-c (6 mmol) have been dissolved in the solvent mixture 

chosen with or without an equimolar amount of NAC. 1H NMR spectra were recorded at time 0 and 

after 24 h with each of the sample freshly prepared before the first run.  

 

Stability studies by UV-visible spectroscopy. UV-visible absorption spectra to investigate the 

stability of compound 4d in solution were recorded on a Cary 60 UV-Vis spectrometer (Agilent 

Technologies, Santa Clara, USA). A stock solution of 4d (3 mM) was prepared in DMSO. An aliquot 

was diluted to 40.6 μM either in 1× PBS (pH 7.4) or deionized water, and the UV-vis spectra acquired 
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at room temperature over 24 h at different intervals (every 15 min during the first hour and every hour 

for the remaining 23 h).  

 

Quantum yield determination. Emission spectra were recorded on a Cary Eclipse fluorescence 

spectrophotometer (Agilent Technologies, Santa Clara, USA). Compound 4d was dissolved in 

degassed DMSO to a concentration corresponding to UV-vis absorbance 0.8 A.U. (λ(max) = 523–535 

nm; 25 °C). The solution was transferred to a fluorescence spectrophotometer and an emission 

spectrum was recorded (excitation wavelength 595 nm). The quantum yield of complex 4d was 

calculated by comparison to a reference standard (Rhodamine 6G in ethanol, φ = 94%). 

 

FRET DNA melting assay. Fluorescence resonance energy transfer (FRET) experiments were run 

on an Applied Biosystems® QuantumStudio 5 Real-Time PCR thermocycler (Thermo Fisher 

Scientific, Waltham, USA) equipped with a FAM filter (λex = 492 nm; λem = 516 nm). The 

thermocycler was set to perform a stepwise increase of 0.3 °C every 30 s, from 25 °C to 95 °C, and 

measurements were acquired after each step.  

All the oligonucleotides were purchased from Eurogentec (Belgium) in HPLC purity grade. The 

FRET probes used were FAM (6-carboxyfluorescein) and TAMRA (6-carboxy-

tetramethylrhodamine). The lyophilized fluorolabelled hTelo (21-mer), d[GGG(TTAGGG)3], C-

KIT1, d[GGGAGGGCGCTGGGAGGAGGG] and hTERT, 

d[GGGGGCTGGGCCGGGGACCCGGGAGGGGTCGGGACGGGGCGGGG] oligonucleotides were 

firstly diluted in deionized water to obtain 100 μM stock solutions. Stock solutions were diluted to a 

concentration of 400 nM in potassium cacodylate buffer (54 mM, pH 7.4), and then annealed to form 

G-quadruplex (G4) structures by heating to 95 °C for 5 min, followed by cooling to room temperature 

overnight.  

Experiments were carried out in a 96-well plate with a total volume of 30 μL. The final concentration 

of the G4-oligonucleotide was set to 200 nM in potassium cacodylate buffer (54 mM, pH 7.4). Stock 
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solutions of the gold compounds 3a-d and 4a-c in DMSO (1 mM) were freshly prepared prior to the 

experiments. The stock solutions were further diluted to a final concentration of 2 μM (with a total 

percentage of DMSO of approx. 0.1%) in potassium cacodylate buffer (54 mM, pH 7.4) to achieve 

G4 : gold compound stoichiometry of 1 : 5.  

To perform the competition assays with duplex DNA, a 100 μM stock solution in MilliQ water of 

annealed double-stranded DNA (dsDNA), 

d[GGGTTACTACGAACTGG]/d[CCAGTTCGTAGTAACCC], was purchased from Eurogentec 

(Belgium) in HPLC purity grade. This solution was further diluted to 40 μM in 54 mM potassium 

cacodylate buffer (pH 7.4). Stock solutions of the gold compounds 3a-d and 4a-c were diluted to 4 

μM (with a total percentage of DMSO of approx. 0.1%) in potassium cacodylate buffer (54 mM, pH 

7.4). The final concentration of the G4-oligonucleotide was 200 nM, with a stoichiometry of 1 : 5 : 50 

of G4 : gold compound : dsDNA. Experiments were carried out in a 96-well plate with a total volume 

of 30 μL. To compare different sets of data, FAM emission was normalised (0 to 1). Tm is defined as 

the temperature at which the normalised emission is 0.5 and ΔTm is defined as the difference of Tm 

between treated samples and untreated controls. Independent experiments were run in triplicates. 

 

Circular dichroism. Circular Dichroism (CD) spectra were recorded on a ChiraScan 

(AppliedPhotophysics, Surrey, UK) using the following parameters: range 210–400 nm, bandwidth 

1 nm, step 1 nm, accumulation 3, temperature 25 °C. Stock solutions of unlabelled 21-mer hTelo, 

d[GGG(TTAGGG)3] and C-KIT1, d[GGGAGGGCGCTGGGAGGAGGG] (each 100 μM), were 

prepared by dissolving the lyophilised sample in deionized water. Samples were further diluted in a 

Tris-HCl/KCl buffer (10/50 mM, pH 7.4) to obtain a final concentration of 4 μM. Stock solutions of 

AuTMX2, 3a and 3c were prepared as described in the previous section and further diluted in buffer 

to achieve a G4 : gold compound stoichiometry of 1 : 5.  
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Cell lines and culture maintenance. The human cancer cell lines corresponding to breast carcinoma 

(MCF-7), ovarian adenocarcinoma (SKOV-3) and skin malignant melanoma (A375) were obtained 

from the ATCC. The SKOV-3 and A375 cells were cultured in Dulbecco`s Modified Eagle Medium 

(DMEM, 4,5 g/L glucose, Corning), supplemented with 10% fetal bovine serum (One-Shot FBS, EU-

approved South American Origin, Thermo Fisher Scientific) and 1% penicillin/streptomycin (Gibco). 

MCF-7 cells were grown in Roswell Park Memorial Institute medium (RPMI, L-glutamine, Corning), 

supplemented with 10% fetal bovine serum (One Shot FBS, EU-approved South American Origin, 

Thermo Fisher Scientific) and 1% penicillin/streptomycin (Gibco). All cell lines were cultured at 37 

°C, in a humidified atmosphere of 5% CO2 and passage diluted upon reaching confluence.  

 

Antiproliferative assays. To evaluate the inhibition of cell growth by the gold complexes, cells were 

seeded in 96-well tissue culture-treated plates (Corning) at 8’000 cells/well in 200 µL full medium. 

Working solutions of the gold compounds 3a–c, 4a–d were prepared in the required concentration by 

diluting freshly prepared stock solutions (10-2 M in DMSO) in complete medium. The stock solutions 

were protected from light in order to avoid potential light-induced degradation. Cells were allowed 

to adhere for 24 h. Then, the medium was refreshed and cells were incubated for 72 h in 200 µL 

complete medium containing different concentrations of the gold compounds. The antiproliferative 

effects of complexes were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay. Following 72 h exposure, the medium was removed and 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Fluorochem) in 10× PBS (Corning) 

was added to the cells, at a final concentration of 0.3 mg/mL. After 3–4 h incubation at 37 °C and 5% 

CO2, the supernatant was discarded and the formazan crystals were dissolved with DMSO. The 

optical density was quantified in quadruplicates for each experiment at 550 nm using a multi-well 

plate reader (VICTOR X, Perking Elmer). 

Complex 4d was evaluated using the CellTiter-Blue® assay due to the interference with the MTT 

absorbance. After 72 h incubation with the compound, CellTiter-Blue® reagent (20 µL/well) was 
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added to the assay plate, shaken for 10 s and incubated for 4 h at 37 °C and 5% CO2. Fluorescence 

intensity (531Ex/595Em nm) from each well was measured in quadruplicates for each experiment using 

a multi-well plate reader (VICTOR X5, Perking Elmer).  

The EC50 value for each compound in both assays was calculated as the concentration showing 50% 

decrease in cell growth, when compared to controls, using a nonlinear fitting. In the case of compound 

4d fluorescence intensity was corrected for interference of the BODIPY-alkyne. Data is presented as 

mean ± standard deviation of at least three independent experiments. 

 

Fluorescence microscopy. Round glass coverslips (Ø 13mm, VWR) sterilized by UV-light were 

inserted in 24-well tissue culture-treated plates (Corning). A375 cells were seeded at a concentration 

of 120’000 cells/mL and incubated at 37 °C under humidified atmosphere with 5% CO2 for 24 h. The 

medium was discarded and fresh medium containing 15 µM of complex 4d was added. Following 2 

h incubation at 37 °C, the glass coverslips were removed from the wells, washed four times with 1× 

PBS (Corning) and fixed with 4% formaldehyde (Alfa-Aesar) for 20 min at room temperature. The 

coverslips were then washed three times with 1× PBS and incubated for 1 min at room temperature 

with 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI, 40 µL of 1 µg/mL, Sigma-

Aldrich/MERCK). After washing the coverslips three times with 1× PBS they were mounted on glass 

microscope slides (VWR) using Mowiol® 4-88 (Sigma-Aldrich). Fluorescence images were obtained 

using a Zeiss Axio Vert.A1 epifluorescence microscope and analysed using ImageJ software [43].  
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3. RESULTS AND DISCUSSION 

3.1 Synthesis and characterisation  

Initially, we synthesized a family of cationic gold(I) bis-NHC complexes related to the lead 

compound AuTMX2. Specifically, the N1 position of theobromine was substituted with ethyl (a), (2-

cyclohexyl)ethyl (b), benzyl (c) and 4-(trifluoromethyl)benzyl (d) moieties (Scheme 1).  

 

Scheme 1. 

 

The synthesis of the functionalised ligands (1a–d) was confirmed by 1H NMR by the disappearance 

of the broad peak of the N1-proton and by the appearance of the signals related to the newly 

introduced groups (Fig. S1-4). Next, the N1-substituted ligands were methylated in the N9-position 

using Merweein’s salt. This is a crucial step since only the positively charged tetraalkylxanthinium 

precursor facilitates carbene formation and subsequent complexation to Au(I) [37]. The xanthinium 

ligands (2a-d) were isolated and the methylation was confirmed by 1H, 13C NMR and elemental 

analysis. As evident from the 1H NMR spectra (Fig. S9-12), the methylation in N9-position resulted 

in the appearance of a singlet with nearly identical chemical shift compared to the N7-methyl signal, 

together integrating for 6 protons (4.08 ppm), whereas the C8 proton experienced a downfield shift 

to 8.48 ppm. Furthermore, a new methyl-specific carbon signal appeared at 37.5 ppm (Fig. S13-S16).  

The final four gold(I) complexes (3a-d) were obtained via a transmetalation reaction (Scheme 

1) [37]. The NHCs were formed in situ in the presence of Ag2O under inert atmosphere and were 

stabilized by Ag-complexation. Addition of Au(tht)Cl induced transmetallation and silver chloride 

precipitated from solution. The gold(I) bis-NHC complexes were obtained in moderate yields. 

Deprotonation of the C8 position was confirmed by 1H NMR. Upon complexation, the methyl peaks 

at 4.08 ppm split more clearly into two distinct signals for 3a, 3c and 3d. Moreover, in the 13C NMR 

spectra these three complexes also experienced a ca. 2 ppm downfield shift of the N9-methyl signal 

(see Fig. S17,19, 20). The 1H NMR spectrum of 3b showed the presence of two simultaneously 
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existing coordination states, as indicated by the appearance of two sets of methyl signals with constant 

ratios, but only one set of signals corresponding to the (2-cyclohexy)ethyl moiety, probably 

corresponding to rotamers (Figures S18 and S22).  

The second series of compounds included the mixed NHC-alkynyl gold(I) complexes (4a-d), 

which were readily obtained from reacting the neutral mono-carbene complex AuTMXI with the 

respective deprotonated alkyne in the presence of a base (Scheme 2) [20]. Interestingly, complex 4d 

features a boron-dipyrromethene (BODIPY)-based alkynyl ligand with luminescence properties 

which can allow the compound’s visualization in cells by fluorescence microscopy. 

 

Scheme 2. 

 

The successful synthesis of the complexes 4a–d was confirmed by 1H and 13C NMR (Fig. S25-S33), 

elemental analysis and in some cases by ESI-MS (Fig. S36, S37). The appearance of a signal at 

108 ppm in the 13C NMR spectra is characteristic for the coordinated alkynyl. Single crystals of 3a, 

4b and 4d were obtained by slow evaporation of acetonitrile. The structures are shown in Figure 2 

while the relevant crystal data are reported in the supplementary material (see Tables S2-S26). 

Figure 2. 

 

The three compounds show a linear geometry with the angle C–Au–C being 178.54°, 179.10° and 

176.79° for 3a, 4b and 4d, respectively. A monoclinic crystal system was resolved for 3a, where the 

complex forms intramolecular hydrogen bonds with a water molecule (see Figure S54), whereas 4b 

is characterised by a triclinic crystal system with three molecules are staggered upon each other. In 

the latter, the distance between each molecule is 3.610 Å, which is compatible with the occurrence of 

π-π interactions between the complexes. Moreover, aurophilic interactions [44] among the three 4b 

complexes were also found, as evidenced by the gold–gold distance of 3.286 Å. Noteworthy, the 

triclinic crystal system resolved for 4d shows the existence of two distinct arrangements of the 
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molecule within the asymmetric unit (see Figure 2C, Figure S55 and tables S18-S26 for more 

information). In each complex bond distances between the gold(I) centre and either the C8 of TBM 

and/or the alkynyl carbon are 2.0 Å, similarly to those reported for other TMX-based gold(I) 

organometallics [37].  Noteworthy, the crystal of 3a confirms that, differently from what previously 

reported for the N9 substitution, the N1-modified complexes retains their planarity.  

Next, the quantum yield of the gold compound 4d and the BODIPY-alkyne ligand precursor 

were determined in aqueous solution (see Table 1 and experimental section for details). Complexation 

of the fluorophore to the gold(I) NHC complex via the alkynyl bridge did not quench the fluorescence 

of the resulting metal complex, whose quantum yield was found to be 74%. Moreover, gold(I) 

complexation did not change the absorption and emission wavelengths of the BODIPY fluorophore. 

 

Table 1. 

 

3.2 Stability studies  

The stability of the gold(I) bis-NHCs and mixed NHC-alkynyl complexes was studied over 24 h in a 

mixture DMSO-d6 : D2O (80 : 20) by 1H NMR (Figures S38-S44). The compounds were largely 

stable, except for 4a, for which a new set of peaks appeared in the region from 2.5 to 4.0 ppm after 

24 h, most likely due to the displacement of the alkynyl moiety by DMSO (see Figure S42).  

In order to characterize the reactivity of the gold(I) complexes with model nucleophiles, the 

compounds 3a–d and 4b–c were exposed to an equimolar amount of N-acetylcysteine (NAC) and 

analysed by 1H NMR spectroscopy. The stability of NAC alone was also followed over time by 

1H NMR. NAC underwent auto-oxidation to cystine to an extent of ca. 30% after 24 h as observed 

by the formation of a new set of signals at 4.45, 3.09 and 1.87 ppm (Fig. S45). All samples showed a 

similar cystine : cysteine ratio in the presence or absence of the gold(I) complexes. 

The results obtained here show that the compounds are largely stable (Figures S46-51). 

Compounds 3b, 3c and 4b displayed some changes in their 1H NMR spectra over 24 h (Fig S47, S48 
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and S50). In detail, for 3b over 24 hours the signals related to the methyl protons are shifted to 3.99 

and 3.66 ppm while the third one disappears probably hidden below the solvent signal (Fig. S47). 

Moreover, a new small signal appears at 2.97 which can be attirbuted to the Au-bound cysteine. The 

peaks at 5.05 and 3.71 ppm for 3c are split over time while two more signals for the methyl groups 

appear at 3.99 and 3.96 respectively. Analysis of the integrals suggests the existence of a 1:2 ratio 

between the original compound and a reaction product that may tentatively be attributed to a cysteine 

adduct (Fig. S48). The latter is also confirmed by the appearance of new peaks at 3.05 and 2.97 ppm 

whose signals are related to Au-bound cysteine. Similarly, as detailed in Fig. S50, 4b experiences a 

splitting of the methyl signals at 4.10, 3.97 and 3.20 ppm, while a new signal appears for the Au-

bound cysteine (2.95 ppm) likely due to the protons close to the sulphur atom. Two additional peaks 

are found in the aromatic region, respectively at 8.54 and 7.45 ppm, which clearly show the 

displacement of the aromatic-alkynyl moiety by NAC, in a 4b : cysteine-adduct = 70 : 30. Overall, 

compounds 3a, 3d and 4c are inert with respect to ligand exchange reactions with NAC over 24 h, 

while 3b, 3c and 4b are prone to react with NAC, leading to the probable formation of sulfur-adducts.  

 Due to the scarce solubility in DMSO, the stability of the BODIPY-based complex 4d could 

not be evaluated by NMR, and thus, UV-vis stability studies were conducted. The experiments were 

carried out over 24 h in 1× Phosphate Buffered Saline (PBS, pH = 7.4) and deionized water, with data 

collection each 15 min for the first hour and then each hour for the remaining 23 hours. The UV-vis 

spectra of 4d are characterised by two intense bands at 533 and 293 nm and a shoulder in between at 

380 nm (black solid line in Fig. S52). Over 24 h these bands experienced hypochromic effects and 

markedly decreased in PBS buffer (Fig. S52). A similar hypochromism is evident in deionised water, 

where 4d is more stable than in PBS. In both solvents, the intensity of the absorption is reduced by 

ca. 30-40% after 6 h. These hypochromic effects may be attributable to the hydrolysis of the B-F 

moiety in the BODIPY scaffold leading to precipitation. In fact, a similar and even more prominent 

trend can be observed for the free BODIPY ligand (Fig. S53).  
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3.4 G4-stabilisation studies 

The DNA G-quadruplex (G4) stabilising properties of the newly synthesised Au(I) NHC 

organometallics were assessed by means of fluorescence resonance energy transfer (FRET) DNA 

melting assays [45]. Earlier studies with cationic gold(I) bis-NHC complexes achieved after N9 

substitution on the lead compound AuTMX2 focused on telomeric G4s [37]. Here, we extended these 

studies to two oncogenic promoter G4 structures, namely, C-KIT1 and hTERT. The former is an 

oncogenic receptor tyrosine kinase involved in proliferation [46], and the latter is the catalytic subunit 

of the human telomerase, which is involved in cancer immortality [47].  

The gold compounds 3a-d and 4a-c were reacted with each G4 in a 5:1 stoichiometry as detailed in 

the experimental section. Table S1 shows the ΔTm for each compound in comparison to the previously 

reported complexes, the cationic bis-carbene derivative AuTMX2 and the mono-carbene AuTMXI. 

Interestingly, AuTMX2 is most potently stabilising hTelo (ΔTm = 13.1 ± 1.8 °C) in comparison 

to the gene promoter G4s of C-KIT1 and hTERT (Table S1). In contrast, AuTMXI can similarly 

stabilize C-KIT1 (ΔTm = 4.0 ± 0.1 °C) and hTelo (ΔTm = 3.2 ± 0.6 °C), while it is practically inactive 

towards hTERT (ΔTm = 1.54 ± 0.15 °C). Concerning the newly synthesized compounds, extending 

the N1-methyl in 3a–d also led to a marked reduction of their G4 stabilizing potency, similarly to N9 

modifications [37]. The best stabilizer of this series is complex 3a, showing a similar trend compared 

to AuTMX2, while 3c was able to slightly stabilize the hTelo DNA sequence (Figures 3A and 4B). 

It may be noted that 3a differs from AuTMX2 only by ethyl to methyl substituents at the N1-position.  

The mixed Au(I) NHC-alkynyl complexes 4a–c did not show any stabilising effects on the 

G4 structures. Despite the fact that the flat aromatic surface of these mixed NHC-alkynyl complexes 

could have allowed favourable π-π interactions with the G4s, it can be hypothesized that the steric 

demand of 4a-c does not allow the compounds’ alignment with the G4-quartet. The intrinsic 

fluorescence of 4d did not allow its screening by FRET. 

  In addition to their stabilizing potency, the selectivity of the compounds’ for G4s and duplex 

DNA binding was investigated for AuTMX2, 3a and 3c with hTelo and C-KIT1 in the presence of a 
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50-fold excess of dsDNA. The three organometallics showed a clear selective interaction towards 

both hTelo and C-KIT1 over dsDNA, as their stabilising properties were unperturbed when 

challenged with the excess of dsDNA (Fig. 3C, D). In the previously reported study, N9-substituted 

Au(I) bis-NHC complexes showed increased affinity towards dsDNA [37]. Consequently, although 

the N1-modified Au(I) bis-NHC complexes are less potent in stabilizing the G4 structures compared 

to N9-modified analogues, as assessed by ΔTm, the compounds retain their high selectivity for G4 

binding. 

 

Figure 3. 

 

Furthermore, circular dichroism (CD) spectra of hTelo and C-KIT1 in the presence of 5 equiv. of the 

G4 stabilising compounds AuTMX2, 3a and 3c (only hTelo) were recorded to assess if any changes 

of the G4-folding would occur upon interaction of the polynucleotide with the gold(I) NHC 

complexes. In the UV-vis range, the G4-DNA features two π-π* transitions (at ca. 280 and 248 nm). 

However, within a G-quadruplex, the tetrads are rotated with respect to each other giving rise to a 

chiral exciton coupling between transition dipole moments located in near-neighbour guanines: the 

final G4-DNA is therefore, CD active [48]. In detail, the CD spectrum of hTelo in our experimental 

conditions is characterised by an intense positive band at 290 nm with a shoulder at 270 nm and by a 

negative absorption at 240 nm (black solid line in Fig. 4A). This spectrum is typical of a hybrid (3+1) 

G4-conformation [49]. Conversely, in the same conditions, C-KIT1 folds in a parallel conformation 

with a positive band at about 263 nm and a negative centred at 240 nm (black solid line in Fig. 4B).  

 

Figure 4. 

 

Interestingly, when a 4 μM solution of hTelo in Tris-HCl/KCl (10 mM/50 mM, pH 7.4) is challenged 

with 5 equiv. of AuTMX2, 3a or 3c the positive band at 290 nm increases, as a result of the interaction 
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of the three compounds with the G4-DNA as previously reported for other G4-binders (Fig. 4A) [50–

52]. The addition of AuTMX2 also causes a reduction of the shoulder at 270 nm which might suggest 

a slight structural change of the G4-DNA as previously observed with a nickel(II) complex [52]. The 

other two complexes, 3a and 3c do not show a similar decrease of the band located at 270 nm, while 

3c even induces an opposite modification of the signal. On the contrary, with respect to C-KIT1, the 

CD analysis reported in Fig. 4B clearly shows that the interaction of the two complexes with the G4-

DNA, proven by the FRET DNA melting assays, occurs without affecting the secondary structure of 

the polynucleotide, as reported in literature for some nickel(II) and zinc(II) Schiff-base complexes 

[53]. 

 

3.5 Antiproliferative assays 

The cytotoxicity of the compounds 3a–c and 4a–d was evaluated in human melanoma (A375), 

ovarian (SKOV-3) and breast (MCF-7) cancer cell lines in comparison to AuTMX2 (Table 2). It may 

be noted that AuTMX2 is completely inactive in these cancer cells, and AuTMXI also showed scarce 

cytotoxicity in all the tested cell lines.  

 

Table 2. 

 

Similarly to AuTMX2, the cationic Au(I) bis-NHC complex 3a, featuring an ethyl substituent at the 

N1-position, is inactive in all tested cell lines. Interestingly, when a bulkier modification is 

introduced, as in 3b and 3c, a considerable increase in the cytotoxicity is observed towards all cancer 

cells, irrespective of being saturated (3b) or aromatic (3c). The tested Au(I) mixed NHC-alkynyl 

complexes, although scarcely active in all cell lines, showed a distinct activity profile with 4a–c 

moderately cytotoxic in the MCF-7 breast cancer cell line. Especially the 3-pyridine derivative 4c 

was slightly more active (IC50 ca. 16 M) than the other derivatives of this family. Finally, 4d has no 

cytotoxic effect against any of the three cancer cell lines.  
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3.6. Fluorescence microscopy 

Compound 4d bears a fluorescent BODIPY-moiety, but showed no cytotoxicity against the 

investigated cancer cell lines. In order to investigate whether the reduced cytotoxicity might correlate 

with a reduced cellular accumulation, we studied its uptake by fluorescence microscopy. Compound 

4d (15 µM) was incubated with A375 cells for 2 h at 37 °C. The compound was found to be efficiently 

taken up by the cancer cells, and to accumulate in the cytoplasm (Figure 5), while cell nuclei did not 

show any signal corresponding to the BODIPY fluorophore. Thus, the low cytotoxicity of 4d might 

rather be related to a reduced stability as indicated by UV-vis experiments than by a reduced cellular 

accumulation. Since the absorption and emission wavelengths of 4d and the BODIPY-alkyne are very 

similar, it is challenging to judge whether the fluorescence is caused by intact 4d or free BODIPY 

ligand. 

 

Figure 5. 

 

4. CONCLUSIONS 

The present study comparatively evaluated two novel families of gold(I) bis-N-heterocyclic carbene 

and mixed NHC-alkynyl organometallics with respect to their stability in aqueous environment, G-

quadruplex (G4) stabilising effect and cytotoxicity. To the best of our knowledge this is one of the 

few reports in the literature on the interactions of metal NHCs featuring xhantine type of ligands with 

G4 DNA structures[31]. The representatives of both families form linear and highly planar gold(I) 

organometallic complexes, which were reasonably stable in aqueous solution. Upon interaction with 

NAC, complexes 3b, 3c and 4b showed some ligand exchange reaction, involving substitution of the 

alkynyl ligand in the latter case. The cationic gold(I) N1-modified bis-NHCs exhibited mild G4 

stabilisation properties, while the mixed NHC-alkynyl family was devoid of any G4 stabilising 

effects. Although less potent than the lead compound AuTMX2, the cationic gold(I) bis-NHC 
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derivatives retained their selectivity for the G4 structures even in the presence of excess double-

stranded DNA. While the complexes 3b-c are moderately cytotoxic in all cancer cell lines, the gold(I) 

mixed NHC-alkynyl complexes, though being less active, were selectively cytotoxic against the 

MCF-7 breast cancer cell line. Finally, a non-cytotoxic fluorescent gold(I) derivative (4d) was shown 

to efficiently distribute into the cytoplasm of intact cells after 2 h incubation with melanoma cells, 

but did not enter the nuclei. Overall, these investigations provide further insight into the distinct 

biological activity of gold(I) organometallics and underline their promise for tuneable biological 

applications by appropriate chemical modifications. 
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Figure 1 - Chemical structures of gold(I) coordination and organometallic compounds as experimental anticancer agents. 

 

 

 

 

Scheme 1. Synthetic pathway leading to the Au(I) bis-NHC complexes 3a-d. 
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Scheme 2. Synthetic pathway leading to complexes 4a-d. 

 

 

Figure 2. ORTEP plot of 3a (A), 4b (B) and 4d (C). Ellipsoids are shown at 50% probability. 
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Table 1 - Photophysical data for BODIPY-alkyne and 4d. 

Compound λmax (abs) [nm] εmax [L mol-1 cm-1] λmax (ems) [nm] φ [%] 

BODIPY-alkyne 525 73 543 75 

4d 295, 377, 526 71 542 74 

 

 

 

Figure 3. (A and B) Representative FRET DNA melting profiles of 0.2 μM hTelo (A) and C-KIT1 (B) G4-DNA solutions 

in 54 mM potassium cacodylate (pH = 7.4) in presence of 5 equiv. of selected Au(I) NHC compounds; (C and D) ΔTm 

(°C) of hTelo and C-KIT1 G4-DNA solutions in 54 mM potassium cacodylate (pH = 7.4) in presence of 5 equiv. of 

selected compound without (red bars) and with 50 equiv. of dsDNA (blue bars). Data are shown as mean ± SEM of three 

independent experiments. 
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Figure 4. (A) CD spectra of 4 μM hTelo (black solid line) and (B) C-KIT1 (black solid line) G4-DNA solutions in Tris-

HCl/KCl (10/50 mM, pH = 7.4) without or with of 5 equiv. of selected Au(I) NHC compounds (dashed lines). 
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Table 2. Effective concentration of 50% growth inhibition (EC50) for the Au(I) NHC complexes against different human 

cancer cell lines after 72 h incubation.  

 

a Data are presented as mean ± standard deviation of at least three independent experiments, unless otherwise specified. 

n = number of experiments. 

bValue taken from ref. 34.  

cEC50 values determined with CellTiterBlue® assay.  

  

  EC50 (M)a  

Compound A375 SKOV-3 MCF-7 

AuTMX2 >80 >80 >90 

AuTMXI >50 37 ± 10b >50 

3a >90 >100 >80 

3b 8.8 ± 0.8 13.0 ± 0.9 6.1 ± 0.8 

3c 28 ± 3 36 ± 4 18 ± 2 

4a >100 >100 >50 

4b >100 >100 36 (n = 2) 

4c >80 >50 16 ± 5 

4dc >80 >100 >100 
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Figure 5. Bright field and fluorescence microscopy images of fixed human A375 melanoma cells either as untreated 

controls (top row) or treated with 4d for 2 h (middle and bottom row). DAPI = 4′,6-diamidino-2-phenylindole. Scale bar 

represents 20 µm. 


