

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/125827/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Meier-Menches, Samuel M., Aikman, Brech, Döllerer, Daniel, Klooster, Wim T., Coles, Simon J., Santi, Nicolò, Luk, Louis, Casini, Angela and Bonsignore, Riccardo 2020. Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring Nheterocyclic carbene and alkynyl ligands. Journal of Inorganic Biochemistry 202, 110844. 10.1016/j.jinorgbio.2019.110844

Publishers page: http://dx.doi.org/10.1016/j.jinorgbio.2019.110844

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Supplementary Information Available

Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring N-heterocyclic carbene and alkynyl ligands

Samuel M. Meier-Menches,^{a,+} Brech Aikman,^{a+} Daniel Döllerer,^a Wim T. Klooster,^b Simon J. Coles,^b Nicolò Santi,^a Louis Luk,^a Angela Casini,^{a,*} and Riccardo Bonsignore^{a,*}

Figure S1. ¹H NMR spectrum of 1a in CDCl₃.

Figure S2. ¹H NMR spectrum of 1b in DMSO.

Figure S3. ¹H NMR spectrum of 1c in DMSO.

Figure S4. ¹H NMR spectrum of 1d in CDCl₃.

Figure S5. ¹³C NMR spectrum of 1a in CDCl₃.

Figure S6. ¹³C NMR spectrum of 1b in DMSO.

Figure S7. ¹³C NMR spectrum of 1c in DMSO.

Figure S8. ¹³C NMR spectrum of 1d in CDCl₃.

Figure S9. ¹H NMR spectrum of 2a in CD₃CN.

Figure S10. ¹H NMR spectrum of 2b in CD₃CN.

Figure S11. ¹H NMR spectrum of **2c** in CD₃CN.

Figure S12. ¹H NMR spectrum of 2d in CD₃CN.

Figure S13. ¹³C NMR spectrum of 2a in CD₃CN.

Figure S14. ¹³C NMR spectrum of 2b in CD₃CN.

Figure S15. ¹H NMR spectrum of 2c in CD₃CN.

Figure S16. ¹³C NMR spectrum of 2d in CD₃CN.

Figure S17. ¹H NMR spectrum of 3a in CD₃CN.

Figure S18. ¹H NMR spectrum of 3b in CD₃CN.

Figure S19. ¹H NMR spectrum of 3c in CD₃CN

Figure S20. ¹H NMR spectrum of 3d in CD₃CN.

Figure S21. ¹³C NMR spectrum of 3a in CD₃CN.

Figure S22. ¹³C NMR spectrum of 3b in CD₃CN.

Figure S23. ¹³C NMR spectrum of 3c in CD₃CN.

Figure S24. ¹³C NMR spectrum of 3d in CD₃CN.

Figure S25. ¹H NMR spectrum of 4a in DMSO.

Figure S26. ¹³C NMR spectrum of 4a in DMSO.

Figure S27. ¹H NMR spectrum of 4b in DMSO.

Figure S28. ¹³C NMR spectrum of 4b in DMSO.

Figure S29. ¹H NMR spectrum of 4c in DMSO.

Figure S30. ¹³C NMR spectrum of 4c in DMSO.

Figure S31. ¹H NMR spectrum of 4d in acetone.

Figure S32. ¹³C NMR spectrum of 4d in acetone.

Figure S33. ¹¹B NMR spectrum of 4d in acetone.

Figure S34. ESI-MS simulated (top) and experimental (below) spectra of 3a.

Figure S35. ESI-MS simulated (top) and experimental (below) spectra of 3d.

Figure S36. ESI-MS simulated (top and middle) and experimental (below) spectra of 4a.

Figure S37. ESI-MS simulated (top) and experimental (below) spectra of 4d.

Figure S38. ¹H NMR spectra of **3a** at t = 0 (top) and t = 24 h (below) in DMSO- d_6 : D₂O (80 : 20).

Figure S39. ¹H NMR spectra of **3b** at t = 0 (top) and t = 24 h (below) in DMSO- d_6 : D₂O (80 : 20).

Figure S40. ¹H NMR spectra of **3c** at t = 0 (top) and t = 24 h (below) in DMSO- d_6 : D₂O (80 : 20).

Figure S41. ¹H NMR spectra of **3d** at t = 0 (top) and t = 24 h (below) in DMSO- d_6 : D₂O (80 : 20).

Figure S42. ¹H NMR spectra of **4a** at t = 0 (top) and t = 24 h (below) in DMSO-*d*₆ : D₂O (80 : 20). Blue diamonds represent newly formed peaks after 24 hours.

Figure S43. ¹H NMR spectra of **4b** at t = 0 (top) and t = 24 h (below) in DMSO- d_6 : D₂O (80 : 20).

Figure S44. ¹H NMR spectra of **4c** at t = 0 (top) and t = 24 h (below) in DMSO- d_6 : D₂O (80 : 20).

Figure S45. ¹H NMR spectra of **N-acetyl cysteine** at t = 0 (top) and t = 24 h (below) in DMSO*d*₆ : D₂O (80 : 20). Blue diamonds represent newly formed peaks after 24 hours.

Figure S46. ¹H NMR spectra of **3a** in presence of an equimolar amount of N-acetyl cysteine at t = 0 (top) and t = 24 h (middle). For comparison, ¹H NMR spectrum of N-acetyl cysteine after 24 hours is shown below. Blue diamonds represent newly formed peaks after 24 hours.

Figure S47. ¹H NMR spectra of **3b** in presence of an equimolar amount of N-acetyl cysteine at t = 0 (top) and t = 24 h (middle). For comparison, ¹H NMR spectrum of N-acetyl cysteine after 24 hours is shown below.

Figure S48. ¹H NMR spectra of **3c** in presence of an equimolar amount of N-acetyl cysteine at t = 0 (top) and t = 24 h (middle). For comparison, ¹H NMR spectrum of N-acetyl cysteine after 24 hours is shown below. Blue diamonds represent newly formed peaks after 24 hours.

Figure S49. ¹H NMR spectra of **3d** in presence of an equimolar amount of N-acetyl cysteine at T = 0 (top) and T = 24h (middle). For comparison, ¹H NMR spectrum of N-acetyl cysteine after 24 hours is shown below.

Figure S50. ¹H NMR spectra of **4b** in presence of an equimolar amount of N-acetyl cysteine at t = 0 (top) and t = 24 h (middle). For comparison, ¹H NMR spectrum of N-acetyl cysteine after 24 hours is shown below. Blue diamonds represent newly formed peaks after 24 hours.

Figure S51. ¹H NMR spectra of **4c** in presence of an equimolar amount of N-acetyl cysteine at t = 0 (top) and t = 24 h (middle). For comparison, ¹H NMR spectrum of N-acetyl cysteine after 24 hours is shown below.

Figure S52. UV-visible spectra of 4d (40.5 μ M) in 1x PBS (left); and in water (right) recorded over 24 h and shaken cuvette afterwards.

Figure S53. UV-visible spectra of BODIPY-alkyne ligand (60 μ M) in 1x PBS (left); and in biological water (right) recorded over 24 h and shaken cuvette afterwards.

Table S1. ΔT_m	of the investigated	Au(I) NHC com	plexes for the select	ed DNA G-quadruplexes.
-------------------------------	---------------------	---------------	-----------------------	------------------------

	$\Delta T_m(^{\circ}C)$			
	hTelo	C-KIT1	hTERT	
AuTMX ₂	13.1 ± 1.8	8.8 ± 1.8	2.1 ± 0.3	
AuTMXI	3.2 ± 0.6	4.0 ± 0.1	1.5 ± 0.2	
3a 5.7 ± 1.0		3.4 ± 1.2	1.6 ± 0.02	
3b /		/	/	
3c 2.1 ± 0.4		/	/	
3d /		/	/	
4 a	/	/	/	
4 b	/	/	/	
4c	/	/	/	

/ means no variation with respect to the DNA melting temperature.

2019ncsx0001

Crystallography Service

3a

Sample ID: 3a

Crystal Data and Experimental

Figure S54: Thermal ellipsoids drawn at the 50% probability level.

Crystal Data. $C_{20}H_{28}AuBF_4N_8O_{4.11}$, $M_r = 730.04$, monoclinic, $P2_1/n$ (No. 14), a = 10.67910(10) Å, b = 15.81980(10) Å, c = 15.46860(10) Å, $\beta = 104.5940(10)^\circ$, $\alpha = \gamma = 90^\circ$, V = 2528.97(3) Å³, T = 100.0(7) K, Z = 4, Z' = 1, μ (CuK $_{\alpha}$) = 11.607 mm⁻¹, 44235 reflections measured, 4513 unique ($R_{int} = 0.0549$) which were used in all calculations. The final wR_2 was 0.0662 (all data) and R_1 was 0.0250 (I > 2(I)).

Table S2	
Compound	

Formula	C20H28AuBF4N8O4 11
D_{calc} / g cm ⁻³	1.917
μ/mm^{-1}	11.607
Formula Weight	730.04
Colour	colourless
Shape	irregular
Size/mm ³	0.260×0.110×0.060
<i>Т/</i> К	100.0(7)
, Crystal System	monoclinic
Space Group	$P2_1/n$
a/Å	10.67910(10)
b/Å	15.81980(10)
c/Å	15.46860(10)
$\alpha/^{\circ}$	90
B/°	104.5940(10)
$\gamma / ^{\circ}$	90
V/Å ³	2528.97(3)
Z	4
Ζ'	1
Wavelength/Å	1.54184
Radiation type	CuKα
$\Theta_{min}/^{\circ}$	4.546
$\Theta_{max}/^{\circ}$	67.075
, Measured Refl.	44235
Independent Refl.	4513
Reflections with I >	4491
2(I)	
R _{int}	0.0549
Parameters	361
Restraints	0
Largest Peak	1.556
Deepest Hole	-0.710
GooF	1.150
<i>wR</i> ² (all data)	0.0662
wR ₂	0.0661
R1 (all data)	0.0251
R_1	0.0250

Structure Quality Indicators

Reflections:	d min (Cu)	0.84 ^{I/σ}	48.7 Rint	5.49%	complete 100% (IUCr)	100%
Refinement:	Shift	0.001 Max Peak	1.6 ^{Min Peak}	-0.7	GooF	1.150

A colourless irregular-shaped crystal with dimensions $0.260 \times 0.110 \times 0.060 \text{ mm}^3$ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using a Rigaku 007HF diffractometer equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000HE detector, and equipped with an Oxford Cryosystems low-temperature device operating at *T* = 100.0(7) K.

Data were measured using ω scans of 0.5 ° per frame for 0.5 s using CuK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019). The maximum resolution that was achieved was Θ = 67.075° (0.84 Å).

The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019) and the unit cell was refined using **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019) on 32078 reflections, 73% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019). The final completeness is 99.80 % out to 67.075° in Θ .

A multi-scan absorption correction was performed using CrysAlisPro 1.171.40.39a (Rigaku Oxford Diffraction, 2019) using spherical harmonics as implemented in SCALE3 ABSPACK. The absorption coefficient μ of this material is 11.607 mm⁻¹ at this wavelength (λ = 1.54184 Å) and the minimum and maximum transmissions are 0.331 and 1.000.

The structure was solved and the space group $P2_1/n$ (# 14) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2014/7 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There was a little density left in between some molecules, and this was assumed to be some water. The occupancy of the water oxygen atom was refined to about 0.11(1). The water hydrogen atoms were omitted.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

Reflection Statistics

Total reflections (after filtering)	45307	Unique reflections	4513
Completeness	0.998	Mean I/ σ	46.71
hkl _{max} collected	(12, 18, 18)	hkl _{min} collected	(-12, -18, -18)
hkl _{max} used	(12, 18, 18)	hkl _{min} used	(-12, 0, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.77
d _{max} used	15.82	d _{min} used	0.84
Friedel pairs	6315	Friedel pairs merged	1
Inconsistent equivalents	69	R _{int}	0.0549
Rsigma	0.0205	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	(3852, 3830, 2820, 1699, 1339, 891, 483, 221, 112, 33, 1)	Maximum multiplicity	25
Removed systematic absences	1072	Filtered off (Shel/OMIT)	0

Atom	X	У	Z	U_{eq}
Au1	6703.3(2)	4830.7(2)	4419.9(2)	20.10(7)
01	1210(2)	8069.8(16)	2908.3(16)	32.2(5)
02	4547(2)	8112.5(15)	5430.9(15)	29.7(5)
03	10730(2)	878.5(16)	4102.3(16)	32.9(6)
04	11546(2)	2926.6(15)	6251.8(15)	29.0(5)
N1	2845(3)	8064.1(17)	4187.1(17)	22.7(5)
N2	2572(3)	6937.5(17)	3130.8(17)	22.0(5)
N3	4338(2)	5871.9(16)	3535.4(16)	19.2(5)
N4	5458(3)	6476.1(17)	4753.7(17)	21.7(5)
N5	11091(3)	1871.1(17)	5195.5(17)	23.7(6)
N6	9175(3)	1883.9(17)	3997.9(17)	21.6(5)
N7	7809(2)	3144.0(17)	4050.7(16)	20.0(5)
N8	9046(2)	3746.3(17)	5223.4(16)	20.1(5)
C1	2158(3)	7718(2)	3378(2)	23.8(7)
C2	4000(3)	7751(2)	4743(2)	23.3(7)
C3	4384(3)	6978(2)	4411(2)	21.2(6)
C4	3697(3)	6601(2)	3647(2)	19.9(6)
C5	5435(3)	5802(2)	4230(2)	22.1(6)
C6	2442(3)	8912(2)	4428(2)	27.8(7)
C7	3282(4)	9598(2)	4187(2)	30.1(7)
C8	1891(3)	6583(2)	2257(2)	27.6(7)
C9	3968(4)	5215(2)	2848(2)	26.0(7)
C10	6478(3)	6658(2)	5563(2)	28.2(7)
C11	10359(3)	1508(2)	4408(2)	25.0(7)
C12	10824(3)	2633(2)	5577(2)	22.4(7)
C13	9637(3)	2997(2)	5082(2)	20.0(6)
C14	8861(3)	2630(2)	4337(2)	20.1(6)
C15	7934(3)	3844(2)	4588(2)	22.0(6)
C16	12294(3)	1421(2)	5640(2)	32.3(8)
C17	12018(5)	643(3)	6125(3)	46.7(11)
C18	8471(3)	1542(2)	3124(2)	29.6(7)
C19	9580(3)	4355(2)	5929(2)	27.1(7)
C20	6721(3)	3042(2)	3252(2)	26.1(7)
F1	9337(2)	3814.9(16)	2994.5(15)	42.5(5)
F2	11336(2)	4218.1(14)	2919.2(13)	34.3(5)
F3	10971(2)	2852.0(15)	3252.1(16)	42.6(5)
F4	10133(2)	3347.6(16)	1857.3(14)	40.7(5)
B1	10436(4)	3562(3)	2754(2)	24.7(7)
05	14250(30)	-582(17)	6698(19)	48(10)

_

Table S3: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3a**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	<i>U</i> 11	U 22	U 33	U 23	U 13	U ₁₂
Au1	20.54(10)	19.70(11)	18.76(10)	1.86(4)	2.52(6)	2.20(4)
01	26.6(12)	34.8(13)	29.7(12)	0.0(11)	-3.1(10)	10.2(11)
02	38.8(13)	26.0(12)	19.0(11)	-2.8(9)	-2.8(10)	4.6(10)
03	37.4(14)	30.2(13)	25.3(12)	-8.6(10)	-3.0(10)	11.8(11)
04	28.7(12)	29.3(12)	21.4(11)	-5.5(10)	-7.9(9)	3.6(10)
N1	24.3(13)	22.8(13)	19.8(13)	1.5(11)	3.6(11)	5.6(11)
N2	20.6(13)	23.7(13)	18.1(12)	1.6(11)	-1.5(10)	2.2(11)
N3	20.9(12)	18.9(12)	16.1(12)	1.3(10)	1.3(10)	1.1(10)
N4	22.1(13)	21.0(13)	18.9(12)	1.6(10)	-0.6(10)	0.9(11)
N5	23.7(14)	23.1(13)	19.6(13)	-1.6(11)	-3.0(11)	5.5(11)
N6	22.9(13)	22.3(13)	16.0(12)	-2.5(10)	-1.5(10)	1.0(11)
N7	19.7(12)	20.7(13)	17.0(12)	0.9(10)	-0.2(10)	0.5(10)
N8	22.0(13)	19.3(12)	16.8(12)	-3.4(10)	1.1(10)	2.1(10)
C1	22.9(16)	25.1(16)	22.9(15)	2.1(13)	4.7(13)	2.8(13)
C2	27.1(16)	23.6(16)	18.2(15)	3.7(13)	3.6(13)	2.2(13)
C3	21.1(15)	19.5(15)	20.8(15)	4.5(12)	1.1(12)	1.4(12)
C4	20.9(15)	20.2(15)	18.4(14)	4.9(12)	4.5(12)	-0.2(12)
C5	25.5(16)	20.6(15)	18.1(14)	1.8(12)	1.5(12)	-3.4(13)
C6	29.8(17)	29.0(18)	24.1(16)	-1.7(14)	5.8(13)	9.8(14)
C7	40(2)	22.3(16)	25.6(17)	0.5(14)	3.3(15)	9.2(16)
C8	27.4(17)	32.0(18)	19.3(15)	-1.6(13)	-1.8(13)	4.4(14)
С9	28.9(18)	24.6(18)	21.3(17)	-2.8(12)	0.5(14)	1.2(13)
C10	29.3(17)	26.3(17)	21.8(16)	-2.0(13)	-6.8(13)	3.5(14)
C11	27.7(17)	26.2(17)	18.9(15)	0.1(13)	2.0(13)	4.6(14)
C12	25.7(16)	21.6(16)	18.5(15)	0.6(13)	3.0(13)	2.0(13)
C13	21.7(15)	20.4(14)	16.5(14)	-0.7(12)	2.5(12)	0.0(12)
C14	23.3(15)	20.5(15)	15.5(14)	1.4(12)	3.3(12)	0.8(12)
C15	21.7(15)	25.7(16)	17.5(14)	0.7(12)	2.9(12)	-1.6(13)
C16	31.5(18)	29.1(18)	28.0(17)	-5.6(14)	-8.0(14)	10.9(15)
C17	65(3)	27.1(19)	34(2)	0.2(16)	-12.9(19)	10.1(19)
C18	34.3(18)	27.6(17)	20.7(16)	-6.4(13)	-4.8(13)	4.9(15)
C19	33.7(18)	23.8(16)	21.0(15)	-4.3(13)	1.6(13)	2.1(14)
C20	22.6(16)	31.0(17)	19.8(15)	-2.8(13)	-4.1(12)	3.8(13)
F1	35.0(11)	55.9(14)	41.5(12)	11.0(11)	19.1(10)	9.7(10)
F2	36.9(11)	34.8(11)	29.0(10)	-3.4(9)	4.0(8)	-8.7(9)
F3	32.6(11)	36.1(12)	54.8(14)	9.3(11)	3.1(10)	-0.2(9)
F4	37.4(12)	54.9(14)	26.8(10)	-12.7(10)	2.7(9)	-7.8(10)
B1	23.0(17)	28.7(19)	21.6(17)	-2.0(15)	4.3(14)	-2.7(15)
05	58(19)	33(15)	51(17)	2(12)	10(13)	13(12)

Table S4: Anisotropic Displacement Parameters (×10⁴) **3a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$
Table S5: Bond Lengths in Å for **3a**.

Atom	Atom	Length/Å	Atom
Au1	C5	2.020(3)	N5
Au1	C15	2.015(3)	N6
01	C1	1.221(4)	N6
02	C2	1.219(4)	N6
03	C11	1.211(4)	N7
04	C12	1.223(4)	N7
N1	C1	1.394(4)	N7
N1	C2	1.404(4)	N8
N1	C6	1.484(4)	N8
N2	C1	1.397(4)	N8
N2	C4	1.371(4)	C2
N2	C8	1.474(4)	C3
N3	C4	1.375(4)	C6
N3	C5	1.380(4)	C12
N3	C9	1.467(4)	C13
N4	C3	1.386(4)	C16
N4	C5	1.335(4)	F1
N4	C10	1.465(4)	F2
N5	C11	1.395(4)	F3
N5	C12	1.402(4)	F4

Atom	Atom	Length/Å
N5	C16	1.478(4)
N6	C11	1.396(4)
N6	C14	1.367(4)
N6	C18	1.475(4)
N7	C14	1.368(4)
N7	C15	1.371(4)
N7	C20	1.476(4)
N8	C13	1.386(4)
N8	C15	1.347(4)
N8	C19	1.460(4)
C2	C3	1.426(5)
C3	C4	1.362(4)
C6	C7	1.514(5)
C12	C13	1.427(4)
C13	C14	1.367(4)
C16	C17	1.509(6)
F1	B1	1.377(4)
F2	B1	1.394(4)
F3	B1	1.400(5)
F4	B1	1.384(4)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C15	Au1	C5	178.55(12)	C4	C3	N4	107.1(3)
C1	N1	C2	126.5(3)	C4	C3	C2	123.2(3)
C1	N1	C6	117.4(3)	N2	C4	N3	130.0(3)
C2	N1	C6	115.5(3)	C3	C4	N2	122.5(3)
C1	N2	C8	118.0(3)	C3	C4	N3	107.5(3)
C4	N2	C1	118.3(3)	N3	C5	Au1	125.5(2)
C4	N2	C8	122.9(3)	N4	C5	Au1	127.6(2)
C4	N3	C5	108.7(3)	N4	C5	N3	106.9(3)
C4	N3	C9	129.3(3)	N1	C6	C7	111.0(3)
C5	N3	C9	121.9(3)	03	C11	N5	120.9(3)
C3	N4	C10	125.4(3)	03	C11	N6	121.4(3)
C5	N4	C3	109.8(3)	N5	C11	N6	117.7(3)
C5	N4	C10	124.8(3)	04	C12	N5	122.3(3)
C11	N5	C12	126.4(3)	04	C12	C13	126.0(3)
C11	N5	C16	116.0(3)	N5	C12	C13	111.6(3)
C12	N5	C16	117.6(3)	N8	C13	C12	129.7(3)
C11	N6	C18	117.0(3)	C14	C13	N8	107.0(3)
C14	N6	C11	118.3(3)	C14	C13	C12	123.2(3)
C14	N6	C18	123.4(3)	N6	C14	N7	130.5(3)
C14	N7	C15	109.8(3)	N6	C14	C13	122.4(3)
C14	N7	C20	128.0(3)	C13	C14	N7	107.1(3)
C15	N7	C20	122.1(3)	N7	C15	Au1	126.0(2)
C13	N8	C19	125.1(3)	N8	C15	Au1	127.6(2)
C15	N8	C13	109.6(3)	N8	C15	N7	106.4(3)
C15	N8	C19	125.2(3)	N5	C16	C17	111.6(3)
01	C1	N1	121.7(3)	F1	B1	F2	109.2(3)
01	C1	N2	120.8(3)	F1	B1	F3	109.9(3)
N1	C1	N2	117.5(3)	F1	B1	F4	110.0(3)
02	C2	N1	121.5(3)	F2	B1	F3	109.2(3)
02	C2	C3	126.7(3)	F4	B1	F2	110.1(3)
N1	C2	C3	111.7(3)	F4	B1	F3	108.3(3)
N4	C3	C2	129.7(3)				

Table S6: Bond Angles in ° for **3a**.

Atom Atom Atom Atom Angle/° 02 C2 С3 N4 -2.6(6)02 C2 С3 C4 178.0(3) 04 C12 C13 N8 1.4(6) -179.0(3)04 C12 C13 C14 N1 C2 С3 N4 179.3(3) N1 C2 С3 C4 -0.1(4)С3 N4 C4 N2 -179.5(3)С3 N4 C4 N3 0.9(3) N5 C12 C13 N8 -178.7(3)N5 C12 C13 C14 1.0(4) N8 C13 C14 N6 178.7(3) N8 C13 C14 Ν7 -1.2(3)02 С1 N1 C2 178.2(3)C1 N1 C2 С3 -3.6(4)С6 -97.4(3) С1 N1 С7 C1 N2 C4 N3 -177.0(3)C1 N2 C4 С3 3.4(4)C2 N1 C1 01 -174.7(3)C2 C1 N1 N2 7.1(5) 73.8(3) C2 N1 C6 С7 С2 С3 C4 N2 0.1(5)С3 C4 N3 -179.6(3) С2 С3 N4 C5 Au1 -177.3(2)С3 N4 C5 N3 0.5(3) C4 N2 C1 01 175.2(3) C4 N2 C1 N1 -6.5(4)177.9(2) C4 N3 C5 Au1 C4 N3 С5 N4 0.0(3) C5 N3 C4 N2 179.8(3) C5 C4 С3 N3 -0.6(3)С5 N4 С3 C2 179.6(3) C5 N4 С3 C4 -0.9(4)С6 N1 C1 01 -4.5(5)N1 C1 C6 N2 177.2(3) C6 N1 C2 02 7.9(4) С6 N1 C2 С3 -173.9(3)С8 N2 C1 01 4.5(5) С8 N2 C1 N1 -177.2(3)N2 C4 C8 N3 -6.8(5)N2 C4 С3 С8 173.6(3)С9 N3 C4 N2 -3.4(5)176.3(3) С9 N3 C4С3 C9 C5 N3 Au1 0.8(4) С9 N3 C5 N4 -177.1(3)C10 N4 С3 C2 -1.0(5)C10 N4 С3 C4 178.5(3) С5 C10 N4 Au1 3.3(5) C10 N4 C5 N3 -178.8(3)C11 N5 C12 04 -176.8(3) C11 N5 C12 C13 3.2(5) C11 N5 C16 C17 -76.2(4)C11 N6 177.0(3) C14 N7 C11 N6 C14 C13 -2.9(5)C12 N5 C11 03 174.4(3)C12 N5 C11 N6 -7.1(5)C12 N5 C16 C17 106.6(4) C12 C13 N6 C14 -1.0(5)C12 C13 C14 N7 179.1(3) C13 N8 C15 Au1 -177.3(2)C13 N8 C15 Ν7 1.1(3)

Table S7: Torsion Angles in ° for 3a.

Atom	Atom	Atom	Atom	Angle/°
C14	N6	C11	03	-175.0(3)
C14	N6	C11	N5	6.6(4)
C14	N7	C15	Au1	176.5(2)
C14	N7	C15	N8	-1.9(3)
C15	N7	C14	N6	-177.9(3)
C15	N7	C14	C13	2.0(3)
C15	N8	C13	C12	179.7(3)
C15	N8	C13	C14	0.1(3)
C16	N5	C11	03	-2.5(5)
C16	N5	C11	N6	176.0(3)
C16	N5	C12	04	0.0(5)
C16	N5	C12	C13	-179.9(3)
C18	N6	C11	03	-7.1(5)
C18	N6	C11	N5	174.5(3)
C18	N6	C14	N7	9.9(5)
C18	N6	C14	C13	-170.0(3)
C19	N8	C13	C12	2.5(5)
C19	N8	C13	C14	-177.2(3)
C19	N8	C15	Au1	0.0(5)
C19	N8	C15	N7	178.4(3)
C20	N7	C14	N6	-2.6(5)
C20	N7	C14	C13	177.3(3)
C20	N7	C15	Au1	0.9(4)
C20	N7	C15	N8	-177.5(3)

Atom	Х	У	Z	Ueq
H6A	2505	8931	5064	33
H6B	1546	9011	4115	33
H7A	3254	9562	3563	45
H7B	4158	9527	4534	45
H7C	2968	10141	4313	45
H8A	2448	6606	1858	41
H8B	1123	6907	2013	41
H8C	1660	6006	2332	41
H9A	4643	4799	2930	39
H9B	3840	5467	2268	39
H9C	3180	4950	2897	39
H10A	6852	7200	5505	42
H10B	7135	6231	5642	42
H10C	6114	6662	6070	42
H16A	12851	1798	6062	39
H16B	12749	1258	5196	39
H17A	11518	251	5702	70
H17B	11541	799	6550	70
H17C	12819	383	6431	70
H18A	7566	1502	3101	44
H18B	8800	991	3043	44
H18C	8588	1911	2657	44
H19A	9759	4077	6499	41
H19B	8966	4802	5916	41
H19C	10366	4588	5837	41
H20A	7051	2990	2732	39
H20B	6165	3527	3190	39
H20C	6240	2543	3315	39

Table S8: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3a**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Table S9: Atomic Occupancies for all atoms that are not fully occupied in 3a.

Atom	Occupancy
05	0.110(12)

2019ncs0138

Sample ID: 4b

Table S10 Compound	4b
Formula	$C_{48}H_{48}Au_3N_{15}O_6$
D _{calc.} / g cm ⁻³	1.807
μ/mm^{-1}	14.974
Formula Weight	1521.91
Colour	colourless
Shape	plate
Size/mm ³	0.150×0.080×0.020
<i>Т/</i> К	100.01(10)
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	12.4804(2)
b/Å	14.5714(2)
c/Å	16.2958(2)
$\alpha/^{\circ}$	105.5230(10)
$\beta/^{\circ}$	94.9850(10)
γ/°	98.6460(10)
V/Å ³	2797.70(7)
Ζ	2
Ζ'	1
Wavelength/Å	1.54184
Radiation type	CuKα
$\Theta_{min}/^{\circ}$	2.840
$\Theta_{max}/^{\circ}$	67.076
Measured Refl.	47307
Independent Refl.	9932
Reflections with I >	9183
2(I)	
Rint	0.0463
Parameters	661
Restraints	0
Largest Peak	1.344
Deepest Hole	-2.146
GooF	1.080
wR2 (all data)	0.1027
wR_2	0.1010
R_1 (all data)	0.0404
R_1	0.0379

Crystal Data. $C_{48}H_{48}Au_3N_{15}O_6$, $M_r = 1521.91$, triclinic, *P*-1 (No. 2), a = 12.4804(2) Å, b = 14.5714(2) Å, c = 16.2958(2) Å, $\alpha = 105.5230(10)^\circ$, $\beta = 94.9850(10)^\circ$, $\gamma = 98.6460(10)^\circ$, $V = 2797.70(7) Å^3$, T = 100.01(10) K, Z = 2, Z' = 1, μ (CuK $_{\alpha}$) = 14.974 mm⁻¹, 47307 reflections measured, 9932 unique ($R_{int} = 0.0463$) which were used in all calculations. The final wR_2 was 0.1027 (all data) and R_1 was 0.0379 (I > 2(I)).

Structure Quality Indicators

Reflections:	d min (Cu)	0.84 ^{I/σ}	31.9 Rint	4.63%	complete 99% (IUCr)	99%
Refinement:	Shift	0.001 Max Peak	1.3 ^{Min Peak}	-2.1	GooF	1.080

A colourless plate-shaped crystal with dimensions $0.150 \times 0.080 \times 0.020$ mm³ was mounted on a MITIGEN holder in perfluoroether oil. Data were collected using a Rigaku 007HF diffractometer equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000HE detector, and equipped with an Oxford Cryosystems low-temperature device operating at *T* = 100.01(10) K.

Data were measured using ω scans of 0.5 ° per frame for 2 s using CuK_{α} radiation (Rotating-anode X-ray tube, 40 kV, 30 mA). The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019). The maximum resolution that was achieved was Θ = 67.076° (0.84 Å).

Cell parameters were retrieved using the **CrysAlisPro** (Rigaku, V1.171.39.46, 2018) software and refined using **CrysAlisPro** (Rigaku, V1.171.39.46, 2018) on 20201 reflections, 43% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using **CrysAlisPro** (Rigaku, V1.171.40.39a, 2019). The final completeness is 99.40 % out to 67.076° in Θ .

A multi-scan absorption correction was performed using CrysAlisPro 1.171.40.39a (Rigaku Oxford Diffraction, 2019) using spherical harmonics as implemented in SCALE3 ABSPACK. The absorption coefficient μ of this material is 14.974 mm⁻¹ at this wavelength (λ = 1.54184 Å) and the minimum and maximum transmissions are 0.566 and 1.000.

The structure was solved and the space group *P*-1 (# 2) determined by the ShelXD (Sheldrick, 2008) structure solution program using Dual Space and refined by Least Squares using version 2014/7 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. There is still a cavity of about 550 Å³ available for solvents. No solvents were identified, so the structure was SQUEEZEd.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1.

Reflection Statistics

Total reflections (after filtering)	47320	Unique reflections	9932
Completeness	0.994	Mean I/ σ	21.68
hkl _{max} collected	(14, 17, 19)	hkl _{min} collected	(-14, -17, -19)
hkl _{max} used	(14, 16, 19)	hkl _{min} used	(-14, -17, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.77
d _{max} used	15.56	d _{min} used	0.84
Friedel pairs	6844	Friedel pairs merged	1
Inconsistent equivalents	8	R _{int}	0.0463
Rsigma	0.0314	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	13
Multiplicity	(3994, 4561, 3342, 2300, 1312, 706, 372, 150, 34, 5, 2)	Maximum multiplicity	13
Removed systematic absences	0	Filtered off (Shel/OMIT)	0

Atom	X	v	Z	Ueg
Au1	8034.0(2)	9304.3(2)	5035.5(2)	41.23(8)
Au2	6416.9(2)	7335.4(2)	3806.0(2)	42.65(8)
Au3	4657.0(2)	5471.1(2)	2530.6(2)	50.94(9)
01	10839(6)	9894(7)	2312(5)	116(3)
02	12255(5)	7084(6)	2210(4)	110(2)
03	2307(3)	7996(3)	5450(3)	56.6(11)
04	3792(5)	7534(4)	7940(3)	69.5(13)
05	7534(4)	4404(4)	-269(4)	79.3(15)
06	7273(5)	7142(5)	-1064(4)	92.7(19)
N1	3617(5)	10303(4)	7735(4)	62.4(15)
N2	9559(4)	9431(3)	3704(3)	45.5(11)
N3	9678(3)	8176(3)	4155(3)	41.6(10)
N4	10996(4)	7452(5)	3176(4)	65.8(16)
N5 NG	11542(5)	8466(6)	2277(4)	82(2)
NO N7	9907(4) 4470(2)	7(72(2))	334(4) 4701(2)	04.0(10)
IN / NQ	4470(3) 5788(4)	7073(3)	4/01(3) 5574(2)	37.5(10) 38.6(10)
	3700(4)	7355(3)	6880(3)	30.0(10) 48.0(11)
N10	3053(5)	7732(4)	6682(3)	517(12)
N11	1849(5)	52(1)	6341(4)	70 6(17)
N12	6019(4)	5074(4)	1070(3)	49.7(12)
N13	5367(4)	6388(4)	1159(3)	50.6(12)
N14	6275(5)	6885(4)	-4(4)	66.3(16)
N15	7373(5)	5770(5)	-668(4)	72.9(18)
C1	3605(5)	10453(5)	6963(4)	53.2(15)
C2	4418(5)	10304(4)	6462(4)	49.0(14)
C3	5343(5)	10001(4)	6773(4)	44.6(13)
C4	5381(6)	9871(5)	7583(4)	56.6(16)
C5	4509(6)	10013(5)	8031(5)	61.8(17)
C6	6217(5)	9831(4)	6263(4)	45.5(13)
C7	6923(5)	9657(4)	5807(4)	48.5(14)
C8	9170(4)	8953(4)	4255(4)	45.4(14)
C9	10345(4)	8163(4)	3521(4)	43.5(13)
C10	10285(5)	8929(5)	3257(4)	49.5(14)
C12	10800(5)	9154(5)	2018(4)	50.9(15)
C12	0460(5)	7074(0)	2307(4) 4628(4)	53.3(17) 52.2(15)
C13	9229(5)	10337(4)	3634(5)	59.2(13)
C15	11005(5)	6637(4)	3375(4)	59.0(17) 54 5(17)
C16	12132(5)	8663(7)	1699(5)	80(3)
C17	9865(5)	6306(5)	768(4)	57.8(17)
C18	9192(5)	6317(4)	1412(4)	51.3(15)
C19	8617(5)	7074(4)	1646(4)	44.2(13)
C20	8763(5)	7778(5)	1206(4)	52.0(15)
C21	9443(6)	7684(6)	578(5)	61.9(18)
C22	7926(5)	7138(5)	2301(4)	48.9(14)
C23	7343(5)	7205(4)	2859(4)	48.6(14)
C24	5498(5)	7469(4)	4780(4)	42.2(12)
C25	4950(4)	7496(4)	6051(4)	39.5(12)
C26	4118(5)	7682(4)	5561(4)	39.9(12)
C20	3095(4)	7826(4)	5846(4)	42.1(12)
C20	3888(6) 2920(F)	7574(4)	/199(4)	52.4(15)
C20	3029(3) 6887(5)	7000(4)	4043(4) 5831(1)	40.7(13) 50 5(14)
C31	5770(7)	7345(5)	7455(4)	64 9(18)
C32	2043(6)	7836(5)	7050(5)	63 6(18)
C33	1370(6)	5462(7)	5662(6)	86(3)
C34	1850(6)	5471(7)	4934(6)	77(2)
C35	2910(5)	5279(4)	4888(4)	52.1(15)

Table S11: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4b**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	х	у	Z	Ueq
C36	3423(5)	5083(4)	5602(4)	53.3(15)
C37	2856(6)	5077(4)	6300(5)	62.3(17)
C38	3463(5)	5284(4)	4142(5)	54.3(16)
C39	3904(5)	5322(4)	3523(5)	55.0(16)
C40	5384(5)	5636(4)	1511(4)	48.7(14)
C41	6032(5)	6296(5)	520(4)	54.3(16)
C42	6435(5)	5465(5)	447(4)	53.4(15)
C43	7148(6)	5133(6)	-168(5)	63.7(18)
C44	7009(6)	6630(6)	-604(5)	72(2)
C45	6304(6)	4207(5)	1268(5)	63.8(18)
C46	4779(7)	7171(5)	1493(5)	66.1(19)
C47	5932(8)	7814(6)	105(6)	89(3)
C48	8106(6)	5493(8)	-1325(5)	88(3)

Atom	U ₁₁	U 22	U 33	U 23	U 13	U ₁₂
Au1	28.67(13)	35.19(13)	48.68(14)	-1.79(10)	-6.69(9)	3.21(9)
Au2	29.44(13)	38.57(14)	49.10(15)	1.09(10)	-3.61(10)	-1.46(10)
Au3	39.84(15)	37.96(14)	62.06(17)	3.67(11)	-13.74(11)	-1.82(10)
01	86(5)	160(7)	102(5)	55(5)	4(4)	-6(5)
02	70(4)	154(7)	88(4)	-2(4)	-4(3)	36(4)
03	42(2)	49(2)	73(3)	12(2)	2(2)	6.7(19)
04	91(4)	66(3)	54(3)	21(2)	12(3)	14(3)
05	61(3)	77(4)	82(4)	0(3)	2(3)	2(3)
06	77(4)	118(5)	74(4)	45(4)	-31(3)	-18(3)
N1	48(3)	48(3)	80(4)	2(3)	15(3)	0(2)
N2	32(2)	39(3)	51(3)	0(2)	-11(2)	-5.4(19)
N3	25(2)	32(2)	54(3)	-2.4(19)	-9.0(19)	-1.6(1/)
N4 NE	32(3)	83(4) 126(6)	58(3)	-9(3)	-13(2)	0(3)
N5 N6	30(3) 38(3)	120(0)	53(4) 50(2)	-7(4)	-11(3)	-/(4) 1(2)
NO N7	27(2)	28(2)	30(3) 49(3)	5 9(18)	-1(2) -73(18)	-1(3) -39(17)
N8	32(2)	28(2)	47(2)	4 1(18)	-92(19)	0.9(17)
N9	52(2) 57(3)	37(2)	45(3)	8(2)	-4(2)	8(2)
N10	56(3)	40(3)	58(3)	10(2)	12(3)	7(2)
N11	53(4)	54(3)	82(4)	-11(3)	6(3)	-2(3)
N12	40(3)	43(3)	56(3)	6(2)	-15(2)	1(2)
N13	44(3)	42(3)	52(3)	4(2)	-21(2)	-1(2)
N14	53(3)	63(4)	71(4)	18(3)	-23(3)	-6(3)
N15	49(3)	94(5)	59(4)	13(3)	-19(3)	-9(3)
C1	33(3)	47(3)	66(4)	0(3)	0(3)	0(2)
C2	41(3)	39(3)	53(3)	1(3)	-6(3)	-4(2)
C3	37(3)	30(3)	52(3)	-6(2)	-1(2)	0(2)
C4	59(4)	44(3)	62(4)	7(3)	1(3)	12(3)
C5	66(5)	50(4)	64(4)	10(3)	6(3)	7(3)
C6	42(3)	31(3)	54(3)	3(2)	-9(3)	2(2)
	37(3)	38(3)	57(4)	-2(3)	-11(3)	3(2)
	33(3)	41(3)	51(3)	3(3)	-9(3)	-2(2)
C10	20(3)	43(3) 59(4)	43(3)	-13(2)	-0(2)	4(2)
C10	37(3)	66(4)	40(3)	12(3)	-7(2)	-14(3)
C12	28(3)	85(5)	36(3)	-9(3)	-4(2)	10(3)
C13	41(3)	48(3)	69(4)	19(3)	-4(3)	3(3)
C14	50(4)	45(3)	73(4)	18(3)	-18(3)	-8(3)
C15	35(3)	41(3)	66(4)	-18(3)	-15(3)	18(3)
C16	27(3)	143(8)	54(4)	21(4)	-1(3)	-20(4)
C17	39(3)	71(4)	52(4)	-2(3)	-5(3)	13(3)
C18	46(3)	45(3)	48(3)	-2(3)	-13(3)	3(3)
C19	30(3)	47(3)	42(3)	-1(2)	-7(2)	-1(2)
C20	36(3)	51(4)	57(4)	3(3)	-9(3)	2(3)
C21	49(4)	70(5)	59(4)	22(3)	-9(3)	-9(3)
C22	37(3)	51(3)	45(3)	1(3)	-12(3)	-4(3)
C23	35(3)	46(3)	49(3)	-5(3)	-5(3)	-3(2)
C24	$\frac{3}{(3)}$	32(3)	49(3)	2(2) 5(2)	-5(2)	2(2)
C26	30(3)	30(3)	40(3)	5(2)	-2(2)	1(2)
C27	42(3)	29(3)	42(3)	7(2) 8(2)	-7(2)	2(2)
C28	62(4)	42(3)	54(3) 51(4)	10(2)	-2(2) 7(3)	9(3)
C29	38(3)	49(3)	48(3)	12(3)	-8(2)	2(2)
C30	36(3)	44(3)	65(4)	11(3)	-10(3)	5(2)
C31	86(5)	56(4)	50(4)	14(3)	-9(3)	18(4)
C32	53(4)	60(4)	75(5)	8(3)	22(3)	13(3)
C33	31(4)	98(6)	99(7)	-18(5)	-5(4)	16(4)
C34	33(4)	101(6)	80(5)	1(4)	-12(4)	13(4)
C35	34(3)	33(3)	73(4)	-5(3)	-7(3)	0(2)
			46			

Table S12: Anisotropic Displacement Parameters (×10⁴) **4b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U 12
C36	39(3)	39(3)	73(4)	3(3)	-3(3)	6(2)
C37	61(4)	38(3)	75(5)	-2(3)	9(4)	4(3)
C38	38(3)	33(3)	78(5)	1(3)	-11(3)	2(2)
C39	41(3)	38(3)	70(4)	-1(3)	-14(3)	2(3)
C40	35(3)	33(3)	62(4)	1(3)	-21(3)	-6(2)
C41	44(3)	47(3)	57(4)	7(3)	-27(3)	-8(3)
C42	38(3)	53(4)	56(4)	9(3)	-17(3)	-6(3)
C43	45(4)	63(4)	63(4)	1(3)	-21(3)	-4(3)
C44	56(4)	74(5)	67(5)	18(4)	-32(4)	-20(4)
C45	59(4)	40(3)	81(5)	7(3)	-13(4)	8(3)
C46	81(5)	50(4)	61(4)	11(3)	-14(4)	18(4)
C47	84(6)	78(6)	105(7)	46(5)	-19(5)	-4(5)
C48	46(4)	129(8)	69(5)	8(5)	1(4)	-6(4)

 Table S13: Bond Lengths in Å for 4b.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Au1	Au2	3.2860(3)	N10	C28	1.369(9)
Au1	C7	1.985(7)	N10	C32	1.453(8)
Au1	C8	2.018(6)	N11	C33	1.332(12)
Au2	Au3	3.3036(3)	N11	C37	1.329(9)
Au2	C23	1.993(7)	N12	C40	1.340(8)
Au2	C24	2.023(6)	N12	C42	1.393(9)
Au3	C39	1.984(8)	N12	C45	1.469(8)
Au3	C40	2.013(7)	N13	C40	1.368(8)
01	C11	1.306(10)	N13	C41	1.378(9)
02	C12	1.338(9)	N13	C46	1.459(9)
03	C27	1.221(7)	N14	C41	1.385(9)
04	C28	1.240(8)	N14	C44	1.413(11)
05	C43	1.209(9)	N14	C47	1.450(11)
06	C44	1.223(9)	N15	C43	1.404(10)
N1	C1	1.333(9)	N15	C44	1.378(11)
N1	C5	1.344(9)	N15	C48	1.482(10)
N2	C8	1.356(8)	C1	C2	1.363(9)
N2	C10	1.384(8)	C2	C3	1.399(8)
N2	C14	1.470(8)	C3	C4	1.380(9)
N3	C8	1.359(7)	C3	C6	1.439(9)
N3	С9	1.379(8)	C4	C5	1.374(10)
N3	C13	1.465(8)	C6	C7	1.213(9)
N4	C9	1.439(8)	С9	C10	1.310(9)
N4	C12	1.367(9)	C10	C11	1.395(9)
N4	C15	1.313(9)	C17	C18	1.399(10)
N5	C11	1.441(10)	C18	C19	1.392(9)
N5	C12	1.368(11)	C19	C20	1.399(9)
N5	C16	1.310(10)	C19	C22	1.424(9)
N6	C17	1.325(10)	C20	C21	1.377(10)
N6	C21	1.309(10)	C22	C23	1.206(9)
N7	C24	1.350(7)	C25	C26	1.359(8)
N7	C26	1.382(7)	C26	C27	1.422(8)
N7	C29	1.459(7)	C33	C34	1.377(13)
N8	C24	1.372(7)	C34	C35	1.398(9)
N8	C25	1.365(7)	C35	C36	1.396(10)
N8	C30	1.466(7)	C35	C38	1.450(11)
N9	C25	1.378(7)	C36	C37	1.391(10)
N9	C28	1.391(8)	C38	C39	1.201(10)
N9	C31	1.453(8)	C41	C42	1.359(9)
N10	C27	1.411(8)	C42	C43	1.433(11)

Atom Atom Atom Angle/° Atom Atom Atom Angle/° N2 C8 Au1 С7 Au1 Au2 93.66(16) 126.8(4) N2 С8 N3 105.9(5) С7 Au1 C8 179.7(2) С8 C8 Au2 N3 Au1 127.3(4) Au1 86.68(15) N3 С9 N4 128.4(6) Au1 Au2 Au3 175.328(9) С9 N3 C23 Au2 Au1 C10 107.8(5) 93.39(16) C23 C10 С9 N4 Au2 87.57(16) 123.8(6) Au3 N2 C10 C11 C23 128.0(6)Au2 C24 179.1(2) C9 C10 N2 C24 Au2 Au1 86.05(15) 108.3(5)С9 C10 C11 123.7(6)C24 Au2 Au3 93.04(15) 01 C11 N5 C39 90.29(17) 118.7(7)Au3 Au2 01 C11 C10 C39 Au3 C40 178.3(2) 127.7(7)C10 C11 N5 C40 113.7(7)Au3 Au2 90.26(15) N4 02 C12 119.5(8) C1 N1 C5 116.6(6)N5 **C**8 N2 C10 108.8(5)02 C12 116.6(7)C8 N2 C14 122.9(5) N5 C12 N4 123.9(6) C10 N2 C14 N6 C17 C18 123.9(7) 128.3(6) C19 C18 C17 N3 С9 118.9(6) С8 109.2(5)C20 C18 C19 C8 N3 C13 116.4(6)123.3(5)C19 C22 C9 N3 C13 127.4(5)C18 122.0(6) C12 N4 C9 113.5(6) C20 C19 C22 121.6(6) C15 N4 C9 125.3(6) C21 C20 C19 119.3(6) N6 C21 C20 124.8(7) C15 N4 C12 121.1(6) C23 C22 C19 C12 N5 179.1(7) C11 121.5(6) C23 C22 Au2 C16 N5 C11 116.2(9)178.4(5)C16 N5 C12 122.3(8) N7 C24 Au2 127.4(4)C21 N7 C24 N8 106.2(5)N6 C17 116.7(6) Au2 C24 N7 C26 110.1(5)N8 C24 126.4(4)C24 N7 C29 124.6(5) N8 C25 N9 129.7(5) C26 N7 C29 125.2(5) C26 C25 N8 108.2(5)C26 C25 N9 C24 N8 C30 121.5(5)122.1(5) C26 C25 N8 N7 C27 130.2(5) C24 109.1(4) 129.1(5) C25 C26 N7 106.4(5)C25 N8 C30 C26 C25 N9 C25 C27 123.3(5)C28 117.9(5) C27 N10 C25 N9 03 120.7(5) C31 124.0(6) C27 C26 C28 N9 C31 118.0(5)03 127.6(6) C27 N10 C32 117.8(5)N10 C27 C26 111.6(5)C28 C27 04 C28 N9 119.3(6)N10 126.3(5)04 C28 N10 C28 N10 C32 122.0(6) 115.9(6) N10 C28 N9 118.7(5)C37 N11 C33 116.6(7)C33 C34 N11 124.1(7)C40 C42 110.7(5)N12 C34 C35 C33 C40 N12 C45 124.2(6) 119.6(8) C35 C42 N12 C45 124.9(6) C34 C38 122.3(7)C36 C35 C34 116.7(7) C40 N13 C41 109.2(5) C35 C38 C40 N13 C46 122.0(6) C36 121.1(6) C37 C36 C35 119.0(6) C41 N13 C46 128.6(6) N11 C37 C36 124.0(8)C41 N14 C44 118.2(7)C39 C38 C35 C41 N14 C47 123.4(7)177.3(7)C44 C47 117.9(7) C38 C39 Au3 176.5(6)N14 N12 C40 127.8(5) C43 N15 C48 116.0(8) Au3 N12 C40 N13 106.2(6) C44 N15 C43 127.3(7) C40 C44 N15 C48 116.6(8) N13 Au3 125.9(5) N13 C41 N14 129.8(6) N1 C1 C2 124.0(6)C41 C1 C2 C3 119.1(6) C42 N13 108.0(6)C2 С3 C42 C41 N14 122.2(7)C6 120.9(6) C42 C4 С3 C2 N12 C43 131.0(7)117.5(6) C41 C42 N12 C4 С3 С6 121.6(6) 105.9(6) C41 C42 C43 C4 С3 123.1(7)C5 119.3(6) 05 C43 N15 N1 C5 C4123.5(7)121.7(8) С7 C6 С3 177.3(6)05 C43 C42 126.6(8) 111.7(7) C6 C7 Au1 177.1(5) N15 C43 C42

Table S14:	Bond Angl	es in °	for 4b
------------	-----------	---------	---------------

Atom	Atom	Atom	Angle/°
06	C44	N14	120.6(9)
06	C44	N15	122.0(9)

Atom	Atom	Atom	Angle/°
N15	C44	N14	117.3(7)

Table S15 : Torsion Angles in ° for 4b .
--

Atom	Atom	Atom	Atom	Angle/°
N1	C1	C2	63	-19(9)
N2	C10	C11	01	0.6(11)
N2	C10	C11	N5	-179 3(5)
N2	C9	C10	N2	-14(6)
N3	C9	C10	C11	1797(5)
NJ NJ	C9	C10		177.0(5)
IN4 N4	C9	C10	NZ C11	1/7.9(5)
N4 NC	C9	C10		-1.1(9)
N6		C18	019	-0.6(9)
N/	C26	C27	03	-1./(10)
N7	C26	627	N10	177.1(5)
N8	C25	C26	N7	-1.2(6)
N8	C25	C26	C27	177.4(5)
N9	C25	C26	N7	179.7(5)
N9	C25	C26	C27	-1.7(8)
N11	C33	C34	C35	-1.0(14)
N12	C42	C43	05	0.8(11)
N12	C42	C43	N15	-179.1(6)
N13	C41	C42	N12	-1.4(6)
N13	C41	C42	C43	179.1(5)
N14	C41	C42	N12	-179.9(5)
N14	C41	C42	C43	0.6(9)
C1	N1	C5	C4	0.1(10)
C1	C2	C3	C4	-0.1(8)
C1	C2	C3	C6	179.6(5)
C2	C3	C4	C5	19(9)
C3	C4	C5	N1	-2.0(10)
C5	N1	C1	C2	19(9)
C6	(3	C4	C5	-177 9(6)
C8	N2	C10	C9	0.1(6)
C8	N2	C10	C11	178 9(6)
CQ CQ	N2		N/	170.7(0) 177.0(5)
	N2		C10	22(6)
	N3 N2	C9	C10 Au1	2.2(0) 176.1(4)
C9	N3 N2		AU1 N2	1/0.1(4)
C9	IN O M A		NZ 02	-2.1(0) 170.2(5)
C9	IN4	C12		1/8.3(5)
C9	N4 C10	C12	N5 01	-3.0(8)
C9	C10			1/9.3(7)
69			N5	-0.6(8)
C10	NZ NO	63	Aul	-176.9(4)
C10	NZ	68	N3	1.3(6)
C11	N5	C12	02	-179.7(5)
C11	N5	C12	N4	1.6(9)
C12	N4	C9	N3	-178.1(5)
C12	N4	C9	C10	2.8(8)
C12	N5	C11	01	-179.5(6)
C12	N5	C11	C10	0.4(8)
C13	N3	C8	Au1	-0.6(7)
C13	N3	C8	N2	-178.8(5)
C13	N3	C9	N4	-0.4(8)
C13	N3	C9	C10	178.8(5)
C14	N2	C8	Au1	3.5(7)
C14	N2	C8	N3	-178.3(5)
C14	N2	C10	C9	179.6(5)
C14	N2	C10	C11	-1.5(9)

Atom	Atom	Atom	Atom	Angle/°
C15	N4	C9	N3	5.0(9)
C15	N4	C9	C10	-174.0(6)
C15	N4	C12	02	-4.7(9)
C15	N4	C12	N5	174.0(6)
C16	N5	C11	01	2.6(9)
C16	N5	C11	C10	-177.5(6)
C16	N5	C12	02	-2.0(9)
C16	N5	C12	N4	179.3(6)
C17	N6	C21	C20	0.1(10)
C17	C18	C19	C20	0.1(8)
C17	C18	C19 C20	C22	-179.4(5)
C10	C19 C20	C20		0.4(8)
C21	UZU NG	C21	N0 C18	-0.5(10)
C22	N0 C10	C20	C10 C21	179 9(5)
C24	N7	C26	C25	10(6)
C24	N7	C26	C23	-1775(5)
C24	N8	C25	N9	-180.0(5)
C24	N8	C25	C26	1.0(6)
C25	N8	C24	Au2	-179.5(4)
C25	N8	C24	N7	-0.3(6)
C25	N9	C28	04	179.4(5)
C25	N9	C28	N10	-0.6(8)
C25	C26	C27	03	-179.9(5)
C25	C26	C27	N10	-1.1(7)
C26	N7	C24	Au2	178.8(4)
C26	N7	C24	N8	-0.4(6)
C27	N10	C28	04	177.4(6)
C27	N10	C28	N9	-2.6(9)
C28	N9	C25	N8	-176.3(5)
C28	N9	C25	C26	2.6(8)
C20	N10 N10	C27	03	-1//.8(0)
C20	NTU N7	C24	C20 Au2	3.4(0) 2 5(7)
C29	N7	C24	N8	-1767(4)
C29	N7	C24	C25	1773(5)
C29	N7	C26	C27	-1 2(9)
C30	N8	C24	Au2	5.7(7)
C30	N8	C24	N7	-175.1(4)
C30	N8	C25	N9	-5.7(9)
C30	N8	C25	C26	175.2(5)
C31	N9	C25	N8	6.8(9)
C31	N9	C25	C26	-174.2(5)
C31	N9	C28	04	-3.5(9)
C31	N9	C28	N10	176.5(5)
C32	N10	C27	03	0.4(8)
C32	N10	C27	C26	-178.5(5)
C32	N10	C28	04	-0.8(9)
C32	N10	C28	N9	179.2(5)
C33	N11 C24	C37	C36	0.3(10)
C22	C24	C35	C20	0.1(11)
C34	C35	C36	C30 C37	0.9(9)
C34 C35	C36	C37	N11	-1 1(9)
C37	N11	C33	C34	0.8(12)
C38	C35	C36	C37	-179.4(5)
C40	N12	C42	C41	0.1(6)
C40	N12	C42	C43	179.5(6)
C40	N13	C41	N14	-179.4(5)
C40	N13	C41	C42	2.3(6)
C41	N13	C40	Au3	174.7(4)
C41	N13	C40	N12	-2.3(6)

Atom	Atom	Atom	Atom	Angle/°
C41	N14	C44	06	-177.9(6)
C41	N14	C44	N15	4.6(8)
C41	C42	C43	05	-179.9(6)
C41	C42	C43	N15	0.3(8)
C42	N12	C40	Au3	-175.6(4)
C42	N12	C40	N13	1.4(6)
C43	N15	C44	06	178.5(6)
C43	N15	C44	N14	-4.1(9)
C44	N14	C41	N13	178.8(6)
C44	N14	C41	C42	-3.1(8)
C44	N15	C43	05	-178.3(6)
C44	N15	C43	C42	1.6(9)
C45	N12	C40	Au3	-0.2(8)
C45	N12	C40	N13	176.7(5)
C45	N12	C42	C41	-175.3(5)
C45	N12	C42	C43	4.2(10)
C46	N13	C40	Au3	-1.1(7)
C46	N13	C40	N12	-178.1(5)
C46	N13	C41	N14	-3.9(10)
C46	N13	C41	C42	177.8(6)
C47	N14	C41	N13	7.2(10)
C47	N14	C41	C42	-174.7(6)
C47	N14	C44	06	-5.8(9)
C47	N14	C44	N15	176.7(6)
C48	N15	C43	05	0.0(9)
C48	N15	C43	C42	179.9(5)
C48	N15	C44	06	0.1(9)
C48	N15	C44	N14	177.6(6)

Atom	х	У	Z	Ueq
H1	2993	10677	6749	64
H2	4357	10405	5909	59
H4	6003	9685	7827	68
Н5	4537	9901	8580	74
H13A	9045	6852	4238	80
H13B	9056	7701	5099	80
H13C	10167	7334	4862	80
H14A	8817	10226	3065	88
H14B	9882	10834	3710	88
H14C	8769	10555	4079	88
H15A	11288	6780	3985	82
H15B	11475	6260	3024	82
H15C	10260	6264	3266	82
H16A	11881	8172	1145	121
H16B	12902	8661	1877	121
H16C	12054	9303	1640	121
H17	10257	5788	618	69
H18	9128	5815	1686	62
H20	8397	8315	1339	62
H21	9523	8168	286	74
H29A	4287	7818	3587	70
H29B	3553	8409	4217	70
H29C	3212	7258	3831	70
H30A	7250	7000	5319	76
H30B	6832	6696	6127	76
H30C	7314	7805	6218	76
H31A	5905	6680	7269	97
H31B	5580	7484	8041	97
H31C	6430	7797	7441	97
H32A	2148	8456	7497	95
H32B	1839	7306	7302	95
H32C	1460	7817	6599	95
H33	654	5606	5681	103
H34	1462	5608	4465	93
H36	4147	4955	5612	64
H37	3212	4930	6777	75
H45A	7051	4361	1571	96
H45B	6258	3689	733	96
H45C	5794	3994	1633	96
H46A	4409	7048	1970	99
H46B	4235	7206	1036	99
H46C	5296	7786	1699	99
H47A	5133	7713	-18	133
H47B	6263	8137	-291	133
H47C	6168	8218	698	133
H48A	8393	4922	-1260	132
H48B	8715	6031	-1249	132
H48C	7696	5342	-1900	132

Table S16: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4b**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

 Table S17: Solvent masking (Olex2) information for 4b.

No	Х	у	Z	V	е	Content
1	-0.040	0.000	0.000	551.7	176.5	?

Crystal Data and Experimental

Crystal Data. $C_{34}H_{38}AuBF_2N_6O_2$, $M_r = 808.48$, triclinic, *P*-1 (No. 2), a = 7.45010(10) Å, b = 23.1052(5) Å, c = 23.6290(7) Å, $\alpha = 90.528(2)^\circ$, $\beta = 90.954(2)^\circ$, $\gamma = 93.994(2)^\circ$, $V = 4056.74(16) Å^3$, T = 30(2) K, Z = 4, Z' = 2, $\mu = 3.385$ mm⁻¹, 127294 reflections measured, 13129 unique ($R_{int} = 0.162$) which were used in all calculations. The final wR_2 was 0.3057 (all data) and R_1 was 0.0999 (I > 2(I)).

Table S18	
Compound	4d
Formula	C34H38AuBF2N6O2
$D_{calc.}$ / g cm ⁻³	1.324
μ/mm^{-1}	3.385
Formula Weight	808.48
Colour	orange
Shape	plate
Size/mm ³	0.100×0.040×0.010
<i>Т/</i> К	30(2)
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	7.45010(10)
b/Å	23.1052(5)
c/Å	23.6290(7)
$\alpha/^{\circ}$	90.528(2)
$\beta/^{\circ}$	90.954(2)
$\gamma/^{\circ}$	93.994(2)
V/Å ³	4056.74(16)
Ζ	4
Ζ'	2
Wavelength/Å	0.6889
Radiation type	?
$\Theta_{min}/^{\circ}$	2.381
$\Theta_{max}/^{\circ}$	23.905
Measured Refl.	127294
Independent Refl.	13129
Reflections with I >	
2(I)	
Rint	0.162
Parameters	852
Restraints	0
Largest Peak	4.481
Deepest Hole	-1.879
GooF	1.127
<i>wR</i> ² (all data)	0.3057
wR_2	0.2804
R1 (all data)	0.1427
R_1	0.0999

Structure Quality Indicators

Reflections:	d min (0.6	⁸⁸⁹⁾ 0.85	l/σ	12.7	^{Rint} 1	.6.23%	complete	95%
Refinement:	Shift	-0.001	Max Peak	4.5	Min Peak	-1.9	GooF	1.127

The unit cell was refined using DIALS (Winter, 2010, 2018).

Data reduction, scaling and absorption corrections were performed. The final completeness is 94.90 % out to 23.905° in Θ . An empirical absorption correction was performed using CCP4 7.0.75 (Winn, 2011), AIMLESS Evans, 2013), version 0.7.4. The absorption coefficient μ of this material is 3.385 mm⁻¹ at this wavelength ($\lambda = 0.6889$ Å) and the minimum and maximum transmissions are 0.983 and 1.000.

The value of Z' is 2. This means that there are two independent molecules in the asymmetric unit.

The structure forms "square" channels in the *a*-direction.

Table S19 - Reflection Statistics

Total reflections (after filtering)	127294	Unique reflections	13129
Completeness	0.95	Mean I/ σ	10.12
hkl _{max} collected	(8, 27, 28)	hkl _{min} collected	(-8, -28, -28)
hkl _{max} used	(8, 27, 27)	hkl _{min} used	(-8, -27, 0)
Lim d _{max} collected	10.0	Lim d _{min} collected	0.85
d _{max} used	8.29	d _{min} used	0.85
Friedel pairs	12917	Friedel pairs merged	1
Inconsistent equivalents	116	Rint	0.1623
Rsigma	0.0786	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	(3174, 2164, 2106, 2699, 4360, 5321, 4856, 1695, 273)	Maximum multiplicity	18
Removed systematic absences	0	Filtered off (Shel/OMIT)	1057

56

Atom	X	У	Z	Ueq
Au1	9164.8(8)	1216.5(3)	4930.5(2)	48.6(3)
Au2	4338.9(9)	5180.2(3)	1189.2(3)	51.9(3)
F1	9110(10)	3431(4)	9891(3)	45(2)
F2	12122(10)	3490(4)	9827(4)	49(2)
F3	2263(10)	228(4)	3535(3)	48(2)
F4	5255(10)	193(4)	3505(3)	43(2)
01	8378(16)	-130(5)	1950(4)	60(3)
02	9035(15)	1781(5)	2454(5)	59(3)
03	4297(15)	8145(5)	-267(5)	54(3)
04	5093(14)	7772(5)	1606(5)	52(3)
N1	10397(16)	3582(5)	8967(5)	42(3)
N2	10480(15)	2627(5)	9444(5)	36(3)
N3	8841(15)	459(6)	3875(5)	38(3)
N4	8629(15)	73(5)	2884(5)	40(3)
N5	8750(15)	818(6)	2211(5)	41(3)
N6	9069(16)	1371(6)	3677(5)	42(3)
N7	4100(17)	1126(5)	3667(5)	42(3)
N8	3803(15)	646(5)	2733(5)	37(3)
N9	4333(15)	6220(5)	403(5)	37(3)
N10	4424(15)	7199(5)	-23(5)	37(3)
N11	4669(16)	7953(5)	657(6)	43(3)
N12	4632(16)	6482(5)	1274(5)	42(3)
C1	10220(20)	3285(7)	8448(6)	45(4)
C2	10030(20)	3699(7)	8010(7)	58(5)
C3	9770(30)	3609(8)	7379(7)	73(6)
C4	10150(30)	4243(7)	8285(7)	60(5)
C5	9940(40)	4829(9)	7993(10)	101(8)
C6	11710(40)	5036(12)	7699(13)	130(10)
L/	10360(20)	4156(7)	88/0(/)	55(5)
	10550(20)	4606(7)	9315(7)	58(5)
C10	10030(20)	2213(7)	9030(0) 10450(6)	43(4) E2(4)
C10 C11	10/20(20)	2332(7)	0583(6)	20(4)
C12	10030(17)	1000(0) 1105(7)	9895(7)	57(4)
C12 C13	9060(20)	796(7)	10057(7)	52(4) 54(4)
C14	10480(20)	1747(7)	9007(6)	43(4)
C15	10490(20)	1777(7)	8560(6)	51(4)
C16	10375(19)	2349(6)	8917(6)	38(4)
C17	10234(19)	2675(7)	8422(6)	43(4)
C18	10070(20)	2377(6)	7858(6)	43(4)
C19	8380(20)	2174(8)	7646(7)	55(5)
C20	8200(20)	1932(8)	7119(8)	64(5)
C21	9690(20)	1886(7)	6774(6)	46(4)
C22	11360(20)	2060(7)	6992(7)	55(5)
C23	11530(20)	2311(7)	7533(6)	50(4)
C24	9500(20)	1647(7)	6205(7)	53(4)
C25	9360(20)	1457(8)	5744(7)	60(5)
C26	9030(20)	998(7)	4095(6)	40(4)
C27	8730(20)	-66(7)	4222(6)	42(4)
C28	8788(19)	502(7)	3294(6)	37(4)
C29	8500(20)	-553(7)	3008(7)	53(4)
C30	8600(20)	228(7)	2327(6)	44(4)
U31	8/20(20)	988(8)	1621(6)	5/(5)
U3Z	8930(20)	1282(8)	2608(7)	46(4)
U33 C24	0730(18)	10/1(/)	$\frac{31}{(0)}$	30(4) 60(5)
U34 C25	9270(20) 4220(20)	2015(7) 1660(7)	3/2/(/)	50(5) 50(4)
C36	4230(20) 1150(20)	1057(7) 2121(8)	3402(/J 3821(7)	50(4) 72(6)
C37	4640(40)	2121(0) 2774(8)	3021(7) 3720(Q)	96(8)
uJ/		2117(0)	5750(0)	20(0)

Table S20: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4d**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	x	у	Z	Ueq
C38	4470(30)	1838(8)	4331(7)	76(6)
C39	5200(50)	2179(15)	4961(12)	153(16)
C40	3520(50)	2283(18)	5099(14)	190(20)
C41	4220(20)	1224(8)	4226(7)	57(5)
C42	4140(20)	754(7)	4650(7)	60(5)
C43	3555(19)	238(6)	2309(6)	37(4)
C44	3440(20)	-407(7)	2423(7)	53(4)
C45	3470(20)	508(7)	1789(6)	42(4)
C46	3150(20)	202(7)	1234(7)	52(4)
C47	4850(20)	165(7)	890(7)	57(5)
C48	3690(20)	1100(6)	1886(6)	41(4)
C49	3720(20)	1570(7)	1444(6)	52(4)
C50	3890(19)	1192(6)	2483(6)	38(4)
C51	4090(20)	1699(6)	2809(7)	43(4)
C52	4150(20)	2284(7)	2533(6)	45(4)
C53	2590(30)	2563(8)	2440(8)	66(5)
C54	2620(30)	3082(8)	2175(8)	67(5)
C55	4220(30)	3361(7)	1987(7)	53(4)
C56	5800(20)	3091(7)	2090(7)	54(4)
C57	5760(20)	2559(7)	2356(7)	57(5)
C58	4240(20)	3910(7)	1702(7)	58(5)
C59	4260(30)	4370(8)	1488(8)	63(5)
C60	4440(20)	6017(6)	932(7)	44(4)
C61	4120(20)	5825(6)	-94(7)	46(4)
C62	4449(18)	6812(6)	414(7)	38(4)
C63	4280(20)	7026(7)	-613(6)	49(4)
C64	4470(20)	7798(7)	103(7)	41(4)
C65	4740(20)	8578(6)	797(7)	54(4)
C66	4862(18)	7589(7)	1125(7)	42(4)
C67	4680(19)	6984(6)	954(7)	41(4)
C68	4840(20)	6461(7)	1887(7)	57(5)
B1	10550(20)	3298(8)	9546(7)	42(4)
B2	3860(20)	538(8)	3364(7)	40(4)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Atom	U ₁₁	U 22	<i>U</i> 33	U 23	U 13	U ₁₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Au1	53.8(5)	55.7(5)	37.0(4)	-5.7(3)	-6.3(3)	10.5(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Au2	64.2(5)	28.5(4)	64.2(5)	11.8(3)	4.2(4)	9.9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F1	41(5)	43(5)	51(5)	-4(4)	1(4)	11(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F2	39(5)	47(6)	60(6)	-14(4)	-5(4)	-1(4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F3	36(5)	52(6)	58(5)	16(4)	1(4)	2(4)
01 83(9) 64(8) 35(6) -7(6) -9(6) 30(7) 02 65(8) 56(7) 20(6) -7(6) 6(6) 03 68(8) 28(6) 67(8) 12(6) 15(6) 10(5) 04 56(7) 43(7) 58(7) -9(6) 0(6) 9(5) N1 52(8) 30(8) 43(8) -6(6) 5(6) 2(6) N2 41(7) 31(7) 36(7) 1(6) 0(5) 4(6) N3 32(7) 50(9) 32(7) -2(6) -2(5) 5(6) N4 38(7) 43(8) 40(7) 6(6) -1(6) 11(6) N5 40(7) 56(9) 29(7) 8(6) -6(5) 17(6) N6 43(8) 44(8) 39(8) -9(7) -7(6) 5(6) 4(6) N7 57(8) 34(8) 37(7) 10(6) -2(5) 6(6) N1 42(7) 23(7) 44(8) 36(6) 1(6) 10(6) N10 42(7) 23(7) 44(8) 36(6) 7(6) 3(5) N11 38(7) 25(7) 68(10) 8(7) 7(6) 3(5) N11 38(7) 25(7) 68(10) 8(7) 7(6) 3(6) N12 40(8) 33(8) 55(8) 8(7) 2(6) 11(6) C1 52(10) 42(10) 43(9) -3(8) 1(7) 8(8) C2 78(13) 44(11) 51(10) 4(9) -2(9) 3(9) C3 115(17) 50(12) 55(12) 3(9) 0(11) 11(11) C4 103(15) 27(10) 49(11) 5(8) 1(10) 2(9) C5 150(20) 63(15) 88(16) -9(13) 42(16) -7(15) C6 130(20) 100(20) 160(30) 30(19) -20(20) 13(18) C7 66(12) 15(11) 62(12) -5(9) 1(9) 1(9) C5 150(20) 63(15) 88(16) -9(13) 42(16) -7(15) C6 130(20) 100(20) 160(10) 1(8) 0(8) 14(9) -10(9) C7 63(12) 35(11) 62(12) -5(9) 1(9) 1(9) C8 81(13) 44(11) 47(10) -2(8) -4(9) -10(9) C7 63(12) 35(11) 62(12) -5(9) 1(9) 1(9) C6 130(20) 100(20) 160(10) 1(8) 0(8) 14(9) C1 44(9) 29(9) 46(10) -1(7) -2(7) 10(7) C1 260(11) 45(11) 51(10) 4(8) -3(8) 6(9) C1 358(11) 58(12) 46(10) -6(8) -3(7) 1(7) C1 44(9) 29(9) 46(10) -1(7) -2(7) 10(7) C1 568(11) 39(10) 44(9) -9(8) -3(7) 1(7) C1 568(11) 39(10) 44(9) -9(8) -6(8) 2(9) C2 47(11) 83(19) 44(9) -1(7) 4(7) 4(7) C1 7 41(9) 42(10) 45(9) -7(8) 9(7) -7(7) C1 8 64(11) 39(10) 44(9) -9(8) -6(8) 2(9) C2 47(11) 83(19) 44(9) -1(7) 4(7) 4(7) C1 7 41(9) 42(10) 44(9) -3(7) -1(8) (9) -2(9) C2 43(31) 51(11) 34(9) -9(8) -6(8) 2(9) C2 44(10) 56(11) 18(7) 10(8) -6(6) 16(8) C2 47(11) 83(19) 44(9) 3(7) 1(6) 10(7) C2 47(11) 83(19) 44(9) 3(7) 1(6) 10(7) C2 48(10) 56(11) 18(7) 10(8) -6(8) 14(9) C2 49(12) 55(11) 49(10) 15(9) -4(8) 16(9) C2 49(12) 55(11) 39(10) 44(9) 3(7) 1(6) 10(7) C2 49(10) 52(11) 39(10) 44(9) 3(7) 1(6) 16(7) C2 49(10) 52(11) 39(10) 44(9) 3(7) 1(6) 16(7)	F4	40(5)	43(5)	46(5)	9(4)	-5(4)	8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	83(9)	64(8)	35(6)	-7(6)	-9(6)	30(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02	65(8)	56(9)	56(7)	20(6)	-7(6)	6(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03	68(8)	28(6)	67(8)	12(6)	15(6)	10(5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	04 N1	56(7)	43(7)	58(7)	-9(6)	0(6)	9(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 N2	52(8)	30(8)	43(8)	-6(6)	5(6)	2(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2	41(7) 32(7)	50(9)	30(7)	-2(6)	-2(5)	4(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4	32(7)	43(8)	$\frac{32(7)}{40(7)}$	-2(0)	-2(3)	11(6)
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	N5	40(7)	56(9)	29(7)	8(6)	-6(5)	17(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N6	43(8)	44(8)	39(8)	-9(7)	-7(6)	5(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N7	57(8)	34(8)	37(7)	5(6)	-3(6)	4(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N8	41(7)	31(7)	39(7)	10(6)	-2(5)	6(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N9	45(8)	23(7)	44(8)	3(6)	1(6)	10(6)
N11 38(7) 25(7) 68(10) 8(7) 7(6) 3(6) N12 40(8) 33(8) 56(8) 8(7) 2(6) 11(6) C1 52(10) 42(10) 43(9) -3(8) 1(7) 8(8) C2 78(13) 44(11) 51(10) 4(9) -2(9) 3(9) C3 115(17) 50(12) 55(12) 3(9) 0(11) 11(11) C4 103(15) 27(10) 49(11) 5(8) 1(10) 2(9) C5 150(20) 63(15) 88(16) -9(13) 42(16) -7(15) C6 130(20) 100(20) 160(30) 30(19) -20(20) 13(18) C7 68(12) 35(11) 62(12) -5(9) 1(9) 1(9) 1(9) C8 81(13) 44(11) 47(10) -2(8) -4(9) -10(9) 2(7) C10 70(12) 40(10) 50(10) 1(8) 0(8) 14(9) 1(7) 4(7) 4(7) C11 44(9) 29(9) 46(10) -5(8) <td>N10</td> <td>42(7)</td> <td>23(7)</td> <td>48(8)</td> <td>3(6)</td> <td>7(6)</td> <td>3(5)</td>	N10	42(7)	23(7)	48(8)	3(6)	7(6)	3(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N11	38(7)	25(7)	68(10)	8(7)	7(6)	3(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N12	40(8)	33(8)	56(8)	8(7)	2(6)	11(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1	52(10)	42(10)	43(9)	-3(8)	1(7)	8(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2	78(13)	44(11)	51(10)	4(9)	-2(9)	3(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	115(17)	50(12)	55(12)	3(9)	0(11)	11(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		103(15)	2/(10)	49(11)	5(8)	1(10)	2(9) 7(15)
C5 130(20) 100(20) 100(30) 30(19) $-20(20)$ 13(16) C7 68(12) 35(11) 62(12) -5(9) 1(9) 19(9) C8 81(13) 44(11) 47(10) -2(8) -4(9) -10(9) C9 43(9) 40(10) 50(10) 1(8) 0(8) 14(9) C11 44(9) 29(9) 46(10) -1(7) -2(7) 10(7) C12 60(11) 45(11) 51(10) 4(8) -3(8) 6(9) C13 58(11) 58(12) 46(10) -6(8) 1(8) 11(9) C14 45(10) 37(10) 46(10) -5(8) -3(7) 1(7) C15 68(11) 39(10) 44(9) 1(7) 4(7) 4(7) C14 45(10) 37(9) 33(9) 44(9) 1(7) 4(7) 4(7) C15 68(11) 32(9) 35(9) -3(7) 1(8) 4(8) C16 37(9) 33(9) 44(9) -9(9) 5(8) 3(9) C16	C5 C6	120(20)	03(15)	00(10) 160(20)	-9(13)	42(10)	-/(15) 12(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	68(12)	35(11)	62(12)	-5(9)	-20(20)	13(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	81(13)	44(11)	47(10)	-2(8)	-4(9)	-10(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9	43(9)	40(10)	45(9)	-4(8)	-1(7)	2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	70(12)	40(10)	50(10)	1(8)	0(8)	14(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	44(9)	29(9)	46(10)	-1(7)	-2(7)	10(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	60(11)	45(11)	51(10)	4(8)	-3(8)	6(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	58(11)	58(12)	46(10)	6(8)	1(8)	11(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	45(10)	37(10)	46(10)	-5(8)	-3(7)	1(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	68(11)	39(10)	44(9)	-9(8)	10(8)	-3(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16	37(9)	33(9)	44(9)	1(7)	4(7)	4(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C17	41(9)	42(10)	45(9)	-7(8)	9(7)	-7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	54(11)	32(9)	35(9)	-3(7)	1(8)	4(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20	30(11) 47(11)	01(12) 82(15)	45(10) 65(12)	-9(9)	5(0) 14(0)	3(9) 24(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	58(11)	39(10)	41(9)	-20(11) -3(7)	-17(8)	7(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	68(12)	55(10)	42(10)	-1(8)	8(9)	-2(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	63(11)	51(11)	34(9)	-9(8)	-6(8)	2(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24	79(13)	51(11)	32(10)	-1(8)	0(8)	17(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C25	79(13)	65(13)	41(11)	9(9)	1(9)	32(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26	48(10)	56(11)	18(7)	10(8)	-6(6)	16(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27	51(10)	46(10)	30(8)	7(7)	-7(7)	5(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28	37(9)	41(10)	34(9)	3(7)	1(6)	10(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29	67(11)	45(11)	47(10)	-2(8)	-6(8)	14(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C30	46(10)	52(11)	35(9)	6(9)	-4(7)	20(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L31	59(11)	73(13)	40(9)	13(9)	-5(8)	11(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	48(10) 21(0)	43(11) 16(11)	49(10) 27(0)	12(A) 2(D)	4(ð) 1(6)	15(8) 6(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	31(0) 76(12)	40(11) 10(12)	37(7) 56(11)	4رoJ 12(۵)	-2(0)	0(7) Q(Q)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35	62(11)	39(10)	48(10)	5(8)	-1(8)	8(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36	133(18)	41(11)	42(10)	3(9)	9(11)	5(11)
59	C37	180(20)	45(13)	62(13)	-12(10)	12(14)	-8(14)
		- (-)	- (-)	59		(-)	

Table S21: Anisotropic Displacement Parameters (×10⁴) **4d**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U 12
C38	135(19)	60(14)	31(10)	-10(9)	-1(11)	-1(12)
C39	200(30)	170(30)	110(20)	80(20)	90(20)	110(30)
C40	210(40)	220(40)	130(30)	50(30)	-70(30)	-110(40)
C41	73(13)	43(11)	54(11)	0(9)	-1(9)	1(9)
C42	77(13)	49(11)	53(11)	7(9)	8(9)	1(9)
C43	40(9)	32(9)	38(9)	6(7)	-4(7)	2(7)
C44	70(12)	39(10)	47(10)	9(8)	-10(8)	-2(9)
C45	43(9)	35(10)	47(10)	3(8)	-9(7)	-2(7)
C46	65(11)	40(10)	52(10)	7(8)	1(9)	-5(8)
C47	80(13)	44(11)	44(10)	-5(8)	-2(9)	-3(9)
C48	46(9)	34(10)	43(9)	6(7)	-6(7)	1(7)
C49	71(12)	45(10)	39(9)	11(8)	-14(8)	-5(9)
C50	43(9)	27(9)	44(9)	13(7)	-2(7)	6(7)
C51	45(9)	32(9)	53(10)	13(8)	2(7)	5(7)
C52	61(11)	30(9)	45(9)	8(7)	1(8)	5(8)
C53	64(12)	44(11)	92(14)	29(10)	18(10)	13(9)
C54	70(14)	48(12)	85(14)	17(10)	5(10)	24(10)
C55	80(13)	25(9)	55(10)	5(8)	5(9)	8(9)
C56	61(12)	36(10)	63(11)	18(8)	-3(9)	-6(9)
C57	57(12)	43(11)	71(12)	22(9)	-9(9)	6(9)
C58	84(14)	31(11)	61(11)	17(9)	5(9)	11(9)
C59	77(13)	41(12)	71(12)	7(10)	3(10)	16(9)
C60	41(9)	27(9)	68(12)	2(9)	2(8)	18(7)
C61	52(10)	27(9)	59(10)	5(8)	2(8)	9(7)
C62	31(8)	23(9)	60(11)	4(8)	3(7)	4(6)
C63	63(11)	29(9)	58(11)	11(8)	8(8)	15(8)
C64	39(9)	30(10)	54(11)	2(9)	13(8)	6(7)
C65	57(11)	30(10)	76(12)	-6(8)	5(9)	11(8)
C66	24(8)	40(10)	63(11)	4(9)	3(7)	11(7)
C67	41(9)	27(9)	57(11)	7(8)	6(8)	8(7)
C68	66(12)	44(11)	61(12)	6(9)	5(9)	3(9)
B1	39(11)	44(11)	42(10)	0(9)	-5(8)	3(9)
B2	31(10)	43(11)	48(11)	11(9)	-3(8)	8(9)

 Table S22: Bond Lengths in Å for 4d.

	• -			• -	
Atom	Atom	Length/A	Atom	Atom	Length/A
Au1	C25	1.997(18)	C2	C4	1.40(2)
Au1	C26	2.033(13)	C4	C5	1.54(3)
Au2	C59	2.005(19)	C4	C7	1.41(2)
Au2	C60	2.028(15)	C5	С6	1.54(3)
F1	B1	1.405(19)	C7	C8	1.47(2)
F2	B1	1.382(19)	С9	C10	1.50(2)
F3	B2	1.412(19)	С9	C11	1.40(2)
F4	B2	1.393(19)	C11	C12	1.52(2)
01	C30	1 213(18)	C11	C14	1.38(2)
02	C32	1 211(18)	C12	C13	1.51(2)
03	C64	1 204(18)	C14	C15	1.52(2)
04	C66	1 214(17)	C14	C16	1.42(2)
N1	C1	1 400(18)	C16	C17	1.12(2) 1.40(2)
N1	C7	1 35(2)	C17	C18	1 49(2)
N1	C7 R1	1.55(2) 1.52(2)	C18	C19	1.17(2) 1 40(2)
N2		1.35(2) 1 247(10)	C18	C23	1.10(2) 1.36(2)
N2	C16	1.347(17)	C10	C20	1.30(2) 1.36(2)
NZ N2	C10 D1	1.393(17)	C19 C20	C21	1.30(2)
NZ N2	B1 C2C	1.50(2)	C20	C22	1.40(2) 1.27(2)
N3 N2	C20	1.344(19)	C21	C24	1.37(2)
N3	C27	1.469(19)	C21	C24	1.45(2)
N3	C28	1.3/(1/)	C24		1.40(2) 1.17(2)
N4	C28	1.377(18)	C24	C25	1.1/(2)
N4	629	1.477(19)	C28	L33	1.34(2)
N4	C30	1.367(18)	632	L33	1.43(2)
N5	C30	1.39(2)	635	L36	1.43(2)
N5	C31	1.453(18)	C35	C51	1.41(2)
N5	C32	1.41(2)	C36	C37	1.52(3)
N6	C26	1.315(19)	C36	C38	1.38(2)
N6	C33	1.363(17)	C38	C39	1.74(4)
N6	C34	1.49(2)	C38	C41	1.44(2)
N7	C35	1.41(2)	C39	C40	1.34(4)
N7	C41	1.34(2)	C41	C42	1.48(2)
N7	B2	1.53(2)	C43	C44	1.51(2)
N8	C43	1.371(18)	C43	C45	1.39(2)
N8	C50	1.398(18)	C45	C46	1.49(2)
N8	B2	1.51(2)	C45	C48	1.38(2)
N9	C60	1.342(19)	C46	C47	1.52(2)
N9	C61	1.480(18)	C48	C49	1.51(2)
N9	C62	1.365(17)	C48	C50	1.43(2)
N10	C62	1.374(19)	C50	C51	1.39(2)
N10	C63	1.447(18)	C51	C52	1.50(2)
N10	C64	1.410(19)	C52	C53	1.38(2)
N11	C64	1.356(19)	C52	C57	1.38(2)
N11	C65	1.476(18)	C53	C54	1.36(2)
N11	C66	1.41(2)	C54	C55	1.40(2)
N12	C60	1.339(18)	C55	C56	1.39(2)
N12	C67	1.389(19)	C55	C58	1.44(2)
N12	C68	1.45(2)	C56	C57	1.38(2)
C1	C2	1.43(2)	C58	C59	1.18(2)
C1	C17	1.41(2)	C62	C67	1.34(2)
C2	C3	1.51(2)	C66	C67	1.45(2)

Atom Atom Atom Angle/° Atom Atom Atom Angle/° C16 C14 C15 127.2(14) C25 Au1 C26 177.9(7) N2 C16 C14 107.9(13) C59 Au2 C60 176.8(7) N2 C16 C17 120.0(13)C1 N1 B1 125.3(13)C17 C16 C14 С7 N1 C1 108.6(13) 132.1(13)С7 N1 B1 C1 C17 C18 119.0(14) 126.1(13)C9 N2 C16 C16 C17 C1 120.9(13)107.4(12)C17 C18 С9 N2 B1 C16 120.1(14) 126.9(12)C19 C18 C17 C16 N2 B1 125.6(12) 120.0(14)N3 C27 C23 C18 C17 121.5(14) C26 123.3(12)C18 C19 C26 N3 C28 C23 118.5(14)108.0(12)120.6(15) N3 C20 C19 C18 C28 C27 128.7(13)C19 C20 C21 C28 N4 C29 121.0(16) 123.8(12)C20 C21 C24 C30 N4 C28 119.0(13)121.6(15) C30 N4 C29 117.2(12)C22 C21 C20 118.2(14)C30 N5 C31 117.5(13) C22 C21 C24 120.2(15)C30 N5 C32 127.2(12) C21 C22 C23 120.2(16) C18 C23 C22 N5 115.3(14) 121.2(16) C32 C31 C24 C25 C21 108.8(13)180(2)C26 N6 C33 C25 C24 174.0(17)C26 N6 C34 126.8(13)Au1 C26 C33 N6 C34 124.4(13)N3 Au1 126.5(11)124.9(12) C35 N7 B2 125.5(13) N6 C26 Au1 N7 N6 C26 N3 108.6(12)C41 C35 107.2(13)N3 C28 N4 N7 130.0(14) C41 B2 127.3(13)N3 C33 C28 C43 N8 C50 107.7(11)106.6(13)N4 C43 N8 B2 127.1(13)C33 C28 123.3(13)01 C30 N4 121.7(15)C50 N8 B2 125.0(13) C60 N9 C61 121.6(12)01 C30 N5 121.1(14) C60 N9 C62 109.9(12) N4C30 N5 117.1(14)N9 02 C32 N5 121.0(14) C62 C61 128.5(13)02 C32 C33 C62 N10 C63 123.5(12)127.8(16) C32 C62 119.0(13) N5 C33 111.1(14) N10 C64 N6 C33 C32 C64 N10 C63 117.4(12) 129.8(15)C28 C33 C64 N6 107.9(13)N11 C65 117.4(13)C28 C33 C32 C64 122.3(14) N11 C66 128.0(13)C35 C36 C66 N11 C65 114.6(13)N7 109.8(14) C60 N12 C67 109.7(13)N7 C35 C51 119.7(14)C60 C51 C35 C36 130.5(15)N12 C68 124.8(13)C36 C37 N12 C68 125.5(13) C35 128.1(16)C67 C38 C36 C35 С1 C2 108.4(14)105.0(16) N1 C36 C37 C38 126.9(16) N1 C1 C17 120.8(14) C38 C39 C36 C17 C1 C2 130.8(14)122.8(18) C38 C1 C2 C3 130.0(15)C36 C41 108.8(15)C41 C38 C39 126.9(18) C4 C2 C1 105.5(14) C40 C39 C38 C4 C2 С3 124.5(16) 92(3) C2 C4 C5 Ν7 C41 C38 109.2(15) 125.2(17)Ν7 C41 C42 C2 C4 C7 123.3(15)108.5(15)C38 C41 C42 C7 C4 C5 126.1(16) 127.5(16)C4 C5 C6 N8 C43 C44 122.4(12)111(2)N8 C43 C45 N1 C7 C4 109.0(14) 109.9(13) C7 C8 C45 C43 C44 N1 124.1(16) 127.6(13)C7 C43 C45 C46 C4 C8 126.9(16) 125.0(14) С9 C48 C45 C43 107.7(13)N2 C10 122.4(13)C48 C45 N2 C9 C11 110.4(13)C46 127.3(14)С9 C45 C46 C47 113.6(13) C11 C10 127.1(15)C45 C48 C49 C9 C11 C12 126.7(14)125.1(14)C45 C48 C50 C14 C11 C9 107.7(13)107.1(14)C50 C48 C49 125.6(13) C14 C11 C12 127.8(14) N8 C50 C48 C13 C12 C11 114.2(14)107.0(12)C11 C14 C15 125.5(15)C51 C50 N8 121.4(13)C11 C14 C16 107.2(13) C51 C50 C48 131.6(13)

Table S23: Bond Angles in ° for 4d.

	• -	• -	
Atom	Atom	Atom	Angle/°
C35	C51	C52	119.1(14)
C50	C51	C35	120.2(14)
C50	C51	C52	120.6(14)
C53	C52	C51	120.8(15)
C53	C52	C57	117.6(15)
C57	C52	C51	121.6(15)
C54	C53	C52	121.5(17)
C53	C54	C55	121.5(17)
C54	C55	C58	121.5(17)
C56	C55	C54	117.5(15)
C56	C55	C58	121.0(16)
C57	C56	C55	120.5(16)
C56	C57	C52	121.4(16)
C59	C58	C55	177.5(19)
C58	C59	Au2	175.2(17)
N9	C60	Au2	128.5(11)
N12	C60	Au2	125.2(12)
N12	C60	N9	106.3(13)
N9	C62	N10	130.0(14)
C67	C62	N9	107.8(13)
C67	C62	N10	122.2(13)

Table S24: Torsion Angles in ° for **4d**.

Atom	Atom	Atom	Atom	Angle/°
02	C32	C33	N6	-1(3)
02	C32	C33	C28	178.9(15)
04	C66	C67	N12	3(3)
04	C66	C67	C62	-179.1(14)
N1	C1	C2	C3	-178.9(18)
N1	C1	C2	C4	1(2)
N1	C1	C17	C16	2(2)
N1	C1	C17	C18	-179.0(13)
N2	C9	C11	C12	178.6(13)
N2	C9	C11	C14	-0.4(17)
N2	C16	C17	C1	1(2)
N2	C16	C17	C18	-178.3(13)
N3	C28	C33	N6	-0.3(15)
N3	C28	C33	C32	-179.9(13)
N4	C28	C33	N6	-180.0(13)
N4	C28	633	C32	0(2)
N5	C32	C33	N6	-179.4(13)
N5	C32	C33	C28	0(2)
N /	C35	C36	C37	-180(2)
N /	C35		C38	1(2)
N /	C35	C51	C50	-2(2)
IN /	C35		C52	177.2(14)
	C43	C45	C40	-177.9(14)
	CF0	CF1	C2E	0.7(17)
NO	C50	C51	C52	1(2) -178 9(13)
NO	C62	C67	N12	-2 2(16)
N9	C62	C67	C66	179.8(13)
N10	C62	C67	N12	-180.0(12)
N10	C62	C67	C66	2(2)
N11	C66	C67	N12	-174.4(14)
N11	C66	C67	C62	3(2)
C1	N1	C7	C4	0.4(19)
C1	N1	C7	C8	-178.9(16)
C1	N1	B1	F1	-118.8(15)
C1	N1	B1	F2	121.7(15)
C1	N1	B1	N2	0(2)
C1	C2	C4	C5	-177.3(19)
C1	C2	C4	C7	-1(2)
C1	C17	C18	C19	-92.7(19)
C1	C17	C18	C23	85(2)
C2		C17	C16	-177.7(16)
C2				1(3)
C2	C4	C3		-60(3)
C2	C4	C7	C8	170.8(18)
C2	C7	C4	C5	3(3)
C3	C2	C4	C7	179 2(18)
C5	C4	C7	N1	1765(10)
C5	C4	C7	C8	-4(3)
C7	N1	C1	C2	-1.2(18)
C7	N1	C1	C17	179.2(14)
C7	N1	B1	F1	59(2)
C7	N1	B1	F2	-60(2)
C7	N1	B1	N2	178.5(14)
C7	C4	C5	C6	105(2)
С9	N2	C16	C14	-0.4(16)
С9	N2	C16	C17	-179.1(13)
C9	N2	B1	F1	-62.0(19)
С9	N2	B1	F2	56.1(19)

	-	_	_	
Atom	Atom	Atom	Atom	Angle/°
C9	N2	B1	N1	177.7(13)
C9	C11	C12	C13	91.3(19)
C9	C11	C14	C15	177.7(14)
C9	C11	C14	C16	0.1(17)
C10	С9	C11	C12	-3(3)
C10	С9	C11	C14	178.1(15)
C11	C14	C16	N2	0.1(16)
C11	C14	C16	C17	178.7(15)
C12	C11	C14	C15	-1(3)
C12	C11	C14	C16	-178.8(15)
C14	C11	C12	C13	-89.9(19)
C14	C16	C17	C1	-1777(15)
C14	C16	C17	C18	3(2)
C15	C14	C16	N2	-1774(14)
C15	C14	C16	C17	1(3)
C16	N2		C10	1791(14)
C16	N2		C10	-170.1(14) 0.4(17)
C16	N2	L9 D1		0.4(17)
C16	N2			122.3(14) 110.2(14)
	NZ N2	DI D1	ГZ N1	-119.5(14)
	NZ C17	BI C10	NI C10	2.3(19)
C16	C17	C18	C19	86(2)
C16	C1/	C18	C23	-95.5(18)
C17	C1	C2	C3	1(3)
C17	C1	C2	C4	-178.9(17)
C17	C18	C19	C20	176.2(16)
C17	C18	C23	C22	-176.5(15)
C18	C19	C20	C21	-1(3)
C19	C18	C23	C22	2(2)
C19	C20	C21	C22	4(3)
C19	C20	C21	C24	-177.9(17)
C20	C21	C22	C23	-4(3)
C21	C22	C23	C18	2(3)
C23	C18	C19	C20	-2(3)
C24	C21	C22	C23	177.5(16)
C26	N3	C28	N4	179.3(14)
C26	N3	C28	C33	-0.3(16)
C26	N6	C33	C28	0.9(16)
C26	N6	C33	C32	-179.6(15)
C27	N3	C26	Au1	-1(2)
C27	N3	C26	N6	-179.5(12)
C27	N3	C28	N4	0(2)
C27	N3	C28	C33	-179.9(13)
C28	N3	C26	Au1	179.4(10)
C28	N3	C26	N6	0.9(16)
C28	N4	C30	01	-176.5(14)
C28	N4	C30	N5	0.6(19)
C29	N4	C28	N3	-1(2)
C29	N4	C28	(33	1786(14)
C29	N4	C30	01	4(2)
C29	N4	C30	N5	-178 8(12)
C20	N4	C28	N3	179.6(12)
C30	N4	C28	C22	1(2)
C20		C20	02	-1(2) 170 2(14)
C20	N5	C22	C22	-1/3.2(14) 0(2)
C21	N5	C20	01	2(2)
C21	NC NC	C20		-3[2] 170.0(12)
U31	IN 5	L3U C22	IN4 02	1/9.9(12)
U31	N5	L32	02	1(2)
U31	N5	L3Z	L33	1/9.7(12)
C32	N5	C30	01	177.1(14)
C32	N5	C30	N4	0(2)
C33	N6	C26	Au1	-179.6(10)
C33	N6	C26	N3	-1.1(16)

Atom	Atom	Atom	Atom	Angle /°
C24		C26		2(2) 170 7(12)
C24	NO NG	C22	N3 C20	-1/9.7(13) 170 E(14)
C24	NO NG	C33	C20	1/9.3(14)
C34 C35	NO N7	C33	C32	-1(2)
C35	N7	C41	C42	-1(2)
C35	N7	R2	C42 F3	-170.0(10)
C35	N7	B2 B2	F4	120.7(15) 1219(15)
C35	N7	B2 B2	N8	0(2)
C35	C36	C38	C39	1652(19)
C35	C36	C38	C41	-1(2)
C35	C51	C52	C53	-89(2)
C35	C51	C52	C57	91.8(19)
C36	C35	C51	C50	179.8(18)
C36	C35	C51	C52	-1(3)
C36	C38	C39	C40	96(3)
C36	C38	C41	N7	2(2)
C36	C38	C41	C42	-179.8(19)
C37	C36	C38	C39	-15(4)
C37	C36	C38	C41	179(2)
C39	C38	C41	N7	-164(2)
C39	C38	C41	C42	14(3)
C41	N7	C35	C36	0(2)
C41	N7	C35	C51	-178.0(15)
C41	N7	B2	F3	59(2)
C41	N7	B2	F4	-58(2)
C41	N7	B2	N8	-179.9(15)
C41	C38	C39	C40	-100(3)
C43	N8	C50	C48	-0.2(15)
C43	N8	C50	C51	178.4(13)
C43	N8	B2	F3	-56.7(19)
C43	N8 NO	BZ D2	F4	60.4(19)
C43		BZ CAC	N /	-1/8.1(12)
C43	C45	C46	C47	-103.0(18) 170.2(15)
C43	C45	C40	C50	1/9.3(15) 0.8(17)
C43	C43	C45	C46	3(3)
C44	C43	C45	C40 C48	-178 3(15)
C45	C48	C50	N8	0.6(16)
C45	C48	C50	C51	-177.9(16)
C46	C45	C48	C49	-2(3)
C46	C45	C48	C50	177.7(15)
C48	C45	C46	C47	79(2)
C48	C50	C51	C35	178.9(15)
C48	C50	C51	C52	-1(3)
C49	C48	C50	N8	-179.4(14)
C49	C48	C50	C51	2(3)
C50	N8	C43	C44	178.8(13)
C50	N8	C43	C45	-0.3(16)
C50	N8	B2	F3	119.2(15)
C50	N8	B2	F4	-123.8(15)
C50	N8	B2	N7	-2.2(19)
C50	C51	C52	C53	90(2)
C50	C51	C52	C57	-89(2)
C51	C35	C36	C37	-1(4)
C51	C35	C36	C38	178.8(19)
C51	U52	L53 CF7	L54 CF(-1//.7(17)
CE3	U52 CF2		C50	1/8.5(16)
U52 CE2	653 652	U54 CE7	L55 CEC	-1(3)
C23	C54	UD/ C55	C20 C26	-1(3) 1(2)
C53	C54 C54	C55 C55	C20	-1(3) 170 6(19)
633	634	633	630	1/2.0(10)

Atom	Atom	Atom	Atom	Angle/°
C54	C55	C56	C57	2(3)
C55	C56	C57	C52	-1(3)
C57	C52	C53	C54	1(3)
C58	C55	C56	C57	-178 9(16)
C60	N9	C62	N10	1791(14)
C60	NG	C62	C67	1 6(16)
C60	N12	C67	C67	2.2(16)
C60	N12 N12	C67	C66	2.2(10) 170 0(15)
C61	N12 NO	C60	4u2	0(2)
C61	N9 NO	C60	AUZ	0(2)
	N9 NO	C60	N12 N10	1/9.9(12)
	N9 NO	C62	N10	-1(2)
661	N9	C62	107	-1/8.6(13)
C62	N9	C60	Au2	1/9.6(10)
C62	N9	C60	N12	-0.2(16)
C62	N10	C64	03	-173.8(13)
C62	N10	C64	N11	4.7(19)
C63	N10	C62	N9	-1(2)
C63	N10	C62	C67	176.2(14)
C63	N10	C64	03	4(2)
C63	N10	C64	N11	-177.6(12)
C64	N10	C62	N9	176.6(13)
C64	N10	C62	C67	-6(2)
C64	N11	C66	04	177.5(14)
C64	N11	C66	C67	-5(2)
C65	N11	C64	03	-2(2)
C65	N11	C64	N10	179.4(12)
C65	N11	C66	04	-1(2)
C65	N11	C66	C67	176.8(12)
C66	N11	C64	03	179.3(14)
C66	N11	C64	N10	1(2)
C67	N12	C60	Au2	179.0(10)
C67	N12	C60	N9	-1.2(16)
C68	N12	C60	Au2	1(2)
C68	N12	C60	N9	-178.8(13)
C68	N12	C67	C62	179.7(14)
C68	N12	C67	C66	-3(2)
B1	N1	C1	C2	177.2(14)
B1	N1	C1	C17	-3(2)
B1	N1	C7	C4	-177.9(15)
B1	N1	C7	C8	3(3)
B1	N2	C9	C10	6(2)
B1	N2	C9	C11	-1756(13)
R1	N2	C16	C14	175.8(13)
B1	N2	C16	C17	-3(2)
B2	N7	C35	C36	-1799(15)
B2	N7	C32	C51	2(2)
D2 B2	N7	C35	C38	2(2)
D2 D2	N7	C/1	C42	1/9.0[10]
טע רס	IN / NO	C42	C44	U(3) E(2)
טב סי		043 C12	C44 C45	-3[2] 176 3(13)
ם2 סב		CF0	C40	176.2(13)
טע רמ	INO NO	CE0	U40	-1/0.0(13)
БΖ	INQ	C20	C21	2(2)

Atom	х	у	Z	Ueq
H3A	10908	3512	7213	109
H3B	9383	3966	7209	109
H3C	8851	3292	7307	109
H5A	9640	5121	8278	121
H5B	8950	4786	7709	121
H6A	12005	4747	7416	195
H6B	12685	5087	7981	195
H6C	11550	5407	7513	195
H8A	10630	4422	9686	87
H8B	9498	4839	9303	87
H8C	11641	4858	9253	87
H10A	11852	2231	10619	79
H10B	9705	2145	10646	79
H10C	10659	2771	10517	79
H12A	11484	842	9652	62
H12B	11563	1188	10242	62
H13A	8414	651	9714	80
H13B	8336	1067	10257	80
H13C	9294	470	10304	80
H15A	9360	1255	8341	76
H15B	10623	898	8744	76
H15C	11502	1356	8306	76
H19	7346	2206	7872	66
H20	7037	1791	6984	77
H22	12401	2009	6776	66
H23	12695	2439	7675	59
H27A	7594	-292	4140	64
H27B	8790	45	4624	64
H27C	9740	-301	4135	64
H29A	7388	-655	3209	79
H29B	9537	-646	3244	79
H29C	8506	-775	2652	79
H31A	9145	675	1386	86
H31B	9510	1341	1573	86
H31C	7490	1062	1505	86
H34A	10414	2159	3563	90
H34B	9253	2130	4127	90
H34C	8274	2182	3524	90
H37A	5635	2869	3475	143
H37B	4876	2972	4095	143
H37C	3518	2900	3563	143
H39A	5775	1918	5227	183
H39B	5981	2537	4903	183
H40A	2952	2487	4790	289
H40B	3542	2522	5444	289
H40C	2825	1914	5165	289
H42A	2951	726	4824	90
H42B	5067	840	4943	90
H42C	4347	385	4464	90
H44A	4406	-587	2227	79
H44B	2271	-581	2285	79
H44C	3552	-471	2831	79
H46A	2267	408	1010	63
H46B	2625	-195	1302	63

Table S25: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4d**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom		х	у	Z	Ueq
H47A	4556	-55	540	85	
H47B	5743	-32	1112	85	
H47C	5335	556	798	85	
H49A	2737	1821	1512	78	
H49B	3569	1392	1067	78	
H49C	4873	1801	1468	78	
H53	1481	2388	2566	79	
H54	1516	3260	2115	80	
H56	6917	3274	1978	64	
H57	6848	2378	2418	69	
H61A	5208	5861	-320	68	
H61B	3085	5929	-326	68	
H61C	3912	5424	34	68	
H63A	5164	6741	-692	74	
H63B	4523	7367	-851	74	
H63C	3068	6853	-696	74	
H65A	3555	8679	925	81	
H65B	5065	8803	460	81	
H65C	5638	8666	1098	81	
H68A	6094	6564	1995	86	
H68B	4484	6069	2016	86	
H68C	4065	6737	2061	86	

 Table S26: Solvent masking (Olex2) information for 2019ncs0295.

No	Х	у	Z	V	е	Content
1	-0.373	0.500	0.500	1094.1	396.1	?

Figure S55