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ABSTRACT 

Natural killer (NK) cells can recognize virus-infected and stressed cells1 using activating and 

inhibitory receptors, many of which interact with HLA class I. Although early studies also suggested a 

functional impact of HLA class II on NK cell activity2,3, the NK cell receptors that specifically 

recognize HLA class II molecules have never been identified. We investigated whether two major 

families of NK cell receptors, killer-cell immunoglobulin-like receptors (KIRs) and natural 

cytotoxicity receptors (NCRs), contained receptors that bound to HLA class II, and identified a direct 

interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including HLA-

DP401, one of the most frequent class II allotypes in white populations4. Using NKp44ζ+ reporter 

cells and primary human NKp44+ NK cells, we demonstrated that interactions between NKp44 and 

HLA-DP401 trigger functional NK cell responses. This interaction between a subset of HLA-DP 

molecules and NKp44 implicates HLA class II as a component of the innate immune response, much 

like HLA class I. It also provides a potential mechanism for the described associations between HLA-

DP subtypes and several disease outcomes, including hepatitis B virus infection5,6,7, graft-versus-host 

disease8 and inflammatory bowel disease9,10. 

 

MAIN 

With the description of the class Ib family protein HLA-F as a ligand for KIR3DS111, activating and 

inhibitory NK cell receptors for all HLA class I molecules have been identified. However, HLA class 

II molecules, which have been associated with the outcome of many inflammatory diseases, have 

never been shown to serve as ligands for NK cell receptors; thus, their role in the innate immune 

response has not been investigated. To assess binding of NK cell receptors to HLA class II molecules, 
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we used recombinant human Fc constructs, consisting of the extracellular domain of NK cell receptors 

fused to the human IgG1 Fc domain, in an HLA class II bead-based screening assay. Binding of ten 

NK cell receptor (NKp30, NKp44, NKp46, KIR2DL3, KIR2DL1, KIR3DL2, KIR3DL1, KIR2DL4, 

KIR3DS1 and KIR2DS1) Fc constructs to 95 different HLA class II molecules was investigated. 

Lymphocyte-activation gene 3 (LAG-3) protein, which has been previously described to be closely 

related to CD4 and to bind with high affinity to HLA class II molecules12, was used as a positive 

control. The LAG-3 Fc construct did indeed interact with all three HLA class II subtypes, HLA-DR, 

HLA-DQ and HLA-DP, while NKp30 and NKp46 Fc constructs did not bind to any of the tested 

HLA class II molecules. Furthermore, the different KIR Fc constructs tested did not exhibit 

significant binding to any of the HLA class II-coated beads above negative control levels (Figure  1a). 

In contrast, the NKp44 Fc construct displayed significant binding to a subset of HLA-DP molecules, 

including the HLA-DP401 molecule (molecule 8 in Figure  1b), which is highly prevalent in white 

populations4, but not to any of the HLA-DR or HLA-DQ molecules tested (Figure  1a). Using surface 

plasmon resonance (SPR), we confirmed binding of NKp44, but not NKp46, to HLA-DP401 with an 

affinity of 42.6 ± 16.2 µM (Figure  1c,d), which is within the range typically observed for immune 

receptor–ligand interactions13,14,15,16. In contrast, NKp44 exhibited weak or no binding to HLA-DP301 

and HLA-DQ2, respectively (Figure  1c,d). Taken together, these binding experiments identified an 

interaction between the NK cell receptor NKp44 and a subset of HLA-DP molecules, including direct 

and specific binding to the ectodomain of HLA-DP401 by SPR. 

 

To further investigate functional consequences of the identified interactions between NKp44 and 

HLA-DP molecules, we generated a Jurkat reporter cell line stably expressing an NKp44ζ construct, 

composed of the extracellular domain of NKp44, the transmembrane domain of KIR3DL1 (to ensure 

DAP12-independent expression) and the cytoplasmic domain of the CD3ζ chain to mediate cellular 

activation upon receptor engagement and cross-linking. Upregulation of CD69 on the surface of 

NKp44ζ+ Jurkat reporter cells was used as an activation readout for ligand engagement11. In addition, 

NKp46ζ+ and KIR2DL3ζ+ Jurkat reporter cell lines were used as controls. To assess binding of 

NKp44 to HLA-DP molecules, biotinylated HLA-DP401 molecules (heterodimer of HLA-

DPA1*01:03–HLA-DPB1*04:01) were initially used, and HLA-DR7 molecules (heterodimer of 

HLA-DRA1*01:01–HLA-DRB1*07:01) were used as controls. Both HLA class II molecules were 

loaded with the same human class II-associated invariant chain peptide (CLIP) (amino acids 87–101: 

PVSKMRMATPLLMQA). NKp44ζ+ Jurkat reporter cells displayed significant CD69 upregulation 

after co-incubation with HLA-DP401 CLIP molecules as compared to HLA-DR7 CLIP molecules 

(Figure  2a,b). The activation observed on exposure to HLA-DP401 CLIP molecules was specific to 

NKp44ζ+ Jurkat reporter cells, and not observed with Jurkat cells transduced with other NK cell 

receptors (NKp46 or KIR2DL3) or untransduced Jurkat cells (Figure  2). All Jurkat reporter cell lines 

showed robust activity to antibodies specific to the respective NK cell receptor that they were 

transduced with, demonstrating their functionality (Figure  2a,b). Furthermore, the proportion of 
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NKp44ζ+ Jurkat reporter cells expressing CD69 in response to HLA-DP401 CLIP was reduced when 

NKp44ζ+ Jurkat reporter cells were pre-incubated with an anti-NKp44 blocking antibody (Figure  2c). 

As the HLA-DP allotypes exhibited differential levels of binding to NKp44 Fc constructs in the bead-

based screening assay, we furthermore used two distinct HLA-DP molecules that strongly bound to 

NKp44 Fc constructs (HLA-DP401 and HLA-DP201 (HLA-DPA1*01:03–HLA-DPB1*02:01)), and 

two HLA-DP molecules that did not strongly bind to NKp44 Fc constructs (HLA-DP601 (HLA-

DPA1*01:03–HLA-DPB1*06:01) and HLA-DP301 (HLA-DPA1*01:03–HLA-DPB1*03:01)). We 

observed HLA-DP molecule-specific activation of NKp44ζ+ Jurkat cells by the two binders (HLA-

DP401 more than HLA-DP201), but not by HLA-DP601 and HLA-DP301 (Figure  2d). Again, none 

of the HLA-DP allotypes induced activation of NKp46ζ+ Jurkat reporter cells. These data show that 

NKp44 specifically interacts with certain HLA-DP allotypes, which can trigger functional cellular 

responses. 

 

To further determine the functional response of NKp44-receptor binding to HLA-DP401 molecules in 

primary human innate immune cells, the response of NKp44+ NK cells to plate-coated HLA class II 

molecules was assessed. NK cells freshly isolated from the peripheral blood of healthy donors did not 

express NKp44 on the cell surface, as has been previously reported17, and did not degranulate upon 

co-incubation with anti-NKp44, HLA-DR7 CLIP or HLA-DP401 CLIP. We therefore induced NKp44 

expression on the surface of isolated NK cells by incubating NK cells with IL-2 and IL-15 for 7 d.  

The functional response of cytokine-treated NK cells to plate-coated anti-NKp44, HLA-DR7 CLIP 

and HLA-DP401 CLIP was quantified by CD107a expression as a marker for degranulation18. 

Cytokine-treated NKp44+ NK cells showed an upregulation of CD107a upon co-incubation with 

HLA-DP401 CLIP molecules, which was notably higher than after co-incubation with HLA-DR7 

CLIP molecules (Figure  3a,b). Furthermore, degranulation detected after incubation with HLA-

DP401 CLIP was inhibited when cytokine-treated NK cells were pre-incubated with an anti-NKp44 

blocking antibody (Figure  3b, right panel), indicating that the observed functional response was 

mediated specifically by NKp44. Similar to the previous results using NKp44ζ+ Jurkat reporter cells, 

degranulation of primary human NKp44+ NK cells co-incubated with distinct HLA-DP molecules was 

dependent on the HLA-DP allotype (Figure  3c). NKp44+ cells displayed the highest degranulation 

after incubation with HLA-DP401 and HLA-DP201, while minimal degranulation was observed in 

response to HLA-DP601 and HLA-DP301 molecules. Furthermore, CD107a upregulation in primary 

NKp44+ NK cells upon engagement with HLA-DP401 or HLA-DP201 was decreased by pre-

incubation with an anti-NKp44 blocking antibody. By contrast, the blocking antibody had no effect on 

CD107a expression in primary NKp44+ cells co-incubated with HLA-DP601 or HLA-DP301 

molecules (Figure  3c). NK cells from each tested donor degranulated robustly after co-incubation 

with the NK cell-sensitive tumor cell line K562, and responses to K562 cells were not influenced by 

pre-incubation of NK cells with an anti-NKp44 blocking antibody (data not shown). In summary, 
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these data indicate a functional modulation of NK cell activity by a subset of HLA-DP molecules 

mediated by the NK cell receptor NKp44. 

 

HLA-DP molecules can present a large array of different peptides on the cell surface after replacing 

the CLIP peptide19, and recognition of these peptides has been investigated in the context of T cell 

receptors expressed on CD4+ T cells20,21,22. Given the identification of binding of NKp44 to HLA-DP, 

we tested whether differences in peptides presented by HLA-DP401 have an impact on recognition by 

NKp44. Using the NKp44ζ+ Jurkat reporter cell assay described above, we compared CD69 

expression in response to HLA-DP401 molecules refolded either with CLIP or with a number of 

pathogen- or self-derived peptides. HLA-DR7 molecules refolded with either CLIP or a human 

immunodeficiency virus 1 (HIV-1)-derived Gag peptide were used as controls. We observed a clear 

impact of the different peptides bound to HLA-DP401 on activation of NKp44ζ+ Jurkat reporter cells 

(Figure  4a), with the HLA-DP401 CLIP complex mediating the strongest activation and the HLA-

DP401–Clostridium tetani tetanus toxin (C. tetani TT) peptide complex inducing a significantly lower 

response. In contrast, HLA-DR7 monomers did not trigger any activation of NKp44ζ+ Jurkat reporter 

cells, either in complex with CLIP or in complex with the HIV-1 Gag peptide (Figure  4a). Similar to 

the observations using NKp44ζ+ Jurkat reporter cells, the activation of primary NKp44+ NK cells 

incubated with HLA-DP401 was also modulated by the specific HLA-DP-bound peptide. While plate-

coated HLA-DP401 CTAG1 and HLA-DP401 HIV-1 Env complexes were able to trigger 

degranulation of cytokine-treated primary NK cells, HLA-DP401 molecules loaded with C. tetani TT- 

or human oxytocinase-derived peptides were not (Figure  4b). In conclusion, engagement of NKp44 

by HLA-DP401 induced degranulation of NK cells, and this response was further modulated in a 

peptide-dependent manner. These results suggest that changes in peptide repertoires that occur during 

infections or inflammatory processes might impact not only recognition of HLA-DP-expressing cells 

by CD4+ T cells23,24, but also recognition by NKp44+ innate effector cells. These observations are in 

line with previous studies that have demonstrated that the sequence of HLA class I-presented peptides 

has substantial consequences for binding of inhibitory and activating KIRs to their HLA class I 

ligands, and the activation of KIR+ NK cells25,26,27,28,29,30. 

 

To further investigate the physiological interaction of membrane-bound NKp44 with membrane-

bound HLA-DP molecules, we generated four HLA-DP-expressing Jurkat (clone E6.1) cell lines, 

JE6.1-DP401, JE6.1-DP201, JE6.1-DP601 and JE6.1-DP301 (Supplementary Figure  4a). Jurkat cells 

are class II major histocompatibility complex transactivator (CIITA)-deficient and therefore lack the 

expression of all HLA class II molecules31, enabling the controlled and specific investigation of 

interactions between NKp44 and membrane-bound HLA-DP. In line with our binding data, HLA-

DP401-expressing JE6.1 cells induced significantly higher NKp44ζ+ reporter cell activation than 

HLA-DP601- and HLA-DP301-expressing JE6.1 cells (Figure  5a). NKp44ζ+ reporter cell activity in 

response to JE6.1-DP201 cells was less pronounced, yet the percentage of CD69+ reporter cells was 
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higher upon co-incubation with JE6.1-DP201 cells compared to JE6.1-DP601 and JE6.1-DP301 cells. 

In contrast, NKp46ζ+ Jurkat reporter cells did not display significant upregulation of CD69 after co-

incubation with any of the JE6.1-DP cell lines. Since we had observed a peptide-dependent activation 

of NKp44ζ+ Jurkat reporter cells upon HLA-DP engagement, with HLA-DP401 CLIP molecules 

inducing the highest activation (Figure  4a), we subsequently examined the effect of CLIP surface 

presentation on NKp44ζ+ Jurkat reporter cell activity. Jurkat cells are negative for the HLA class II-

associated invariant chain32 and consequently do not display CLIP on their surface, even after 

transduction with HLA-DP molecules, allowing for external pulsing with CLIP. Addition of CLIP to 

JE6.1 cells transfected with HLA-DP401, HLA-DP201, HLA-DP301 and HLA-DP601 resulted in 

enhanced HLA-DP-expression levels, indicating stabilization of HLA-DP expression by exogenous 

CLIP. While CLIP-pulsed JE6.1-DP201 cells induced slightly elevated activation of NKp44ζ+ Jurkat 

reporter cells compared with unpulsed JE6.1-DP201 cells, CLIP pulsing did not increase CD69 

expression of NKp44ζ+ Jurkat reporter cells after co-incubation with JE6.1-DP401, JE6.1-DP601 and 

JE6.1-DP301, compared with the respective unpulsed JE6.1-DP cells. Most importantly, the overall 

hierarchy of NKp44+ cell activation remained consistent with CLIP-pulsed JE6.1-DP401 and JE6.1-

DP201 cells triggering significantly higher CD69 expression on NKp44ζ+ Jurkat reporter cells than 

CLIP-pulsed JE6.1-DP601 and JE6.1-DP301 cells (Figure  5b). These data demonstrate that 

functional responses resulting from membrane-bound NKp44–HLA-DP interactions were more 

strongly influenced by the respective HLA-DP allotype than by the presentation of CLIP on HLA-DP 

molecules. 

 

NKp44 (NCR2) is one of the three NCRs expressed by NK cells17. NKp44+ innate immune cells have 

been implicated in autoimmune diseases, such as inflammatory bowel disease33,34, and several studies 

have investigated the functional characteristics of NKp44+ NK cells17,35,36. NKp44 was initially 

described to be an activating NK cell receptor, although it was subsequently demonstrated that some 

splice isoforms of NKp44 can also negatively regulate NK cell function37. Although the function of 

NKp44+ NK cells has been extensively studied, a widely expressed cellular ligand for NKp44 has 

remained elusive and controversial. Several cellular and viral NKp44 ligands have been proposed, 

such as viral hemagglutinin38,39, proliferating cell nuclear antigen40 and mixed-lineage leukemia 

protein 541, but other studies have failed to reproduce these findings42. Platelet-derived growth factor 

(PDGF)-DD has been described as a soluble ligand binding for NKp4442. PDGF-DD engagement of 

NKp44 triggered cytokine secretion by NK cells, and this induced tumor cell-growth arrest42. Here we 

identified a subset of HLA-DP molecules as cellular ligands for NKp44 and demonstrated that 

binding of these HLA-DP molecules triggered the activation of NKp44+ reporter cells and primary 

NK cells expressing NKp44. Neither NKp44 nor HLA-DP exist in mice43,44 and the absence of small-

animal models to study NKp44+ NK cells has certainly complicated the identification of its ligand. It 

has been suggested that expression of NKp44 evolved over the last 23–25 million years, and 

inefficient transcription of NKp44 in macaques has been described, whereas NKp44 surface 
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expression has been detected on chimpanzee-derived NK cells43. The absence of an NKp44 gene 

within the murine triggering receptor expressed on myeloid cells (TREM) gene cluster, within which 

the NKp44 gene is encoded in humans45, and the insufficient transcription within macaques indicate a 

functional role of NKp44 at later stages in evolution in Homo sapiens sapiens and closely related 

species. Similarly, the diversification of HLA-DP between different species46 and the interchangeable 

function of the distinct HLA class II molecules within one species, as described for rodents47, suggests 

a functional impact of HLA-DP–NKp44 interactions primarily in humans. 

 

HLA-DP is constitutively expressed on antigen-presenting cells and B cells, and HLA-DP molecules 

have been shown to be upregulated on non-hematopoietic tissues in response to inflammation24. 

Specific HLA-DP allotypes, as well as the expression levels of HLA-DP molecules, have been 

associated with a variety of human diseases, including graft-versus-host disease following 

hematopoietic cell transplantation8, hepatitis B virus (HBV) infection5,6,7 and autoimmune diseases9,10. 

In the setting of graft-versus-host disease and HBV infection, it has been suggested that disease 

outcome is linked to specific single nucleotide polymorphisms (SNPs) in the 3′ untranslated region 

(UTR) region of the gene encoding the HLA-DP β-chain, which mark differential HLA-DP 

expression levels on the cell surface7,8. Low expression of HLA-DP was associated with HBV 

clearance, whereas high expression of HLA-DP was associated with persistence of HBV and a higher 

risk of developing graft-versus-host disease. Interestingly, HLA-DP401 and HLA-DP201, the two 

HLA-DP molecules that induced strong NKp44 binding and activation of NKp44ζ+ reporter cells, are 

both in linkage disequilibrium with the SNP associated with low HLA-DP expression (496A, 

rs9277534) and recovery from HBV infection. In contrast, the two HLA-DP molecules tested that 

exhibited no or only limited binding to NKp44 Fc constructs and low activation of NKp44ζ+ reporter 

cells, HLA-DP601 and HLA-DP301, are associated with high HLA-DP surface expression (496G) 

and HBV persistence7. These data indicate that the levels of HLA-DP expression and NKp44 binding 

might have co-evolved, with high-expressed HLA-DP molecules mediating no or little binding to 

NKp44, possibly to avoid induction of autoimmunity. However, in response to inflammation, such as 

during HBV infection, HLA-DP molecules have been shown to be upregulated24, and upregulation of 

normally low-expressed HLA-DP molecules that serve as ligands for NKp44 might enable 

recognition of infected cells by NKp44+ NK cells and viral clearance. The interaction identified here 

between a subset of HLA-DP molecules and NKp44 will now allow for functional assessment of the 

consequences of these interactions for the outcome of diseases that have been associated with HLA-

DP genotypes and expression levels. 

 

The precise regions within NKp44 and HLA-DP that are responsible for the binding of these 

molecules remain unknown. While NKp44 consistently bound to a subset of HLA-DP molecules, 

binding to these HLA-DP molecules was not solely dependent on either the α- or β-chain of the 

respective HLA-DP molecule alone, indicating a binding region determined by both chains. 

Identification of the specific binding sites within the HLA-DP molecules for NKp44, and how binding 
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is further modulated by the HLA-DP-presented peptide, will be a critical step towards understanding 

the structural requirements for these interactions. It is well established that specific peptides presented 

by HLA class I molecules impact binding of KIRs25,26,27,28,29,30, and we also observed an impact of the 

HLA-DP-presented peptides on the activity of NKp44-expressing cells (Figure  4). It is therefore 

possible that NKp44 might bind to additional HLA class II molecules other than the ones identified in 

this study in situations in which these molecules present specific peptides. However, using membrane-

bound HLA-DP molecules presenting a broad array of different peptides, we observed consistent 

hierarchies of interactions with NKp44, with HLA-DP401 always exhibiting the strongest binding. 

These data suggest that HLA class II allotypes represent the principal determinants for NKp44 

binding, reminiscent of KIR binding to HLA class I, which is strongly defined by the respective HLA 

class I allotypes48. In conclusion, this study identified an interaction between a subset of HLA-DP 

molecules and the NK cell receptor NKp44 that has a functional impact on NKp44+ NK cell activity, 

implicating HLA class II molecules in the regulation of innate immunity. 

 

METHODS 

Cell lines used 

All Jurkat reporter cell lines (clone E6.1; American Type Culture Collection (ATCC)) used lacked β2-

microglobulin (Jurkat-β2mKO cells) and were engineered to express NK cell receptors of interest, as 

previously described11. The KIR2DL3ζ+ Jurkat reporter cell line was previously generated11. Briefly, 

NKp44ζ and NKp46ζ constructs were designed by fusing the extracellular domain of the respective 

NCR molecule to the transmembrane domain of KIR3DL1 and the cytoplasmic domain of the CD3ζ 

chain. Constructs were synthesized by GeneArt GeneSynthesis (ThermoFisher) and cloned into a 

lentiviral transfer plasmid encoding a puromycin resistance. To produce lentiviral-like particles, 

HEK293T cells (ATCC) were transfected using Lipofectamine 2000 (Life Technologies), a VSV-G 

envelope vector (pHEF-VSVG; NIH AIDS Reagent Program), an HIV-1 Gag-Pol packaging vector 

(psPAX2; NIH AIDS Reagent Program) and the transfer vector (pSIP-ZsGreen, kindly provided by  

T. Pertel) encoding the gene of interest. Jurkat-β2mKO cells were transduced with lentiviral-like 

particles and selected 3 d post transduction with 1 µg ml−1 of puromycin (Sigma-Aldrich). NKp44ζ+, 

KIR2DL3ζ+ and NKp46ζ+ Jurkat cells were cultured at 37 °C/5% CO2 in RPMI-1640 (Life 

Technologies) supplemented with 20% heat-inactivated fetal bovine serum (FBS) (Biochrom) and 

maintained in 1 µg ml−1 puromycin (Sigma-Aldrich). HLA-DP sequences (HLA-DPA1: accession 

number: P20036, HLA-DPB1: accession number: P04440) containing the mammalian Kozak 

sequence were synthesized using GeneArt Strings (Life Technologies). DNA fragments encoding for 

HLA-DPA1*01:03, HLA-DPB1*02:01, HLA-DPB1*04:01, HLA-DPB1*03:01 and HLA-

DPB1*06:01 were cloned into a lentiviral transfer vector (pSIP-ZsGreen, kindly provided by T. 

Pertel) using NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs). Lentiviral 

particles were produced as described for NKp44ζ and NKp46ζ constructs. Wild-type Jurkat E6.1 cells 

(ATCC) were transduced using HLA-DPA1*01:03 lentiviral-like particles in combination with an 

HLA-DPB1 molecule to achieve surface expression of the respective HLA-DP molecule. Transduced 
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cells were selected with 1 µg ml−1 puromycin 3 d post transduction and stained for HLA-DP surface 

expression using an anti-HLA-DP-PE from Leinco Technologies. Cells were cultured at 37 °C/5% 

CO2 in RPMI-1640 supplemented with 20% heat-inactivated FBS and maintained in 1 µg ml−1 

puromycin. K562 cells (DSMZ) were grown in RPMI-1640 supplemented with 10% heat-inactivated 

FBS at 37 °C/5% CO2. Testing for mycoplasma infection of cell lines was not performed regularly in 

all cases. 

Recombinant human Fc construct binding to HLA class II-coated beads 

Screening of HLA class II-coated beads was performed using the LABScreen Single Antigen HLA 

class II—Group 1 kit (OneLambda). Recombinant human Fc constructs (LAG-3, NKp30, NKp44, 

NKp46, KIR2DL3, KIR2DL1, KIR2DS1, KIR3DS1, KIR3DL1, KIR3DL2 and KIR2DL4) were 

purchased from R&D Systems, diluted in PBS to concentrations ranging from 1 to 100 µg ml−1 and 

incubated with a mixture of 95 HLA class II-coated beads for 30 min at room temperature. Samples 

were washed and incubated with F(ab′)2 goat-anti-human IgG PE secondary antibody (Life 

Technologies) for 30 min at 4 °C. Fc construct binding to HLA class II-coated beads was quantified 

using Luminex xMAP technology on a Bio-Plex 200 (Bio-Rad Laboratories). 

Protein expression and purification 

The genes of NKp44 (S19–S130) and NKp46 (T25–G212) were synthesized by Integrated DNA 

Technologies with an amino (N)-terminal 6xHis tag and cloned into the pET30 vector. NKp44 and 

NKp46 were expressed as inclusion bodies in Ton A− BL21 (DE3) Escherichia coli and subsequently 

refolded by rapid dilution at 4 °C. NKp44 was refolded in a buffer containing 20 mM HEPES pH 7.0, 

0.4 M L-arginine, 5 M urea, 0.5 mM oxidized glutathione, 5 mM reduced glutathione, 2 mM EDTA 

and 0.2 mM phenylmethyl sulfonyl fluoride (PMSF), and NKp46 refolded in a buffer consisting of 

0.1 M Tris–HCl pH 8.5, 0.9 M L-arginine, 1 M urea, 0.5 mM oxidized glutathione, 5 mM reduced 

glutathione, 2 mM EDTA and 0.2 mM PMSF. Refolded NKp44 and NKp46 were dialyzed into 5 mM 

HEPES pH 7.0, 0.3 M NaCl and 10 mM Tris–HCl pH 8.5, 0.15 M NaCl, respectively, before 

purification via nickel-affinity and size-exclusion chromatography systems (Superdex 75, GE 

Healthcare). HLA-DPA1*01:03 paired with either HLA-DPB1*04:01 (HLA-DP401 CLIP) or HLA-

DPB1*03:01 (HLA-DP301 CLIP), and HLA-DQA1*05:01 paired with HLA-DQB1*02:01 (HLA-

DQ2 CLIP), were expressed and purified similarly as previously described49,50. Briefly, the 

appropriate α- and β-chains were cloned into the pFastBac Dual vector (Invitrogen) with fos/jun 

leucine zippers, a 7xHis tag at the β-chain carboxy (C) terminus and the CLIP peptide 

(ATPLLMQALPMGA) linked via the β-chain N terminus. Recombinant baculovirus was generated 

as per the manufacturer’s instructions and, following transfection and expansion of the baculovirus in 

Sf9 cells, 1.4–3.3% of P3 viral stock was used to infect Hi5 cells. After incubation for 72–96 h at 

27 °C (HLA-DP301 CLIP) or at 21 °C (HLA-DP401 CLIP and HLA-DQ2 CLIP), media containing 

secreted protein was concentrated and buffer exchanged into 10 mM Tris pH 8.0, 0.5 M NaCl (by 

tangential flow filtration) and purified using nickel-affinity and size-exclusion chromatography 
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systems (Superdex S200, GE Healthcare). The fos/jun zippers were removed via overnight treatment 

with enterokinase and separated via anion exchange chromatography (Hitrap Q, GE Healthcare). 

SPR 

SPR experiments were performed on a BIAcore T200 at 25 °C using CM5 series S sensor chips (GE 

Healthcare). In a buffer comprising 10 mM HEPES pH 7.0, 300 mM NaCl, NKp44 and NKp46 were 

immobilized to the chip surface via amine coupling (according to the manufacturer’s instructions) 

with capture levels of ~870 response units (RU) (chip one) and ~1,400 RU (chip two). In duplicates, 

at 10 µl min−1, in a buffer comprising of 10 mM Tris pH 8.0, 150 mM NaCl, 0.5% BSA, analyte 

proteins (typically 0.31–40 µM) were injected for 60 s, followed by a 300–500-s dissociation time. 

One preparation of HLA-DP401 had a maximum concentration of 35 µM. The responses on the active 

flow cells were double referenced by subtracting responses from an ‘empty’ flow cell as well as from 

buffer-only injections. Equilibrium dissociation constants were derived from fits using a single-site 

binding model. Data were analyzed using Scrubber v.2.0 (BioLogic Software) and Prism v.7.0 

(GraphPad Software). 

Jurkat reporter cell assay 

Non-tissue culture-treated plates (Corning Life Sciences) were coated with 5 µg ml−1 biotinylated 

HLA class II monomers (kindly provided by the NIH Tetramer Core Facility), HLA-DP single 

antigens (kindly provided by M.O. and J.-H.L. (OneLambda Inc.); not commercially available), 

1 µg ml−1 biotinylated anti-NKp44, 1 µg ml−1 biotinylated anti-NKp46 or 1 µg ml−1 biotinylated anti-

KIR2DL3 (Biolegend or Miltenyi Biotec) diluted in PBS. One negative control well with only PBS 

was prepared for each cell line. Coated plates were incubated at 4 °C for a minimum of 24 h. Jurkat 

reporter cells (2.5 × 104 cells per well) were incubated for 5 h at 37 °C/5% CO2 on coated plates. For 

blocking experiments, NKp44ζ+ Jurkat reporter cells were pre-incubated with 10 µg ml−1 purified anti-

NKp44 (Biolegend) or 10 µg ml−1 purified isotype control antibody (Biolegend) for 30 min at 

37 °C/5% CO2 before co-incubation with coated wells; blocking antibodies remained present 

throughout the co-incubation. After co-incubation, cells were stained with the viability dye Zombie 

NIR or ZombieAqua (Biolegend) anti-CD3-BUV737 (BD Biosciences) and anti-CD69-BV421 

(Biolegend), as well as their respective NCR (anti-NKp44-PE (Biolegend), anti-NKp46-PE (BD 

Biosciences)) or anti-KIR2DL3-PE (Miltenyi Biotec)) surface molecule and subsequently fixed with 

4% paraformaldehyde (PFA). CD69 expression was assessed using a BD LSR Fortessa (BD 

Biosciences).  

Isolation of human NK cells 

Human peripheral blood mononuclear cells were isolated from healthy adult donors recruited at the 

University Medical Center, Hamburg-Eppendorf using Biocoll (Biochrom) density centrifugation. All 

donors provided written informed consent and studies were approved by the ethical committee of the 

Ärztekammer Hamburg (PV4780). NK cells were enriched from isolated PBMCs using magnetic 

labeling and negative selection using the EasySep human NK cell enrichment kit (StemCell 



Technologies). Isolated NK cells were either directly used for degranulation assays or cultured for 7 d 

in RPMI-1640 supplemented with 10% FBS, 10 ng ml−1 IL-15 and 250 U ml−1 IL-2 (PeproTech) at a 

concentration of 2 × 106 cells ml–1. 

Degranulation assay 

Non-tissue culture-treated plates (Corning Life Sciences) were coated with 10 µg ml−1 biotinylated 

HLA class II monomers (kindly provided by the NIH Tetramer Core Facility), HLA-DP single 

antigens (kindly provided by M.O. and J.-H.L. ((OneLamda Inc.,); not commercially available), 

1 µg ml−1 biotinylated anti-NKp44 (Biolegend) diluted in PBS or left uncoated. NK cells were 

resuspended at a final concentration of 2 × 105 cells ml–1 in assay medium containing RPMI-1640 

medium supplemented with 10% FBS, 250 U ml−1 IL-2. Isolated NK cells (2 × 104 cells per well) were 

distributed on coated plates or co-incubated with K562 cells at an effector to target ratio of 1:5. 

Brefeldin A (Sigma-Aldrich), to a final concentration of 5 µg ml−1, and anti-CD107a-BV785 

(Biolegend) were added to each well. Cells were incubated for 5 h at 37 °C/5% CO2. For blocking 

experiments, NK cells were pre-incubated with 10 µg ml−1 anti-NKp44 or 10 µg ml−1 IgG isotype 

control antibody (Biolegend) for 30 min at 37 °C/5% CO2. Blocking antibodies remained present 

during the following co-incubation. After co-incubation cells were stained with anti-CD3-BV510, 

anti-CD56-BV605, anti-CD16-FITC, anti-NKp44-AF647, anti-CD69-BV421 and Zombie NIR (all 

Biolegend). NK cells were fixed using BD Cytofix/Cytoperm Kit (BD Biosciences) and analyzed 

using a BD LSR Fortessa (BD Biosciences).  

Jurkat reporter cell–Jurkat-HLA-DP co-incubation assay 

HLA-DP-expressing Jurkat E6.1 cells were co-incubated with NKp44ζ+, NKp46ζ+ Jurkat reporter 

cells or untransduced Jurkats at an effector to target ratio of 1:10 for 5 h at 37 °C/5% CO2. For 

peptide-pulsing experiments, HLA-DP-expressing Jurkat E6.1 cell lines were washed twice with 

serum-free medium and pulsed with 100 µM CLIP peptide (sequence: 

LPKPPKPVSKMRMATPLLMQALPM; GenScript) or an equivalent amount of DMSO for 18 h at 

37 °C/5% CO2. After peptide pulsing, JE6.1-DP cells were washed and co-incubated with Jurkat 

reporter cell lines. Subsequently, cells were stained with anti-CD3-BUV737 (BD Biosciences), anti-

NKp44-PE (Biolegend) or anti-NKp46-PE (BD Biosciences), anti-CD69-BV421 (Biolegend), 

LiveDead NearIR (Life Technologies) and anti-HLA-ABC-APC (Biolegend), to discriminate between 

HLA-DP-expressing JE6.1 and Jurkat reporter cells, for 30 min at 4 °C. Cells were fixed with 4% 

PFA and analyzed on a BD LSR Fortessa. HLA-DP and CLIP surface expression of JE6.1-DP cells 

was assessed by staining CLIP-pulsed and DMSO-pulsed JE6.1-DP cells with anti-CD3-BUV737 

(BD Biosciences), anti-HLA-DP-APC (Leinco Technologies), anti-CLIP-FITC (BD Biosciences) and 

LiveDead NearIR (Life Technologies) for 30 min at 4 °C. Cells were subsequently fixed and analyzed 

on a BD LSR Fortessa.  

Data analysis and statistics 

Flow cytometry data were analyzed using FlowJo v.10 (TreeStar). SPR data were analyzed using 

Scrubber v.2.0 (BioLogic Software). Statistical analyses were done using two-tailed Wilcoxon 



matched pairs signed-rank test for experiments comparing two conditions, and two-tailed Friedman 

test with post-hoc Dunn’s multiple comparison for experiments comparing more than two conditions 

of interest (GraphPad Prism v.7 and v.8). When data from replicates were included (Figures. 1a and 

2d), mixed effects linear regression models were used for statistical comparisons (SAS Software 

v.9.3). This type of model allows the correlation between replicates in these comparisons to be taken 

into account, as well as the systematic technical batch effect. If not otherwise indicated, the 

distribution of data from control conditions were assessed visually and not included in statistical 

comparisons. 
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Figure  1: Binding of LAG-3, KIR and NCR Fc constructs to HLA class II-coated beads. 
From: A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44 

 

 

a, Fc construct binding to HLA class II-coated beads is plotted as median fluorescence intensity (MFI). All 

Fc constructs, except KIR3DL1 Fc construct (10 µg ml−1), were used at a final concentration of 30 µg ml−1. 

https://www.nature.com/articles/s41590-019-0448-4


Each dot indicates an individual HLA class II allele. Binding of LAG-3, NKp30, NKp46 and KIR Fc 

constructs to HLA class II-coated beads was determined in one single experiment (n = 1). Binding of 

NKp44 Fc construct to HLA class II beads was determined in three independent biological replicates and 

MFI values of all experiments (n = 3) are depicted as mean values for each allele. The 95 HLA class II 

alleles were grouped according to HLA-DR, HLA-DQ and HLA-DP. The horizontal line shows the median 

of each HLA class II group. Error bars depict the interquartile range of each group. Statistical comparisons 

between HLA molecule types were done using data from each replicate in a mixed effects linear regression 

model. ****P < 0.0001. b, NKp44 Fc construct binding to different HLA-DP-coated beads was determined 

in three independent biological replicates and data of all independent experiments (n = 3) are depicted as 

MFI. Floating bars indicate the median, minimum and maximum MFI of each HLA-DP allele tested. HLA-

DP molecules that exhibited higher binding to the NKp44 Fc construct than to the positive control in at 

least one assay are marked in red. c, Representative SPR sensorgrams (top row) and corresponding 

equilibrium binding curves (bottom row) of NKp44 binding to HLA-DP401 CLIP (left) and HLA-DP301 

CLIP (right) molecules. Equilibrium dissociation constants (Kd) and s.e.m. were calculated from three 

independent analyte preparations (n = 3). Binding curve error bars represent the error of the fits by a single-

site binding model. ND, not determined. RU, response unit. d, Representative SPR sensorgrams 

demonstrating no detectable binding between NKp44 and HLA-DQ2 CLIP, NKp46 and HLA-DP401 CLIP 

(top row); NKp46 and HLA-DQ2 CLIP; NKp46 and HLA-DP301 CLIP (bottom row). Data are 

representative of two (n = 2 for HLA-DQ2) or three (n = 3 for NKp46) independent experiments. 

 

 

 

 

 

 

  



Figure  2: NKp44-expressing reporter cells interact with a subset of HLA-DP molecules 
From: A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44 

 

 

 

 

a, Reporter cell activity of NKp44ζ+, NKp46ζ+ and KIR2DL3ζ+ Jurkat reporter cells was determined by 

percentage of CD69+ cells after co-incubation with plate-coated anti-KIR2DL3, anti-NKp46, anti-NKp44, 

HLA-DR7 monomers loaded with CLIP peptide, HLA-DP401 monomers loaded with CLIP peptide and 

non-coated wells (blank). Plots represent one of eight independent experiments. b, Percentage of CD69+ 
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Jurkat reporter cells is depicted after co-incubation with the indicated antibodies and monomers. The 

percentage of CD69+ cells following incubation on non-coated wells (blank) was subtracted from all 

samples. Corrected values are illustrated as median with interquartile range as determined in eight 

independent experiments (n = 8). Two-tailed Wilcoxon matched pairs signed-rank test was used to calculate 

the difference of CD69+ cells after co-incubation with HLA-DR7 CLIP and HLA-DP401 CLIP molecules. 

**P = 0.008. c, Reporter cell activity of NKp44ζ+ Jurkat reporter cells in response to anti-NKp44, HLA-

DR7 CLIP and HLA-DP401 CLIP was determined in the presence of a purified mouse IgG1 isotype or a 

purified anti-NKp44 (both at a final concentration of 10 µg ml−1). The percentage of CD69+ cells following 

incubation on non-coated wells (blank) was subtracted from all samples. Reporter cell activity was 

determined in four independent experiments (n = 4). Each dot represents one individual experiment and 

lines connect matched responses determined in IgG1 isotype and anti-NKp44 conditions. d, Activity of 

NKp44ζ+ and NKp46ζ+ Jurkat reporter cells in response to anti-NKp46, anti-NKp44, HLA-DP401 (HLA-

DPA1*01:03–HLA-DPB1*04:01), HLA-DP201 (HLA-DPA1*01:03–HLA-DPB1*02:01), HLA-DP601 

(HLA-DPA1*01:03–HLA-DPB1*06:01), HLA-DP301 (HLA-DPA1*01:03–HLA-DPB1*03:01) is 

displayed as percentage of CD69+ cells. HLA-DP molecules marked in red exhibited binding to the NKp44 

Fc construct in the HLA class II-coated bead assay, while HLA-DP molecules marked in blue did not 

display binding to NKp44 Fc constructs. The percentage of CD69+ cells following incubation on non-

coated wells (blank) was subtracted from all samples. Corrected values are illustrated as median with 

interquartile range. Data were collected in three independent experiments, two of them conducted in 

quadruplicate (n = 9). Each dot represents one technical replicate. Mixed effects linear regression model 

was used to calculate differences of CD69+ reporter cells after co-incubation with the different HLA-DP 

molecules. ***P = 0.0004, ****P < 0.0001 

 

 

  



Figure  3: Stimulated primary NK cells degranulate on incubation with HLA-DP401 

monomers. 
From: A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44 

 

 

 

a, Percentage of CD107a+ NK cells was determined after co-incubation with the indicated plate-coated 

ligands or non-coated wells (blank). Plots represent one of seven independent experiments. b, 

Degranulation after co-incubation with anti-NKp44, HLA-DR7 and HLA-DP401 monomers loaded with 

CLIP peptide and non-coated wells (blank) is depicted as percentage of CD107a+ NK cells and was 

determined in cytokine-treated primary NK cells isolated from seven individual donors (n = 7). Frequency 

of CD107a+ NK cells was determined in the presence of purified mouse IgG1 isotype or purified anti-

NKp44 (both at a final concentration of 10 µg ml−1). Each dot represents one individual donor and lines 

connect responses from one individual donor. c, Cytokine-treated primary human NK cells derived from 

eight different donors were co-incubated with distinct plate-coated HLA-DP single-antigen molecules in 

the presence of purified mouse IgG1 isotype or purified anti-NKp44. Degranulation of primary NK cells is 

depicted as percentage of CD107a+ NK cells following co-incubation. Each dot represent one individual 

donor and lines connect responses from one individual donor (n = 8). 
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Figure  4: The interaction between NKp44 and HLA-DP is modulated by the presented 

peptide. 
From: A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44 

 

 

 

a, Reporter cell activity was determined as percentage of CD69+ cells after co-incubation with plate-coated 

anti-KIR2DL3, anti-NKp46, anti-NKp44 and HLA class II molecules loaded with the indicated peptides. 

The percentage of CD69+ cells following incubation on non-coated wells (blank) was subtracted from all 

samples. Corrected values are illustrated as median with interquartile range as determined in eight 

independent experiments (n = 8). Two-tailed Friedman test with post-hoc Dunn’s multiple comparison was 

used to determine statistical differences between percentages of CD69+ cells after co-incubation with the 

different HLA class II peptide-loaded molecules. Control conditions (anti-KIR2DL3, anti-NKp46, anti-

NKp44) were not included in the statistical analysis. *P = 0.03; **P = 0.001 and 0.005; ***P = 0.0005; 

****P < 0.0001. b, Percentage of CD107a+ NK cells was determined after co-incubation with different 

HLA class II molecules loaded with the indicated peptides using cytokine-treated primary NK cells isolated 

from seven different donors (n = 7). Frequency of CD107a+ NK cells was determined in the presence of 

purified mouse IgG1 isotype or purified anti-NKp44 (both at a final concentration of 10 µg ml−1). Each dot 

represents one individual donor and lines connect responses from one individual donor. 
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Figure  5: Membrane-bound HLA-DP molecules trigger a functional response of 

NKp44+ cells in an allotype-dependent manner. 
From: A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44 

 

 

 

a, Reporter cell activity of NKp44ζ+ and NKp46ζ+ Jurkat cells was determined as percentage of CD69+ 

cells after co-incubation with plate-coated anti-NKp44 and anti-NKp46 molecules (1 µg ml−1) as well as 

four distinct HLA-DP-expressing JE6.1 cell lines (JE6.1-DP). The percentage of CD69+ cells following 

incubation on non-coated wells (blank) was subtracted from all samples. The percentage of CD69+ cells 

after co-incubation with non-HLA-DP-transduced JE6.1 cells was subtracted from JE6.1-DP-positive 

samples. Corrected values are illustrated as median with interquartile range as determined in nine 

independent experiments. Each dot represents one individual experiment (n = 9). Two-tailed Friedman test 

with post-hoc Dunn’s multiple comparison was used to determine statistical differences between JE6.1-DP-

expressing cell lines. Control conditions (anti-NKp46, anti-NKp44) were not included in the statistical 

analysis. *P = 0.02 and 0.01. b, Activation of NKp44ζ+ Jurkat reporter cells following co-incubation with 

CLIP peptide-pulsed JE6.1-DP cell lines is depicted as percentage of CD69+ cells. The percentage of 

CD69+ cells following incubation on non-coated wells (blank) was subtracted from all samples. The 

percentage of CD69+ cells after co-incubation with CLIP-pulsed non-HLA-DP-transduced JE6.1 cells was 

subtracted from JE6.1-DP-positive samples. Corrected values are illustrated as median with interquartile 

range as determined in seven independent experiments (n = 7). Two-tailed Friedman test with post-hoc 

Dunn’s multiple comparison was used to determine statistical differences between percentages of CD69+ 

cells following co-incubation with the four different CLIP peptide-pulsed JE6.1-DP cell lines. *P = 0.04. 
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