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Highlights: 

• An intelligent semantic network was proposed to provide a holistic characterization of the 

thermal grid as well as enhance data interoperability. 

• Demand response was applied to optimize the operational schedules of the heat generation 

units.  

• 36% reduction on operation cost and 43% reduction on CO2 emission were observed. 

Abstract 

“Demand Response” energy management of thermal grids requires consideration of a wide 

range of factors at building and district level, supported by continuously calibrated simulation 

models that reflect real operation conditions. Moreover, cross-domain data interoperability 

between concepts used by the numerous hardware and software is essential, in terms of 

Terminology, Metadata, Meaning and Logic. This paper leverages domain ontology to map 

and align the semantic resources that underpin building and district energy management, with 

a focus on the optimization of a thermal grid informed by real-time energy demand. The 

intelligence of the system is derived from simulation-based optimization, informed by 

calibrated thermal models that predict the network’s energy demand to inform (near) real-time 

generation. The paper demonstrates that the use of semantics helps alleviate the endemic 

energy performance gap, as validated in a real district heating network where 36% reduction 
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on operation cost and 43% reduction on CO2 emission were observed compared to baseline 

operational data.  

Key words: Thermal grid, demand response, energy optimization, operation cost, data 

interoperability, semantic ontology 

1. Introduction 

The growing interest in thermal grids requires new business and technology platforms to handle 

the increasing amount of multi-aspects data and the level of complexity and diversity of the 

urban energy landscape [1] [2]. Moreover, the load profile fluctuation, from both heat demand 

and heat generation, requires informed decision-making to explore a wide range of 

configuration options that contribute to reduce heat energy demand and carbon emissions [3] 

[4] [5]. Therefore, the smart control of a thermal grid that factors in predicted changes is crucial 

to ensure effective real-time demand response. Conversely, the use of machine learning has 

paved the way to new ways of addressing the endemic energy performance gap [6] [7], while 

promoting flexibility and scalability of current generation of decentralized and multi-vector 

energy systems [3] [8]. 

Intelligent systems involve reliance on smart sensors, monitoring and control devices, and 

computing networks, powered by machine learning [6] [9]. However, current research in the 

energy management field reveals: a) difficulties in embracing the increasing complexity of 

current and future energy systems; b) limited potential in handling real-time dynamic 

conditions; and c) lack of holistic approaches to integrate seamlessly all hardware, protocols, 

software, and occupants involved [1] [2].  

Moreover, managing a complex energy system such as a district heating (DH) network requires 

a holistic approach to elicit and represent the data structures of the underpinning hardware and 

software components [10]. Ontology is a computer and human readable formalisation of a 

domain that can be used to interpret semantically related concepts using classes, relations and 
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attributes. The development of ontology requires expert knowledge to conceptualize the 

underpinning domain artefacts. The constructed semantic maps are applied to illustrate the 

relationship and map the corresponding instances. The authors have successfully applied 

semantics to address building energy management [11] and water urban management [12].  

This paper proposes an intelligent system for dynamic DH network monitoring to deliver real-

time energy management through a dedicated ontology developed with the Web Ontology 

Language (OWL), augmented with semantic rules capable of handling heterogeneous data 

sources. The complex energy system is broken down into discrete but related elements, 

governed by dependent and independent variables and their interaction through mathematical 

approximations. The proposed system involves a building energy prediction engine to 

automatically calibrate building energy models and forecast building energy demand, a 

simulation engine to support distribution network heat loss modelling, and an optimization 

engine to optimize the operational schedule of the generation units. The proposed solution is 

tested and validated in a real case study, a brownfield development in Wales, UK.  

The rest of the paper is organised as follows: section 2 presents a critical review of related work. 

In section 3, the overarching methodology and the underpinning components demonstrating 

the novelty of our approach is described. The subsequent section details the prediction, 

simulation and optimization engines. Section 5 presents the results, which are then discussed 

in section 6. The last section provides concluding remarks. 

2. Related work 

Recent advances in smart sensors together with low cost communication solutions have paved 

the way for a wide range of smart management solutions of energy systems through artificial 

intelligence (AI), including prediction and optimization algorithms [4].   

These techniques have been applied at building or district scale, and as such involve a bottom-

up or a top-down approach [13]. The bottom-up models calculate the energy from a single 
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building or a group of buildings and then aggregate or scale the results to the district level [14]. 

The annual energy can be obtained by summing up simulation results from various household 

categories. Each category is simulated separately and then multiplied by the number of 

households. The top-down approach involves a data driven model to predict energy demand 

according to statistical techniques or machine learning [15] [16]. This approach studies the 

building stock at hand without investigating individual buildings, which are relegated as nodes 

in the complex urban fabric. A large amount of dataset is required to construct the prediction 

model [12].   

The problem of mismatch between energy supply and energy demand is pronounced in the 

urban energy landscape [17], including in the context of district heating. A wide range of 

optimization models such as linear programming (LP), mixed-integer linear programming 

(MILP) and non-linear programming (NLP) have been applied for DH network optimization 

[18]. Cho et al. [19] developed a linear model for load dispatch with the purpose of reducing 

operation cost and carbon emission. Ameri and Besharati [20] developed a MILP model to 

identify the best energy mix in a complex district energy system to meet energy demand with 

minimum operation cost. Fonseca [21] developed a  non-linear k-means clustering algorithm 

computational framework for the optimization of building energy systems in an urban scale. 

Significant savings in operation cost, primary energy and CO2 emission were achieved. 

Ommen et al. [22] conducted a comparison of linear, mixed integer and non-linear 

programming to examine their impacts on energy dispatch. Results revealed that NLP and 

MILP exhibited better results than LP, corresponding to an improvement of 32% and 23%, 

respectively, in the performance of the generation units. The authors claimed that MILP is the 

best option from the runtime and accuracy perspectives. 

Model Predictive Control (MPC) has been extensively applied in the energy optimization 

process to mitigate the negative impacts caused by predictive uncertainties [1]. Reynolds et al. 

https://www-sciencedirect-com.proxy.bnl.lu/science/article/pii/S0378778815304199?via%3Dihub#!
https://www-sciencedirect-com.proxy.bnl.lu/topics/engineering/clustering-algorithm
https://www.sciencedirect.com/science/article/pii/S0306261918317070#!
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[1] have examined the MPC for supply and demand management in a multi-vector district 

energy system. Zhang et al. [23] compared the MPC with the traditional day-ahead control in 

a MILP based optimization process. Case study results demonstrated that MPC strategy 

provided more significant operation cost reduction.  

Recent research has seen the development of dynamic district energy simulation solutions [18] 

capable of predicting energy demand of the building stock, while providing a wide range of 

functionality, including manipulation and analysis of collected data. Schiefelbein [24] 

developed an urban energy system modelling platform through OpenStreetMap, with simulated 

space heating demand reflecting measured consumption.  

Interoperability and integration between the components of an energy system require the use 

of common or semantically aligned models to promote seamless data exchange between the 

constituents of these systems [25]. These semantic models are best reflected in the linked data 

and semantic Web efforts [26]. The paper proposes an approach for DH energy management 

underpinned by semantics and powered by AI, to inform real-time management of a thermal 

grid. This paper takes the overarching hypothesis that an accurate simulation of a thermal grid 

and its associated buildings, augmented with machine learning techniques fed by real-time 

sensory data, can alleviate the endemic energy performance gap in thermal grids. This is 

elaborated in the following section. 

3. Methodology 

This section gives an overview of the methodology employed to develop the proposed 

intelligent semantic system to monitor and optimize thermal grids. i.e. DH networks. The 

objective is to deliver a holistic real-time energy prediction and optimization process. A 

semantic Web-based approach is adopted to conceptualize the DH network and its constituent 

buildings, factoring in the enhanced sensing and actuation infrastructure.  

https://www-sciencedirect-com.proxy.bnl.lu/science/article/pii/S0360132318307686?pds=83201991517109280387390810157904#!
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The developed solution represents an intelligent system to (a) collect and integrate real-time 

data from heterogeneous data sources, (b) analyse the collected data, and c) provide continuous 

feedback while informing decision making with the objective to reduce the gap between 

predicted and actual energy consumption. The proposed solution translates into three layers: 

the sensing and actuation layer, the data interoperability layer and the intelligence layer, as 

illustrated in Fig. 1.   

The sensing and actuation layer represent energy and environmental sensing and actuation 

nodes in the complex energy system used to gather real-time data and apply, in response, 

adapted actuation strategies. Sensed data includes real-time supply and return temperatures of 

the distribution network, the amount of fuel available for use, the amount of hot water available 

in the storage tank, and energy demand of the connected buildings. This is augmented with 

environmental data from the UK Met Office weather service, including temperature, humidity, 

solar radiation, wind speed, and wind direction. The actuators are linked with devices for smart 

control and fault detection, e.g. the external shading blinds in windows (within buildings) are 

activated when the solar radiation reaches a certain level, or an alert is sent to the energy 

manager to signal that unoccupied spaces are being heated.  

The interoperability layer integrates all sensed and heterogeneous data in a form that is 

exploitable by the intelligent analytics and visual components using data models in the form 

of semantics. The district energy management system (DEMS) and the building energy 

management system (BMS) can thus inter-operate, despite their different native 

communication protocols, through a proposed Web service interface. As such, the 

interoperability layer acts as a mediator to integrate diverse and heterogeneous data sources 

and bring them in a form exploitable by the intelligence layer. Moreover, data from smart 

devices and modelling tools are converted into computer readable language and shared in a 
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common ontology, promoting interoperability and facilitating communication. The main 

concepts forming the resulting ontology are shown in  

Fig. 2.  More details about the ontology development process are given in [27]. The proposed 

solution is scalable and can be adopted in a wide range of buildings regardless of the data 

communication protocols used by the sensing and actuation nodes. 

The intelligence layer involves a smart GUI (Graphical User Interface) and three discrete 

engines: the building heating demand prediction engine (section 4.1), the distribution network 

simulation engine (section 4.2) and the optimization engine (section 4.3). The smart GUI is 

used to monitor and visualize real-time and historical data, monitor the performance of the 

systems in place, while providing a decision support capability in the form of actuation plans. 

The system can detect anomalies and suggest fault management plans. The state of the 

components of the energy system are analysed through the BMS/DEMS sensing nodes and 

acted upon through the energy system output control commands. As a result, the proposed 

system can send notifications to stimulate appropriate actions, and thus assists in the decision-

making process. 

 

Fig. 1  Architecture of the proposed solution 
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Fig. 2 Conceptualisation of main concepts in the district 

The workflow that involves interaction between the three engines is illustrated in Fig. 3. A 

cluster-based infrastructure is used to deploy the proposed architecture to ensure scalability 

and increase efficiency. The objective of the implemented scenario is to inform the energy 

operators of the optimal operational schedules for operational cost optimization. A MPC 

framework is integrated into the optimization process. The whole process is capable of 

producing a schedule for the following day provided it has 24-hour weather and occupancy 

prediction. However, the optimization strategy only executes the result for the next time step 

(15 mins in this study). Thus, the optimization results are updated at each time step, which 

allows the system to react to a more up-to-date weather forecast and occupants’ behaviour. 
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Fig. 3 The workflow for the interaction among the engines for optimization 

Two calibration processes can be achieved in the same cluster. The auto calibration process 

allows the building energy models to automatically calibrate sensitive parameters to improve 

prediction accuracy. This calibration is not performed on a time step basis but is instead 

triggered as a response to changing conditions that affect the accuracy of the simulated results. 

The distribution network calibration is conducted manually by adjusting the sensitive 

parameters to match simulation results with on-site measurements. 

4. System modelling 

The proposed methodology has been successfully tested and validated on a DH network in 

South Wales. The district was formerly occupied by a steelwork company that vacated the site 

in 1982. The site has since been developed into a vibrant and distinctive mixed-use (0.5km 

wide and 3km long) area, comprising an energy centre, a secondary school, a leisure centre, a 

learning zone, a general office and a multi-story car park. The energy centre was designed to 

provide heating for the above buildings and future planned developments. The installation 

includes one 400 kW gas engine CHP (Combined Heat and Power), two 450 kW biomass 
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boilers, four 1900 kW gas boilers and two storage tanks. The electricity generated from CHP 

is sold directly to the national grid, which is not used locally. The electricity for the district is 

supplied by the national grid. The multi-story car park is not heated, thus it is not included in 

the DH network, as shown in Fig. 4. The general office was built in 1915 for the Iron and Steel 

Company and was refurbished in 2011. The other buildings were completed just after 2010. 

 

Fig. 4 The layout of heating network 

4.1 Building energy prediction model calibration 

Building energy models play a prominent role in the design and operation stage of a building 

[28]. The developed simulation models are used in this research to predict building energy 

demand for the following day. The 3D semantic models of the buildings were reconstructed 

from point cloud data collected from a laser scanner. The models were then enriched based on 

archived documents. Zones and HVAC systems were added to each building simulation model.  
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Fig. 5 GA based calibration process  

Each building model was calibrated separately using the measured energy data. The time 

independent variables (U-values and air infiltration rate) were calibrated using an approach 

developed by the authors, presented in [29]. The calibration process for the time dependent 

variables (including indoor heating set point temperature, window opening schedules, 

occupancy etc.) is shown in Fig. 5. NSGA-II (Non-dominated Sorting Genetic Algorithm), 

which is one of the most popular multi-objective optimization algorithms [30], was employed 

to search for the optimal values for the time dependent parameters. If a chronic difference is 

detected between the simulation results and the measured results, a notification will be sent out 

to remind the energy managers to activate the auto calibration process as illustrated in Fig. 3.   

The calibration was subsequently used to generate semantic rules. Two examples of the 

generated rules are shown in Fig. 6. A SWRL (Semantic Web Rule Language) includes an 

antecedent part and a consequent part, in the form of antecedent→consequent. If the antecedent 

is satisfied, then the consequent is satisfied as well.  
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Fig. 6 Two examples of the generated rules 

 

The fitness function is to evaluate the CV-RMSE (Coefficient of Variation of Root Mean 

Square Error) and NMBE (Normalized Mean Bias Error) of the predicted results and measured 

results. NMBE and CV-RMSE are given by the following equations. yi  and ŷi  denote 

simulation results and monitoring measurements.  

NMBE =
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛
𝑖=1

(𝑛 − 𝑝) ∙ 𝑦̅
∙ 100 (1) 

CV − RMSE =

√
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

(𝑛 − 𝑝)

𝑦̅
 

(2) 

The building models are calibrated to the acceptable calibration tolerance of the ASHREA 

standard [31]. The well-calibrated building energy models provide reliable results for carrying 

out distribution network simulation. 

4.2 Distribution network simulation 

The distribution network is a piping system buried underground. The pipes are wrapped with 

insulation materials. Heat loss through the distribution network depends on the surrounding 

environment, distribution temperature, water flow regime, thermal physical properties of the 

pipe, insulation level, and the nature of the soil where the pipes are buried. The distribution 

network model was developed in Simulink, validated using on-site operation data, and 

presented in detail in [32]. The developed Simulink model is shown in Fig. 7. The calibrated 

model is thereafter used to generate the semantic rules that augment the developed ontology. 

https://www-sciencedirect-com.proxy.bnl.lu/topics/engineering/mean-bias-error
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Fig. 7 The developed Simulink model for the distribution network  

4.3 Operational optimization for cost minimization 

The energy managers of the selected site used a load-tracking mode to control the generators, 

which resulted in low efficiency levels. The operating strategy used simplified the control of 

the generation units by assuming that the generators running at a lower output had the same 

efficiency as at a higher output. The energy managers turned on the generator(s) when there 

was a need for heating. The CHP had the highest priority, operating 24/7, to fully exploit its 

capacity to generate heat and power. The second option involves the biomass boilers. When 

the CHP and biomass boilers were not able to meet the heat demand, the gas boilers were put 

into operation. The storage tanks were installed in the energy centre but were not used 

efficiently.  

The proposed optimization aims to reduce operation cost while maintaining the energy demand 

of the DH network by controlling the operational schedules of the generation units. Mix-integer 

linear programming, consisting of both binary and continuous variables, is chosen because of 

its computation speed in finding the optimal solution for near real-time management. The 

parameters that are used in the operation are shown in Table 1. The data were provided by the 
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energy manager of the district. The electricity price refers to the price of selling electricity 

generated from the CHP to the national grid.  

Table 1 Energy price and CO2 emission 

electricity price (sold to grid) 0.07 £/kWh 

Renewable heat incentive (biomass) 0.0537 £/kWh of heat generation  

purchase price of biomass 0.205 £/kg 

purchase price of natural gas 0.0248 £/kWh 

biomass calorific value 4.8 kwh/kg 

CO2 emission from biomass 15 kg/mwh 

CO2 emission from gas 185 kg/mwh 

 

Constraints: 

The efficiencies of the generators vary under different output loads, which should be taken into 

account while investigating the operation cost from the energy centre. The efficiency profiles 

of the biomass boiler, gas boiler and CHP are illustrated in Fig. 8. The efficiencies of the 

generators vary over the operational profiles, performing better at higher output than lower 

output levels. In order to ensure the efficiency of the generators, the minimum output is defined 

at 20% of the rated power. The output levels are divided into 5 levels, corresponding to 20%, 

40%, 60%, 80% and 100% of the rated power.  
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Fig. 8 Efficiency profiles of the generators 

x(i, j, k) is a binary attribute to define the on/off status of the generators. x(i, j, k) = 1 indicates 

at time period i, generator j is operating at level k. At any time for any generator, it can only 

operate at one output level or be shut down. These constraints are applied to the entire 

optimization period. 

∑ 𝑥(𝑖, 𝑗, 𝑘) ≤ 1
𝑘=𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1
  (3) 

𝑥(𝑖, 𝑗, 𝑘) = 0, 1  (4) 

The time step in this study is 15 mins, so 24 hours (one day) are equivalent to 96 periods. In 

order to represent the start-up status, another binary variable z(i, j)  is introduced. More 

specifically, z(i, j) = 1 means generator j is off at time period i (∑ x(i, j, k)nlevel
k=1 = 0) and it is 

on at i+1 time period (∑ x(i + 1, j, k)nlevel
k=1 = 1). The operation status of the generators is 

subject to the following constraints: 

− ∑ 𝑥(𝑖, 𝑗, 𝑘)
𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1
 +  ∑ 𝑥(𝑖 + 1, 𝑗, 𝑘)

𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1
 − 𝑧(𝑖, 𝑗)  ≤  0  (5) 

z(i, j) = 0, 1 (6) 
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 z(i, j) is included in the objective function for cost minimization. Therefore, the solver will 

make sure z(i, j) = 1 on the condition that it satisfies the requirements.  

The generators are numbered as CHP, gas boiler 1, gas boiler 2, gas boiler 3, gas boiler 4 and 

biomass 1, biomass 2. Different types of generators have the same priority for energy 

generation, but for the same type of boiler, biomass 1 has a higher priority than biomass 2, 

which means biomass boiler 2 is only turned on when biomass 1 is already in operation.  The 

same principle is employed to gas boilers.  

∑ 𝑥(𝑖, 𝑗, 𝑘)
𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1
− ∑ 𝑥(𝑖, 𝑗 + 1, 𝑘)

𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1
 ≥  0 (7) 

The heat stored in the storage tank (Storagei) at time period i should be equal to the energy 

stored until time period i-1 (Storagei−1 ) multiplied by the efficiency of the storage tank 

(effstorage) and the energy generation at time period i, minus the energy consumption at time 

period i (Demandi). The efficiency of the storage is assumed to be constant efficiency. PH(j, k) 

represents the energy production of operator j running at output level k.  

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑖 =  ( 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑖−1 ∙ 𝑒𝑓𝑓𝑠𝑡𝑜𝑟𝑎𝑔𝑒  

+ ∑ ∑ 𝑃𝐻(𝑗, 𝑘) ∙ 𝑥(𝑖, 𝑗, 𝑘)
𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1

𝑛𝐺𝑒𝑛𝑠

𝑗=1
−  𝐷𝑒𝑚𝑎𝑛𝑑𝑖) 

(8) 

Storagei ≤ 𝑆𝑖𝑧𝑒𝑡𝑎𝑛𝑘  (9) 

When i=1, Storagei−1 is the measured energy storage from the storage tank. 

Objective 

The objective of the optimization is to minimize operation cost (Ctotal) from the energy centre 

while guaranteeing heat consumption of the DH network. The operation cost consists of fuel 

cost (Cfuel), start-up cost of the generation units (Cstartup) and the positive revenue (Celectricity) 

gained from selling electricity to the grid taking into account the renewable heat incentive. 
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𝐶𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑓𝑢𝑒𝑙 + 𝐶𝑠𝑡𝑎𝑟𝑡𝑢𝑝 − 𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦  − 𝐶𝑅𝐻𝐼 (10) 

𝐶𝑓𝑢𝑒𝑙 =  ∑ (∑
𝑃𝐻(1, 𝑘) ∙ 𝑥(𝑖, 𝑗, 𝑘)

𝜂𝐶𝐻𝑃(𝑗, 𝑘)

𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1
∙ 𝑝𝑟𝑖𝑐𝑒𝑔𝑎𝑠

𝑛𝑃𝑒𝑟𝑖𝑜𝑑

𝑖=1

+ ∑ ∑  
𝑃𝐻(𝑗, 𝑘) ∙ 𝑥(𝑖, 𝑗, 𝑘)

𝜂𝑔𝑎𝑠(𝑗, 𝑘)

𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1

5

𝑗=2
∙ 𝑝𝑟𝑖𝑐𝑒𝑔𝑎𝑠

+  ∑ ∑
𝑃𝐻(𝑗, 𝑘) ∙ 𝑥(𝑖, 𝑗, 𝑘)

𝜂𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑗, 𝑘)

𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1

7

𝑗=6
∙ 𝑝𝑟𝑖𝑐𝑒𝑏𝑖𝑜𝑚𝑎𝑠𝑠) 

(11) 

𝐶𝑠𝑡𝑎𝑟𝑡𝑢𝑝 =  ∑ ∑ (𝑧(𝑖, 𝑗) ∙ 𝑝𝑟𝑖𝑐𝑒𝑠𝑡𝑎𝑟𝑡(𝑗))
𝑛𝐺𝑒𝑛𝑠

𝑗=1

𝑛𝑃𝑒𝑟𝑖𝑜𝑑

𝑖=1
 (12) 

𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = ∑ ∑ 𝑃𝑐ℎ𝑝𝑒
(1, 𝑘) ∙ 𝑥(𝑖, 1, 𝑘)

𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1
∙ 

𝑛𝑃𝑒𝑟𝑖𝑜𝑑

𝑖=1
𝑃𝑟𝑖𝑐𝑒 (13) 

C𝑅𝐻𝐼 = ∑ ∑ ∑ 𝑃𝐻(𝑗𝑗, 𝑘𝑘) ∙ 𝑥(𝑖, 𝑗, 𝑘) ∙ 𝑅𝐻𝐼
𝑛𝑙𝑒𝑣𝑒𝑙

𝑘=1

7

𝑗=6

𝑛𝑃𝑒𝑟𝑖𝑜𝑑

𝑖=1
 (14) 

where𝜂𝐶𝐻𝑃(𝑗, 𝑘), 𝜂𝑔𝑎𝑠(𝑗, 𝑘) and 𝜂𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑗, 𝑘) are the efficiencies of the CHP, gas boiler and 

biomass boiler operating at k level. 𝑝𝑟𝑖𝑐𝑒𝑔𝑎𝑠 , 𝑝𝑟𝑖𝑐𝑒𝑏𝑖𝑜𝑚𝑎𝑠𝑠, 𝑝𝑟𝑖𝑐𝑒𝑠𝑡𝑎𝑟𝑡(𝑗)  and 𝑃𝑟𝑖𝑐𝑒𝑒 

represent the fuel cost for gas, biomass, startup cost for generatior j and the price of electricity 

sold to the grid. 𝑃𝑐ℎ𝑝𝑒
(1, 𝑘) represents the electricity generation from CHP boiler operating at 

level k, while RHI (Renewable Heat Incentive) represents the renewable incentive price for 

heat generation from biomass boiler.   

5. Results 

5.1 Energy demand from DH network 

To evaluate the effectiveness of the developed solution, the proposed system was tested in a 

real site condition over a winter season from November to January. The prediction results are 

compared with the data collected from on-site measurements.Error! Reference source not 

found. Fig. 9 shows the dynamic behaviour of the DH demand over the optimization period. 

Equations (1) and (2) are used to evaluate the accuracy of the prediction results. The NMBE 
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and CV-RMSE are -0.1%  and 13.1% for 15 minute interval data. The ASHRAE Guideline [31] 

requires NMBE and CV-RMSE for monthly data to be within 5% and 15%, and for hourly data 

to be within 10% and 30%. Thus, from the statistical point of view, it can be concluded that 

the predicted results are in line with the measured data. Furthermore, the heat demand for 

working days are significantly different from the weekends and holidays. The operational 

schedules will be discussed based on one selected day from the working days and one selected 

day from the weekends or holidays.  

 
Fig. 9 Aggregated energy demand from the DH network, simulation VS metered data. 

 

5.2 Operational schedules for the generators 

The optimization scheme is benchmarked with the load-tracking scheme. Fig. 10 and Fig. 11 

illustrate the operational schedules of the generators for a typical day during working days and 

a typical day during weekends or holidays under load-tracking mode and after optimization. 

Under the load-tracking mode, the boilers’ operation followed a predefined priority. Compared 

with the installed capacity of each generator, the generators operated substantially at partial 

loads. The CHP had the highest priority, which mainly operated at full load during daytime and 

partial loads during night time. The biomass boilers were mostly operating at or near their full 

load when in operation. These assured high efficiencies for the CHP and biomass boilers. The 

gas boilers mainly operated at partial loads, resulting in a low energy efficiency. 
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Fig. 10 Operational schedules for the generators for a typical day in the working days under the load-

tracking model (left) and after optimization (right) 

 

Fig. 11 Operational schedules for the generators for a typical day in the weekends or holidays under 

the load-tracking mode (left) and after optimization (right) 

 

After optimization, the system took advantage of the storage tank for load shifting. The boilers 

mostly operated at or near full output loads, which ensures the energy performance of the whole 

system. It should be noted that the CHP and biomass boiler 2 operated exclusively at full load 

on weekends. During the working days, the CHP and biomass boiler 2 operated mainly at full 

load with exceptions that the CHP operated at 60% of the full load before shut down and the 

biomass boiler 2 operated at 80% of the full load at starting up. From the energy generation 

profiles after optimization, it can be seen that the heat generation before peak hours was more 

than the heat demand. The over generated heat was shifted to peak hours. The generators were 

normally designed to meet peak demand. If smart control had been introduced at the design 

stage, the installation capacity for the energy units could have been reduced. It should be noted 
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that, after optimization, the biomass boiler is the most cost effective option for heat generation. 

As biomass is a carbon neutral energy source, this also leads to a reduction in CO2 emission. 

Over the three-month period, the total CO2 emission was reduced from 504 tons to 287 tons, 

corresponding to a reduction of 43%.  

5.3 Operation efficiencies and costs  

Table 2 Efficiencies of the generators under the load-tracking mode and after optimization 

 Load-tracking model   after optimization 

CHP  electricity 0.35 0.36 

CHP overall 0.78 0.78 

Biomass boiler 0.82 0.85 

gas boiler 0.67 0.77 

The efficiencies of the boilers after optimization are benchmarked with efficiencies under the 

load-tracking mode, as shown in Table 2. The efficiencies of the boilers under the load-tracking 

mode were obtained on-site from the annual operational efficiencies for the year 2016. The 

efficiencies after optimization are average efficiencies over the test period. After optimization, 

the performance of the gas boilers and the biomass boiler has been improved significantly. The 

overall efficiency for the CHP remains the same, but the efficiency for electricity generation 

showed a slight increase.  

The daily operation costs under the load-tracking mode and after optimization are illustrated in 

Fig. 12. After optimization, 36% reduction in the operation cost has been achieved. The 

negative operation cost during holidays and weekends indicate that the system is capable of 

generating positive revenue, which is mainly due to the renewable heat incentive policy for 

heat generation from biomass boilers.  
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Fig. 12 Daily operation cost of the generators from November to January 

6. Discussion 

A demand response energy management system is proposed, demonstrated and validated 

through a semantic approach. Although the proposed case study is specific, the proposed web-

based system, underpinned by a comprehensive domain description through semantics, and 

augmented with intelligence through optimization, is generic and scalable. As such, the 

proposed system can be extended to connect further buildings to the thermal grid. Specifically, 

the prediction models are flexible for replacement of old building models and addition of new 

building models. For example, if a building changes (e.g. through a renovation process), this 

can be reflected in the corresponding calibrated simulation model used by the prediction engine. 

The network can be extended by adding new building models to quantitatively evaluate the 

possibility of integrating newly constructed buildings for cost effective management. For large 

scale district simulation, representative building models can be constructed to represent 

buildings with similar characteristics (including geometry), and then multiplied by the number 

of buildings to simplify the model generation process and reduce runtime requirements. The 

model size is only constrained by the computational power of the IT infrastructure. The 

simulation models can also be generated from data driven models if historical operation data 

are available. The large datasets are used to train and validate the prediction model through 
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machine learning. The optimization algorithm can also be replaced or modified to achieve other 

objectives, such as enhancing renewable energy share and improving indoor thermal comfort.  

The semantically enriched environment introduced in this paper supports the development of 

additional modules to support further use cases, including (a) anomaly detection, (b) automatic 

feature extraction for elicitation of performance gaps, and (c) informing decision making 

through tailored energy saving recommendations. For example, if a sensor attached to a 

window provides a state ‘open’ in cold winter, the energy sensor detects a significant energy 

increase within the room. The system will recognize this as an abnormal energy increase and 

sends a signal to remind the users to close the window. It is also capable of detecting pipe 

leakage in the distribution network by comparing the measured energy data with simulated 

network heat losses.  

The semantic-enabled approach developed in this study for monitoring and optimization is not 

only limited to the thermal grid, it can also be used to integrate a thermal network with other 

networks in a multi-vector energy landscape. 

7. Conclusions and future work 

This paper presents a “demand response” management solution of a thermal grid by using a 

semantic middleware, that manages real-time data, augmented with machine learning 

techniques. Together with the novelty of the semantic approach, the solution presents an insight 

into real-time thermal grid monitoring and optimization, facilitating energy managers to make 

informed decisions based on real operation conditions of their energy system. The solution has 

been successfully implemented in a DH network, where 36% operation cost reduction and 43% 

carbon mitigation were observed within three months. 

Whilst the individual components used in the proposed system delivered interesting 

performance improvement, key ongoing work includes further optimization of each. MINP is 

selected for the optimization because of its computation speed, which simplifies the operation 
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of the generation units. For example, the MINP could be interchanged with a more advanced 

deep learning model, and its hyperparameters could be further optimized via a dense grid search 

or similar technique.  

An automatic calibration process for the distribution network will be investigated in future 

development. Future work will also investigate optimization from the control of buildings such 

as zone energy demand, indoor temperature and indoor thermal comfort. Multi-objective 

optimization will be introduced to investigate operation cost together with thermal comfort, to 

be validated directly from occupants’ feedback.  

Reference 

[1] Reynolds J, Ahmad MW, Rezgui Y, Hippolyte J-L. Operational supply and demand 

optimisation of a multi-vector district energy system using artificial neural networks 

and a genetic algorithm. Appl Energy 2019;235:699–713. 

doi:10.1016/j.apenergy.2018.11.001. 

[2] Howell S, Rezgui Y, Hippolyte J-L, Jayan B, Li H. Towards the next generation of smart 

grids: Semantic and holonic multi-agent management of distributed energy resources. 

Renew Sustain Energy Rev 2017;77:193–214. doi:10.1016/j.rser.2017.03.107. 

[3] Li Y, Rezgui Y, Zhu H. District heating and cooling optimization and enhancement – 

Towards integration of renewables, storage and smart grid. Renew Sustain Energy Rev 

2017;72:281–94. doi:10.1016/j.rser.2017.01.061. 

[4] Reynolds J, Rezgui Y, Hippolyte J-L. Upscaling energy control from building to districts: 

Current limitations and future perspectives. Sustain Cities Soc 2017;35:816–29. 

doi:10.1016/j.scs.2017.05.012. 

[5] Kuster C, Rezgui Y, Mourshed M. Electrical load forecasting models: A critical 



24 

 

systematic review. Sustain Cities Soc 2017;35:257–70. doi:10.1016/j.scs.2017.08.009. 

[6] Wang D, Zhi Y, Jia H, Hou K, Zhang S, Du W, et al. Optimal scheduling strategy of district 

integrated heat and power system with wind power and multiple energy stations 

considering thermal inertia of buildings under different heating regulation modes. Appl 

Energy 2019;240:341–58. doi:10.1016/J.APENERGY.2019.01.199. 

[7] Wu H, Shahidehpour M, Khodayar ME. Hourly demand response in day-ahead 

scheduling considering generating unit ramping cost. IEEE Trans Power Syst 

2013;28:2446–54. doi:10.1109/TPWRS.2013.2254728. 

[8] Petri I, Yuce B, Kwan A, Rezgui Y. An intelligent analytics system for real-time catchment 

regulation and water management. IEEE Trans Ind Informatics 2018;14:3970–81. 

doi:10.1109/TII.2017.2782338. 

[9] Talebi B, Haghighat F, Tuohy P, Mirzaei PA. Optimization of a hybrid community district 

heating system integrated with thermal energy storage system. J Energy Storage 

2019;23:128–37. doi:10.1016/J.EST.2019.03.006. 

[10] Li Y, García-Castro R, Mihindukulasooriya N, O’Donnell J, Vega-Sánchez S. Enhancing 

energy management at district and building levels via an EM-KPI ontology. Autom 

Constr 2019;99:152–67. doi:10.1016/J.AUTCON.2018.12.010. 

[11] Howell SK, Wicaksono H, Yuce B, McGlinn K, Rezgui Y. User Centered Neuro-Fuzzy 

Energy Management Through Semantic-Based Optimization. IEEE Trans Cybern 

2018:1–15. doi:10.1109/TCYB.2018.2839700. 

[12] Howell S, Rezgui Y, Beach T. Integrating building and urban semantics to empower 

smart water solutions. Autom Constr 2017;81:434–48. 



25 

 

doi:10.1016/J.AUTCON.2017.02.004. 

[13] Kazas G, Fabrizio E, Perino M. Energy demand profile generation with detailed time 

resolution at an urban district scale: A reference building approach and case study. 

Appl Energy 2017;193:243–62. doi:10.1016/j.apenergy.2017.01.095. 

[14] Shimoda Y, Fujii T, Morikawa T, Mizuno M. Residential end-use energy simulation at 

city scale. Build Environ 2004;39:959–67. doi:10.1016/j.buildenv.2004.01.020. 

[15] Tian W, Choudhary R. A probabilistic energy model for non-domestic building sectors 

applied to analysis of school buildings in greater London. Energy Build 2012;54:1–11. 

doi:10.1016/j.enbuild.2012.06.031. 

[16] Mastrucci A, Baume O, Stazi F, Leopold U. Estimating energy savings for the residential 

building stock of an entire city: A GIS-based statistical downscaling approach applied 

to Rotterdam. Energy Build 2014;75:358–67. doi:10.1016/j.enbuild.2014.02.032. 

[17] Zhang W, Xu Y, Liu W, Zang C, Yu H. Distributed Online Optimal Energy Management 

for Smart Grids. IEEE Trans Ind Informatics 2015;11:717–27. 

doi:10.1109/TII.2015.2426419. 

[18] Wang H, Abdollahi E, Lahdelma R, Jiao W, Zhou Z. Modelling and optimization of the 

smart hybrid renewable energy for communities (SHREC). Renew Energy 2015;84:114–

23. doi:10.1016/j.renene.2015.05.036. 

[19] Cho H, Mago PJ, Luck R, Chamra LM. Evaluation of CCHP systems performance based 

on operational cost, primary energy consumption, and carbon dioxide emission by 

utilizing an optimal operation scheme. Appl Energy 2009;86:2540–9. 

doi:10.1016/j.apenergy.2009.04.012. 



26 

 

[20] Ameri M, Besharati Z. Optimal design and operation of district heating and cooling 

networks with CCHP systems in a residential complex. Energy Build 2016;110:135–48. 

doi:10.1016/j.enbuild.2015.10.050. 

[21] Fonseca JA, Nguyen T-A, Schlueter A, Marechal F. City Energy Analyst (CEA): Integrated 

framework for analysis and optimization of building energy systems in neighborhoods 

and city districts. Energy Build 2016;113:202–26. doi:10.1016/J.ENBUILD.2015.11.055. 

[22] Ommen T, Markussen WB, Elmegaard B. Comparison of linear, mixed integer and non-

linear programming methods in energy system dispatch modelling. Energy 

2014;74:109–18. doi:10.1016/j.energy.2014.04.023. 

[23] Zhang Y, Zhang T, Wang R, Liu Y, Guo B. Optimal operation of a smart residential 

microgrid based on model predictive control by considering uncertainties and storage 

impacts. Sol Energy 2015;122:1052–65. doi:10.1016/J.SOLENER.2015.10.027. 

[24] Schiefelbein J, Rudnick J, Scholl A, Remmen P, Fuchs M, Müller D. Automated urban 

energy system modeling and thermal building simulation based on OpenStreetMap 

data sets. Build Environ 2019;149:630–9. doi:10.1016/J.BUILDENV.2018.12.025. 

[25] Shang W, Ding Q, Marianantoni A, Burke J, Zhang L. Securing building management 

systems using named data networking. IEEE Netw 2014;28:50–6. 

doi:10.1109/MNET.2014.6843232. 

[26] W3C. Semantic Web n.d. https://www.w3.org/standards/semanticweb/ (accessed 

April 12, 2019). 

[27] Hippolyte J-L, Rezgui Y, Li H, Jayan B, Howell S. Ontology-driven development of web 

services to support district energy applications. Autom Constr 2018;86:210–25. 



27 

 

doi:10.1016/J.AUTCON.2017.10.004. 

[28] Li Y, Kubicki S, Guerriero A, Rezgui Y. Review of building energy performance 

certification schemes towards future improvement. Renew Sustain Energy Rev 

2019;113:109244. doi:10.1016/J.RSER.2019.109244. 

[29] Li Y, Rezgui Y. A novel concept to measure envelope thermal transmittance and air 

infiltration using a combined simulation and experimental approach. Energy Build 

2017;140:380–7. doi:10.1016/j.enbuild.2017.02.036. 

[30] Yusoff Y, Ngadiman S, Zain AM. Overview of NSGA-II for Optimizing Machining Process 

Parameters peer-review under responsibility of [name organizer]. Procedia Eng 

2011;15:3978–83. doi:10.1016/j.proeng.2011.08.745. 

[31] ASHRAE. ASHRAE Guideline 14: measurement of energy demand and saving. American 

society of heating refrigeration and air conditioning engineers; 2002. 

[32] Li Y, Rezgui Y, Zhu H. Dynamic simulation of heat losses in a district heating system: A 

case study in Wales. 2016 IEEE Smart Energy Grid Eng., IEEE; 2016, p. 273–7. 

doi:10.1109/SEGE.2016.7589537. 

 


