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ABSTRACT: 

 

The additive manufacturing (AM) process is characterised as a high energy-consuming process, which 
has a significant impact on the environment and sustainability. The topic of AM energy consumption 
modelling, prediction, and optimisation has then become a research focus in both industry and academia. 
This issue involves many relevant features, such as material condition, process operation, part and 
process design, working environment, and so on. While existing studies reveal that AM energy 
consumption modelling largely depends on the design-relevant features in practice, it has not been given 
sufficient attention. Therefore, in this study, design-relevant features are firstly examined with respect 
to energy modelling. These features are typically determined by part designers and process operators 
before production. The AM energy consumption knowledge, hidden in the design-relevant features, is 
exploited for prediction modelling through a design-relevant data analytics approach. Based on the new 
modelling approach, a novel deep learning-driven particle swarm optimisation (DLD-PSO) method is 
proposed to optimise the energy utility. Deep learning is introduced to address several issues, in terms 
of increasing the search speed and enhancing the global best of PSO. Finally, using the design-relevant 
data collected from a real-world AM system in production, a case study is presented to validate the 
proposed modelling approach, and the results reveal its merits. Meanwhile, optimisation has also been 
carried out to guide part designers and process operators to revise their designs and decisions in order 
to reduce the energy consumption of the designated AM system under study. 
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1. Introduction 

 

AM has developed as an essential manufacturing system in Industry 4.0 (Eyers and Potter, 2017; Huang 

et al., 2013). Different from the AM production of prototypes 30 years ago, current AM applications 

focus on producing end-use parts. According to an AM financial report (Wohlers, 2016), the market of 

AM production will be worth over 20 billion USD by 2020. Because of the potential market’s size, AM 

is known as one of the most popular manufacturing processes, which makes AM sustainability become 

a crucial research topic (Niaki et al., 2019). Under this large and interesting topic, many issues have 

never failed to attracted researchers’ attention, such as material selection and consumption, particle 

emission, and energy consumption (Junk and Coté, 2013). Among these interesting topics, reducing 

energy consumption is one of the most signification drivers for environmental improvement, and cost-

saving of AM processes (Verhoef et al., 2018). AM energy consumption is a comprehensive issue which 

involves multiple manufacturing phases, pre-process, building process, and post-process (Yosofi et al., 

2019). Especially in the building process, it is affected by the various factors including material 

condition, process operation, part and process design, and working environment, (Baumers et al., 2011a; 

Qin et al., 2017).  

 

Since AM’s high design freedom for producing end-use parts, AM processes provide part designers 

with a valuable opportunity to produce a wide range of parts (Thompson et al., 2016). However, the 

high design freedom of production also results in the AM process more complicated, in terms of 

complex mechanical structures and unique design features. Furthermore, in some multiple-part 

production processes, such as selective laser sintering (SLS) and selective laser melting (SLM) (Gibson 

et al., 2010), a single AM production process can build several different parts at the same time. In these 

processes, the orientations and locations of the parts are determined by process operators, which is noted 

as an AM process planning issue (Zhang et al., 2014). With the high design freedom in part production 

and the various processing plans in each AM process, AM systems are able to create countless 
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possibilities for diverse part production, offering part designers and process operators a variety of 

options in part and process design (Peng et al., 2018).  

 

In order to help part designers and process operators to understand AM process design, design for 

additive manufacturing (DfAM) was proposed. The term DfAM is derived from design for 

manufacturing and assembly (DfMA) (Thompson et al., 2016). Similar to DfMA, DfAM includes 

numerous design-relevant aspects, such as material design, part geometry design, and process planning, 

each of which involves many design-relevant features (Gibson et al., 2010). These features also play 

into the factors, that impact AM energy consumption, which are decided before starting the producing 

process by part designers and process operators (Qin et al., 2018). Modelling the design-relevant data 

of AM systems to predict energy consumption, and then reducing it by optimising the designs and 

decisions of part designers and process operators have become a crucial research topic for improving 

AM systems (Baumers et al., 2011b; Panda et al., 2016; Watson and Taminger, 2018). 

 

Among the various optimisation algorithms, particle swarm optimisation (PSO) is a powerful algorithm 

that is able to solve nonlinear multi-objective problems so as to help relevant professionals for decision-

making (Bai, 2010; Chen and Huang, 2017; Moradi and Abedini, 2012). Generally, the searching speed 

of the particles is adjusted by equal parameters in conventional PSOs (Kennedy, 2011; Kim and Son, 

2012). These parameters are defined by constant inertia weight and cognitive factors (Shi, 2001). 

However, since each relevant feature may have various types of relationship with the optimised target, 

it is necessary to introduce variable particle searching speed based on the correlations between each 

feature and the optimised target. Deep learning, as an advanced machine learning technique, has shown 

its merits in prediction modelling based on high-dimensional and large-scale data (LeCun et al., 2015a). 

It has also shown its sensitivity to correlate the relevant features, which is represented by neuron activity 

(Kim et al., 2016). If this functional characteristic can be adapted to drive PSO, each feature will use a 

different searching speed in order to achieve the optimised value. If this is possible, it not only improves 

the convergence speed but also enhances the global best of PSO.  
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This paper proposes a prediction approach based on deep learning techniques with a focus to explore 

whether design-relevant data has a significant impact on AM energy consumption. Additionally, a novel 

deep learning-driven PSO (DLD-PSO) algorithm is proposed to reduce AM energy consumption. The 

main factors in DLD-PSO, such as constant inertia weight and cognitive factors, are driven by the deep 

learning model. The rest of the paper is structured as follows. Section 2 reviews studies on DfAM 

sustainability and AM energy consumption and discusses PSO methods which improve manufacturing 

processes. In Section 3, an energy consumption modelling approach and the DLD-PSO algorithm which 

use design-relevant data are proposed. This data was collected from the decisions of two groups of 

professionals, part designers, and process operators. Section 4 presents a case study on prediction and 

reduction of the energy consumption of an SLS system. Results are compared and discussed to reflect 

the performance of the proposed approach. Section 5 concludes. 

 

2. Literature review  

 

2.1. Design for additive manufacturing (DfAM)  

 

AM provides designers with unique and far-reaching freedom to optimise their designs, which makes 

the design of part production and processes more sustainable (Gebisa and Lemu, 2017). The parts 

produced by AM processes are also generally more complex than conventional manufacturing parts, in 

terms of geometry and internal structure. Current studies on DfMA typically focus on the standard 

geometric parts that are produced by conventional manufacturing systems. It makes DfMA methods no 

longer suitable for use in AM design (Li et al., 2019). Furthermore, there exists an urgent need to 

provide AM design professionals with a greater range of design and analysis tools for complex part 

structures and AM processes, DfAM has been proposed as a way to address such design problems in 

AM processes (Tang and Zhao, 2016).  
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Ma et al. (2018) proposed a framework that integrates part lifecycle sustainability with AM product 

design. In this framework, the AM part lifecycle was described in detail including the part design, 

production process design, cost and usage control, and end-of-life handling stages. The part design and 

process planning were the most critical aspects of their framework and was highlighted throughout it. 

In the framework, input features included energy, material support, equipment, and logistics. Process 

costs, environmental impacts, and potential human toxicity were modelled as the output values. To 

validate the framework, the authors presented a case study targeted at a gear. This study handled each 

factor of its framework independently, but the described stages—from part design to end-of-life 

handling—interact, meaning that every stage affects the others. Furthermore, it only produced a 

lifecycle analysis (LCA) results without any optimisation.    

 

Thompson et al. (2016) reviewed over 300 research articles to summarise the research status, trends, 

challenges, and opportunities of and for DfAM. The authors of this paper claimed that DfAM was 

substantially different from conventional manufacturing assembly design in many aspects, such as 

knowledge, tools, rules, processes, and methodologies. They believed that AM processes require a new 

design framework because they involve various irregular factors, such as production time, cost, batch 

size, and so on, in contrast to conventional manufacturing processes. Additionally, the study reviewed 

a significant number of related works, which covered such topics as part geometry design, process 

design, and AM material design. Notably, the importance of DfAM was emphasised in cases that 

examined multiple customised parts produced by AM processes. On top of understanding functional 

optimisation, understanding sustainable optimisation is another significant objective of reviewing these 

DfAM studies, and this was highlighted throughout the paper. Tang and Zhao (2016) published a survey 

of the sustainability of DfAM. This paper focused on LCA and environmental impacts motivating 

product designers to optimise AM processes designs. The authors of this survey mentioned that the 

existing design methods for the AM process primarily focused on fine-tuning product functional 

performance including size, shape, and topology optimisation.  
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Gardan and Schneider (2015) introduced a design optimisation method for improving the part structure 

of the SLS process that discovered the knowledge of manufacturing limitation and situation from the 

SLS process. Further, a unique design structure that can clean unused powders augmented to this 

method’s optimised results. However, these optimisations are considered to be unable to match the 

fabrication capabilities of AM processes; the researchers must examine the process’s design methods 

in more detail (Tang and Zhao, 2016). Moreover, Gebisa and Lemu (2017) pointed out that 

sustainability is an essential component of DfAM and discussed how current AM processes are not 

sufficiently energy-efficient, as general manufacturing design principles are not suitable for use with 

them. 

 

Based on this understanding of DfAM, Tang et al. (2016b) proposed a framework that integrated design 

elements in LCA assessment with the AM process. This framework used an LCA model to assess the 

environmental impacts of the AM process, and design-relevant data was input into the framework. 

Moreover, they proposed a design for optimising energy consumption and material used according to 

this method. The paper also presented a case study validating the framework’s performance, using an 

aircraft engine bracket as the target product. Following the framework process, an optimised engine 

bracket design was created for production through AM remained the primary objective and kept the 

safety factors. The produced design required approximately 47% less material than did the original 

design; this figure was also lower than those of the optimised designs of conventional manufacturing 

processes, like the computer numerical control (CNC) process, by 22%. To produce new parts, more 

than half of the CO2 equivalents were either for AM or conventional processes. However, this new 

design only facilitated a production energy consumption approximately 2% lower than that of the 

original design through both the AM process and the conventional process. It is apparent that reducing 

energy consumption was more difficult than was optimising other LCA assessment indicators. The 

framework was considered as one of the fundamental architectures for AM process designers who seek 

to optimise their designs to protect the environment (Tang et al., 2016b). 
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According to the above research on DfAM, it is widely viewed as one of the most necessary aspects of 

AM systems, especially for sustainability analysis. Additionally, the current research of DfAM tends to 

integrate LCA assessment for design optimisation, and optimisations and seeks to reduce material and 

energy usage in production to minimise environmental impacts and production costs. In Section 2.2, 

AM energy consumption analysis research is reviewed, and design is emphasised as the main factor 

impacting it.   

 

2.2. Design-relevant impacts on AM energy consumption  

 

AM energy consumption analysis, an essential aspect of sustainability optimisation, has never failed to 

attract researchers’ attention. Comparing to some other conventional manufacturing processes, such as 

bulk-forming, the energy consumption of the AM process is higher (Yoon et al., 2014). Different AM 

technologies have various levels of energy consumption, due to the different working principles. The 

energy consumption under a particular AM technology varies in a wide range. The energy consumption 

is affected by many factors of AM processes, including process parameter settings, working 

environment, material conditions, and product design (Qin et al., 2017).  

 

However, design-related impacts are often overlooked due to their complexity. Zhang et al. (2018a) 

believed that a bio-inspired part design could improve sustainability through functionality 

improvements, the reduction of material usage and energy consumption, and the introduction of smaller 

environmental impacts. They applied this idea to the part design stage in the AM process and proposed 

a conceptual model for redesigning areas of the AM process. This model integrated DfAM principles 

with bio-inspired design aspects, such as material features, production process parameters, and product 

functionality. A case study was conducted which compared three different part filling structures 

(diamond, honeycomb, and bone) using an SLS process. The bone structure was considered the bio-

inspired structure in this study, and many factors relating to the structures, such as their physical 

properties, basic stress analysis results, energy consumption rates, and other LCA assessments, were 

compared. Notably, the energy consumption of the bone structure was found to be lower than that of 
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the honeycomb structure by 8% and that of the diamond structure by 12%. The bio-inspired geometrical 

design highlighted in this paper provided a solution for the structural design of the AM process which 

reduced energy consumption and maintains product functionality. 

 

Aside from parts’ filling structures, other design-relevant factors also draw researchers’ attention. Panda 

et al. (2016) pointed out that slice thickness and part orientation were two significant factors in 

determining AM energy consumption. An optimised framework based on genetic programming was 

proposed to develop the relationship between energy consumption, slice thickness, and part orientation. 

In their experiment, slice thickness varied between 0.02 mm and 0.10 mm in intervals of 0.02 mm and 

part orientation varied between 0° and 45° in 5° intervals. Other process parameter settings were kept 

the same. Based on this approach, energy consumption can be predicted with an error rate of 

approximately 3.45%. Based on the idea that slice thickness and part orientation were two important 

aspects of AM energy consumption, Paul and Anand (2012) also conducted several experiments on part 

orientation. In these experiments, three geometric primitives (a cube, a cylinder, and a functional part) 

were built in three slice thicknesses (0.03 mm, 0.05 mm, and 0.10 mm) and three part-orientations (0°, 

30°, and 45°). The energy consumption of the production process was then monitored. For each 

geometric primitive, energy consumption decreased as slice thickness increased and orientation degree 

decreased. However, it is difficult to compare the amount of energy consumed in the production of these 

three geometric primitives because these experiments monitored total energy consumption rather than 

the unit energy consumption of each process. According to the above studies, filling structure, slice 

thickness, and part orientation impact AM energy consumption. However, only a single part was built 

in each AM production experiment, which happens rarely in current AM production processes 

(particularly SLS and SLM).  

  

Baumers et al. (2011b) claimed that differences in energy consumption were revealed between 

processes in which a single part was built and processes in which multiple parts were built. In their 

study, six AM systems, including SLS, SLM, electron beam melting (EBM), and fused deposition 

modelling (FDM), were tested and compared; each system produced both a single part and multiple 
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parts within a single production process. On average, building multiple parts costed approximately 25% 

less energy than did the production of single parts, and the SLS system was found to use 97% less 

energy than the other systems examined in this study. However, it is difficult to draw a conclusion on 

the energy consumption behaviours of these systems based on these experiments alone. Further, each 

experiment used the part design that was based on the single-part production process to generate a 

multiple-part production process design. In an AM process, various part designs are combined and built 

together to produce a suitable process design. Moreover, the chosen process plan varied in terms of 

orientation and part positioning for each AM technology that was used; this was not addressed in the 

paper. Therefore, due to the complex process and various impacts, it is necessary to apply real data 

rather than experimental data to analyse and model AM energy consumption.  

 

In our previous work (Qin et al., 2018), an AM energy consumption modelling approach was proposed, 

in which multi-source data, such as working environmental data, process operation data, design-relevant 

data, and material condition data, was sensed and collected. The resulting dataset contained 12 variables, 

including the average height of a single part, the total height of the build, the filling degree, and the 

number of parts built in each individual process. These variables were extracted from both the part 

design and process planning stages. The prediction-based model integrated deep learning and clustering 

techniques, which fused the multiple sources and level data together. The results demonstrated the merit 

of the proposed approach in comparison to that of the predictive modelling method by applying single-

source input data. Although the study built an accurate AM energy consumption prediction model, the 

input data were collected both before and during the process. The prediction model was also hard to use 

to reduce AM energy consumption. To optimise energy consumption, the model should be built before 

the production process begins so that it is necessary to sense and collect the input data before this point.  

 

Previous research on the design-relevant impacts of AM energy consumption shows that AM design-

relevant features have been widely used to construct prediction models. However, previous studies 

tended to conduct experiments based on design-relevant data or integrate it with other types of data 

from AM processes. A need exists to predict AM energy consumption based only on design-relevant 
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features and to optimise such features to reduce energy consumption. In Section 2.3, PSO, one of the 

most popular optimisation methods in manufacturing processes, is reviewed.  

 

2.3. PSO for manufacturing process optimisation 

 

PSO is one of the most famous evolutionary algorithms used to solve continuous, non-linear, multi-

objective optimisation problems (Kuo and Lin, 2010; Tang et al., 2016a). Theoretically, the typical PSO 

method works by sending out a swarm of particles to search for the best result according to the required 

limitations; each particle represents a feasible solution to the given problem (Zou et al., 2019). It has 

been commonly used to solve manufacturing process optimisation problems (Yusup et al., 2012).  

 

Bensingh et al. (2019) introduced a hybrid approach that combines artificial neural networks (ANN) 

and PSO to optimise the injection modelling process parameters. In their study, the injection modelling 

process produced a bi-aspheric lens. The quality of the lens and its upper process capability was the 

model’s optimisation validation metrics, and it was represented through the three main measures of 

each side of the bi-aspheric lens: radius of curvature, surface roughness, and waviness. In this study, 

seven parameters were optimised to improve the quality of products. An ANN-based model was used 

to predict lens quality based on the injection modelling process parameters. Training and testing data 

were collected from the 44 experiments conducted over the course of the study. Based on the ANN 

prediction model, PSO was applied to optimise the parameters of the NN structure, including its number 

of neural layers, to improve the model’s performance. The optimised results were compared to the GA- 

optimised ANN, and the proposed approach was found to return fewer errors and present a faster 

convergence speed than traditional PSO. The optimisation provided by PSO was proven to be better 

than that of GA. However, one of the six main outputs, the waviness of the shallow profile, was 

predicted with a substantial error larger than the mean error of the original values.  

 

Ye et al. (2018) proposed a PSO-based method for optimising AM processes which features stochastic 

finite element analysis (SFEA). SFEA was used to model the output value which was the residual stress 
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in thin-walled parts. PSO was used to find the maximum value of the target within the limitations. The 

proposed method began by extracting the process parameters, such as layer thickness, melting 

temperature, scanning speed, and hotbed temperature flux, from the process. Also, the CAD part design 

model was considered a potential input variable for the SFEA model. The results of their case study 

were reasonable, and their research involved collecting part design data to characterise one of the 

essential process factors. This emphasises the necessity of carrying out further DfAM research.   

 

Raju et al. (2018) proposed a hybrid PSO method integrated with bacterial foraging optimisation (BFO) 

to solve mechanical and surface quality problems of AM processes, such as those introduced by varying 

hardness, flexural modulus, tensile strength, and surface roughness. Four parameters were considered 

for input into the simulation model: layer thickness, support material, model interior, and orientation. 

The model was built through multiple linear regression. Two types of the designed parts were printed 

to model data collection, and 18 samples were produced for each. Three parameter setting combinations 

were used to uncover the best solution to each mechanical and surface quality problem. The PSO-BFO 

algorithm was then used to find the best parameter settings. This study exemplified the advantages PSO 

can offer AM parameter optimisation and how it can be easily integrated with other algorithms for 

exceptional results. However, the authors selected the constant inertia weight and cognitive factors for 

the proposed PSO-BFO model without providing an explanation of either choice. 

 

Janahiraman et al. (2018) introduced a hybrid method that integrates extreme learning machine with 

PSO to optimise CNC processing and product surface roughness. Two stages were identified as 

essential in their paper: modelling and optimisation. PSO was used for optimisation. Three inputs were 

used for modelling: cutting speed, feed rate, and cut depth. A difference of 24% was found to exist 

between the predictive results returned by this model and the real-world results. Additionally, it 

identified optimal parameter settings. Task scheduling presents another problem that is often solved by 

PSO methods. Zhang et al. (2018b) published an article addressing the digital array radar (DAR) task 

scheduling problem, which was defined as an N-P problem and was, therefore, difficult to solve using 

only the meta-heuristic method. In this study, an integer programming optimisation model was built to 
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establish the DAR task structure and was formed of multiple aspects. In addition, a hybrid PSO was 

proposed for improving efficiency in task scheduling schemes. This study adopted chaotic sequences 

and Shannon entropy equation to improve the quality of the initialised points and the convergence speed. 

When compared to three other scheduling optimisation methods (the online interleaving algorithm, 

GA–PSO, and the HPF algorithm), the proposed optimisation method obtained the highest successful 

scheduling ratio from the same number of targets. PSO improved when the initialised point and 

convergence speed coefficients were changed. The study was championed by many other researchers 

as one of the most important studies for PSO improvement. For example, Kennedy (2011) suggested 

setting the convergence coefficients as 2.05 and the initial coefficient as 0.7298 to improve the 

convergence speed of PSO.    

 

Accordingly, the design-relevant features of AM processes have drawn much attention, especially in 

terms of the sustainability of DfAM, as these features have crucial impacts on AM energy consumption. 

However, current research has not focused sufficient attention on AM energy consumption analysis 

based on design-relevant features. It is necessary to build an accurate energy consumption model by 

using design-relevant data. Energy consumption can then be reduced by optimising the model’s design. 

PSO is a popular optimisation method for solving this problem. In Section 3, a deep learning-based 

energy consumption model is proposed, and an adaptive PSO method for reducing the energy 

consumption of the deep learning model is then introduced. 

 

3. Methodology 

 

In this work, the AM energy consumption is predicted by only using design-relevant data as input. The 

modelling process is displayed in Section 3.1. Then, deep learning-based PSO is proposed to optimise 

design-relevant features for reducing energy consumption. Before introducing the details of the 

methodology, the list of nomenclature is displayed in Table 1. 

 



Jian Qin et al. 

13 
 

 

 

Table 1. This table shows the list of nomenclature which is used in Methodology.  
Symbol Property Symbol Property 

 ሺ࢚ሻ Personal best particle࢚࢙ࢋ࢈࢖ design-relevant data ࢏ࡰ

 ૛ Cognitive factor 2࡯ ሺ∗ሻ ANN based prediction model࢖ࢌ

 ሺ࢚ሻ Global best particle࢚࢙ࢋ࢈ࢍ historical process data ࢐ࡸ

ࢊ࢝ Unit energy consumption ࢁࡱ
࢏  Weights of all neurons 

 Total number of neurons in the first layer ࡷ ሺ∗ሻ Merged neural network࢓ࢌ

  The ݇௧௛ neuron ࢑ The ݅௧௛ build dataset ࢏

 Total number of design-relevant features ࢋ Part-design data ࢍࡰࡼ

 Total energy consumption of each build ࢀࡱ Process-planning data ࢎࡼࡼ

 Producing parts total weight ࢀࡹ Number of part-design features ࢍ

 Energy consumption of a consumer ࢋࡱ Number of process-planning features ࢎ

࢔࢏࢓ࡰࡼ
ࢍ  Minimum restriction of part-design data ࢀ Production time of one build 

࢞ࢇ࢓ࡰࡼ
ࢍ  Maximum restriction of part-design data ࡱࡿࡹࡾࢋ The value of root-mean-square-error 

࢔࢏࢓ࡼࡼ
ࢎ  Minimum restriction of process-planning data ࢑ Number of consumers 

ࢎ࢞ࢇ࢓ࡼࡼ  Minimum restriction of process-planning data ࢏࢖ Predictive value 

 Actual value ࢏ࢇ Iteration velocity ࢏࢜

࢚ Number of Iteration ࡯࡯ࡹ The value of Model correlation coefficient 

 ࢃ
Matrix of weights, extracted from prediction 

model 
 ഥ Average value of the predictive values࢖

࢝૙ Inertia weight ࢇഥ Average value of the entire actual values 

   ૚ Cognitive factor 1࡯

 

3.1. AM energy consumption modelling based on the design-relevant data 

 

In order to predict energy consumption for AM systems based on the design-relevant data, a deep 

learning-based approach is proposed in this study. The proposed AM energy consumption modelling 

process is shown in Figure 1. 
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Fig. 1. This figure displays the proposed energy consumption modelling process using the design-

relevant data. 
 

Firstly, the design-relevant data (ܦ௜) is used for predicting the process data. The process data includes 

various datasets, such as working environment dataset, process operation dataset (parameter setting 

data), and material condition dataset. Each of these datasets can also involve different data attribute. 

For example, the process operation dataset consists of the parameter settings of laser power, scan space, 

scan speed, and scan angle. It is noticed that a different system may involve different attributes. More 

details of multi-source data analytics for AM energy consumption has been introduced and discussed 

in our previous work (Qin et al., 2018). The first deep learning-based prediction model ௣݂ሺ∗ሻ is built 

using the design-relevant data and historical process data (ܮ௝), shown as follows:  

 

௝ܮ ൌ ௣݂ሺܦ௜ሻ																																																																																			ሺ1ሻ, 

 

௎ܧ ൌ ௠݂൫ܦ௜,  .ሺ2ሻ																																																																														௝൯ܮ

 

Due to these two datasets are classified into two levelled datasets (Qin et al., 2018), the merged neural 

network ௠݂ሺ∗ሻ is used for integrating the predicted process data and design-relevant data and predicting 

the unit energy consumption (ܧ௎), which is donated as equation (2). The details of the merged neural 
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network (	 ௠݂ሺ∗ሻ ) are explained in the previous paper (Qin et al., 2018). This energy consumption 

modelling is based on deep learning techniques, and two neural networks are applied in the approach. 

The design-relevant data is used as the primary input data. Based on this prediction modelling, a deep 

learning-driven PSO is proposed to reduce the AM energy consumption by optimising the design-

relevant features. 

 

3.2. DLD-PSO for AM energy optimisation  

 

To initialize the particles, the restriction of each design-relevant feature is necessary to identify. Due to 

the high-relevance between these features and design, it is essential to identify the sources of the design. 

Generally, the design features of the AM process are defined by two group people, part designers and 

process operators (Chergui et al., 2018). The design-relevant data is then categorised as two datasets, 

part-design dataset, and process-planning dataset, which is donated as:  

 

௜ܦ ൌ ,௚ܦܲൣ ܲ ௛ܲ൧																																																																															ሺ3ሻ, 

 

where ܲܦ  represents the part-design dataset which the number of ݃  features, ܲܲ  is the process-

planning dataset which the number of ݄ features.  

 

The purpose of optimising the AM energy consumption is to the minimum energy usage of the AM 

process. The objective functions are defined as: 

 

ሾ	݊݅ܯ ௠݂൫ܦ௜,   ,ሺ4ሻ																																																																																	ሿ	௝൯ܮ

 

.ݏ .ݐ ∶ 	 ௠௜௡ܦܲ
௠ ൑ ௠ܦܲ ൑ ௠௔௫ܦܲ

௠ 																																																																							ሺ5ሻ, 

 

ܲ ௠ܲ௜௡
௡ ൑ ܲ ௡ܲ ൑ ܲ ௠ܲ௔௫

௡ 																																																																										ሺ6ሻ, 
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where the ܲܦ௠௜௡
௠  and ܲܦ௠௔௫௠  are the minimum and maximum of the part-design dataset that is 

determined by part designers. The ܲ ௠ܲ௜௡
௡  and ܲ ௠ܲ௔௫

௡  are the restrictions of the process-planning dataset 

that is determined by process operators.   

 

 

Fig. 2. This flow chart displays the process of the proposed PSO which is driven by deep learning 
technology. 

 

The DLD-PSO is proposed to solve the AM energy optimisation problem in this study. The optimisation 

process is shown in Figure. 2. Firstly, the particle restriction is initialised by part designers and process 
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operators respectively. In the restriction, the initial particles are generated. The fitness values are 

calculated by the function (2). Then, the fitness value of each particle is compared to find the best values, 

lowest energy consumption, which is defined as the personal best (݌௕௘௦௧). Once the new personal best 

is targeted, the global best particle (݃௕௘௦௧) is also found from the best particle’s personal best. After that, 

new particles in each interval are expressed by the following equation:      

 

ݐ௜ሺݒ ൅ 1ሻ ൌ ܹ ∗ ሺݓ଴ ∗ ሻݐ௜ሺݒ ൅ ଵܥ ∗ ሾ݌௕௘௦௧ሺݐሻ െ ሻሿݐ௜ሺܦ ൅ ଶܥ ∗ ሾ݃௕௘௦௧ሺݐሻ െ  ,ሺ7ሻ																ሻሿሻݐ௜ሺܦ

 

ݐ௜ሺܦ ൅ 1ሻ ൌ ሻݐ௜ሺܦ ൅  ,ሺ8ሻ																																																																					ሻݐ௜ሺݒ

 

where ݒ௜ is the iteration velocity; ݓ଴ is the inertia weight; ܥଵ and ܥଶ are cognitive factors. These two 

factors determine the cognitive speed when the particle is personal best and globe best.  

 

Comparing to the velocity coefficients of the conventional PSO, the DLD-PSO involves new parameters 

ܹ. ܹ is the matrix of weights which are extracted from the deep learning prediction model (merged 

neural network ௠݂ሺܦ௜,   :௝ሻ). It is denoted by the following functionsܮ

 

௞ݓ
௘ ൌ ሾݓଵ, ,ଶݓ  	,ሺ9ሻ																																																																											௄ሿݓ…

 

ܹ ൌ ௗݓൣ
ଵ, ௗݓ

ଶ, ௗݓ…
௘൧																																																																								ሺ10ሻ. 

 

After training the deep learning model, weights of all neurons (ݓ௞
௘) are defined by the optimiser function. 

 is the total number of neurons in the first layer that is connected to the input layer. Each neuron on ܭ

the first layer is fully connected to all the neurons on the input layer, which have the number of ݁ ൌ

݃ ൅ ݄	features. Each weight in the ܹ has represented the weight of a feature of the design-relevant 

dataset. The ܹ is based on the prediction model. It affects one of the most critical factors of PSO, the 

changing velocity ݒ௜. Once the optimisation process achieves the maximum number of iterations, the 
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process ends, and the global best of the particle is considered as the optimised results. In Section 3.3, 

the validation methods are presented.  

 

3.3.  Evaluation metrics  

 

The understanding of AM energy consumption is helpful to be determined before introducing the 

evaluation metrics. The energy consumption shows in this study is the unit energy consumption (ܧ௎), 

which is shown as: 

௎ܧ ൌ
்ܧ
்ܯ

																																																																																						ሺ11ሻ, 

 

where ்ܯ is the product weight of a total build. ்ܧ represents the total energy consumption of each 

build, which is denoted as following, where ݆ is the number of energy consumers (ܧ௘), such as heating 

system, layer system, building platform system, and feeding and recycling system, in the system, ܶ is 

the total time of each process (Qin et al., 2017). It is highlighted that an AM system typically consists 

of these kinds of consumers, although they may be different in different AM technologies. In addition, 

when the entire process is considered, involving pre-process and post-process, ܧ௘ should include more 

consumers of pre-process and post-process. In this paper, the energy consumers (ܧ௘) focus on the energy 

consumers in the AM system (Yosofi et al., 2019).   

 

்ܧ ൌ 	∑ ሺ׬ ௘ܧ
்
଴ ሻ௝ 																																																																									ሺ12ሻ. 

 

In this study, the model performance is mainly evaluated by Root-mean-square-error (RMSE) and 

Model correlation coefficient (MCC). The RMSE is used to measure the difference between the 

predictive value and the actual value, which denotes as: 

 

݁ோெௌா ൌ 	ට
∑ ሺ௣೔ି௔೔ሻమ
೙
೔సభ

௡
																																																														ሺ13ሻ,	
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where ݌௜  is the predictive value, ܽ௜ is the actual value that is the unit energy of each build (ܧ௎) in this 

research (Han et al., 2011).  

 

Another performance validation method is the MCC, represented as: 

ܥܥܯ ൌ
ௌುಲ

ඥௌುௌಲ
                                                                         (14), 

 

ܵ௉஺ ൌ
∑ ሺ௣೔ି௣̅ሻሺ௔೔ି௔തሻ೔

௡ିଵ
; 	ܵ௉ ൌ

∑ ሺ௣೔ି௣̅ሻమ೔

௡ିଵ
;	 ஺ܵ ൌ

∑ ሺ௔೔ି௔തሻమ೔

௡ିଵ
																																																			 ሺ15ሻ,	

	

where	̅݌ is the average value of the predictive values, and തܽ is the average value of the entire actual 

values. In Section 4, a case study is introduced, which includes the energy consumption modelling, 

prediction, and optimisation for an SLS system. The results are revealed by showing the performance 

of the proposed methods.  

 

4. Case Study 

 

4.1. Experimental setup 

 

4.1.1. Design-relevant data and target AM system 

 

In this case study, a selective laser sintering (SLS) system (EOS P700) was focused as the target system. 

The SLS system uses the laser to sinter powder of non-metallic material for producing the parts in a 

reasonable build chamber size (740 * 400 * 590 mm) (Sreenivasan and Bourell, 2010). The data, used 

in this case study, had been collected from the target system from August 2016 to December 2018. The 

entire dataset includes more than a hundred production processes and thousands of parts. These parts 

were ordered by different companies and designed by various part designers. Each production process 
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produced a wide range of parts in terms of geometric profiles. Also, these parts were placed in different 

locations with various orientations which were generally determined by operators. These decisions 

normally depended on system operators’ experiences of AM process planning.  

 

It is obvious that every build of this AM process can be very different, in terms of not only the part 

quantity and geometric profiles but also the process planning factors, such as part position and rotation. 

In this case study, twelve design-relevant features were extracted to describe the produced models. 

Table 2 has shown the names and descriptions of these design-relevant features. The original data of 

these design-relevant features was extracted from the CAD models using the AM design software, 

Autodesk Netfabb. These features were divided into two classes, the part-design features, and the 

process-planning features. The part-design features were determined by part designers, and the process-

planning features were determined by process operators. When the part designers and process operators 

decided the part design and the building layout (process plan), these features were defined. Specifically, 

the part filling degree, the average geometry ratios of three dimensions, and the average part height are 

the part-design features. The totally filling degree of the whole build, the total geometry ratio of three 

dimensions, the bottom area, the height of the build, and the number of produced parts are the process-

planning features.  

 
Table 2. The table shows the design-relevant feature description, which includes two types of features, 
part-design features, and process-planning features.  

Part-design features Process-planning features 
Feature names  Feature description Feature names Feature description 

Part filling 
degree (%) 

The average ratio between the 
actual volume and the envelope 
volume of each part.  

Total filling 
degree (%) 

The ratio between the actual volume and 
the envelope volume of the whole build.  

Geometry ratio 
(wl) 

The average ratio between the 
width and length of each part.  

Total geometry 
ratio (wl) 

The ratio between the width and length of 
each part.  

Geometry ratio 
(hl) 

The average ratio between the 
height and length of each part.  

Total geometry 
ratio (hl) 

The ratio between the height and length of 
the whole build. 

Total geometry 
ratio (wh) 

The ratio between the width and height of 
each part.  

Geometry ratio 
(wh) 

The average ratio between the 
width and height of each part.  

Bottom area(cm2) The bottom area of the whole build. 

Height (mm) The height of the whole build. 

Part height 
(mm) 

The average height of each part. Number of Parts 
The total number of parts of the whole 
build. 

 



Jian Qin et al. 

21 
 

Additionally, the basic statistic information of this dataset is shown in Table 3, including the value of 

the maximum, minimum, average, and standard deviation for each design-relevant feature. These 

design-relevant features can represent the behaviours of the part designers and the process operators. 

Furthermore, the target AM process has included a wide range of design-relevant feature and energy 

consumption. It is interesting to note that the standard deviation of the ratio between the width and the 

length of the whole build is only 0.0303. The reason is that the AM process operators generally filled 

the bottom of the building plate entirely. When the build chamber is fully filled, the ratio between the 

chamber width and its length is about 0.66. More details relevant to the part design and the process 

operation behaviours are discussed in the Discussion. 

 

4.1.2. AM built examples for optimisation  

 

The actual energy consumptions frequency histogram is displayed in Figure 3. It is noticeable that over 

80% builds consume the unit energy from 120 wh/g to 600 wh/g. However, the energy consumption of 

each build shows differently even in this range. The standard deviation is 496.8285 wh/g which is larger 

than the average (about 450 wh/g).  

 

 
Fig 3. This histogram shows the energy consumptions range of the entire dataset. 
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Table 3. The table presents the basic statistic information of the entire design-relevant dataset.  

 
Part filling 
degree (%) 

Geometry 
ratio (wl) 

Geometry 
ratio (hl) 

Geometry 
ratio (wh) 

Part height 
(mm) 

Total 
filling 

degree (%) 

Total 
geometry 
ratio (wl) 

Total 
geometry 
ratio (hl) 

Total 
geometry 
ratio (wh) 

Bottom area 
(cm2) 

Height 
(mm) 

Number 
of Part 

Energy 
 (wh/g) 

Minimum 2.1237 0.0713 0.0319 0.2637 15.4958 1.4895 0.4664 0.0461 0.6448 1228.4154 29.5429 2 107.2829 

Maximum  41.4006 7.8088 8.3898 28.1925 321.0955 22.7305 0.6530 0.8246 10.8877 2655.0434 570.6848 115 3468.4256 

Average  15.9732 1.1709 0.5615 3.3402 65.4453 8.6514 0.5361 0.2688 2.9369 2359.5735 180.2767 27 483.1233 

Standard 
deviation 

9.1083 1.0374 0.8547 3.7172 48.0987 4.5723 0.0303 0.1642 2.1445 295.5327 114.5861 22 496.8285 

 

 

Table 4. This table shows the original design-relevant feature values and the energy consumption of four build examples.  

Build No. 
Part filling 
degree (%) 

Geometry 
ratio (wl) 

Geometry 
ratio (hl) 

Geometry 
ratio (wh) 

Part height 
(mm) 

Total filling 
degree (%) 

Total 
geometry 
ratio (wl) 

Total 
geometry 
ratio (hl) 

Total 
geometry 
ratio (wh) 

Bottom 
area (cm2) 

Height 
(mm) 

Number 
of Part 

Energy 
 (wh/g) 

Build No. 1 25.2876 1.2242 0.9478 1.2916 76.4834 12.6910 0.5360 0.3116 1.7202 2558.3574 215.2757 27 111.3531 

Build No. 2 17.1347 0.6876 0.1508 4.5597 31.1093 6.6278 0.5420 0.2178 2.4883 2466.3961 146.9372 30 427.1967 

Build No. 3 5.4582 0.9810 0.1761 5.5715 44.0349 4.9138 0.5401 0.6390 0.8452 2613.2170 444.4750 33 632.4544 

Build No. 4 41.4006 0.9381 0.2662 3.5245 21.1145 5.2255 0.5270 0.1190 4.4278 2476.9831 81.6000 26 1514.6005 
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Due to the computing capability, it is necessary to select different examples from the entire range of 

energy consumption for the simulation. In order to display the reasonable and convincing optimised 

results, this case study selects four examples that have different energy consumption, which were the 

Build No. 1 (111.3531 wh/g), Build No. 2 (427.1967 wh/g), Build No. 3 (632.4544 wh/g), and Build 

No. 4 (1514.6010 wh/g). The design-relevant data of these four examples is shown in Table 4, and the 

CAD models are displayed in Figure 4. 

 

 
Fig 4. The figure illustrates the CAD models of four build examples, and each example includes multiple 

produced parts. 
 

4.1.3. Optimisation restriction  

 

Before introducing the results, the design-relevant feature restrictions are examined. The restrictions 

are theoretically determined by part designers, process operators, and process capability. According to 

the interviews of the part designers, and the operators of the target AM process, the historical data and 

process capability, the restrictions of all features for the four optimised examples are displayed in Table 

5. It still gives the part designers and the AM process operators a wide range of choices to optimise 

their decision for reducing energy consumption.  
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Table 5. The table displays restrictions of the design-relevant features in the four optimised build 
examples, which are determined by part designers, process operators, and process capability.  

Features Build No. 1 Build No. 2 Build No. 3 Build No. 4 

Part filling degree (%) 23.0 ~ 28.0 15.0 ~ 20.0 3.0 ~ 8.0  39.0 ~ 44.0 

Geometry ratio (wl) 1.0 ~ 1.5 0.4 ~ 0.9 0.7 ~ 1.2 0.6 ~ 1.1 

Geometry ratio (hl) 0.7 ~ 1.2 0.05 ~ 0.55 0.05 ~ 0.55 0.05 ~ 0.55 

Geometry ratio (wh) 1.0 ~ 1.5 4.3 ~ 4.8 5.3 ~ 5.8 3.3 ~ 3.8 

Part height (mm) 60 ~ 90 22.5 ~ 52.5 35.0 ~ 48.0 18.0 ~ 38.0 

Total filling degree (%) 10.0 ~ 15.0 5.0 ~ 10.0 3.0 ~ 8.0 3.0 ~ 8.0 

Total geometry ratio (wl) 0.3 ~ 0.8 0.3 ~ 0.8 0.3 ~ 0.8 0.3 ~ 0.8 

Total geometry ratio (hl) 0.1 ~ 0.6 0.1 ~ 0.6 0.4 ~ 0.9 0.05 ~ 0.55 

Total geometry ratio (wh) 1.5 ~ 2.0 2.2 ~ 2.7 0.6 ~ 1.1 4.2 ~ 4.7 

Bottom area (cm2) 2000 ~ 3000 2000 ~ 3000 2000 ~ 3000 2000 ~ 3000 

Height (mm) 195 ~ 270 143 ~ 225 420 ~ 495  75 ~ 100 

Number of Part 15 ~ 35 20 ~ 40 23 ~ 43 16 ~ 36 

 

Moreover, some parameter settings of the neural networks and optimisation algorithms are determined 

before display the results. All neural networks used two types of activations: 1) for the output layer, 

scaled exponential linear activation was applied, and 2) for the remaining layers, the rectified linear unit 

activation was used. The mean squared error was used to represent the loss. Supported by a popular 

Python package, Keras, the Adam optimiser was used (LeCun et al., 2015b). Based on the dimension 

of input data, the participles pool size is 100, and the maximum number of iterations is 1000 for the 

PSOs in this paper (Röhler and Chen, 2011). Basic parameters of the conventional PSO, i.e., constriction 

coefficient 1 (ܿଵ), constriction coefficient 2 (ܿଶ), and inertia weight (ݓ௢), are 2, 2, 0.748 respectively, 

which is commonly used in PSO applications (Yusup et al., 2012).  

 
In section 4.2, the results of the case study are reported and discussed. Firstly, the results of the energy 

consumption prediction model are presented to show the merits of the proposed prediction method. 

Secondly, the comparison between the proposed and conventional PSO is explained. Also, optimisation 

of four example builds is presented by showing the details of the optimised features.    
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4.2. Results  

 

4.2.1. Energy consumption prediction  

 

Based on the validation metrics that are shown in Section 3.3, the results of three energy prediction 

models, which are the ANN model using design-relevant data directly, the proposed model, and the 

multi-source data model, are displayed in Table 6. The proposed model is compared to our previous 

energy consumption prediction model (Qin et al., 2018) and the model that only uses design-relevant 

data. The MCC of the proposed energy consumption model that is introduced in this paper is 0.7908, 

and RSME is 23.2163 wh/g. According to the previous work (Qin et al., 2018), the MCC of the energy 

consumption prediction model using multi-source data is 0.8030, and the RSME is 20.2271 wh/g. The 

comparison of the proposed model and the previous model reveal that, although the proposed method 

has not obtained the best results, it is still acceptable with only 0.0122 MCC and 2.9892 wh/g RSME 

difference. It is highlighted that the RSME of the proposed model is twice less than the model using an 

ANN model to predict energy consumption. Furthermore, the proposed model is better than the 

benchmark models that were compared in the previous paper. The performances of benchmark models 

are shown in the previous paper, which the MCC and the RMSE of the Linear regression are 0.607 and 

115.056 wh/g; the MCC and the RMSE of the Decision tree are 0.691 and 59.585 wh/g; the MCC and 

the RMSE of the k-nearest neighbours are 0.541 and 44.168 wh/g (Qin et al., 2018).  

 
Table 6. This table shows the prediction result comparison of proposed modelling, previous modelling, 
and ANN modelling.  

Prediction model MCC RSME  

ANN model using design-relevant data  0.7012 69.5732 wh/g 

Proposed energy consumption prediction model 0.7908 23.2163 wh/g 

Multi-source data predict energy consumption (Qin et al., 2018)  0.8030 20.2271 wh/g 

 

Moreover, the weights of the design-relevant feature are extracted from the merged neural networks. 

The weights displayed in Table 7. The most substantial one (0.1254) is the weight of the total filling 

degree. Also, there exist other four weights which are higher than the average weight, the geometry of 

width and height, the bottom area, the height of the whole build, and the geometry of height and length. 
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These five features are considered as the most critical features that can significantly impact the 

prediction of AM energy consumption in this case study. 

 
Table 7. The table presents the weights of all design-relevant features, including two types of design-
relevant features, extracted from the merged neural networks. 

Part-design features Process-planning features 
Feature name Weight Feature name Weight 

Part filling degree (%) 0.074412 Total filling degree (%) 0.1209025 

Geometry ratio (wl) 0.082751 Total geometry ratio (wl) 0.066752 

Geometry ratio (hl) 0.084189 
Total geometry ratio (hl) 0.069722 

Total geometry ratio (wh) 0.07202 

Geometry ratio (wh) 0.095772 
Bottom area(cm2) 0.085395 

Height (mm) 0.083247 
Part height (mm) 0.079321 Number of Parts 0.085492 

Total weight 0.416445  0.5835305 

 

In addition, Table 8 shows the comparison between predictive energy consumption and the actual 

energy consumption for these four builds. The absolute average error of these builds is about 34.3513 

wh/g, which is close to the RSME of the proposed model (23.2163 wh/g). The error will grow when the 

energy consumption increases. The lowest prediction error (+4.9959 wh/g) is from Build No. 1, while 

the actual energy consumption is 111.3531 wh/g. The largest error (-78.2030 wh/g) of these four 

examples is Build No. 4, while the actual energy consumption is 1514.6010 wh/g.  

 
Table 8. The table displays the comparison between the predictive and the actual energy consumption 
for four build examples with error values. 

 
Build No. 1 Build No. 2 Build No. 3 Build No. 4 

Actual energy consumption (wh/g) 111.3531 427.1967 632.4544 1514.6010 

Predictive energy consumption (wh/g) 116.3490 408.2854 597.1588 1436.3987 

Error (wh/g) +4.9959 -18.9113 -35.2956 -78.2023 

 

4.2.2. The comparison between the DLD-PSO and the conventional PSO 

 
Three types of optimisation results are presented depending on the decision of part designers and 

operators. The part-designer-oriented optimisation is for AM part designer only. The process-operator-

oriented optimisation is to optimise the process operators’ decision. The designer-and-operator-oriented 

optimisation considers optimising the decisions of part designers and process operators. Figure 5, Figure 

6, Figure 7, and Figure 8 display the optimisation results of four build examples using the conventional 
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PSO and the DLD-PSO. Among these optimisation results, the proposed PSO generally obtains better 

results that require lower energy consumption than the conventional PSO in smaller convergence time.  

 

 
Fig 5. This figure shows three types of optimisation processes of the conventional and the DLD-PSO 

for Build No. 1. 
 

 
Fig 6. This figure shows three types of optimisation processes of the conventional and the DLD-PSO 

for Build No. 2. 
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Fig 7. This figure shows three types of optimisation processes of the conventional and the DLD-PSO 

for Build No. 3. 
 

 
Fig 8. This figure shows three types of optimisation processes of the conventional and the DLD-PSO 

for Build No. 4. 
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Table 9 shows the optimisation performance of the conventional and the DLD-PSO including the 

convergence speed, ܫ௩  (iteration), and the lowest energy consumption, ܧ௟ (wh/g). The average 

convergence iteration of the conventional PSO is 360 iterations which are significantly larger than the 

proposed PSO (114 iterations). With the help of deep learning-driven weights, the proposed PSO is able 

to search the globe best faster than the conventional PSO which uses the constant cognitive factors to 

determine the convergence speed. It is interesting to note that in comparison with each optimisation 

based on the DLD-PSO, the part-designer-oriented optimisation obtains the best results within the 

minimal iteration, 82 iterations on average, and process-operator-oriented optimisation have spent the 

more time to get the best results, 134 iteration on average. Moreover, the DLD-PSO optimised energy 

consumption is generally lower than the conventional PSO optimised energy consumption, which is 

about 2.14% for the part-designer-oriented optimisation, about 6.62% for the process-operator-oriented 

optimisation, and about 3.40% for the designer-and-operator-oriented optimisation. 

 
Table 9. This table displays the results (convergence speed and lowest energy consumption) of three 
types of optimisation using the conventional PSO and DLD-PSO. 

  Build No. 1 Build No. 2 Build No. 3 Build No. 4 

 ௟ (wh/g)ܧ ௩ܫ ௟ (wh/g)ܧ ௩ܫ ௟ (wh/g)ܧ ௩ܫ ௟ (wh/g)ܧ ௩ܫ  

C
on

ve
nt

io
na

l P
S

O
 

Part-designer- 
oriented 
optimisation 

713 51.5563 147 158.2691 493 316.1101 396 1187.2131 

Process-operator-
oriented 
optimisation 

323 48.3003 139 135.4456 375 214.3041 611 850.5141 

Designer-and-
operator-oriented 
optimisation 

425 48.3733 355 120.8380 153 116.6745 188 769.9511 

D
L

D
-P

S
O

 

Part-designer- 
oriented 
optimisation 

147 50.9837 52 154.2734 85 314.3977 44 1089.6268 

Process-operator-
oriented 
optimisation 

166 45.8434 72 109.7810 104 160.9628 192 718.8854 

Designer-and-
operator-oriented 
optimisation 

136 43.4054 166 100.4880 76 98.1448 132 717.8302 



Jian Qin et al. 

30 
 

4.2.3. Optimisation details  

 

Table 10 to Table 13 show all optimisation results of the DLD-PSO which include the part-designer-

oriented optimisation, initialized as ܫ, the process-operator-oriented optimisation, initialized as ܫܫ, and 

the designer-and-operator-oriented optimisation, initialized as ܫܫܫ. In addition, Table 10-13 include 

another set of optimised result, initialized as ܸܫ. The energy consumption of ܸܫ is calculated by the 

proposed prediction model through the optimised design-relevant features from ܫ  and ܫܫ . It is 

highlighted that the proposed PSO is not applied to generate ܸܫ	 . Generally, the most substantial 

reduction of AM energy consumption appears in the designer-and-operator-oriented optimisation for 

these four build examples, which reduces the energy usage by 67.92%. Comparing four examples, the 

most substantial reduction of AM energy consumption is on Build No. 3, 83.57% energy usage is 

reduced in the designer-and-operator-oriented optimisation. Furthermore, the largest average reduction 

of AM energy consumption reduction of three types of optimisation is 70.24% (Build No. 2). Also, the 

energy consumption reduction of the optimisation ܸܫ  is generally smaller than the designer-and-

operator-oriented optimisation.   

 

In Table 10-13, the most considerable change of the optimised design-relevant feature is the total filling 

degree, which has changed 45.64% in the process-operator-oriented optimisation and about 38.43% in 

the designer-and-operator-oriented optimisation. The weight of the total filling degree (0.121) is also 

the largest compared to the weights of other features. Moreover, the changes in the part-designer-

oriented and the process-operator-oriented optimisation are generally more significant than the changes 

of the designer-and-operator-oriented optimisation. It is interesting to note that the changes in the 

optimised design-relevant-features grow when original energy consumption increases. specifically, 

Build No. 1 cost the lowest energy consumption (116.3490 wh/g), and the average change of all features 

is about 14.39%. In contrast, the most substantial feature change is Build No. 4, which is about 27.29%. 
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Table 10. This table displays the optimised results including design-relevant feature optimisation and the reduced energy for Build No.1 which the original unit 
energy consumption is 111.3531wh/g. 

  
Part filling 
degree (%) 

Geometry 
ratio (wl) 

Geometry 
ratio (hl) 

Geometry 
ratio (wh) 

Part 
height 
(mm) 

Total filling 
degree (%) 

Total 
geometry 
ratio (wl) 

Total 
geometry 
ratio (hl) 

Total 
geometry 
ratio (wh) 

Bottom 
area (cm2) 

Height 
(mm) 

Number 
of Part 

Energy 
(wh/g) 

I 
Optimised results 26.3859 1.2688 0.9897 1.2931 70.94 12.6910 0.5360 0.3116 1.7202 2558.3574 215.28 27 50.9837 

Difference +1.0983 +0.0446 +0.0419 +0.0015 -5.54 0 0 0 0 0 0 0 -60.3653 

II 
Optimised results 25.2876 1.2242 0.9478 1.2916 76.48 14.0004 0.4606 0.2907 1.6993 2457.3249 252.52 22 45.8434 

Difference 0 0 0 0 0 +1.3094 -0.0754 -0.0209 -0.0209 -101.0325 +37.24 -5.0000 -65.5056 

III 
Optimised results 25.1556 1.2020 0.9277 1.3054 79.13 13.9552 0.4469 0.2790 1.7620 2424.4020 225.95 19 43.4054 

Difference -0.1320 -0.0222 -0.0201 +0.0138 +2.64 +1.2642 -0.0891 -0.0326 +0.0418 -133.9554 +10.67 -8 -67.9436 

IV 
Optimised results 26.3859 1.2688 0.9897 1.2931 70.94 14.0004 0.4606 0.2907 1.6993 2457.3249 252.52 22 48.1260 

Difference +1.0983 +0.0446 +0.0419 +0.0015 -5.54 +1.3094 -0.0754 -0.0209 -0.0209 -101.0325 +37.2443 -5 -63.2230 

 
Table 11. This table displays the optimised results including design-relevant feature optimisation and the reduced energy for Build No.2 which the original unit 
energy consumption is 427.1967wh/g. 

  
Part filling 
degree (%) 

Geometry 
ratio (wl) 

Geometry 
ratio (hl) 

Geometry 
ratio (wh) 

Part 
height 
(mm) 

Total filling 
degree (%) 

Total 
geometry 
ratio (wl) 

Total 
geometry 
ratio (hl) 

Total 
geometry 
ratio (wh) 

Bottom 
area (cm2) 

Height 
(mm) 

Number 
of Part 

Energy 
 (wh/g) 

I 
Optimised results 16.0894 0.5962 0.3819 4.4716 37.74 6.6278 0.5420 0.2178 2.4883 2466.3961 146.94 30 154.2734 

Difference -1.0453 -0.0914 +0.2311 -0.0881 +6.63 0 0 0 0 0 0 0 -272.9233 

II 
Optimised results 17.1347 0.6876 0.1508 4.5597 31.11 9.3045 0.5074 0.3162 2.3265 2714.9799 180.05 22 109.7810 

Difference 0 0 0 0 0 +2.6767 -0.0346 +0.0984 -0.1618 +248.5838 +33.11 -8 -317.7087 

III 
Optimised results 16.6467 0.7105 0.1352 4.5853 36.07 8.9977 0.5169 0.2724 2.4418 2695.2499 165.63 25 100.4880 

Difference -0.4880 +0.0229 -0.0156 +0.0256 +4.96 +2.3699 -0.0251 +0.0546 -0.0465 +228.8538 +18.69 -5 -326.7087 

IV 
Optimised results 16.0894 0.5962 0.3819 4.4716 37.74 9.3045 0.5074 0.3162 2.3265 2714.9799 180.05 22 123.9675 

Difference -1.0453 -0.0914 +0.2311 -0.0881 +6.63 +2.6767 -0.0346 +0.0984 -0.1618 +248.5838 +33.11 -8 -303.2292 
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Table 12. This table displays the optimised results including design-relevant feature optimisation and the reduced energy for Build No.3 which the original unit 
energy consumption is 632.4544 wh/g. 

  
Part filling 
degree (%) 

Geometry 
ratio (wl) 

Geometry 
ratio (hl) 

Geometry 
ratio (wh) 

Part 
height 
(mm) 

Total filling 
degree (%) 

Total 
geometry 
ratio (wl) 

Total 
geometry 
ratio (hl) 

Total 
geometry 
ratio (wh) 

Bottom 
area (cm2) 

Height 
(mm) 

Number 
of Part 

Energy 
 (wh/g) 

I 
Optimised results 7.5168 0.7736 0.4717 5.5533 46.60 4.9138 0.5401 0.6390 0.8452 2613.2170 444.48 33 314.3977 

Difference +2.0586 -0.2074 +0.2956 -0.0182 +2.57 0 0 0 0 0 0 0 -318.0567 

II 
Optimised results 5.4582 0.9810 0.1761 5.5715 44.03 7.8365 0.6876 0.4480 0.8012 2698.5380 435.46 29 160.9628 

Difference 0 0 0 0 0 +2.9227 +0.1475 -0.1910 -0.0440 +85.3210 -9.02 -4 -471.4916 

III 
Optimised results 4.1210 0.8763 0.2750 5.5370 44.96 7.3646 0.6292 0.4460 0.8084 2654.8710 443.05 30 98.1448 

Difference -1.3372 -0.1047 +0.0989 -0.0345 +0.93 +2.4508 +0.0891 -0.1930 -0.0368 +41.6540 -1.43 -3 -534.3096 

IV 
Optimised results 7.5168 0.7736 0.4717 5.5533 46.60 7.8365 0.6876 0.4480 0.8012 2698.5380 435.46 29 101.04134 

Difference +2.0586 -0.2074 +0.2956 -0.0182 +2.57 +2.9227 +0.1475 -0.1910 -0.0440 +85.3210 -9.02 -4 -531.4131 

 
Table 13. This table displays the optimised results including design-relevant feature optimisation and the reduced energy for Build No.4 which the original unit 
energy consumption is 1514.6010 wh/g. 

  
Part filling 
degree (%) 

Geometry 
ratio (wl) 

Geometry 
ratio (hl) 

Geometry 
ratio (wh) 

Part 
height 
(mm) 

Total filling 
degree (%) 

Total 
geometry 
ratio (wl) 

Total 
geometry 
ratio (hl) 

Total 
geometry 
ratio (wh) 

Bottom 
area (cm2) 

Height 
(mm) 

Number 
of Part 

Energy 
 (wh/g) 

I 
Optimised results 39.5530 0.8958 0.0878 3.4442 27.71 5.2255 0.5270 0.1190 4.4278 2476.9831 81.60 26 1089.6268 

Difference -1.8476 -0.0423 -0.1784 -0.0803 +6.60 0 0 0 0 0 0 0 -424.9742 

II 
Optimised results 41.4006 0.9381 0.2662 3.5245 21.11 7.4449 0.6627 0.3207 4.3755 2725.8123 112.66 32 718.8854 

Difference 0 0 0 0 0.00 +2.2194 +0.1357 +0.2017 -0.0523 +248.8292 +31.06 +6 -795.7156 

III 
Optimised results 39.9526 0.9038 0.3158 3.6697 25.65 6.8276 0.7046 0.2283 4.3160 2721.7830 121.35 33 717.8302 

Difference -1.4480 -0.0343 +0.0496 +0.1452 +4.54 +1.6021 +0.1776 +0.1093 -0.1118 +244.7999 +39.75 +7 -796.7708 

IV 
Optimised results 39.5530 0.8958 0.0878 3.4442 27.71 7.9975 0.7987 0.5500 4.4408 2987.9628 102.53 36 847.1742 

Difference -1.8476 -0.0423 -0.1784 -0.0803 +6.60 +2.7720 +0.2717 +0.4310 +0.0130 +510.9797 +20.93 +10 -667.4268 
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5. Discussion  

 

5.1. Discussion on results  

 

In the case study, the proposed design-relevant based AM energy consumption modelling and 

optimisation approach were validated. The algorithm performance of the proposed approach, in terms 

of MCC and RMSE, is acceptable—1.52% MCC lower and 4.98% RSME higher—although it was not 

better than the performance of the multi-source data prediction model. However, the multi-source data 

prediction model also involves data collected during the AM process, which cannot be used in 

optimisation. Also, the proposed approach obtained the better results than the simple ANN-based model 

and other benchmark algorithms, linear regression, decision tree and k-nearest neighbours, which were 

used in previous works (Qin et al., 2018).  

 

In the validation of the optimisation performance, four build examples with various energy costs were 

examined in the case study. The design-relevant features were categorised as two classes: the part-

design features, and process-planning features. For optimal results, each feature of these two classes 

was changed within restriction ranges that were determined by part designers and process operators. 

The restriction ranges in this case study were determined by part designers, process operators, and SLS 

process capabilities. It provided these groups of professionals a reasonable range in which to optimise 

decisions regarding the reduction of AM process energy consumption. Optimisation performance was 

shown through three types of optimisation oriented toward different professionals.  

 

Generally, the DLD-PSO model obtains the best results faster than conventional PSO method do, in 

terms of faster convergence speed and lower energy consumption. Moreover, the best results of this 

model, in terms of lowest energy consumption, were lower than those of the conventional PSO model. 

The process-operator-oriented optimisation through the DLD-PSO model offered a significant 

improvement over the conventional PSO. It can be seen from the results that the weights of each feature 
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in the deep learning-based prediction model represent the impacts of these features on the target value 

which is energy consumption in this study. Additionally, the weights driven by the deep learning-based 

model can help the PSO model find better results faster than conventional PSO model.  

 

Three types of optimisation were generated in this case study, process-operator-oriented optimisation 

obtained better results than part-designer-oriented optimisation did. This may be caused by the seven 

features were changed in process-operator-oriented optimisation, and one of them had the largest weight 

of all the features. Furthermore, designer-and-operator-oriented optimisation consumed the lowest 

amount of energy—an amount lower than that of part-designer-oriented optimisation and process-

operator-oriented optimisation combined (optimisation ܸܫ). This means that design-relevant features 

and energy consumption are not independent of each other in this optimisation method. When an 

optimisation method accounts for all design-relevant features, the lowest possible energy consumption 

can be obtained. This requires the cooperation of AM part designers and process operators, which is the 

main principle of DfAM (Thompson et al., 2016). Though these two groups of professionals work 

separately, AM energy consumption can still be reduced using the proposed optimisation method. 

Currently, when part designers and process operators made decisions they may have not realised the 

relationship between energy consumption and these design-relevant features yet. However, with the 

development of the research, these design-relevant features will be highlighted in the AM design 

software for reducing AM energy consumption in the future. 

 

5.2. Discussion on the proposed approach and future works 

 

In this paper, AM energy consumption was predicted using a deep learning-based prediction model. 

Different from the previous work, the model, built in this paper, used design-relevant data derived from 

multi-source data of AM systems. The data was collected before the AM process began, which indicates 

that AM energy consumption is predicted prior to the production process commencing. Comparing to 

our previous study, the modelling and prediction method proposed in this paper has been improved, 

which provides an opportunity to understand and reduce the AM energy consumption before the process.  
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Other relevant researches in the literature review generally focused on the impacts of one or two design-

relevant features, such as the filling structure and part orientation. They examined the relationship 

between these impacts and energy consumption through the experiments focusing on certain values of 

these features. However, with the rapid development of AM technology, AM tends to produce multiple 

parts in one production, especially for SLS and SLM systems (Chergui et al., 2018). It is hard to analyse 

the system only based on the one or two features that descript the single part, like part orientation. Also, 

the part produced in AM generally is complex because of the special structure and design. Therefore, it 

is necessary to consider more design features, which can represent the design information precisely. In 

addition, only applying the experiment is difficult to validate this complex issue that should involve 

significant varies of each feature. Comparing to the other relevant researches reviewed in Section 2, the 

proposed approach involves more AM design-relevant features, including part-design features and 

process-planning features, which are able to represent the design condition of multiple part production. 

These two types of design-relevant features are proposed based on the review of DfAM research, which 

stands on both perspectives of part designer and process operators. Furthermore, the proposed method 

was built and validated by a large sum of historical data, including thousands of CAD models in over a 

hundred builds. Different from other relevant studies, this method covers much more variables of each 

feature according to the actual production.    

 

The proposed method is a data-driven approach which is highly depended on the historical data. 

Although different AM technologies may have different working mechanisms and principles, the 

approach in exploiting such data so to facilitate its process modelling and analytics remain similar. In 

addition, the data required in this research can be generally collected from other AM processes based 

on the method proposed in this study, or the collected data can be converted to the same data 

characteristic to match the input requirement. In practice, this research has been collecting the data from 

one AM system for more than two years, including processing data, material condition information and 

CAD model information. It will not only raise the cost of the research but also extend the research time 

to build the model based on another AM system. However, benefitting from the increasingly completed 
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monitoring system and Internet of Thing (IoT) technologies, the AM system is collecting more and 

more data from the process and related objects. In the future, this method will be validated on other AM 

technologies to prove its generality. Moreover, two types of design-relevant features are used in this 

research, which has not covered the entire area of DfAM. Another future work in this research is to 

collect more design-relevant data. For example, the material design can be one type of important feature 

due to the multiple material AM production is a trend in both academia and industry (Thompson et al., 

2016). Furthermore, testing experiments should be applied to validate the simulation results in the future. 

 

6. Conclusions 

 

Energy consumption has become a significant issue in AM processes. The focus of this paper has been 

on the optimisation of AM process energy consumption which is also based on the data-driven 

modelling and prediction. The proposed optimisation approach was inspirited by a review of related 

research indicating the significance of DfAM and PSO in the manufacturing domain. An energy 

consumption prediction approach based on deep learning technology has been proposed that uses 

design-relevant data as input. Design-relevant data is generated before the AM process begins and 

includes part design data and process planning data, which are determined by part designers and process 

operators. Furthermore, in order to reduce AM energy consumption, the DLD-PSO approach is 

proposed to optimise design-relevant features. A case study showing the merits of the proposed 

approach was carried out based on SLS process data. It appears that the proposed energy consumption 

prediction approach obtained results similar to those of the previous multi-source data prediction model. 

For optimisation purposes, three types of optimisation oriented toward different groups of professionals 

were introduced. It was found that the DLD-PSO model yields a greater convergence speed and lower 

energy consumption than the conventional PSO. Four build examples were adopted to validate the 

proposed optimisation method. The best results were obtained to generate the recommendations for part 

designers and process operators. Finally, this approach is a data-driven approach which can be also 

developed to help other AM technologies.  
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