
 
 
 

IDENTIFICATION AND QUANTIFICATION OF 

RADIOACTIVE IMPURITIES IN MEDICAL  

RADIONUCLIDES  

 

A thesis submitted in fulfilment of the requirement for the degree of 

Doctor of Philosophy in Medical Engineering and Medical Physics 

 

By 

ANSAM ABD ALRASOOL ALI AL-OBAIDI 

B.Sc., M.Sc.  

 

School of Engineering 

Cardiff University 

UK 

 

 2019 

 

 



 
II 

 

 

DECLARATION AND STATEMENTS 

DECLARATION  

This work has not previously been accepted in substance for any degree and is not 

concurrently submitted in candidature for any degree.  

Signed ………………………………….........      Date ………………………………………. 

STATEMENT 1  

This thesis is being submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy (PhD).  

Signed ………………………………….........      Date ………………………………………. 

STATEMENT 2  

This thesis is the result of my own independent work/investigation, except where 

otherwise stated. Other sources are acknowledged by explicit references.  

Signed ………………………………….........      Date ………………………………………. 

STATEMENT 3  

I hereby give consent for my thesis, if accepted, to be available for photocopying and 

inter-library loan, and for the title and summary to be made available to outside 

organisations.  

Signed ………………………………….........      Date ………………………………………. 

 



 
III 

 

Summary 

The presence of radioactive impurities in radionuclides that are used for medical 

applications may adversely affect the quality of diagnostic images and increase 

radiation dose to the patient. The aim of this project was to identify and quantify such 

impurities in the following solutions: 99mTc generator eluates, commercial 123I and 131I 

sodium iodide and cyclotron-produced 68Ga and 89Zr. The work was done with a 

calibrated high-purity germanium (HPGe) detector and gamma spectroscopy system 

with the activity of the main radionuclides being measured with a radionuclide 

calibrator. Impurity activity was expressed as a percentage of the main radionuclide 

activity. 

The parent 99Mo was found in all the 99mTc generator eluates but with low relative 

activity (<3x10-3%). There was no significant difference between the corresponding 

eluates of two generators having different reference activity. Overall, the relative 

activity decreased logarithmically with eluate number and this has not been reported 

previously. This suggests that as regards 99Mo content, the later eluates are safer for 

patients than the earlier ones because they deliver lower additional radiation dose. The 

radionuclide 103Ru was also identified as an impurity in some 99mTc generator eluates, 

but at a much lower relative activity (<2x10-5%). This decreased rapidly after the first 

elution suggesting that, in effect, its presence may be eliminated by pre-elution of the 

generator. 

For the Na123I solution, the main contaminants were 125I (<2x10-2%) and 121Te (<7x10-

3%). However, also observed were trace activities (<8x10-4%) of 124I, 126I, 95mTc and 

96Tc, which have not been reported in the literature. As these impurities were found only 

in some samples with very low relative activity and as their half-lives are similar to or 

shorter than the half-life of the longer-lived main impurity (125I), they do not present a 

significant hazard to patients. No impurities were identified in the Na131I solution. 

The radionuclides 68Ga and 89Zr were produced by a cyclotron at the Cardiff University 

Positron Emission Tomography Imaging Centre (PETIC), the former for the first time 

in the UK using a liquid target. For 68Ga, the identified impurities were 67Ga (<9x10-

1%), 66Ga (<7x10-3%) and 56Co (<5x10-4%), while for 89Zr, the contaminants were 88Zr 
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(<2x10-3%), 88Y (4x10-4%) and 56Co (<3x10-3%). In both cases, the relative activities of 

the impurities were well within the goal of <2%. The results of this study may be used 

to optimise the irradiation conditions for the production of the two main radionuclides. 

 This work has confirmed the usefulness of a HPGe detector and high-resolution gamma 

spectroscopy for the analysis of the radionuclidic purity of medical radionuclides, and 

suggested several avenues for future research. 
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1.1 Motivation 

Nuclear medicine is the science by which trace amounts of compounds labelled with 

radioactivity (radionuclides) are administered to the human body. The radiolabelled 

compound is called a radiopharmaceutical, or more commonly, a tracer or radiotracer. 

A tracer is a substance that follows (“traces”) a physiologic or biochemical process. 

Radiopharmaceuticals are used either for diagnostic or therapeutic purposes. In its most 

usual form, a diagnostic nuclear medicine study involves injecting a 

radiopharmaceutical, which is labelled with a gamma-ray-emitting or positron-emitting 

radionuclide, into the body. When the radionuclide decays, gamma radiation or high-

energy annihilation photons are emitted. These are detected outside the body by 

equipment designed for planar radionuclide imaging, single photon emission 

tomography (SPECT) or positron emission tomography (PET). A disadvantage of these 

techniques is that they deliver an unwanted radiation dose to the patient. The magnitude 

of the dose depends on factors such as the physical properties of the radionuclide and 

the physiological properties of the radiopharmaceutical. In radionuclidic therapy, on the 

other hand, the goal is to deliver a relatively large targeted radiation dose to a specific 

organ or tissue such as a hyper-functioning thyroid gland or a cancerous tumour.  

Radionuclides for diagnostic or therapeutic applications are chosen because their 

properties are suitable for the intended purpose. These properties include half-life (t1/2), 

mode of decay, photon emission and type and energy of particle. They are produced in 

a nuclear reactor or a particle accelerator, usually a cyclotron, or by a radionuclide 

generator. However, in most if not all cases, radionuclidic contaminants are produced 

along with the desired radionuclides and these can be significant in some situations. The 

effect of these contaminants is to increase and redistribute the radiation dose to the 

patient, especially if these radioactive impurities have relatively long half-life. An 

example is 99Mo (t1/2≈ 66 hrs) in 99mTc (t1/2≈ 6 hrs). They may also increase detector 

dead time, and if the energy of their emissions falls within the acceptance window of 

the detector system, contaminants may result in incorrect counting rate or pixel 

intensities in images. Thus, an important aspect of the quality control of 

radiopharmaceuticals is to obtain high radionuclidic purity to produce, in turn, good 

images and to avoid unnecessary dose to the patient. 
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In this study, the radionuclidic purity of 99mTc eluates, commercial sodium iodide 

solutions (123I and 131I) and locally produced 68Ga solutions and 89Zr solutions were 

evaluated. 

1.2 Aim 

The aim of this project was to identify and quantify radioactive contaminants in the 

previously mentioned radionuclides, which were produced by different methods: 

generator, reactor and cyclotron.  

1.3 Objectives 

 

• Reviewing previous work on the radionuclidic purity of 99mTc, 123I, 131I, 68Ga 

and 89Zr. 

• Obtaining a series of 99mTc eluates and commercially produced 123I and 131I 

solutions from the radiopharmacy at the University Hospital of Wales, Cardiff.  

• Co-operation with the Cardiff University Positron Emission Tomography 

Imaging Centre (PETIC) to analyse 68Ga and 89Zr produced by the centre’s own 

cyclotron. 

• Characterising the performance of a high-purity germanium (HPGe) detector, 

including energy and efficiency calibration, so that it could be used with a 

gamma spectroscopy system to identify and measure the activity of 

radionuclidic impurities. 

• Using a secondary standard radionuclide calibrator to measure the activity of the 

primary radionuclides. 

• Correcting the activity readings for factors such as radioactive decay, type of 

vial and volume of solution. 

• Expressing radionuclidic impurity activities as a percentage of the primary 

radionuclide activities. 
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1.4 Thesis outline 

The thesis chapters are organised into the following structure: 

Chapter 1: This chapter highlights the motivation, aim and objectives of the research 

and outlines the structure of the thesis. 

 

Chapter 2: This chapter introduces radioactivity and gives a review of background 

information including the following: 

• Radiation, radioactive decay, modes of decay and rate of decay. 

• Interaction of particles and photons: charged particles (electrons), gamma 

photons (photoelectric, Compton, and pair production). 

• Radiation dose, biological effect of ionisation radiations, mechanisms of this 

effect. 

• Detection of radiation: scintillation detectors, gas detectors, semiconductor 

detectors. 

• Electronic components of a nuclear radiation counting instrument, multi-

channel analyser (MCA), pulse height spectrum, dead-time and live-time. 

• Energy calibration and efficiency calibration. 

 

Chapter 3: This chapter reviews the methods of producing medical radionuclides and 

radiopharmaceuticals, including: 

• Nuclear reactor: principles, fission fragment and neutron activation. 

• Charged-particle accelerators: cyclotron principles. 

• Generator: design of the generator, activity decay and growth in a 99Mo/99mTc 

generator, the generator eluate. 

• Impurities produced alongside medical radionuclides. 

• Radiopharmaceuticals and radiation dose. 

 

Chapter 4: This chapter, on the construction and performance of the HPGe detector at 

the University Hospital of Wales, introduces experimental work including the 

following: 

• Electronic components. 

• Energy calibration. 

• Background spectrum.  
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• Peak area calculation. 

• Detector stability. 

• Counting efficiency. 

• Energy resolution. 

 

Chapter 5 This chapter is dedicated to the evaluation of the radionuclidic purity of 

99mTc eluates based on the following:  

• Activity measurement with a Fidelis secondary standard radionuclide calibrator. 

• Correction of the 99mTc activity readings for the effect of different volumes and 

types of vial. 

• Correction of the 99Mo net count rate readings for the effect of different volumes 

and type of vial. 

• Measuring the ratio of 99Mo to 99mTc activity and comparing it with the limits 

recommended by the European Pharmacopeia. 

• Evaluating the relationship between eluates of different generators. 

• Evaluating the relationship between the ratio of 99Mo to 99mTc activity and the 

eluate number. 

 

Chapter 6: This chapter, on the radionuclidic purity of sodium iodide solution (123I and 

131I), describes the following experimental work: 

• Preparation of samples of both 123I and 131I sodium iodide solution in-house in a 

standard volume and type of vial. 

• Using the Fidelis calibrator to measure the activity of the main radionuclide (123I 

and 131I). 

• Using the HPGe detector to determine the presence and activity of radioactive 

impurities. 

• Calculating the ratio of the radioactive contaminant activity to that of the main 

radionuclide. 

 

Chapter 7: This chapter, on the radionuclidic purity of 68Ga radioactive solutions, 

describes the following experimental work:   

• The production of  68Ga in PETIC, Cardiff University.  

• Measuring the activity of the main radionuclide (68Ga). 
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• Using the HPGe detector to determine the presence and activity of radioactive 

impurities. 

• Calculating the ratio of the radioactive contaminant activity to that of the main 

radionuclide and determining the half-lives of the contaminants. 

 

Chapter 8 This chapter, on the radionuclidic purity of 89Zr radioactive solutions, 

describes the following experimental work:   

• The production of 89Zr in PETIC, Cardiff University.  

• Measuring the activity of the main radionuclide (89Zr). 

• Using the HPGe detector to determine the presence and activity of radioactive 

impurities. 

• Calculating the ratio of the radioactive contaminant activity to that of the main 

radionuclide and determining the half-lives of the contaminants. 

 

Chapter 9 This chapter summarises the research outcomes and suggests future work. 

 

1.5 Presentations 

 

A poster entitled Radionuclide Impurities in Cyclotron-Produced Gallium-68 and 

Zirconium-89 For Positron Emission Tomography was presented at the All-

Wales Medical Physics and Clinical Engineering Summer Meeting (June 2018) and it 

won a prize for the best poster.  

 

An oral presentation entitled Radionuclide Impurities in Cyclotron-produced Gallium-

68 and Zirconium-89 for Positron Emission Tomography was presented at the 17th 

International Workshop on Targetry and Target Chemistry (17WTTC) (August 2018) 

in Coimbra, Portugal. 
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2.1 Introduction 

The phenomenon of radioactivity was discovered in France in 1896 by Henri Becquerel 

when he noticed the luminescence caused by uranium salts. Uranium is an example of 

a naturally occurring radionuclide; the other category is man-made or artificial 

radionuclides. The decay of naturally occurring radioactive materials, such as uranium 

and thorium that exist in the earth's crust, contributes to the terrestrial component of 

background radiation. Most of the naturally occurring radionuclides are very long-lived 

(e.g. 40K, t1/2 ~ 109 years) and are isotopes of very heavy elements (e.g. uranium and 

radium) that are unimportant in metabolic or physiologic processes.  

 

Some of the first applications of radioactivity for medical tracer studies in the 1920s 

and 1930s made use of natural radionuclides; however, because of their generally 

undesirable characteristics, they have found no use in medical diagnostic procedures 

since that time (Cherry et al. 2012). All the radionuclides used in modern nuclear 

medicine are of the manufactured or artificial variety. They are made by bombarding 

nuclei of stable atoms with nuclear particles (such as protons and neutrons) to cause 

nuclear reactions that change a stable nucleus into an unstable (radioactive) one (Cherry 

et al. 2012) or nuclear fission whose products are radioactive. 
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2.2 Radiation and radioactive decay 

2.2.1 Modes of decay 

Radiation is generally divided into two main types. These are: 

• Charged particle radiation 

• Uncharged particle radiation  

The first category includes radiation such as fast electrons, protons and heavy charged 

particles, while the second category includes neutron radiation and electromagnetic 

radiation (Knoll 2010). The various modes of radioactive decay and associated 

processes act as sources of radiation.  

2.2.1.1   Charged particle radiation sources 

2.2.1.1.1 Fast electrons 

A) Beta decay 

Beta particle emissions have either positive or negative electric charge (Knoll 2010; 

Jones et al. 2013). The process of β-particle emission is accompanied by the emission 

of another particle called a neutrino or an neutrino. These are an uncharged particles 

with zero or negligible mass (Thrall et al. 2001; Knoll 2010; Jones et al. 2013).  

The positive β-particle is called a positron (e+). It behaves like a positively charged 

electron, and it has the same as an electron mass. The emission of a positive β-particle 

takes place in a radionuclide with too many protons the results in a decrease of the 

nuclear charge by one unit (Knoll 2010). However, the negative β-particle, sometimes 

called negatron, is an electron (e-) and it is emitted in a radionuclide with too many 

neutrons (Thrall et al. 2001; Jones et al. 2013). 

B) Internal conversion 

The internal conversion process often competes with gamma emission. This process 

begins with an excited nuclear state. One of the common methods of de-excitation is to 

emit a gamma photon. For some excited states, the emission of a gamma photon is 

inhibited and the nucleus de-excites by transferring its energy directly to one of the 
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orbital electrons of the atom. This electron is called a conversion electron (Lilley 2001; 

Knoll 2010). 

C) Auger electron emission 

This takes place when the excitation energy originates in the atom rather than in the 

nucleus. This happens due to a process such as electron capture (sometimes called 

inverse β− decay) in which an orbital electron is captured by the nucleus and combines 

with a proton to form a neutron. This creates a vacancy in an inner electron shell. This 

vacancy is normally filled by another electron from one of the outer shells of the atom, 

resulting in characteristic x-ray emission. Alternatively, the de-excitation happens 

through ejecting what is called an Auger electron. This happens when the excitation 

energy is directly transferred to another outer electron (Thrall et al. 2001; Knoll 2010).  

2.2.1.1.2 Heavy charged particles 

A) Alpha decay 

Many natural heavy nuclei with 82< Z ≤92 and artificially produced nuclei (Z > 92) 

decay by the emission of an alpha (α) particle. It was shown by Rutherford and his co-

workers that this particle consisted of two protons and two neutrons and is equivalent 

to the nucleus of a helium atom 𝐻𝑒2
4

. One example of the α-decay process is the decay 

of radium-226 to its daughter radon-222 (Krane 1988). 

 

B) Spontaneous fission 

Fission is normally thought to occur under unnatural and artificial circumstances, such 

as in a nuclear reactor. However, there are some nuclei that undergo fission 

spontaneously (Krane 1988; Knoll 2010).  

In the spontaneous fission process, a heavy nucleus with an excess number of neutrons 

splits into two lighter nuclei with roughly equal masses. This process results in the 

production of energetic charged particles with mass greater than that of the alpha 

particle (Krane 1988; Knoll 2010). During fission, one or more neutrons are also 

emitted, together with heat energy. An example of a nuclide that undergoes spontaneous 

nuclear fission is uranium-235, which is inherently unstable (Powsner et al. 2013).  
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2.2.1.2 Uncharged particulate radiation sources 

2.2.1.2.1 Neutron sources 

Neutrons can be created in three different ways: spontaneous fission, (α,n) nuclear 

reaction and photoneutron interaction. These processes will not be discussed in detail 

as they are out of the scope of this study. 

2.2.1.2.2 Electromagnetic radiation sources 

A) Annihilation radiation 

Annihilation takes place when a electron (from an absorbing material) and a positron 

(from the decay of a parent nucleus) interact and are converted into two gamma photons 

that are emitted in opposite directions, each with an energy of 511 keV. These two 

photons may, in turn, interact in the material by either Compton scattering or 

photoelectric absorption (Thrall et al. 2001).  

 

B) Bremsstrahlung radiation 

When an electron or positron passes through matter, it may be deflected due to 

interaction with the atomic nucleus and suffer a change in velocity. These charged 

particles, therefore, will be decelerated and all decelerating charged particles radiate x-

rays. Such radiation is normally called bremsstrahlung radiation (or braking radiation) 

(Krane 1988; Lilley 2001; Knoll 2010). 

 

C) Gamma radiation (γ) 

Gamma radiation is emitted by the transition of a nucleus from an excited state to a 

lower excited state or possibly the ground state. The energy of the γ radiation photon is 

equal to the energy difference between the initial and the final nuclear states. This kind 

of radiation normally follows α and β decay, which usually leave the daughter nucleus 

in an excited state.  

There are two different types of excited nuclear states: 

• Excited states that are very unstable and have only a transient existence before 

transforming into some other state. 



Chapter 2:   Radioactivity 

 
 12   

 

 

• Metastable states that are also are unstable, but have relatively longer lifetimes 

than the other excited states; these also are called isomeric states. 

Some metastable states are quite long-lived; in some cases they have average lifetimes 

of several hours. Therefore, metastable nuclear states are considered to have separate 

identities and are classified as nuclides. The ground state and metastable state of a 

particular nuclides are called isomers. Excited states are represented by an asterisk 

(AX*), while metastable states are denoted by the letter m (AmX or X-Am). An example 

is 99mTc (or Tc-99m), which denotes the metastable state of 99Tc, and 99mTc and 99Tc 

are isomers (Cherry et al. 2012). 

2.2.2 Rate of decay and half-life 

Three years after the discovery of radioactivity in 1896, it was noticed that the decay 

rate of a pure radioactive material decreases with the passage of time. The decay rate of 

the radioactive source is known as the activity. The source activity is given by (Thrall 

et al. 2001; Knoll 2010): 

                                              
−𝒅𝑵𝒕 

𝒅𝒕
  ∝ Nt                             (2-1) 

where Nt represents the number of radioactive nuclei at time t and dNt/dt represents the 

rate of change in the number of radioactive nuclei. The negative sign indicates that the 

number of unstable nuclei decreases with time.   

                                       
−𝒅𝑵𝒕 

𝒅𝒕
  = λNt                          (2-2) 

where λ is the constant of proportionality and is known as the decay constant. Re-

arrangement and integration of equation (2-2) results in the following mathematical 

expression: 

          Nt = No е-λt              (2-3) 

where No denotes the number of radioactive nuclei at time t=0. The sample activity At 

at the time t is proportional to the number of radioactive nuclei Nt, therefore: 

      At=Ao е-λt             (2-4) 

where Ao represents the activity at t=0.  
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The old unit of activity is called the curie (Ci), which is exactly equal to 3.7×1010 

disintegrations per second . However, the curie was replaced by another unit called the 

becquerel (Bq), which has been became the standard unit to measure the activity of a 

radioactive source (Thrall et al. 2001; Knoll 2010). The Bq is one disintegration per 

second and so: 

   1 Bq = 2.703 × 10-11 Ci     (2-5) 

The time required for half the nuclei to decay is called the half-life (t1/2). The half-life 

value can be derived from the previous expressions, it is given by (Krane 1988; Pearson 

1986; Thrall et al. 2001): 

                                        
𝑵𝒐 

𝟐
  =  𝑵𝒐 𝒆−𝝀𝒕𝟏/𝟐                             (2-6) 

                                         
𝟏 

𝟐
  =   𝒆−𝝀𝒕𝟏/𝟐                                         (2-7) 

Since е-0.693=1/2, equation (2-7) can be simplified to yield the following expression: 

 λ t½ = 0.693 (2-8) 

 t½= 0.693/ λ (2-9) 

2.3 Interaction of radiation with matter 

Both types of radiation, charged particles (such as α and β particles) and electromagnetic 

radiation (such as γ photons), are emitted during radioactive decay. These types of 

radiation transfer their energy to matter as they pass through it, producing ionisation 

and excitation of atoms and molecules. Thus they are known as ionising radiation 

(Cherry et al. 2012). 

As a charged particle passes through matter, it loses its energy through collisions when 

it interacts with orbital electrons or the nuclei of atoms it encounters. The amount of 

energy transferred from the charged particle to matter in each individual interaction is 

relatively small; thus the particle undergoes a large number of interactions before all of 

its kinetic energy is spent (Cherry et al. 2012). 

Gamma (or x-ray) photons are uncharged particles and create little direct ionisation or 

excitation in the matter through which they pass. Gamma rays can interact with matter 

by three major mechanisms: photoelectric absorption, Compton scattering and pair 
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production. In the first two interactions, the energy of the gamma photon is partially or 

completely transferred to an atomic electron. In  pair production, an electron-positron 

pair is created. The photon either disappears or is scattered at a specific angle (Knoll 

2010). 

When a photon passes through a material, the probability that it will interact depends 

on the photon energy and on the thickness and composition of the material. The 

dependence on thickness is relatively simple; the thicker the absorber material, the 

greater the probability that an interaction will happen. The dependence on material 

composition and photon energy, however, is more complicated (Cherry et al. 2012). 

A reduction in the intensity of a photon beam as it passes through a material is called 

attenuation. The attenuation involves both absorption and scattering. The quantity linear 

attenuation coefficient (µl) has the dimensions  of cm-1 and it represents the attenuating 

ability of the material. For a monoenergetic photon beam: 

 Ix=Io e
-µl x (2-10) 

 

where Io is the initial intensity, Ix is the intensity through thickness x of the material. 

The linear attenuation coefficient is affected by the radiation energy and the 

characteristics of the material and it is found to increase linearly with material density 

(ρ). The effect of density is factored out by dividing the linear attenuation coefficient 

by density, resulting in a quantity called mass attenuation coefficient (μm), which has 

the dimensions cm2 g-1. It is affected by the atomic number (Z) and electron density of 

the material, and the energy (E) of the incident photon (Cherry et al. 2012). 

As mentioned earlier, the main types of interaction between gamma rays and matter are 

photoelectric absorption, Compton scattering and pair production. The total mass 

attenuation coefficient can be split into components for all these interactions as follows 

(Cherry et al. 2012): 

 µm = 𝜏 + Қ + σ  (2-11) 

where 𝜏 represents the component of the mass attenuation coefficient caused by the 

photoelectric process, σ stands for the component caused by Compton scattering and Қ 

is the component caused by pair production. The probability of these three principal 
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interactions over a wide range of energy of the incident photon and atomic number of 

the attenuating material is shown in Figure 2-1. 

 

 

Figure 2-1: The most probable interactions versus photon energy for elements of 

different atomic numbers (Cherry et al. 2012) 

2.3.1 Photoelectric absorption 

Photoelectric absorption occurs when the energy of the incident photon is totally 

transferred to an orbital electron. Thus, that photon completely disappears. In its place, 

a photoelectron is ejected from the atom. The photoelectron loses its energy through 

multiple ionisations and excitations. As a consequence of the initial ionisation, an 

electron from a higher shell falls down to fill the vacancy. The de-excitation of the atom 

happens through the emission of Auger electrons or characteristic x-rays. In turn, these 

may interact with the medium (Lilley 2001; Thrall et al. 2001; Knoll 2010). 

In order for this process to happen, the photon must have an energy greater than the 

binding energy (Eb) of the electron in its orbit. As the energy of the incident photon 

increases, the probability of the photoelectric process decreases. The energy of the 

ejected electron (Ee), which is commonly the K-shell electron (Figure 2-2), is given by: 

 Ee
 = hν - Eb         (2-12) 
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where h is Plank’s constant, ν is the frequency associated with the photon and hν 

represents the energy of the incident photon (Thrall et al. 2001; Knoll 2010). 

 

 

Figure 2-2: Photoelectric absorption (Cherry et al. 2012) 

 

The photoelectric component 𝜏 decreases rapidly with increasing photon energy (E) 

and increases rapidly with increasing atomic number (Z) of the material (equation 2-

13). Thus, the photoelectric effect is the dominant effect in heavy elements at low 

photon energies. 

                                    𝜏 ∝
𝑍3

𝐸3                                  (2-13) 

In diagnostic nuclear medicine, the photoelectric effect is undesirable in body tissues, 

but it is important in the detection of ionising radiation. This is why imaging systems 

are typically made of materials with high atomic number, in which the probability of 

the photoelectric process is high (Thrall et al. 2001). 

2.3.2 Compton scattering 

In Compton scattering, the incoming photon interacts with a weakly bound electron. 

The incident photon transfers part of its energy to that electron, which results in its 

ejection it as a recoil electron. The original photon is deflected from its original path 

with lower energy (Figure 2-3) (Thrall et al. 2001; Knoll 2010). The recoil electron 

produces further ionisations as it travels through matter. The amount of energy 

transferred to the electron depends on the angle of scattering (θ) with respect to the 



Chapter 2:   Radioactivity 

 
 17   

 

direction of the incident photon, ranging from zero to a large fraction of the photon 

energy. Maximum energy transfer to the electron occurs at θ =180°, when the photon is 

scattered backwards, and the electron moves in the same direction as the incident 

photon. Minimum energy transfer occurs at θ =0, when the scattered photon moves in 

the same direction as the incident photon, just grazing the electron (Cherry et al. 2012).  

The process of Compton scattering is undesirable in nuclear medicine imaging because 

it contributes to the loss of spatial resolution (Thrall et al. 2001; Knoll 2010).  

 

 

Figure 2-3: : The Compton scattering process (Cherry et al. 2012) 

 

The Compton scatter componentσdecreases slowly with increasing photon energy E 

and it is relatively independent of the atomic number Z. Compton scattering is the 

dominant interaction for intermediate values of Z and E (Cherry et al. 2012). 

                                                       σ ∝  
𝑍

𝐴
 .

1

𝐸
                                               (2-14) 

where A is the mass number. 

2.3.3 Pair production 

Pair production is possible if the energy of the incoming photon exceeds twice the 

electron rest mass energy (1.02 MeV). In this interaction mechanisms the incident 

photon is replaced by an electron-positron pair. Both the electron and the positron lose 

their kinetic energy by ionisation and excitation. After it has lost its energy, the positron 
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is attracted to an electron and annihilates with it, emitting two annihilation photons each 

with an energy 511 keV and direction at 1800 to each other (Figure 2-4) (Lilley 2001; 

Thrall et al. 2001; Knoll 2010). 

The pair production component Қ increases with increasing photon energy (E) and 

atomic number (Z) of the material as follows: 

                                           Қ ∝ (E-1.022 MeV) Z                       (2-15) 

 

  

 

 

Figure 2-4: Pair production and positron annihilation (Cherry et al. 2012) 

2.4 Radiation dose 

‘Dose’ is a colloquial term that is often used to describe the activity of a radionuclide 

or radiopharmaceutical that is to be administered to a living subject. However, the term 

‘Radiation dose’ refers to the energy deposited by ionising radiation in a material and 

its effect on living tissue. Absorbed dose is defined as the quantity of radiation energy 

deposited in an absorber per unit mass of absorber material. It is measured in gray (Gy), 

which is equal to one joule per kilogram (J kg-1). The biological damage caused by 

radiation interacting with a particular tissue or organ depends on the type of ionising 

radiation. Alpha particles, for example, are densely ionising and have more effect than 

other ionising radiations. Therefore, the absorbed dose is weighted according to its 
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potential damage to biological tissues, and this quantity is called equivalent dose 

(Cherry et al. 2012).  

The equivalent dose is a quantity that takes into account the relative biological damage 

caused by radiation interacting with a particular tissue or organ. Equivalent dose equals 

the absorbed dose multiplied by a radiation weighting factor. This factor is 20 for alpha 

particles, but 1 for beta particles, gamma rays and x-rays, which allows for the various 

effects of different ionising radiations in causing radiation damage to living tissue. 

Equivalent dose is measured in sievert (Sv). However, human tissues and organs are not 

equally sensitive to radiation damage; for example, the skin is relatively insensitive to 

damage whereas the bone marrow is particularly susceptible. Effective dose represents 

the whole-body dose that is the sum of the weighted equivalent doses in all the tissues 

and organs of the body. It considers the susceptibility of tissues and organs to radiation 

damage through a tissue weighting factor, and it is also measured in Sv (Cherry et al. 

2012). 

2.5 Biological effects of ionising radiation 

The biological effects of ionising radiation have been known for many years. The first 

case of human injury was reported in 1895 after the discovery of x-rays by Roentgen, 

while the genetic effects of radiation were reported at the beginning of 1902. Early 

evidence of harmful biological effects due to exposure to high radiation dose was 

obtained for persons working in the radium industry in the 1920s and 1930s (Al-Musawi 

2018). Knowledge of these effects increased through the atomic bombings of Hiroshima 

and Nagasaki in 1945, U.S. nuclear testing in 1952-1953 and nuclear accidents, such as 

the Goiania accident and the Chernobyl and the Fukushima Daiichi disasters.  

The biological effects of radiation can be categorised depending on the timing after 

exposure (stochastic and deterministic) and the persons affected (genetic and somatic) 

(Figure 2-6) (Al-Musawi 2018). 

Stochastic effects are unpredictable and random effects that occur after chronic 

exposure to a low radiation dose, and they include genetic effects and cancer. These 

effects have an increased probability of occurrence with increased dose. The 

International Commission on Radiological Protection (ICRP) has determined limits for 

http://en.wikipedia.org/wiki/Nuclear_accident
http://en.wikipedia.org/wiki/Goi%C3%A2nia_accident
http://en.wikipedia.org/wiki/Chernobyl_disaster
http://en.wikipedia.org/wiki/Fukushima_Daiichi_disaster
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annual radiation dose at 20 mSv for workers and 1 mSv for members of the public to 

limit stochastic effects.  

Deterministic effects are also called non-stochastic effects. They are non-random and 

have a predictable response to radiation. The severity of the effect and tissue damage 

increase with increasing dose. It has a dose threshold below which the effect does not 

occur; the threshold may vary from person to person. To prevent a particular 

deterministic effect, skin reddening (erythema), the ICRP has limited the annual 

radiation dose at 500 mSv for workers and 50 mSv for members of the public (Al-

Musawi 2018). Radiation-induced burns, acute and chronic radiation syndrome and 

thyroiditis are all examples of deterministic effects. 

 

The effects of radiation can also classified according to the subjects exposed. Somatic 

effects of radiation, for example, appear in the exposed person, either immediately after 

the exposure (e.g. skin damage), or a long period of time after exposure (e.g. damage to 

the reproductive system). However, genetic effects cause damage to the reproductive 

cells and may be transmitted to next generations (Figure 2-5) (Al-Musawi 2018). 

 

Figure 2-5: Somatic and genetic effects of ionising radiation (Al-Musawi 2018) 

The biological effect of ionising radiation is due to the transfer of energy to cells and 

the production of ionisation and excitation in their constituent atoms. The effect can be 

acute, e.g. following the exposure of a subject to a high radiation dose, greater than 100 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwj53bjQ2ZnSAhWDbRQKHedpA6YQjRwIBw&url=http://www.slideshare.net/shahidsethi66/noise-amp-radiation-health-effect&psig=AFQjCNE_1cdhyW-8Vr99KvvtBkBXjw1QrA&ust=1487509087095345
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mGy, within a short period of time (a few days). This causes severe damage to skin and 

internal organs. The severity of the damage depends on the dose. Otherwise, the effect 

is considered to be chronic, which occurs when a relatively small radiation dose is 

delivered over a long period of time (several years). The latter is characteristic of 

occupational exposure, for which the biological effects may appear after many years. 

The interaction of ionising radiation with cells may damage the chromosomes, which 

are considered the most important parts of the cell as they carry the DNA, the genetic 

material of most living organisms. Potential damage to the chromosomes can cause cell 

mutations resulting in genetic effects and the development of cancer (Grupen 2010). 

The various stages of the physical and biological effects of radiation are shown in Figure 

2-6. 

 

 

Figure 2-6: Stages of the physical-biological effects of absorbed radiation 

(Grupen 2010) 
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2.6 Detection of radiation 

The detection of radiation is important to the practice of nuclear medicine because the 

activity of radiopharmaceuticals (this term is discussed in chapter 3) must be measured 

and documented. Furthermore, the working area must also be monitored for the 

presence of radioactivity to ensure the safety of both workers and patients. A detector 

may only record the existence of nuclear radiation, but more often it gives information 

about the energy of that radiation and its type. There are different types of detectors, 

which use different detecting media. These are gas-filled detectors, scintillation 

detectors and semiconductor detectors. The basic operating principle of all detectors is 

the conversion of ionising  energy into electrical energy. Electronic circuits are used in 

association with the detectors to determine the intensity of this radiation (Thrall et al. 

2001). 

2.6.1 Gas-filled detectors 

In its basic form, this type of detector comprises a gas-filled chamber with positive and 

negative electrodes across which a voltage is applied (Figure 2-7). When the gas is 

exposed to radiation, ionisation will create positive and negative ions (ion pairs), which 

then move towards the electrodes and produce an electrical current. There are two ways 

in which an ion pair is formed: by direct interaction between the incident radiation and 

the gas molecules or by a secondary process in which the electron that left its original 

atom may possess enough kinetic energy to generate further ions. Those energetic 

electrons are usually called delta rays. 

There are three sub-types of gas-filled detectors that are used in nuclear medicine 

applications: ionisation chamber, proportional counter and Geiger-Müller counter 

(Thrall et al. 2001). Just the first type of detector (ionisation  chamber) was used in this 

study and so it is the only one discussed in detail. 
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Figure 2-7: Operating principles of a gas-filled detector (Cherry et al. 2012) 

2.6.1.1 Ionisation chamber 

In most ionisation  chambers, the gas between the electrodes is air. Many different 

designs have been utilised  for the electrodes, but basically they consist of a wire along 

the central axis of a cylinder or a pair of concentric cylinders. For maximum efficiency 

of operation, the voltage between the electrodes must be sufficient to ensure complete 

collection of ions and electrons produced by the interaction of the radiation with the gas 

in the chamber. If the voltage is too low, some of the ions and electrons simply 

recombine with each other without producing an electrical current. As the voltage rises, 

the probability of recombination decreases and the resulting electrical current increases. 

The correct choice of the voltage applied between the electrodes is crucial to ensure that 

it is high enough to avoid recombination but insufficient to cause further secondary 

ionisations. This ensures that there is a direct proportionality between the ionisation 

current produced and the energy deposited per unit time via primary ionisations in the 

chamber (Cherry et al. 2012). 

The amount of electrical charge released in an ionisation  chamber by a single ionising  

radiation event is small. Thus, ionisation  chambers normally are not used to record or 

count individual radiation events, but they are used to measure the total current passing 

through the chamber caused by the radiation. Small amounts of electrical current 

(usually of the order of pA to μA) are measured using a sensitive current-measuring 

device called an electrometer. A single electrometer may not be able to accommodate 
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very small currents and thus a number of electrometers may be used for measurement, 

with electronics used to switch between them (Cherry et al. 2012). 

There are two devices consisting of ionisation chambers and electrometers that are used 

in nuclear medicine applications: survey meters and activity calibrators. Survey meters 

are used to monitor radiation dose rates for protection purposes (Cherry et al. 2012). 

However, it is the activity calibrators that were used in this study. 

The purpose of an activity calibrator is to measure the activity of a radionuclide in a 

syringe or vial before it is administered to a patient. The basic components of a 

radionuclide  calibrator are shown in Figure 2-8. Unlike other types of ionisation  

chamber, an activity calibrator consists of a sealed and pressurised chamber that is 

normally filled with argon gas. This reduces the effect of changing  atmospheric 

pressure on output readings. Activity calibrators assay the total amount of activity 

present by measuring the total amount of ionisation  produced (Cherry et al. 2012). Once 

the ionisation  current is measured, a chosen calibration factor is applied to convert it to 

activity for the particular radionuclide assayed. The calibration factor depends on 

several factors, one of the main ones being the energy of the radionuclide. After the 

application of the calibration factor, the display unit is configured to show the activity 

in an appropriate unit (GBq to kBq). Activities lower than the order of kBq involve high 

statistical variations due to the poor sensitivity of the electrometer to measure low 

currents. In such cases, a radionuclide calibrator would not be the ideal device to 

measure activity. It would be more appropriate to use an alternative detection system, 

such as a scintillation detector or semiconductor detector (Talboys 2016). 

Ionisation chambers have no inherent ability for energy discrimination and so they 

cannot be utilised to select different gamma ray energies for measurement. One method 

that is used to discriminate low-energy and high energy γ-ray emitters (e.g. 99mTc and 

99Mo) is to measure the sample with and without lead shielding around the source. With 

the shielding in place, predominantly the activity of the high-energy emitter that is 

recorded, while the total activity of both emitters is recorded in the absence of the 

shielding. This technique can be used to detect tens of kBq quantities of 99Mo in the 

presence of tens or even hundreds of MBq of 99mTc (Cherry et al. 2012). 
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Figure 2-8: Schematic of a radionuclide calibrator (IAEA 2015) 

 

In this study, a secondary standard radionuclide calibrator called Fidelis (Figure 2-9) 

was used to measure the activity of some radionuclides. This detector is manufactured 

by Southern Scientific Ltd. (Henfield, England) and comprises a well type ionisation 

chamber and electrometer connected to a laptop computer with associated software. The 

chamber is the same as the National Physical Laboratory (NPL) calibrator type 271 

described by Woods in 1983 (Talboys 2016). 

Electrometer 
Amplifier 
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Figure 2-9: Fidelis secondary standard radionuclide calibrator (NPL) (Talboys 

2016)  

The Fidelis is a sealed, concentric cylinder type of activity calibrator and it is mainly 

constructed of aluminium alloy. The chamber is filled with dry nitrogen to a pressure 

of 1 MPa. The applied voltage between the cathode and anode within the chamber is 

1450 V. The electrometer integrated into the base of the ionisation chamber is the new 

state-of-the-art, high resolution, PAM Electrometer Module (Talboys 2016). 

The Fidelis calibrator is supplied with a database of calibration factors traceable to the 

NPL primary standardisations. When a specific radionuclide, container and volume are 

used, the corresponding calibration factor can be retrieved by the display software 

(Talboys 2016).  

Before purchase of the Fidelis chamber in 2009 by the Medical Physics Department at 

the University Hospital of Wales, the detector was checked against the master chamber 

at NPL to ensure that the response of the instrument was within specification. Five 

radioactive sources were assayed in the chamber and compared with the NPL master 

chamber. The variation in current measurements was also checked for the Fidelis 

electronics and compared with the NPL electronics. It was found that the specification 

was met (Talboys 2016). 
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A quality assurance scheme for the Fidelis was established and maintained to ensure the 

stability of the chamber. The Fidelis has an in-built quality control routine that evaluates 

the amplifier offset, ambient background radiation and high voltage values. In addition, 

the calibrator response was checked using a 10 MBq 137Cs sealed source, which was 

first assayed on the chamber by NPL (Talboys 2016).  

The Fidelis calibrator is relatively expensive and is not a choice for the routine assay of 

radionuclides in a nuclear medicine department. For example, a regional medical 

physics department may have just one Fidelis calibrator but may need many field 

radionuclide calibrators for routine measurements. Field calibrators are produced by a 

number of manufacturers including Capintec, Biodex, Veenstra and PTW. The basic 

design of these calibrators matches that previously described (Talboys 2016).  

The assay of 99Mo activity in 99mTc eluate, called the molybdenum breakthrough test 

(MBT), was performed using a Capintec (CRC-15R) in the radiopharmacy at the 

University Hospital of Wales. This was done by measuring the sample with and without 

a few millimetres (6 mm) of lead shielding around the source. Predominantly, it is the 

activity of the high-energy radionuclide that is recorded with the shielding in place, 

whereas the total activity of both radionuclides is recorded with the shielding absent.  

One of the main differences between the Fidelis secondary standard instrument and a 

field calibrator is the number of available calibration factors for the user to choose. 

Normally, a field calibrator will have one factor for a given radionuclide. This means 

that it does not take account of other variables that have an impact on the chosen 

calibration factor; these include the container material, the geometry of the container 

and also the volume of the solution. The Fidelis calibrator has calibration factors for a 

number of container and volume combinations and these can be applied to give a more 

accurate activity reading (Talboys 2016). In this study, a Schott vial with 4 ml of 

radioactive solution was chosen as the standard vial and volume combination for 

measuring activity in the Fidelis calibrator. 
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2.6.2 Scintillation detectors 

Scintillation is a general term that refers to light emission and a scintillator is any 

material that emits a photon within the UV or visible light region when de-excitation 

takes place (i.e. an excited electron in the scintillator material returns to the ground 

state). The resulting scintillation photons may be detected by a photomultiplier tube 

(PMT) to produce an output electrical pulse (Reilly et al. 1991; Prekeges 2011). 

Generally, scintillation detectors consist of a detector (scintillation crystal and PMT), 

power supply, preamplifier, amplifier and pulse analyser. The interaction of a gamma 

or x-ray photon with the crystal generates a scintillation. The PMT is a major part of 

this system and it is used to convert the scintillation photons to an electronic signal. The 

closest part of the photomultiplier tube to the scintillation crystal is called the 

photocathode. This is made of a very thin layer of a photoemissive material which has 

the ability to generate electrons when exposed to UV and visible light photons (Reilly 

et al. 1991; Knoll 2010; Prekeges 2011). 

The electrons released by the photocathode enter a focusing grid, which provides a 

suitable electrical field to direct them towards the first of a series of dynodes. The 

electrons from the last dynode are collected by the anode which is located at the opposite 

end of the PMT to the cathode. The output current signal is still small, but it is amplified 

by subsequent electronics (Reilly et al. 1991; Prekeges 2011). 

Scintillation detectors have relatively poor energy resolution of typically 5-10%. This 

is attributed to the events that must occur to convert an incident gamma photon into 

light and the subsequent formation of an electrical signal via many inefficient stages. In 

addition, the number of primary charge carriers (photoelectrons) generated in a typical 

radiation interaction is normally no more than a few thousand. This number is subject 

to a relatively large statistical variation, which further degrades energy resolution. 

However, scintillation crystals may be manufactured with large thickness and thus they 

have relatively large sensitivity (detection rate per unit activity) (Knoll 2010). 

2.6.3 Semiconductor detectors 

Usually a semiconductor material is a poor electrical conductor. However, when it is 

irradiated by ionising  radiation, the electrical charge generated can be collected by an 
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external applied voltage, as it is with a gas. This is the operating principle of a 

semiconductor detector. This principle does not apply to a conducting material (e.g. a 

metal) because such a material would conduct a large amount of current even without 

the presence of ionising  events. Insulators (e.g. glass) are also not appropriate detector 

materials, because they do not conduct current even in the presence of ionising  radiation 

(Cherry et al. 2012). 

2.6.3.1 Semiconductor properties 

According to the band theory of solids, the band furthest from atomic nuclei that is filled 

with electrons is called the valence band. The next band further out is called the 

conduction band. 

Electrons in the valence band are bound to a determined position within the material, 

while those in the conduction band are free electrons that can migrate through the 

material. If a material naturally has some electrons in the conduction band, it is an 

electrical conductor. If under normal circumstances, the material has no electrons in the 

conduction band, it is an electrical insulator or a semiconductor. 

The classification of the material as an insulator or a semiconductor is determined by 

the size of the bandgap, which is the gap between the valence band and the conduction 

band. In insulators, this gap is usually 5 eV or more, while it is significantly less in 

semiconductors (Figure 2-10) (Lilley 2001; Knoll 2010). 

 

Figure 2-10: Band structure in both insulators and semiconductors (Knoll 2010) 
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The most commonly used materials for a semiconductor detector are silicon (Si) and 

germanium (Ge). In such detectors, one pair of charge carriers  is produced per 3 to 5 

eV of radiation energy absorbed. By comparison, approximately 34 eV is required to 

produce one such pair in air. Thus a semiconductor detector is a more efficient absorber 

of radiation than a gas-filled detector and it produces an electrical signal that is about 

10 times larger per unit of radiation energy absorbed. This signal is large enough to 

allow the detection and counting of individual radiation events. The signal is produced 

by multiple excitations of electrons across the narrow band gap from the valence band 

to the conduction band, leaving holes in the valence band. In addition, a semiconductor 

detector has much better energy resolution (typically 1% or better) than a scintillation 

detector (Cherry et al. 2012).  

In spite of these advantages, semiconductor detectors have a number of drawbacks that 

have limited their use in nuclear medicine applications. The first one is that both Si and 

Ge (especially Ge) conduct a considerable amount of thermally induced electrical 

current at room temperature. This generates a background noise current that interferes 

with the detection of radiation-induced currents. Thus, Si detectors (usually) and Ge 

detectors (always) must be operated at a low temperature (typically that of liquid 

nitrogen which is -196oC) (Cherry et al. 2012). 

A second  problem related to the use of semiconductor detectors is the existence of 

impurities in Si and Ge crystals. Impurities (atoms of other elements) normally disturb 

the regular arrangement of Si and Ge atoms in the crystal matrix of these materials. 

These disturbances generate electron traps that capture electrons released in ionisation  

events. This leads to a significant reduction in the electrical signal and, in turn, restricts 

the usefulness of semiconductor detectors for detection of gamma rays (Cherry et al. 

2012). 

To address the impurity problem in the semiconductor material, two types of 

compensating impurities may be introduced into the crystal matrix. The first type is 

called acceptor impurity, for which atoms of an element (such as boron) in group III of 

the periodic table are added. The boron atom has three valence electrons. Therefore, it 

requires one more electron to saturate the covalent bond with the crystalline silicon. 

Leaving the covalent bond unsaturated would mean leaving a hole in exactly the same 

way as when an electron is excited from the valence band to the conduction band, but 
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with slightly different energy characteristics. An electron filling this hole is slightly less 

firmly attached than a typical valence electron (Lilley 2001; Knoll 2010). 

The other type is called donor impurity, for which atoms of an element (such as 

phosphorus) in group V of the periodic table are added. The phosphorus atom has one 

more valence electron than the surrounding atoms. Therefore, adding phosphorus to the 

silicon would leave one extra electron after the formation of all the covalent bonds. This 

extra electron occupies states that lie near to the conduction band and will not be 

strongly bound to the original impurity atom. It takes very little energy to dislodge it to 

form a conduction electron without a corresponding hole. Impurities such as phosphorus 

are referred to as donor impurities as they easily contribute electrons to the conduction 

band (Lilley 2001; Knoll 2010). 

However, as a detector of ionising radiation, a semiconductor cannot simply consist of 

the material and two electrodes. It is necessary for p‐type and n‐type crystal material to 

be combined to create what is called a (p-n  junction), or  semiconductor diode. This 

diode is reversed biased  so that no current passes through when no ionising  radiation 

is applied. The reverse bias creates a region called the depletion region which is 

sensitive to ionising  radiation (Khandaker 2011). However, with the use of normal pure 

silicon or germanium, it is difficult to achieve depletion depths beyond 2 or 3mm with 

diode semiconductors. In order to detect γ rays efficiency, a much greater thickness is 

required to do so. The thickness (d) of the depletion region is given by the equation 

(Knoll 2010):- 

                                                   d = (
2𝜖𝑉

𝑒𝑁
)

1/2
                                 (2-15) 

where V denotes the voltage of the reverse bias, ϵ is the dielectric constant, e is the 

electronic charge and N is the concentration of impurities within the semiconductor 

material. At a given applied voltage, a thicker depletion region can only be achieved by 

reducing the impurity concentration (Knoll 2010).  

Detectors that are manufactured with high purity Ge semiconductor material are usually 

called intrinsic germanium or high-purity germanium (HPGe) detectors. In this type of 

detector, depletion depths of several centimetres are possible. HPGe detectors became 

commercially available in the early 1980s. The starting material is bulk geranium with 

high purity; this is further processed using a  technique called zone refining. In this 
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technique, the impurity concentration in the material is continuously reduced by locally 

heating the germanium and slowly passing a  melted zone from one end of the material 

to the other. The solubility of the impurities is greater in the molten germanium than in 

the solid one and so they tend to transfer into this molten zone and are gradually swept 

out of the sample. After many repetitions, impurity concentrations as low as 109 

atoms/cm3 can be achieved. The germanium that results from the use of  this method is 

probably the most purified material that has ever been produced. The final product is 

large single crystal of germanium that is described as high purity n-type if the remaining 

low level impurities are donors or high  purity p-type if the remaining low level 

impurities are acceptors (Knoll 2010).  

2.7 Electronic components 

Signal processing plays a key role in extracting useful information from radiation 

detectors. Figure 2-11 shows the main electronic components of a nuclear radiation 

counting instrument.  

 

 

  

 

 

Figure 2-11: Schematic representation of the electronic components of a 

radiation detector (Cherry et al. 2012) 

2.7.1 Preamplifier 

 

The signal pulse produced as a result of radiation passage through a detector cannot be 

directly digitised and counted because it is noisy and has a very narrow width, small 

amplitude and a short duration. Thus a preamplification stage is crucial before any 

further signal processing. The main purposes of the preamplifier are as follows: 

providing optimum impedance matching between the detector and the rest of the 

electronic system, pulse shaping, minimising noise by filtering, and increasing the 

amplitude of the pulses (Sandi 2013).  
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The preamplifier must be as close as possible to the detector in order to reduce the 

distortion of the signal. It is desirable to reduce the capacitive loading on the 

preamplifier, and thus it is important to avoid using long connecting cables between it 

and the detector (Prekeges 2011). 

2.7.2 Amplifier  

 

The main functions of the amplifier are as follows: restoring the baseline, filtering the 

noise, fixing the gain of the signals (increasing the amplitude) and providing near-

Gaussian pulse shaping.  The millivolt output from the preamplifier is further amplified 

to a range of a few volts by the amplifier. The multiplication factor normally ranges 

between 1 and 1000, and this can be adjusted by coarse and fine gain controls on the 

electronics module (Prekeges 2011; Sandi 2013). 

2.7.3 High-voltage (HV) supply 

 

The HV supply provides the charge collection voltage for the detector. This device 

converts the alternating voltage provided by the line source into a constant or direct 

voltage (Cherry et al. 2012). 

The collection of the charge carriers is incomplete when the bias voltage is low in the 

HPGe detector, due to recombination or trapping along the track of the secondary 

particle. Conversely, when the voltage is reasonably high, charge collection becomes 

complete and the pulse height no longer changes with further increase in the detector 

bias voltage. This voltage region is called the saturation region (Sandi 2013). However, 

small HV variations have little effect on the output pulse amplitude with semiconductor 

detectors (Cherry et al. 2012). 

2.7.4 Multichannel Analyser (MCA) 

 

The multichannel analyser (MCA) is a device that sorts out the incoming pulses 

according to their heights and counts the number at each height in a multichannel 

memory. The contents of each channel can then be displayed to give a pulse height 

spectrum (Sandi 2013). 
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The main part of the MCA is an analogue-to-digital converter (ADC), which measures 

and sorts out the incoming pulses based on their amplitudes (Cherry et al. 2012).  

The ADC converts analogue signals (pulse amplitudes in volts), which have an infinite 

number of different values, into digital signals (channel number), which have a finite 

number of integer values. For each analyser channel, there is a related storage location 

in the MCA memory. The MCA memory counts and stores the number of pulses 

recorded in each analyser channel. The number of memory storage locations available 

determines the number of MCA channels. The sorting and storage of the energy 

information from radiation detectors with an MCA are used to record the pulse height 

spectrum (counts per channel versus channel number, or energy), as shown in Figure 

2-12 (Cherry et al. 2012). 

Each radiation counting system has a characteristic dead time or pulse resolving time τ 

which is defined as the time required by the ADC to process individual detected events. 

Conversely, live time is defined as the permitted time for the pulses to pass to be 

processed by the ADC. In this study, the acquisition time is always the live time. 

At high counting rates, amplified pulses can occur so close together that they fall on top 

of each other (Figure 2-13 (a)). Thus, if a second  pulse occurs before the disappearance 

of the first one, the two pulses will overlap be counted as one and form a single distorted 

pulse that is not representative of either. This problem is called pulse-pile up results in 

further counting or dead time losses (Cherry et al. 2012).  

Counting losses can also occur due to another problem, which is baseline shift (Figure 

2-13 (b)). This happens when a second  pulse occurs during the negative component of 

the first one. Thus, the second  pulse will be slightly depressed in amplitude, resulting 

in an inaccurate pulse amplitude and an apparent decrease (shift) in energy of the 

detected radiation event (Cherry et al. 2012).  

The HPGe detector and associated electronics used in this project are described in more 

detail in chapter 4. 
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Figure 2-12: Pulse sorting of radiation events according to their amplitudes from 

an object containing 99mTc (Cherry et al. 2012) 

 

 

 

 

 

 

 

 

 

Figure 2-13: Schematic representation of (a) Pulse pile-up effects and (b) baseline 

Shift  

 

 

 

 

 

 

 

(a) 

  

(b) 
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2.8 Pulse height spectrum 

In gamma ray spectroscopy, when a monoenergetic gamma photon (with an energy less 

than 1.022 MeV) interacts with the detector, it deposits part or all of its energy in the 

material of the detector, mainly via photoelectric absorption and Compton scattering. 

The photoelectric interaction leads to the full deposition of the gamma ray energy in the 

detector (the characteristic x-ray is usually also absorbed in the detector). The 

amplitudes of the pulses from these events are proportional to the energy of the gamma 

photon. Ideally, this would give a single narrow line in the pulse-height spectrum, called 

the photopeak, at a location corresponding to the energy of the gamma photon. On the 

other hand, in Compton scattering, only part of the gamma energy is deposited in the 

detector material by the Compton recoil electron. If the scattered gamma photon is also 

absorbed in the detector, the interaction produces a pulse in the photopeak, whereas if 

it escapes, the energy deposited in the detector is less than the original photon energy 

(Cherry et al. 2012). 

The deposited energy in the detector in a single Compton scattering event ranges 

between near zero up to a maximum value, depending on the angle of the scattering 

event.  

Therefore, the ideal spectrum includes a distribution of pulse amplitudes ranging from 

nearly zero (small-angle scattering) amplitude up to some maximum amplitude 

corresponding to 180-degree Compton scattering events (Figure 2-14). This part of the 

spectrum is named the Compton region, while the sharp edge in the spectrum is called 

the Compton edge (Cherry et al. 2012). 
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Figure 2-14: Distribution of pulses versus amplitude (or energy deposited in the 

detector) 

2.9 Energy calibration 

In germanium detectors, the horizontal scale of the pulse height spectrum must be 

calibrated in terms of the energy of gamma rays if different gamma peaks are to be 

determined in a spectrum. The purpose of energy calibration is to convert pulse height 

to energy using photopeaks with known gamma energies. Energy calibration uses a 

standard radioactive source with range of gamma energies that should not be broadly 

different from those to be measured in the unknown spectrum. Using multiple gamma 

peaks spread along the measured energy range is beneficial because most spectrometer 

systems demonstrate a nonlinear relation to some extent (Gilmore 2008; Knoll 2010). 

In general, however, the relationship between channel number and energy deposited in 

the detector and is represented by a straight line. Thus the energy calibration equation 

is as follows: 

 E = m x + c (2-16) 

where E denotes the energy (keV), m is the slope (keV/channel), x represents the 

channel number and c symbolises the intercept of the straight line. 
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2.10 Efficiency calibration 

The full-energy peak (FEP) efficiency is a very important parameter in practical gamma 

ray spectrometry as it allows the determination of the activity of each radionuclide. The 

FEP efficiency is defined as the number of the photons emitted by the source 

contributing to the corresponding full-energy photopeak on the pulse height spectrum. 

It can be calculated from the ratio of the number of detected counts in a photopeak to 

the number of photons emitted by the radioactive source (Reguigui 2006; Gilmore 

2008):- 

                                                  𝜀 = 𝑅/(𝑆 × 𝑃𝛾)                                         (2-17) 

where ɛ denotes the efficiency, R represents the full-energy peak count rate (counts/s), 

S is the source activity in disintegrations per s (Bq) and Pγ is the emission probability 

of the gamma rays being measured (Gilmore 2008).  

Normally, the efficiency calibration curve is constructed by measuring different gamma 

sources of known activity and plotting efficiency versus gamma energy. There are some 

mixed radionuclide sources that are available for efficiency calibration in the UK and 

USA; these are the QCY and QCYK sources. The QCYK reference source includes 

about 12 gamma emitting radionuclides ranging from 241Am (59.5 keV) to 88Y (1836.05 

keV). 
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3.1 Introduction 

In the 1920s and 1930s, the first applications of radioactivity for medical tracer studies 

made use of natural radionuclides. However, because of their generally undesirable 

characteristics, e.g long half-life and alpha emission, they have found virtually no 

applications in medical diagnosis since that time.  

 

Given that, the need for manufactured or artificial radionuclides was identified. In 

modern nuclear medicine practice, all the radionuclides that are used are artificial. They 

are made either by nuclear fission or by irradiating the nuclei of stable atoms with 

subnuclear particles (such as neutrons and protons) so as to cause nuclear reactions that 

change a stable nucleus into an unstable (radioactive) one. This chapter describes the 

main methods that are used to produce radionuclides for nuclear medicine. These 

methods comprise: irradiation or fission in a research reactor, irradiation in a particle 

accelerator (usually a cyclotron) and the use of a radionuclide generator (Table 3-1). 

The latter requires a research reactor or cyclotron source to produce the parent 

radionuclide. 
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Table 3-1: Common methods of radionuclide production (Synowiecki et al. 2018) 

 

Radionuclide 

sources 
Advantages Disadvantages 

Nuclear 

Reactors 

- Production of neutron-rich 

radionuclides, particularly 

suitable for therapeutic use 

- High production efficiency 

- One research reactor has the 

ability to supply globally to 

large regions or centralised 

production 

- Extremely high investment 

cost 

- High operational costs 

- Significant activities of 

long-lived radionuclides 

- Long out-of-service periods 

- Difficult to back-up in case 

of unforeseen downtime 

- Demanding logistics, often 

including air transportation 

- Public safety issues 

Cyclotrons 

- Production of proton rich 

radionuclides suitable for PET  

- High specific activity in most 

produced radionuclides 

- Small investment in 

comparison to nuclear reactor 

- Limited long-lived 

radioactive waste 

- Regional network of 

cyclotrons and complex 

logistics required for 

short-lived radionuclide 

production 

- Production dependent on the 

beam energy 

Generators 

- Available on site, no need 

for complicated logistics 

- Mostly long shelf life 

- Easy to use 

- Limited radioactive waste a 

generator normally returned to 

manufacturer after use 

- Radionuclides are supplied in 

cycles according 

to possible elution frequency 

and in-house use must be timed 

- Trace contaminants of 

long-lived parent nuclide in 

eluted product 
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3.2 Nuclear reactions and nuclear cross-sections 

In general, neutrons and charged particles (such as protons) may interact with the atoms 

of a material either elastically or inelastically. In an elastic interaction, the total kinetic 

energy remains unchanged although some kinetic energy may be transferred from the 

incident particle to a target (such as an electron or nucleus) within the atom. For an 

inelastic process, on the other hand, the total kinetic energy is changed because of 

ionisation, excitation, the emission of photons or a combination of these effects 

(Anderson 1984). 

There are four categories of charged particle interaction: 

1. Elastic processes with electrons 

2. Inelastic processes with electrons 

3. Elastic processes with nuclei 

4. Inelastic processes with nuclei 

In the first two categories, the incident particles interact via the Coulomb force with 

atomic electrons. In the last two categories, the incident particles interact with atomic 

nuclei through either the Coulomb force or the strong nuclear force. Ionisations and 

excitations caused by fast charged particles belong to category 2; this is often called 

collisional energy loss. Bremsstrahlung emission (radiative energy loss) and nuclear 

reactions belong to category 4. 

Neutrons, which have no electric charge, may also undergo elastic and inelastic 

interactions, but not with electrons because there is no Coulomb force between neutrons 

and electrons. However, neutrons may interact with nuclei through the strong force. 

Elastic interactions lead to neutron scattering. Inelastic neutron scattering is also 

possible, while other inelastic interactions between neutrons and nuclei include neutron 

capture reactions and the induction of nuclear fission. 

Thus, both neutrons and charged particles may participate in nuclear reactions. In 

general, a nuclear reaction is a process in which the nucleus of an atom and a sub-atomic 

particle (such as a proton or a neutron) from outside the atom, collide to produce one or 

more nuclides that are different from the initial nuclide. A nuclear reaction must cause 

a transformation of at least one nuclide (the target) to another (the product); secondary 

radiation (particles or photons) may also be released. If a nucleus interacts with a 
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particle and they separate without changing the composition of any nuclide, the process 

is simply referred to as a type of nuclear scattering, rather than a nuclear reaction. 

Nuclear reactions are often expressed in a symbolic form in which the incident particle 

and secondary particle or photon are separated by a comma and enclosed in brackets, 

with the target nucleus to the left of the brackets and the product nucleus to the right.  

For example, X(n,p)Y denotes a reaction in which a neutron (n) strikes a target nucleus 

X leading to the creation of a product nucleus Y and a proton (p). Both the target and 

product nuclei may be stable or radioactive (i.e. a radionuclide). If the reaction converts 

a stable target into a radioactive product, the process is often called activation. Other 

example reactions include (p,n), (n,γ) and (p,γ) and the incident particle may be an entity 

other than a proton, such as a deuteron (d) or an alpha particle (α). 

In medical radionuclide production, nuclear reactions always involve a change in the 

number of either protons or neutrons as a target nucleus is changed to a product. 

Reactions that result in a change in the number of protons are desirable because the 

product is a different element, facilitating chemical separation from the target. This 

contrasts with a (n,γ) reaction (neutron capture), in which the product and target are 

isotopes of the same chemical element (Bailey et al. 2014).  

The probability that a nuclear reaction will occur is often expressed in terms of the 

reaction cross-section, also called the excitation function. The concept may also be 

applied to other interactions, such as scattering. The cross-section is the effective area 

presented by a target nucleus to an incident particle; it is usually denoted by the symbol 

σ. The SI unit for σ is m2, although the traditional and more commonly used unit is the 

barn (1b=10-28m2) or millibarn (1mb = 10-31m2). The cross-section depends on the target 

nucleus, the type of incident particle and the energy of the incident particle. Cross-

section values determine the activity of a desired product radionuclide that may be 

generated in a reactor or cyclotron, and the activities of other unwanted radionuclides 

that are produced as impurities or contaminants. Irradiation conditions need to be 

optimised to maximise the former and minimise the latter. 

Neutrons can penetrate target nuclei even at very low (thermal) energies, while charged 

particles need high kinetic energy to overcome the Coulomb barrier in order to achieve 

nuclear penetration. Figure 3-1 shows the general behaviour of the nuclear reaction 

cross-section as a function of incident particle energy for both protons and neutrons. 
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Because protons have to overcome the Coulomb barrier, there is an energy threshold 

below which reactions do not occur; such a threshold does not exist for neutrons  (Bailey 

et al. 2014). 

 

 

Figure 3-1: General behaviour of the nuclear reaction cross-section as a function 

of incident particle energy for protons and neutrons  (Bailey et al. 2014) 

 

3.2.1 Activation Rates 

The activity produced when a sample is irradiated in a particle beam depends on the 

intensity of the particle beam, the number of target nuclei in the sample, and the reaction 

(or activation) cross-section i.e. the probability that a bombarding particle will interact 

with a target nucleus. 

Suppose that a sample of a nuclide containing n target nuclei per unit volume (cm-3), 

each having an activation cross-section σ (cm2), is irradiated in a beam having a particle 

flux rate ϕ (cm-2 s-1) (Figure 3-2). Assume that the thickness Δx (cm) of the sample is 

sufficiently small such that ϕ does not change much as the beam passes through it 

(Cherry et al. 2012). 
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Figure 3-2: Activation targets in a particle beam (Cherry et al. 2012) 

 

The number of targets per unit area (cm-2) of the particle beam is nΔx and they present 

a total target area nσΔx per unit area of the beam. Therefore, the fractional reduction of 

beam flux rate after passing through the target thickness Δx is given by: 

Δϕ/ϕ = nσΔx    (3-1) 

The number of particles removed from the beam (i.e. the number of nuclei activated) 

per unit area of the beam area per unit time (cm-2 s-1) is given by: 

Δϕ = nσϕΔx    (3-2) 

Each atom of the target material has mass W/(6.023×1023) (g), where W is the atomic 

weight of the material and 6.023×1023 is Avogadro’s number. Therefore, the total mass 

m of target material per unit area of the beam is: 

  m = nΔxW/(6.023×1023)              (3-3) 

 



Chapter 3:                                                                                                          Radionuclide Production 

 
46 

 

Thus, the activation rate R per unit mass (g-1s-1) of target material is given by: 

 

R = Δϕ/m                  (3-4) 

                                                    𝐑 =
(𝟔.𝟎𝟐𝟑×𝟏𝟎𝟐𝟑)×𝛔×𝛟

𝑾
                            (3-5) 

 

The activation rate (Equation 3-5) can be used to calculate the rate at which target nuclei 

are activated in a particle beam per gram of target material in the beam, provided that 

the particle flux rate and the reaction cross-section are known (Cherry et al. 2012). The 

derivation assumes that the target nuclide is 100% abundant in the irradiated sample. If 

this is not the case, R is decreased by percentage abundance of the relevant isotope. 

In practice, the activation rate is often less than that predicted by Equation 3-5 because 

there is significant attenuation of the particle beam as it passes through a relatively thick 

target material. Thus, some parts of the target are irradiated by a reduced flux rate. 

Furthermore, particles lose energy when traversing a thick target and this leads to a 

change in the activation cross-section. 

3.3 Reactor-produced radionuclides 

3.3.1 Reactor Principles 

 

Figure 3-3 shows a schematic representation of a nuclear reactor. The core (fuel cells) 

of the reactor contains a quantity of fissionable material, normally natural uranium (235U 

and 238U) enriched in 235U content. Uranium-235 undergoes spontaneous fission (t1/2 ~7

×108years), splitting into two lighter nuclear fragments with roughly equal masses and 

emitting two or three high energy neutrons in the process (Figure 3-4) (Cherry et al. 

2012).  

 

The fuel cells are surrounded by a moderator material. The purpose of the moderator is 

to slow down the rather energetic fission neutrons. The resulting slow neutrons (also 

named thermal neutrons) are more efficient initiators of additional fission processes. 
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The most commonly used moderators are heavy water and graphite. Control rods are 

used to either expose or shield the fuel cells from each another. Both the fuel cells and 

control rods are carefully located to establish the critical conditions for a controlled 

chain reaction (Cherry et al. 2012).  

 

In the nuclear research reactor, the objective is to arrange for the neutrons emitted in 

each spontaneous or stimulated fission process to initiate, on average, one additional 

fission, thus establishing a controlled nuclear chain reaction (Cherry et al. 2012). 

 

 

 

Figure 3-3: Schematic representation of a nuclear reactor core (Cherry et al. 

2012) 
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Figure 3-4: Fission process of the nucleus of 235U (Powsner et al. 2013) 

3.3.2 Fission Fragments 

The fission process that occurs in a reactor can result in useful quantities of medically 

important radionuclides such as 99Mo, the radionuclide used in a generator for 

producing 99mTc. 99Mo is normally produced by the fission of 236U which, in turn, splits 

into two fragments (Figure 3-5). 

 

 

 

Figure 3-5: Schematic diagram of the fission process following neutron capture 

by 235U to 236U (Ruth 2009) 
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The fission products are always neutron-rich radionuclides and thus undergo radioactive 

decay by β– emission, until a stable nuclide is produced. If one of the radioactive 

intermediates has an appropriately long half-life, it can be extracted from the fission 

products and utilised as a medical radionuclide. For example, 99Mo ( t1/2 ≈ 66 hrs) plays 

a crucial role in producing technetium-99m,  which is the most common radionuclide 

used in nuclear medicine procedures (Powsner et al. 2013): 

 

 

Radionuclides produced by fission may be obtained carrier free, which means that no 

stable isotope of the element of interest is produced alongside. Therefore, the 

radionuclides can be produced with high specific activity (Cherry et al. 2012). 

3.3.3 Neutron Activation 

Neutrons have no net electrical charge. Therefore, they are neither attracted nor repelled 

by nuclei by Coulomb interaction. When neutrons (e.g. from a nuclear reactor core) hit 

a target material, nuclei of the target atoms capture some of the neutrons. As a result, a 

stable target nucleus may be converted into a radioactive nucleus. Such an event is 

called neutron activation. Two types of such reactions commonly occur (Cherry et al. 

2012). 

 

In the first reaction (n,γ), a target nucleus ( 𝑋)𝑍
𝐴  captures a neutron and is converted into 

a product ( 𝑋)𝑍
𝐴+1 , which is formed in an excited state. The nucleus of this product 

immediately undergoes de-excitation to its ground state by emitting a promptγ ray. 

The schematic representation of this reaction is as follows: 

 

𝑋(𝑛, 𝛾) 𝑋𝑍
𝐴+1

𝑍
𝐴  

 

The nuclei of the target and the product of this reaction are different isotopes of the 

same chemical element. 

 

A second  type of neutron activation is the (n,p) reaction. In this reaction, the nucleus 

of the target nuclide captures a neutron and promptly ejects a proton. This reaction is 

represented as follows: 
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𝑋(𝑛, 𝑝) 𝑋𝑍−1
𝐴

𝑍
𝐴  

 

In this reaction, the nuclei of the target and the product do not represent the same 

chemical element. This means that chemical separation is possible and the radioactive 

product is carrier-free i.e. does not contain a stable isotopes of the same element.  

 

The (n,γ) reaction is the more common mode and the products of this reaction are not 

carrier free because isotopes of the same element cannot be separated chemically. The 

radionuclides produced by neutron activation tend to decay by β– emission as neutrons 

are added to the nucleus of the target material and, in β– decay, a neutron changes into 

proton. 

3.4  Accelerator-produced radionuclides 

3.4.1 Charged-Particle Accelerators 

As its name suggests, a charged particle accelerator is used to accelerate electrically 

charged particles, such as protons,αparticles ( 𝐻𝑒 2
4 nuclei) and deuterons ( 𝐻 1

2 nuclei), 

to a very high energy. Irradiating a target material with these particles may cause nuclear 

reactions that result in the formation of radionuclides. However, a major difference is 

that the particles must have very high energies, normally between 10 and 20 MeV, to 

exceed the repulsive Coulomb forces of the nucleus. 

There are two common types of nuclear reaction that produce radionuclides using a 

charged-particle accelerator. The first one is a (p,n) reaction in which the nucleus of the 

target captures a proton and promptly emits a neutron. This reaction is represented as 

follows: 

 

𝑋(𝑝, 𝑛) 𝑋𝑍+1
𝐴

𝑍
𝐴  

 

This reaction can be considered to be the opposite of the (n,p) reaction that is induced 

by neutrons as the irradiating particle in a reactor. 

A second  common reaction is the (d,n) reaction. In this reaction, the nucleus of the 

target material captures an accelerated deuteron (d) and immediately releases a neutron. 
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This results in a change of both the atomic number and the mass number. This reaction 

is represented as follows: 

 

𝑋(𝑑, 𝑛) 𝑋𝑍+1
𝐴+1

𝑍
𝐴  

 

Various types of device have been used to accelerate charged particles; these include 

Van de Graaff accelerators, linear accelerators and cyclotrons. The cyclotron is the most 

commonly used form of particle accelerator for the production of medically important 

radionuclides. 

3.4.2 Cyclotron Principles 

The first cyclotron to be used specifically for medical applications was installed at 

Washington University in St. Louis in 1941; radioactive isotopes of phosphorus, iron, 

arsenic and sulphur were produced (Mahmood and Jones 2002). 

A cyclotron consists of two hollow halves of a closed cylinder (called dees due to their 

shape) placed between the poles of a large electromagnet (Figure 3-6). The dees are 

separated from each other by a narrow gap. The charged particles are generated by an 

ion source (normally an electrical arc device in a gas) that is positioned near the centre 

of the dees. All these components are placed in a vacuum tank (Cherry et al. 2012; 

Powsner et al. 2013).  

During cyclotron operation, particles are generated by the ion source in bursts and a 

high frequency alternating voltage is applied across the dees; this is generated by a high-

frequency oscillator (typically operating at 30 kV, 25-30 MHz). After the injection of 

the charged particles into the gap between the dees, they are accelerated directly toward 

one of the dees by the electrical field generated by the applied voltage. Inside the dee 

there is no electrical field, but as the particles are in a magnetic field, they move in a 

circular path around to the opposite side of the dee.  

Each time the charged particles pass through the gap, they gain energy. Thus the orbital 

radius increases at each pass and the charged particles follow an outwardly spiralling 

path. When the particles acquire sufficient kinetic energy and reach the maximum 

orbital radius, they are directed and deflected onto a target material placed directly in 

the orbiting beam path (Cherry et al. 2012; Powsner et al. 2013). 
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Cyclotron-produced radionuclides tend to decay by either EC orβ+ emission as a 

positive charge is added to the nucleus of the target material in the activation process. 

Furthermore, addition of positive charge to the nucleus of the target atom changes its 

atomic number. Thus, products generated using a cyclotron are usually carrier free 

because chemical separation is possible (Cherry et al. 2012). 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Internal parts of cyclotron (Powsner et al. 2013) 

 

A cyclotron may be used to produce many radionuclides of clinical importance (Figure 

3-7), including short-lived positron emitters such as 11C (t1/2 = 20.4 min), 13N (t1/2 = 9.97 

min), and 15O (t1/2 = 2.03 min), that are of special interest in PET. These radionuclides 

are important constituents of biological substances, and they can be used  to label a wide 

range of biologically relevant tracers. These particular positron-emitting radionuclides 

must be prepared on site with a specified biomedical cyclotron due to their very short 

lifetimes (Cherry et al. 2012).  
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Figure 3-7: Radionuclides used in nuclear medicine diagnostics (Synowiecki et al. 

2018) 

3.4.2.1 Energy degradation in a cyclotron 

Most cyclotrons deliver charged particles at a fixed kinetic energy, but this may not be 

optimal in that the cross-section for the desired reaction may be relatively small giving 

a low yield of the required radionuclide. In addition, cross-sections for competing 

reactions that produce radionuclidic impurities may be unacceptably large. In practice, 

the approach is to procure a cyclotron that operates at an energy greater than that 

required for production of the desired range of radionuclides and to reduce or degrade 

the particle energy to optimise the production of each one. This energy degradation is 

achieved by passing the particle beam through a thin metallic foil (the degrader). 

The mechanisms of charged particle energy degradation have already been described; 

they comprise elastic and inelastic interactions with atomic electrons and nuclei (section 

3.2). For a particular type and energy of particle, the energy loss is determined by the 

composition and thickness of the foil. It is related to the stopping power of the foil 
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material; this is the energy loss per unit path length of the particles in the material. It is 

collisional loss (due to ionisation and excitation) that tends to dominate and the 

collisional stopping power depends on the velocity and electric charge of the particles 

and the electron density of the material through which they travel (Anderson 1984). 

Nuclear reactions may also take place in the foil leading to its activation; this creates 

additional radioactive waste and an additional radiation hazard when the irradiated 

target is processed. 

At typical energies used for radioisotope production, a particle will undergo more than 

a million collisions before it comes to rest. Because if the statistical nature of these 

interactions, the exact type and number of collisions and the exact path of an individual 

particle are not predictable. This means that charged particles having the same initial 

energy do not travel the same distance through the absorbing material. There is a 

distribution of ranges centred on the mean value and this phenomenon is known as 

straggling. Similarly, particles that are initially monoenergetic have a range of kinetic 

energies after traversing a particular thickness of material such as a degrader foil (IAEA 

2012). Thus, the use of energy degraders to optimise radionuclide production presents 

significant challenges. 

If the target material is solid, the energy degradation foil is placed in the beam path in 

front of the target within the vacuum tank of the cyclotron. Liquid and gaseous target 

materials must be contained in a suitable target vessel with a thin foil entrance window 

through which the particles must pass in order to interact with the target. The entrance 

foil may also act as the energy degrader or this function may be performed by another 

foil placed in front of the window. As the target absorbs particle energy, its temperature 

increases; in the case of liquid and gaseous target materials, the pressure also increases. 

Window foils must be thick enough to withstand high temperature and pressure without 

excessive attenuation and energy degradation of the particle beam (IAEA 2012). 

Window and energy degradation foils may be made from a range of materials including 

metallic elements such as aluminium, niobium and titanium and Havar, a non-magnetic 

cobalt-based alloy. Desirable properties of foil materials include low chemical 

reactivity, high tensile strength and high melting point (IAEA 2012). Details of the foils 

used for the cyclotron-produced radionuclides investigated as part of the work for this 

thesis are given in Chapters 7 and 8. 
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3.5 Radionuclide generators 

A radionuclide generator is a closed system consisting of an apparatus that contains a 

parent-daughter radionuclide pair, for which the half-life of the parent is much longer 

than the half-life of the daughter. It allows for separation and extraction of the daughter 

from the parent; the daughter product can be extracted repeatedly. 

A radionuclide generator can be used to produce various radionuclides that are of 

interest in nuclear medicine. The most important and common generator is the 99Mo-

99mTc system, due to the widespread use of 99mTc for radionuclide imaging. There are 

alternative methods of producing 99mTc (Table 3-2), but the generator is the most 

common one.  

Table 3-2: 99mTc production methods (Synowiecki et al. 2018) 

 

Reaction Method 
Currently 

available 

Status and further 

development 

235U(n,f)99Mo→99mTc 
Reactor + 

generator 
Worldwide 

Well-established, availability 

will shrink with closure of 

some nuclear research 

reactors 

100Mo(p,2n)99mTc 

Small 

medical or 

intermediate 

cyclotron 

In Canada 

Possible worldwide 

implementation with 

decreasing nuclear reactor 

capacity 

96Zr(α,n)99Mo→99mTc 
α beam 

cyclotron + 

generator 

No 
Will not be implemented, 

method not competitive, α-

beam required, low yields 

100Mo(γ,n)99Mo→99mTc 
Linear 

accelerator 

+generator 

No 
Under development in 

Canada, USA and the 

Netherlands 

98Mo(n,γ)99Mo→99mTc 
Reactor + 

generator 

In USA 

and Japan 

Auxiliary method used in 

nuclear reactors, will shrink 

with closure of some nuclear 

research reactors 

100Mo(p,2n)99mTc 

Laser 

(simulation 

study 
(Bychenkov et 

al. 2014)) 

No 
Theoretically feasible. 

Further research required 
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3.5.1 Production of molybdenum-99 

The original method of producing 99Mo involved by the irradiation of metallic 

molybdenum or molybdenum trioxide Mo2O3 (natural or enriched with 98Mo) by 

thermal neutrons in a nuclear reactor. The cost of the target material is high. In addition, 

activation of metallic impurities existing in the target material results in the production 

of radionuclidic impurities. However, this neutron activation method has some 

advantages:  

1. Post-irradiation processing is minimal 

2. Radionuclidic contamination is limited by the purity of the target material. 

3. The quantity of radioactive waste is small 

The disadvantage of this method is the low specific activity of 99Mo (<3.7×1011 Bq/g). 

This is why 99Mo is now generated by the fission of uranium-235 as this method gives 

significantly higher specific activity (>3.7×1014 Bq/g). In this case, uranium-235 is 

bombarded with thermal neutrons in a nuclear reactor and 99Mo is separated from the 

fission products. The reaction may be represented as follows (Thrall et al. 2001; Zolle 

2007): 

U-235 (n-fission)         Mo-99 

indicating neutron irradiation causing fission. This method has some disadvantages: the 

post-irradiation processing facilities are expensive and costly, it requires chemical 

separation of β emitters and highly toxic α emitters and large quantities of long-lived 

radioactive waste material is produced. 

3.5.2 Design of the generator 

The generator is a closed system in which chemically purified 99Mo obtained from the 

fission reaction is incorporated onto an alumina (Al2O3) anion exchange column (Figure 

3-8). The pH within the column is normally adjusted to an acid level to enhance the 

binding ability. The loaded column is placed in container made of lead to provide 

radiation shielding. Tubes are attached to both ends of the column to allow it to be eluted 

or “miked” with saline (sodium chloride solution) to remove 99mTc but leave 99Mo ( in 
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the form of MoO4
-2) firmly attached to the aluminium oxide (Thrall et al. 2001; Zolle 

2007; Jones et al. 2013).  

99mTc is finally produced as a sodium pertechnetate solution (Na99mTcO4), and this the 

starting point for a wide range of 99mTc radiopharmaceuticals. However, in this solution 

99mTc exists in the most stable oxidation state, and it does not directly bind to biological 

molecules or ligands (compounds that form complexes by binding to other metals). 

Therefore, in the production of radiopharmaceuticals, it is important to use reducing 

agents to form 99mTc with lower oxidation states (Sampson 1994; Saha 2010; Eckelman 

2009).   

 

Figure 3-8: Cut-away view of a 99Mo/99mTc generator (Cherry et al. 2012) 

 

3.5.3 Activity decay and growth in a 99Mo/99mTc generator 

The variation in activity of the 99Mo and 99mTc pair is an example of transient 

equilibrium (Figure 3-9). This happens when the half-life of the parent radionuclide for 

example 99Mo (t1/2 = 66 hr)) is longer (nearly 10 times) than that of the daughter (99mTc 

(t1/2 = 6 hr)) but is not “infinite”. In this case, and when the branching ratio (B.R.) is 

equal to 1, the activity of the daughter product (Ad) increases due to the decay of its 

parent reaches a maximum value, eventually exceeds the activity of the parent 
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radionuclide (Ap) and then decreases and follows the decay of the parent. The parent 

and daughter radionuclides are said to be in transient equilibrium when this stage of 

“parallel” decay rates occurs. According to Bateman equation, the activity of the parent 

and the daughter radionuclides is as follows:  

Ap(t) = Ap (0) 𝑒−𝜆𝑝𝑡                             (3-6) 

𝐴𝑑(𝑡) = {[𝐴𝑝 (0) 
𝜆𝑑

𝜆𝑑−𝜆𝑝
 × (𝑒−𝜆𝑝𝑡 − 𝑒−𝜆𝑑𝑡 ) × 𝐵. 𝑅. ]} + Ad (0) 𝑒−𝜆𝑑𝑡   (3-7) 

 

where, λp and λd are the decay constants for parent and daughter radionuclides, 

respectively. In spite of the fact that the activities of both parent and daughter are 

decreasing, the ratio of parent-to-daughter activity remains constant. The ratio of 

daughter-to-parent activity in transient equilibrium (Cherry et al. 2012) is given by: 

Ad/Ap = [tp/(tp-td)]×B.R.                                   (3-8) 

where tp and td are the half-lives of parent and daughter respectively. The time at which 

maximum daughter activity is available is given by: 

 

                               Tmax = [1.44tptd /(tp − td)] ln(tp /td )                           (3-9) 

 

In the case of 99mTc, the activity reaches its maximum after approximately four half-

lives (23 hrs) and as the branching ratio is not equal to 1, the time-activity curve for this 

radionuclide is somewhat lower than that in Figure 3-9. Not all of the parent 99Mo atoms 

decay to 99mTc (Figure 3-10), but only a fraction (B.R. = 0.876) (Cherry et al. 2012). 
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Figure 3-9: Decay and build-up of activity for parent radionuclide with half-life 

of tp and daughter radionuclide with half-life of td respectively, for tp = 10 td 

(Cherry et al. 2012) 

 

 

Figure 3-10: Plot of logarithm of 99Mo and 99mTc activities versus time 

demonstrating transient equilibrium (Saha 2010) 
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3.5.4 The generator eluate 

The 99Mo/99mTc generator normally provides 99mTc eluate on daily basis. The eluate 

should be clear, colourless and contain the radionuclide in the form of a simple salt. 

Typically, the eluate should contain no radionuclide impurities and should be sterile and 

pyrogen free. However, in some cases, 99Mo may be extracted with 99mTc from the 

column during the elution process; thus is called 99Mo breakthrough. The contamination 

of 99Mo is limited by the European Pharmacopeia to 0.1% of the total eluate activity. 

This contamination may be ascribed to imperfections in the generator production or to 

the possible occurrence of some mechanical defects within it (Dantas et al. 2005; 

Momennezhad et al. 2010).  

The existence of 99Mo in the eluate has many disadvantages. For example, it will 

administer an undesirable and unnecessary radiation dose to patients. This high dose is 

due to the beta particle emission and higher energies of the emitted γ-photons. 

Moreover, the occurrence of the 99Mo within the eluate has a detrimental effect on 

radionuclide image quality and on the 99mTc spectrum. This is generally the case for any 

impurity possessing a gamma energy higher than that of the main radionuclide (Dantas 

et al. 2005; Momennezhad et al. 2010).  

Therefore, performing quality control is vital in order to ensure the radionuclide purity 

of the eluate. Vials with excessive 99Mo contamination must be discarded 

(Momennezhad et al. 2010). 

3.6 The production of radionuclidic impurities   

 

The purity requirements of a radionuclide product are specified by its eventual use. If 

the radionuclide is intended to be used for industrial applications, the requirements 

would not be very strict. On the other hand, when a radio-labelled product is prepared 

for use in the human body, high standards of purity have to be maintained 

(Shivarudrappa and Vimalnath 2005). 

To produce the main radionuclide with a high radionuclidic purity, is necessary  to 

reduce radiocontaminants. Radionuclidic and other impurities (such as radiochemical 

impurities) may be reduced by proper choice of post irradiation radiochemical and 

purification methods, using techniques such as dissolution, precipitation, distillation, 
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solvent extraction, ion-exchange chromatography, electrochemical oxidation reduction, 

etc. The impurity limitations of the desired radionuclide for use in nuclear medicine 

applications are very strict.  

 

131I is an important radionuclide that is used extensively in the diagnosis and treatment 

of thyroid disorders, including thyroid cancer. 131I is produced by neutron irradiation of 

natural tellurium metal in a nuclear reactor (see chapter 6). 131I is produced by neutron 

activation of the natural 130Te isotope. Activation of other Te isotopes, such as 126Te 

and 128Te, would result in the formation of the stable 127I and long-lived 129I 

(t1/2=1.57×107 years) isotopes. The presence of iodine impurities in 131I produced and 

would result in post manufacture handling and safe disposal problems (Shivarudrappa 

and Vimalnath 2005).  

Another example of radioactive impurities in the main radionuclide is the formation of 

145Sm, 151Sm, 153Sm  and 155Sm radioisotopes along with the production of 153Sm. The 

radioisotope 153Sm is used in nuclear medicine applications for palliative treatment of 

bone pain in metastatic bone cancer patients. 153Sm is usually produced by irradiation 

of a natural or enriched Sm2O3 target in a reactor. Natural Sm2O3 consists of several 

isotopes of Sm, which result in the formation of the previously mentioned 

radiocontaminants along with the production of 153Sm. The radioactive decay of 155Sm 

eventually leads to the formation of 155Eu radionuclidic impurity (Shivarudrappa and 

Vimalnath 2005).  

Waiting a suitable time after irradiation for short-lived impurities to decay can be one 

way to reduce the radioactive contamination, but using an appropriate high purity target 

for the production of radionuclides of interest is the usual practice (Shivarudrappa and 

Vimalnath 2005). However, it is not always possible to eliminate radionuclidic 

impurities even with the highest isotopic enrichment and the most precise particle 

energy selection. In such cases, all that can be done is to choose an irradiation energy 

with which the production of the radioactive contaminant is near a minimum. An 

example of this is the production of 124I impurity along with 123I as a main radionuclide 

(Schlyer et al. 2009).  

Examples of competing reactions that produce impurities along with the desired 

radionuclides are shown in Table 3-3. 
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Table 3-3: Desired radionuclides and impurities produced by competing 

reactions (Mahmood and Jones 2002) 

Product 

radionuclide, 

half-life 

Nuclear 

reaction 

Competing reactions 

for impurities 

Impurity 

half-life 

48V, 16 d 48Ti(p, n) 49Ti(p, n)49V 337 d 

 47Ti(d, n) 48Ti(d, n)49V 337 d 

55Fe, 2.73 y 55Mn(p,n) 55Mn(p,pn) 54Mn 312 d 

55Co, 17.5 h 56Fe(p,2n) 56Fe(p,n)56Co 77.3 d 

62Zn, 9.2 h 63Cu(p,2n) 65Cu(p,n)65Zn 244 d 

  65Cu(p,pn)64Cu 12.7 h 

123I, 13 h 124Te(p,2n) 124Te(p,n)124I 4.2 d 

89Zr, 3 d 89Y(p,n) 89Y(p,2n) 88Zr 83 d 

3.7 Radiopharmaceuticals 

A radiopharmaceutical is a combination of a pharmaceutical with a suitable 

radionuclide produced in a particular way. In order for a radiotracer 

(radiopharmaceutical) to be ideal and safe for use in humans, it must satisfy quality 

standards that include the following (Hendee et al. 2005; Thrall et al. 2001; Ruth 2009): 

- Readily available at a low cost. 

- A pure gamma emitter for diagnostic applications, that is no α and β emissions 

as such particles contribute radiation dose to the patient while not giving any 

diagnostic information. However, beta-emitting radionuclides are appropriate 

for therapeutic purposes. 

- Have a short effective half-life so that it is eliminated from the body as quickly 

as possible. However, it should be long enough to allow the investigation to be 

performed. 

- Have a high target to non-target ratio so that the resulting image has a high 

contrast, while the background does not blur the image. 
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- Possess proper metabolic activity in that it follows or is trapped by the 

metabolic process of interest. 

- Have chemical stability in vitro for storage before use and in vivo so that the 

radionuclide is not dissociated from the pharmaceutical once it is inside the 

human body.  

- Should be sterile and free from micro-organisms (pyrogens) that can cause 

fevers. 

The safety of radiopharmaceuticals is also determined by the following criteria (Cherry 

et al. 2012): 

- Radionuclidic purity, which is the fraction of the total radioactivity in a sample that 

is in the form of the specified radionuclide. As mentioned earlier, radionuclidic 

contaminants arise in the production of radionuclides and can be significant in some 

situations. They may increase the radiation dose to the patient or increase the 

detector dead time, and thus they may result in incorrect counting rate or pixel 

intensities in images. Of concern in radionuclide generator systems is 

contamination with the long-lived parent radionuclides, such as the existence of  

99Mo in 99mTc eluate. 

 

- Radiochemical purity, which is the fraction of the radioactivity in the sample that 

is present in the required chemical form. Radiochemical impurities usually arise 

from competing chemical reactions in the radiolabelling process or from 

decomposition of the sample. Radiochemical impurities are problematic as they 

reduce the efficacy of diagnostic investigations. The distribution of such impurities 

in the body generally differs from that of the main radiopharmaceutical and thus 

adds a background to the image.  

 

The time course of the radiopharmaceutical in the body must also be considered. Some 

radiopharmaceuticals have rapid uptake (by the target organ) and clearance (from the 

body), whereas others circulate in blood with only slow uptake. The rate of clearance 

of the radiopharmaceutical is characterised by the biological half-life (tb). This has 

nothing to do with radioactivity, but it reflects the time taken for half of the 

radiopharmaceutical to be excreted by an organ or the body. The biological half-life, 
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together with the physical half-life (t1/2)of the radionuclide, determine a  quantity called 

the effective half-life (te), this is the time required for one-half of the initial radioactivity 

to disappear from an organ or the whole body both by excretion and by physical decay. 

The effective half-life is always shorter than either the physical or the biological half-

life and is calculated using the formula (Cherry et al. 2012; Powsner et al. 2013): 

1

𝑡𝑒
=

1

𝑡𝑏
+

1

𝑡1/2
 

3.8 Labelling Strategies 

 

The use of compounds labelled with radionuclides has grown considerably in medical, 

biochemical and related fields due to very active research in radiochemistry and 

radiopharmaceutical preparation. There are two distinct techniques for labelling small 

molecules with radionuclides. In direct substitution, a stable atom in the molecule is 

replaced with a radioactive atom of the same element. The compound has exactly the 

same biological characteristics as the unlabelled compound. This gives the opportunity 

for many compounds of biological relevance to be labelled and studied in vivo utilising 

radioactive isotopes of elements that are widely found in nature (e.g. carbon, hydrogen, 

nitrogen and oxygen). An example is replacing a 12C atom in glucose with a 11C atom 

to create 11C-glucose. This radiopharmaceutical will distribute and metabolise in the 

body exactly in the same way as unlabelled glucose (Cherry et al. 2012). 

The second approach is to create analogues. This involves modifying the original 

compound to simplify the analysis of a biologic system. Analogues allow the use of 

radioactive isotopes of elements (e.g. fluorine and iodine) that are not so widely 

available in nature but that otherwise have beneficial imaging characteristics. 

Analogues also allow chemists to beneficially modify the biological characteristics of a 

molecule by changing the rates of uptake, clearance or metabolism. For example, 

replacing the hydroxyl (OH) group on the second carbon in glucose with 18F (t1/2≈110 

min) results in FDG, an analogue of glucose. This has the advantage of putting a longer-

lived radioactive tag onto glucose compared with 11C (t1/2≈20 min). Of even greater 

importance is the fact that FDG undergoes only the first step in the metabolic pathway 

for glucose, thus making data analysis much more straightforward. FDG is now a widely 

used radiopharmaceutical for measuring glucose metabolism. The disadvantage of 
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analogues is that they behave differently from the original compounds, and these 

differences need to be carefully understood if the analogue is used to provide a measure 

of the biological function of the native molecule (Cherry et al. 2012). 

 An alternative way to label materials (that is possible only for larger biomolecules) is 

to keep the radioactive label away from the biologically active site of the molecule. 

Thus large molecules (e.g. antibodies, peptides and proteins) may be labelled with many 

different radionuclides, with minimal effect on their biological properties (Cherry et al. 

2012). 
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4.1 Introduction 

High-purity germanium (HPGe) detectors are important instruments in high-resolution 

gamma spectroscopy and they are one of the most widely used tools in radiation 

detection research .Applications of gamma-ray spectroscopy rely on the stability of the 

efficiency of detectors over the duration of the experiment.  

This chapter describes the construction, operation and characterisation of a 

semiconductor detector based on a HPGe crystal with particular emphasis on the 

absolute detection efficiency as a function of energy. The detection efficiency is 

regarded as one of the most important properties of any radiation measurement 

instrument. High detection efficiency is desirable to give the greatest possible count rate 

for a given amount of radioactivity. 

4.2 Construction and operation a HPGe detector 

The operational principle of a HPGe detector is a reverse-biased semiconductor diode 

(Figure 4-1). When the incoming radiation interacts with the semiconductor crystal, it 

generates electron-hole pairs. The released charges are collected by electrodes at the 

surface of the crystal. The number of electron-hole pairs created, and hence the 

magnitude of the output charge pulse, is proportional to the amount of energy deposited 

in the detector by the radiation (Sandi 2013).  

 

Figure 4-1: Representation of a reverse-biased semiconductor diode (Sandi 

2013) 

 

HPGe detectors are made of either N-type or P-type material, often in the form of a 

hollow cylinder (coaxial configuration). The type of material determines how the 

contacts are applied (Figure 4-2). For N-type material, a thick lithium contact is placed 
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on the inside surface (the N+ contact) and a thin, ion-implanted contact (the P+ contact) 

is placed on the outer surface. For P-type material, the contacts are reversed (Twomey 

2003; Sandi 2013). 

 

Figure 4-2: Coaxial N-type and P-type HPGe detector with the corresponding 

electrodes (Knoll 2010) 

 

HPGe detectors have excellent energy resolution, which is attributed to the small value 

of the forbidden energy gap (0.7 eV). Thus HPGe detectors are highly desirable for 

detecting and identifying complex gamma ray spectra that include many photopeaks. 

This good resolution gives HPGe detectors a superior ability to identify discrete peaks 

of weak radioactive sources that may be superimposed on the noise of the spectral 

continuum. Such peaks would remain unresolved with a scintillation detector ( 

Figure 4-3) (Knoll 2010).  

The energy resolution is related to the temperature of the material. The resolution 

deteriorates if the temperature of the HPGe detector is high. This results in a decreased 

forbidden energy gap and a corresponding increased thermal noise and leakage current 

(Sandi 2013). 

At sufficiently low temperature (usually that of liquid nitrogen), the thermal generation 

of intrinsic carriers (electrons and holes) in the germanium crystal becomes negligible, 

the forbidden energy gap is optimised and the leakage current decreases to the low value 

that is required for superior performance. Given that, it is crucial to keep the germanium 

crystal cooled at liquid nitrogen temperature, although alternatives using electrical 

cooling systems are also commercially available (Sandi 2013). 
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Figure 4-3: Energy resolution difference between HPGe detector and NaI (T1) 

detector (Nelson et al. 2009) 

 

The germanium crystal is encased in a vacuum-tight cryostat (Figure 4-4) to reduce 

thermal conduction between the crystal and the surroundings and to decrease the 

possible contamination of internal components due to impurity gases. The cryostat is 

typically mounted on a liquid nitrogen Dewar vessel, in which the cryostat is cooled by 

thermal conductivity through a thermal finger in contact with the liquid nitrogen (Sandi 

2013; Byun 2017). 
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Figure 4-4: Coupling between cryostat, thermal finger and liquid nitrogen (Sandi 

2013) 

All the cryostat materials around the detector should be made of low Z materials to 

reduce the probability of photon scatter. Thus materials such as magnesium, beryllium 

and Teflon are used whenever possible (Byun 2017). 

4.3 HPGe detector at the University Hospital of Wales 

In this thesis, a special type of HPGe detector named LO-AX was used because of its 

availability. It was provided by ORTEC (Wokingham, England). ORTEC HPGe 

detectors have different names depending on the type of material used. The ORTEC 

name for a detector based on P-type material is GEM, whereas that for a detector based 

on N-type material is GMX. Very short N-type coaxial detectors are named LO-AX.  

 

Figure 4-5 illustrates the two N-type detectors: LO-AX and GMX (Twomey 2003). P-

type detectors (GEM) are most commonly used in counting laboratories. However, N-

type coaxial (GMX) and LO-AX detectors work better at low photon energies because 

the efficiency is greater due to a thin electrode contact. They have slightly worse energy 

resolution at higher energies than GEM detectors (Twomey 2003). 

Thermal 
finger 
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In this study, a LO-AX detector with model number 70495/30-S and serial number 35-

N30961B was used (Figure 4-6). Its  germanium crystal had a diameter of 70.6 mm and 

a height of 29.5 mm. The detector had a thin entrance window made of beryllium with 

a thickness of 0.5mm. It was covered with two plastic caps: the original cap supplied 

by the manufacturer and another made by the workshop of the University Hospital of 

Wales to improve detector protection.  

The LO-AX detector was surrounded by lead shield with a thickness of about 10 cm. 

An additional 0.1 cm thick shield of copper, covering the detector inside the lead shield, 

was added to reduce the intensity of the characteristic x-rays produced by the lead 

shield. 

During the course of this study, the LO-AX detector was broken for the period April- 

June 2017. The liquid nitrogen had been allowed to evaporate and so the detector came 

to room temperature. This resulted in a loss of vacuum and a high leakage current. All 

the experimental work descried in this thesis was done with the detector after repair. 

 

 

Figure 4-5:  Typical ORTEC N-type HPGe crystal geometries: GMX (left) and 

LO-AX (right) (Twomey 2003) 
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Figure 4-6: HPGe detector at University Hospital of Wales showing the 

Dewar and shielding 

4.4 Electronic components of the LO-AX HPGe detector  

4.4.1 Preamplifier 

 

Inside the cryostat, almost touching the detector, there was a charge-sensitive 

preamplifier (model 237N by Ortec). A low value capacitor was put just at the output 

of the detector in order to reduce the noise. This device resists very low temperatures 

without creating noise or deforming the signal. Thus, the system is able to maintain 

proportionality between the total collected charge in the detector and the output voltage 

(Sandi 2013). 
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4.4.2 Amplifier  

 

The amplifier used with the detector was a Nuclear Instrumentation Module (NIM) 

model 2022 provided by Canberra (Farnborough, England). This has a 6-step shaping 

time selector (0.5, 1, 2, 4, 8 and 12 μs), a 6-step coarse gain selector (with factors of 10, 

30, 100, 300, 1 k, 300 k) and a continuous fine gain selector (with factors from 0.3-1.3). 

4.4.3 HV supply  

 

The high voltage bias was provided by a Canberra NIM model 3106D, which is 

designed for semiconductor detector operation. It is particularly well suited for use with 

high resolution detector systems. The 3106D device accommodates all types of 

detectors requiring up to 6 kV bias voltage and up to 300 μA current.  The output voltage 

is adjustable from ±30 V dc to ±6000 V dc. For detectors requiring a low voltage, a 

secondary output is available with a range of ±3 V to ±600 V. A three-digit volt meter 

measures and displays the output voltage with a resolution of 10 V on the normal output 

and 1 V on the secondary output. The Model 3106D has the ability to withstand any 

overload or short circuit condition for an indefinite period of time. For remote shut 

down, an inhibit input is available. The unit can be programmed by an internal jumper 

either to restart normal operation after fault removal or to require a manual reset 

(Canberra 2007).A high voltage of 4000 V was used in this work. 

4.4.4 MCA 

The ADC was a Canberra model 8701. This is a 100 MHz Wilkinson type ADC, 

designed to offer 8192 channels of resolution. It provides front panel, multi-turn, 

screwdriver adjustable potentiometers for the control of the low level discriminator, the 

high level discriminator, as well as the ADC zero. Its excellent linearity improves peak 

shape and resolution, thus improving the overall performance of the spectroscopy 

system. Gain, range and digital offset controls allow optimal use of limited MCA 

memory by choosing only a specific energy range of interest (Canberra 1997). 

On the MCA, an energy range of 0-2 MeV and 4096 channels were used for the pulse 

height spectra acquired in this work. 

https://en.wikipedia.org/wiki/Farnborough,_Hampshire
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4.5 Energy calibration 

Energy calibration is used to derive a linear relationship between the amount of energy 

transferred to the detector E (keV) and the MCA channel number x. The calibration 

equation can be expressed as follows: 

                             E = m x + c                           (4-1) 

where m is the gradient (keV/channel) and c is the intercept of the straight line.   

Energy calibration is normally performed before measurement, and it allows the 

gamma-ray spectrum to be interpreted in terms of energy rather than channel number 

or voltage (pulse height).  

The electronic modules of a HPGe detector are not absolutely stable under all conditions 

due to temperature variations, and hence a slight drift of m and c values occurs with 

time. Therefore, frequent energy calibration is required. Energy calibration of the         

Lo-AX detector was performed on each day of use. 

4.5.1 Method 

Three standard energy calibration sources were used. These were 133Ba (81 keV, 276 

keV, 302 keV, 356 keV, 384 keV), 137Cs (662 keV) and 60Co (1173 and 1332 keV). 

These sources were placed together at a distance of 8 cm from the HPGe detector in 

order to give a suitable dead time loss.  

A spectrum was acquired for a time of 1200 s, which gave at least 10,000 counts in the 

centroid channel of five of the gamma photopeaks. A high count reduces the fractional 

error (coefficient of variation) associated with the measurement, resulting in a smaller 

percentage uncertainty. The coefficient of variation is defined as:  

 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 (𝐶𝑜𝑉) (%) =
𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

𝒕𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒄𝒐𝒓𝒅𝒆𝒅 𝒄𝒐𝒖𝒏𝒕𝒔
 100%               (4-1) 

 

Thus, if the total number of counts recorded is 10,000, the 𝐶𝑜𝑉 will be reduced to just 

1%.  
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4.5.2 Results 

The relationship between energy and MCA channel number is essentially linear and a 

typical graph for the HPGe detector with all eight gamma photopeaks and a best-fit 

straight line drawn through the data points is shown in Figure 4-7. This line can be used 

to determine the energy of photons that are responsible for unknown photopeaks in the 

spectrum, such as those due to radionuclidic impurities in medical radionuclides. 

 

 

Figure 4-7: Typical energy calibration for the HPGe detector using three sources 

of known gamma energies 

4.6 Back ground spectrum 

All radiation detectors produce a background signal, the magnitude and variability of 

which depends on the size and type of the detector and the extent of the shielding around 

it. Various sources of natural radiation contribute to the background; these include 

(Elessawi 2010): 

- Natural radioactivity (e.g radionuclides of potassium and thorium) in the 

component materials of the detector 

 

- Natural radioactivity in the shielding, which is placed around the detector 

to minimise the background radiation from terrestrial radiation and cosmic 

rays.  
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- Natural radioactivity in the walls of the room in which the detector is located 

and other structures within that room 

 

- Natural radioactivity in ambient air. The important sources are radon 

(222Rn) and thoron (220Rn) because of the presence of the radioactive gases. 

 

The background spectrum for the HPGe detector in this study was acquired (Figure 4-8) 

using a vial of tap water under standard conditions (Schott vial and a volume of 4 ml). 

The acquisition live time was 1 hour. The gamma peak at 511 keV is the annihilation 

radiation peak. The net count of this peak is 34. 

 

Figure 4-8: Background spectrum for the HPGe detector with an 

acquisition live time of 1 hour 

4.7 Peak area and count rate calculation 

Analysis of the recorded spectra to find photopeaks was done using the automatic peak-

search routine implemented in the CANBERRA Genie-2000 software package. All 

peaks that exceeded a user defined sensitivity threshold were regarded as true gamma 

photopeaks. The sensitivity threshold is the number of standard deviations above 
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background that a feature must have for it to be regarded as a real peak. In this work, 

the threshold was set at 3. This meant that and if the average background in a special 

region was 10 000 counts, any feature with a magnitude less than 300 counts would be 

ignored. In this way, statistical fluctuations of the background continuum were rejected 

from the list of identified peaks. 

A Gaussian curve was fitted to each identified photopeak using a non-linear least-

squares method. The gross peak area was determined and the background continuum 

under the peak was automatically subtracted to give the net area (net counts). The net 

counts were divided by the live time to give the net count rate (NCR). The NCR was 

corrected to the beginning of the measurement period to account for decay of the 

radionuclide during counting; this was done using the following equation: 

                                            𝑁𝐶𝑅0 =  
𝜆𝐶

   (1−𝑒−𝜆𝑡) 
                                        (4-2) 

where NCRο is the count rate at the beginning of the measurement, C is the net counts 

accumulated in the photopeak, λ is the decay constant and t is the acquisition live time 

(Nir-El 2013). 

4.8 HPGe detector stability 

For a detection system to be stable, the count-rate for a given radionuclide source should 

not vary with time of the measurement after correction for radioactive decay. A 137Cs 

sealed source in the Medical Physics Department at the University Hospital of Wales 

was used in investigate the count-rate stability of HPGe detector. 

4.8.1 Method 

The source was used over two periods of time (before and after detector repair) from 

2016 to 2018 to check the stability of HPGe detector. Before detector repair, 

measurements were made between November 2016 and March 2017, while after repair, 

the stability was checked from June 2017 to October 2018.  

The source was placed at the centre of the detector cap. Spectra were acquired with a 

live time of 300 s on each occasion. Count-rates were determined for the photopeak 

using the automatic peak area facility and net count rates were corrected for radioactive 
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decay to the time of first measurement before repair. Linear regression analysis was 

used to investigate the variation of corrected count-rate with time. 

4.8.2 Results  

Figure 4-9 shows the variation of decay corrected net count-rate with time expressed as 

number of weeks. The blue regression line shows the HPGe stability before repair, 

whereas the red regression line shows the HPGe stability after repair. 

 

Figure 4-9: Stability of 137Cs source count-rate for HPGe detector over two 

periods of time 

4.8.3 Conclusion  

Linear regression analysis of the relationship between net count-rate and time showed 

that the detector was stable (P>0.05) before and after repair. However before repair the 

count-rate shows an increasing trend with time. Furthermore,  the sensitivity (count-rate 

per unit activity) of the detector increased following repair.  

4.9 HPGe detection efficiency 

Calculating HPGe detector efficiency is very important in this study in order to quantify 

the activity of the radionuclidic impurities (using equation (2-17)) that are produced 

along with the desired radionuclides. 
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4.9.1 Method 

A set of seven gamma sources (Table 4-1) was used to estimate the absolute efficiency 

of the HPGe detector. Some of these sources were prepared ‘in house’ (125I, 99mTc, 123I, 

131I and 137Cs) while the 54Mn and 65Zn sources were bought from a specialist supplier 

(Eckert & Ziegler Isotope Products, California). Each of these sources was separately 

prepared as an aqueous solution in a Schott vial with a volume of 4 ml adopted as a 

standard. One sample was prepared for each source, except 131I for which two samples 

were prepared as a precaution. The in house sources were prepared from diluted stock 

solutions and their activities were determined using the Fidelis secondary standard 

calibrator, while the 54Mn and 65Zn sources were undiluted and their activities were 

calculated according to the data sheets provided with them.  

 

Table 4-1: Gamma sources used to estimate the absolute efficiency of HPGe 

detector 

 

Gamma source Energy (keV) 

125I  35 

99mTc 140 

123I  159 

131I 80, 284 and 364 

137Cs  662 

54Mn 834 

65Zn 511 and 1115 

 

The activity of these samples ranged from 0.9 kBq to 12 kBq, which gave an acceptable 

dead time (less than 3%).  

Each gamma source was individually positioned at the centre of the detector and a 

spectrum was acquired. This step was repeated 10 times for each radionuclide (except 

131I, for 25 experiments were done). At least 10,000 counts were acquired within each 

photopeak in the spectra of the efficiency calibration sources.  

The stability of HPGe detector was tested for each photopeak of each source over the 

period of measurement. Linear regression analysis was used to investigate the variation 
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of sensitivity (NCR/activity) with time after correction for radioactive decay. In 

addition, the half-lives of some radionuclides were determined by plotting the logarithm 

of the count-rate against time over the period of the experiment without correction for 

radioactive decay. 

Finally, the HPGe detector efficiency was calculated according to equation (2-17) using 

the mean net count-rate (after correction for both radioactive decay during counting 

time and decay over the 10 measurements). 

4.9.2 Results 

Figure 4-10 to Figure 4-22 show the sensitivity of the HPGe detector versus time for 

the seven radionuclides 125I, 131I, 99mTc, 123I, 65Zn, 137Cs and 54Mn respectively, while 

Figure 4-23 and Figure 4-24 demonstrate the determination of the half-lives of 99mTc, 123I 

and 131I. 

A log-log plot was used to describe the variation of efficiency over the entire energy 

range. On this plot, the efficiency data were separated into two regions: low energy and 

high energy. In order to yield a stable mathematical solution free of oscillations, the low 

energy interval was fitted with a quadratic expression and the high energy interval with 

a linear function. The counting efficiency values for the seven sources are summarised 

in Table 4-2. The log-log of efficiency vs. energy is shown in Figure 4-25. 

 

 

 

Figure 4-10: Sensitivity of HPGe detector with elapsed time for 125I 
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Figure 4-11: Sensitivity of HPGe detector with elapsed time for 99mTc 

 

 

Figure 4-12: Sensitivity of HPGe detector with elapsed time for 123I 
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Figure 4-13: Sensitivity of HPGe detector with elapsed time for the 1st vial of 131I 

(81 keV) 

 

Figure 4-14: Sensitivity of HPGe detector with elapsed time for the 1st vial of 131I 

(248 keV) 
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Figure 4-15: Sensitivity of HPGe detector with elapsed time for the 1st vial of 131I 

(364 keV) 

 

 

Figure 4-16: Sensitivity of HPGe detector with elapsed time for the 2nd vial of 131I 

(81 keV) 
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Figure 4-17: Sensitivity of HPGe detector with elapsed time for the 2nd vial of 131I 

(284 keV) 

 

 

 

Figure 4-18: Sensitivity of HPGe detector with elapsed time for the 2nd vial of 131I 

(364 keV) 
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Figure 4-19: Sensitivity of HPGe detector with elapsed time for 137Cs 

 

 

Figure 4-20: Sensitivity of HPGe detector with the elapsed time for 54Mn 
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Figure 4-21: Sensitivity of HPGe detector with elapsed time for 65Zn (511 keV) 

 

 

Figure 4-22: Sensitivity of HPGe detector with elapsed time for 65Zn (1115 keV) 
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Figure 4-23: Half-life determination of 99mTc (6 hrs) and 123I (13 hrs)  

Figure 4-24: Determination of 131I half-life (8.04 d). Figures on the left are for the first 

sample, while those at the right are for the second  sample for the gamma peaks at 81 

keV (top), 284 keV (middle) and 364 keV (bottom) 
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Figure 4-25: HPGe detector efficiency curve with a quadratic fit to the low 

energy region (35.5–284.3 keV) and a linear fit to the high energy region (284.3–

1115 keV) 
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Table 4-2: Mean and Standard deviation (SD) values of efficiency at 10 photon 

energies obtained with 7 gamma sources 

 

Gamma 

Source 

Energy  

(keV) 

Efficiency (%) 

Mean/SD 

Ln 

Energy 

Ln Efficiency 

Mean/SD 

I-125 35.5 9.269 /0.107 3.569 
 

2.227/0.012 
 

I-131* 80.2 11.818/ 0.251 
 

4.384 2.470/0.021 

Tc-99m 140.5 11.892/0.070 

 
 

4.945 2.476/0.006 
 

I-123 159.0 10.019/0.034 

 
 

5.069 2.304/0.003 
 

I-131* 284.3 5.425/0.101 
 

5.650 1.691/0.019 
 

I-131* 364.5 4.720/0.077 

 
 

5.899 1.552/0.016 
 

Zn-65 511.0 2.923/0.035 

 
 

6.236 1.073/0.012 
 

Cs-137 661.6 2.099/0.012 

 
 

6.495 0.741/0.006 
 

Mn-54 834.9 1.903/0.014 
 

6.727 0.643/0.007 
 

Zn-65 1115.6 1.396/0.005 
 

7.017 0.334/0.003 
 

* Values for 131I were obtained as a an average of two samples 

4.9.3 Discussion 

Linear regression analysis of the relationship between HPGe detector sensitivity and 

time indicated good stability (P>0.05) over the period of the experiments for all the 

gamma energies of the seven radionuclides except for the 65Zn gamma photopeak at 

1115 keV. This may be attributed to the mechanism by which the photons interact. 

However, the actual variation was relatively small, given that the corresponding 

percentage coefficient of variation (CoV) for repeated measurements of that gamma 

peak (0.35%) was less than that for the other gamma photopeak (1.20%) of the same 

nuclide (65Zn). 

Determination of the half-life was done only for the short-lived radioactive sources. It 

is difficult to measure the half‐life of a very long‐lived radionuclide as the change in 

disintegration rate may not be noticeable within a reasonable measurement period. To 
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obtain close agreement with the actual half-life, measurements should be repeated over 

a period that is approximately equal to the half-life itself (Billinghurst and Hreczuch 

1976; Loveland et al. 2005). The calculated half-lives of both 99mTc and 131I showed 

good agreement with the reference values. The measured half-life of 123I, however, 

showed a relatively large percentage difference (-17.7%) compared with the actual 

value. This is attributed to the time of the experiment (about 1 hr), which was much less 

than one half-life of this radionuclide (13 hrs). 

 

Figure 4-25 shows that at low photon energies ranging between 35 keV and 80 keV, the 

efficiency increased rapidly due to the photoelectric effect as the dominant mechanism. 

A maximum is reached at about 80 keV. Above that energy value, the detection 

efficiency decreased due to Compton scattering, which is the dominant interaction at 

higher energies.  

The efficiency curve determined in this present study had a similar shape to that 

obtained by Sivers et al. (2014) (Figure 4-26). They used a LO-AX HPGe detector with 

exactly the same model number (70495/30-S). The main difference was that the 

calibration sources were placed directly at the entrance window of the detector, whereas 

in the present study the HPGe detector was covered with two plastic caps for detector 

protection. The presence of these two caps increased the attenuation, which resulted in 

reduced efficiency.  
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Figure 4-26: LO-AX HPGe detector efficiency curve obtained by Sivers et al. 

(2014) (top) and the present study (bottom) 

4.10 Energy resolution 

The ability of the system to distinguish between two gamma rays with a slight difference 

in energy is characterised by the energy resolution R, which is an important aspect of 

gamma ray spectrometry. R is defined as a ratio of the full width at half maximum 

(FWHM) of the photopeak to its gamma photon energy E and it is given by: 

                                                  R =  
FWHM

E
 × 100%                                             (4-3) 

FWHM is the width of the distribution at a level corresponding to half-maximum of the 

peak value and is used as a measure of peak broadening. The energy resolution is 

expressed as a percentage and it is a dimensionless quantity (Cherry et al. 2012). It is 

obvious that the smaller the energy resolution, the better is the ability of the detector to 

distinguish between two photopeaks that are close in energy (Knoll 2010). 
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4.10.1 Method 

The energy resolution of the LO-AX HPGe detector was determined for the seven 

radionuclides. It was measured using the FWHM values acquired using the automatic 

peak area method, as mentioned earlier in section 4.7. 

4.10.2 Results 

The FWHM and energy resolution values for the radionuclides are shown in Table 4-3 

and FWHM is plotted against energy in Figure 4-27. 

Table 4-3: Energy resolution for the seven relevant radionuclides using HPGe 

detecteor 

Energy (keV) 
FWHM (keV) 

Mean/SD 
Resolution (%) 

35.49 1.143/0.008 3.220 

80.18 1.210/0.020 1.509 

140.50 1.216/0.010 0.866 

159.00 1.295/0.005 0.815 

284.30 1.428/0.019 0.502 

364.50 1.505/0.006 0.413 

511.00 2.903/0.019 0.568 

661.60 1.901/0.011 0.287 

834.90 2.141/0.011 0.256 

1115.60 2.467/0.010 0.221 

 

 

 

 

 



Chapter 4:                                                                                                        HPGe characterization 

 
93 

 

 

Figure 4-27: FWHM versus the energy of the seven radionuclides 

4.10.3 Discussion 

 

The HPGe detector shows a linear response to energy in the explored range. However, 

it is clear that the annihilation radiation photopeak at 511 keV has a greater FWHM than 

expected. This is due to the fact that annihilation radiation suffers greater Doppler 

broadening than other gamma radiation (Murray 1967), leading to an increase in the 

width of the photopeak. The difference in FWHM between the 511 keV peak and other 

gamma peaks is more apparent with high resolution detectors. With the 511 keV 

excluded, linear regression equation becomes: 

 y= 0.00124× + 1.0815    (4-4) 

 

The FWHM at 122 keV (57Co) was 0.708 keV and the R2 values increase to 0.998 in 

1995 according to the detector manual provided by the supplier. However, the FWHM 

at this energy given by equation 4-4 is 1.233 keV, which means that the energy 

resolution has deteriorated since that time.  
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4.11 Coincidence summing 

This phenomenon occurs when a radionuclide emits two or more gamma rays 

simultaneously per nuclear disintegration. This may result in simultaneous detection of 

these two gamma rays. Summing between x rays and gamma rays also can occur 

(Cherry et al. 2012). Coincidence summing was the effect of reducing the measured 

count-rate in photopeaks corresponding to the participating gamma rays. 
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5.1 Introduction 

This chapter describes the evaluation of the radionuclidic purity of 99mTc eluates 

obtained from 99Mo/99mTc generators. Most of radiopharmaceuticals used for diagnostic 

imaging in nuclear medicine are labelled with 99mTc with generator eluate as a starting 

point. Quality control of these radiopharmaceuticals is important to get good images 

and to avoid unnecessary radiation dose to the patient.  

5.2 Properties of 99mTc 

Technetium (Tc) is an element that was discovered in 1937 by Perrier and Segrѐ. Tc has 

21 isotopes, all of which are radioactive. They range from 90Tc to 110Tc. Technetium-

110 has the shortest half-life (0.86s), whereas technetium-97 has the longest one (2.6 × 

106 years). However, the isotope that is commonly used in diagnostic nuclear medicine 

is 99mTc (half-life=6 hours), which involves decay by gamma emission to the 99Tc 

ground state (Figure 5-1 and Table 5-1). 99mTc is generated by the radioactive decay of 

its parent radionuclide (molybdenum-99) (Figure 5-2 and Table 5-2) (Kowalsky 2006; 

Zolle 2007; James 2007). 

 
 

 

 

 

 

 

Figure 5-1: Decay scheme of 99mTc (Cherry et al. 2012) 
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Table 5-1: Emissions of 99mTc. y(i) is the yield per disintegration, E(i) is the 

energy of the emission, y(i)×E(i) is the product of the yield and the energy of the 

disintegration and ce are conversion electrons (Cherry et al. 2012) 
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Figure 5-2: Decay scheme for 99Mo (Cherry et al. 2012) 
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Table 5-2: Emissions of 99Mo. y(i) is the yield per disintegration, E(i) is the energy 

of the emission, y(i)×E(i) is the product of the yield and the energy of the 

disintegration and ce are conversion electrons (Cherry et al. 2012) 

 

 

99mTc is used in about 85% of all diagnostic nuclear medicine procedures. About 40 

million of these medical procedures are done worldwide each year; this includes 20 

million in North America (Eckelman 2009). This widespread use is attributed to the 

availability of this radionuclide from generator systems and to its ideal nuclear 

properties, such as short half-life (Pillai 2008; Kowalsky 2006; Zolle 2007). The energy 

of the emitted gamma radiation (140 keV) is high enough to reduce attenuation within 

the body and ideal for detection by a scintillation crystal in a gamma camera, giving 

scintigraphic images with good spatial resolution (Saha 2010). Furthermore, because it 

is produced from a generator, it is readily available for local use (Kowalsky 2006). 

The element technetium has several oxidative states depending on electron loss or gain 

(Sampson 1994; Banerjee et al. 2001; Kowalsky 2006; Zolle 2007). In its eluate, the 

99Mo/99mTc generator produces sodium pertechnetate with technetium its highest 

oxidative state (+7). Technetium may be compounded into a variety of chemical forms. 
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5.3 Clinical applications of 99mTc 

In 1965, Richards and his followers at Brookhaven National Laboratories introduced 

the 99Mo/99mTc  generator for clinical use (Zolle 2007). In the following year, the 

application of 99mTc radiopharmaceuticals for clinical purposes increased significantly.  

Technetium-99m radiopharmaceuticals are used in a wide range of diagnostic 

radionuclidic imaging procedures; these include evaluation of the function of the liver, 

kidney, brain and thyroid. They are also used in cancer imaging, such as the detection 

of neuroendocrine tumours and tumours within the bones and breast tissue (Pillai 2008; 

Willerson et al. 1975; Villanueva-Meyer et al. 1996; Zolle 2007; Saha 2010; Cervera 

2009; Loutsios et al. 2015). Table 5-3 shows some of the technetium 

radiopharmaceuticals used for imaging and functional studies of organs. 

One of the most common applications of 99mTc radiopharmaceuticals is myocardial 

imaging, which has been used on more than 40 million patients since 1991. One brand 

of 99mTc-MIBI (Cardiolite(R)) generated sales of $304 million from January 2007 to 

September 2007, without including costs for physician input and the additional 

treatments that each scan required (Cervera 2009).  

99mTc is a good radiolabel for peptides because the 99mTc chelate does not affect the 

biological activity if it is located properly in the peptide molecule and the 

pharmacokinetics of peptides match the physical half-life of 99mTc very well. Many 

peptides have been studied: somatostatin, VIP/PACAP, bombesin, CCK-B/gastrin, 

neurotensin, alpha-MSH, neuropeptide Y, GnRH/ LHRH, substance P and opioid 

peptides (Eckelman 2009). 

99mTc pharmaceuticals based on coordination complexes with functionalised ligands are 

known as “Tc essentials”. There are various different Tc essentials that are in clinical 

use (Figure 5-3). The optimal chelator should not change the in vivo characteristics of a 

biomolecule and the chelating unit should not affect the biomolecule potency (Zolle 

2007).  
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Figure 5-3: Tc essentials in clinical use (Zolle 2007) 

5.4 Previous studies of the measurement of the radionuclidic purity 

of 99mTc eluates 

There are several early studies in which lithium-drifted germanium(Ge(Li))  detectors 

had been used to evaluate the radionuclidic purity of 99mTc-eluates  (Billinghurst et al. 

1974; Anderson et al. 1974; Billinghurst and Hreczuch 1976; Finck and Mattsson 1976; 

Vinberg and Kristensen 1976; Vlček et al. 1979; Hoffmann et al. 1980; Hammermaier 

et al. 1986). 

More recently, Andrade and Lima (2009) used the molybdenum breakthrough test with 

a radionuclide calibrator to assess the 99Mo content in samples collected from the 1st, 

3rd, 5th, 7th and 9th elutions of 20 generators with nominal 55.5 GBq and 70 GBq 

activities.  

The results of this study showed that none of the measurements exceeded the limit 

recommended by the European Pharmacopoeia, which is 0.1%. However, no 

investigation was done to evaluate the relationship between the specified elutions and 

between the two types of generator. 
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Marengo et al. (1999) used the MBT and a HPGe detector to evaluate the radionuclidic 

purity of 245 generators supplied by seven different manufacturers (Amersham, CIS, 

Mallinckrodt, Medgenix, NeN Du Pont, Sorin Biomedica and Soreq). For more than 50 

generators, the relationship between the purity of 1st and the 2nd elutions was assessed.  

Following the MBT, the same eluates were re-examined after 7-15 days with a HPGe 

detector for a more accurate determination of the radionuclidic purity. 99Mo, 103Ru and 

131I were identified. The activities of 103Ru and 131I were found to be within the European 

Pharmacopoeia limit (5×10-3%). However, it was found that the MBT gave approximate 

results and, in general, overestimated the 99Mo activity. In addition, it was found that 

activity of 99Mo in all eluates was below the European Pharmacopoeia limits and that 

there was no difference between the 1st and the 2nd elutions. 

A few years later, Urbano et al. (2005) also used the MBT and high resolution gamma-

spectrometry with HPGe to determine the radionuclidic purity of 99mTc eluates obtained 

from two different generators delivered weekly each Monday (nominal activity 10.75 

GBq) and Wednesday (nominal activity 17.20 GBq). From each generator, 40 eluates 

were measured directly after generator delivery and after 24 hrs, while 22 eluates were 

measured 72 hrs after generator delivery. The relationship between the purity of the 1st, 

2nd and 3rd elutions of each generator and the relationship between the purity of Monday 

and Wednesday generator elutions was investigated. 

Following the MBT and for a more accurate determination of radionuclidic purity, 1 ml 

of the same eluate was re-analysed using high resolution gamma-spectrometry after 7 

to 10 days to allow for 99mTc to decay. 

It was found that the activity of 99Mo was within the European Pharmacopoeia 

requirements. In general, its activity was very low compared with that of 99mTc. Thus, 

it was concluded that this impurity did not represent an additional dose risk for patients. 

No significant differences of purity were observed amongst the elutions, and between 

Monday and Wednesday generators. 

Mushtaq et al. (2012) also found that there was no difference in 99Mo breakthrough 

between low activity (23 GBq) and high activity (74 GBq) generators. For evaluation 

of the molybdenum content, a HPGe detector was used to analyse eluate samples from 

eight sets of  generators with each activity. The samples were left for a long time for the 
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99mTc to decay to a sufficiently low level to permit the detection of radionuclidic 

impurities. Gamma spectra were then acquired and analysed. 

A HPGe detector was also used by Tomarchio 2012 to determine the radionuclidic 

purity of the first eluate of 99Mo/99mTc generators supplied by two manufacturers. The 

samples were positioned directly on the top of the detector, without any material 

between them and the detector end-cap. Spectra were acquired for the first sample from 

the first manufacturer with a counting live time of 65,500 s after a decay time of 11 

days, whereas the live time for the second sample from the other manufacturer was 

80,000 s with a decay time of 7 days. 

99Mo was the main the radio-contaminant highlighted in the spectrum of eluate from the 

first manufacturer, while the spectrum of the second  manufacturer showed a presence 

of 103Ru as a fission product related to the method of molybdenum production. 

The literature indicates that field radionuclide calibrators were used to measure 99mTc 

activity for the evaluation of percentage radionuclidic impurity in generator eluates. As 

stated earlier (Chapter 2), field radionuclide calibrators do not take account of variables 

that have an impact on the chosen calibration factor; these include the container 

material, the geometry of the container and also the volume of the solution. Thus, the 

work described in this thesis used a secondary standard radionuclide calibrator (Fidelis), 

which has calibration factors for a number of container and volume combinations. 

Furthermore, studies described in the literature evaluated the difference in radionuclidic 

impurity between the 1st, 2nd and 4th eluates, but the other eluates were not investigated. 

Thus in this study, impurity differences were investigated for up to six elutions of the 

same generator. The mathematical relationship between the percentage impurity and the 

eluate number was also determined. 

5.5 Determination of 99Mo contamination in 99mTc eluates 

5.5.1 Generators 

Tekcis 99Mo/99mTc generators (Curium, Portsmouth, England) are supplied to the 

Medical Physics Department at University Hospital of Wales. Figure 5-4 and  
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Figure 5-5 show the external appearance of the generator and a schematic diagram of 

its interior respectively. Two generators are normally delivered each week: one every 

Monday with 99Mo activity of 138 GBq and the other every Wednesday with an activity 

of 104 GBq. The Monday generator is usually eluted once a day over five consecutive 

working days. The Wednesday generator is eluted over three consecutive working days 

with further elutions on Sunday and the next two working days. Sunday elution is 

necessary because the eluate is  used to prepare 99mTc-MAG3 and 99mTc-HMPAO. 

Table 5-4 shows the eluate number for both generators and the corresponding elution 

days.  

 

Table 5-4: Eluate numbers and corresponding elution days 

 

 

 

 

 

 

Eluate 

Number 

Monday 

generator 

Wednesday 

generator 

1 Monday Wednesday 

2 Tuesday Thursday 

3 Wednesday Friday 

4 Thursday Sunday  

5 Friday Monday 

6 / Tuesday 
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Figure 5-4: Tekcis (99Mo/99mTc) generator supplied by Curium to the University 

Hospital of Wales 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-5: Schematic diagram of Tekcis generator: (1) bag of elution solution, (2) 

connection needle, (3) glass chromatography column, (4) silicone stopper, (5) stainless 

steel outlet needle, (6) elution needle, (7) tungsten shielding, (8) lower plastic shell, (9) 

upper plastic shell, (10) safety valve, (11) elution vial and (12) elution container 
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5.5.2 Method 

The radionuclidic purity of 98 99mTc eluates was evaluated, with 50 elutes from Monday 

generators and 48 elutes from Wednesday generators. Eluates from each working day, 

but not Sunday, were used. 

Each sample comprised residual eluate after that day’s radiopharmaceutical kit 

preparation. The volume of residual eluate varied from 0.5 to 13 ml, although it was 

always contained in a standard 15 ml eluate vial. 

The 99mTc activity of most samples was measured on the day following elution as they 

had to be kept in the radiopharmacy for that time for regulatory reasons. The exceptions 

were the Friday eluates, for which activity was measured on the same day. The Fidelis 

radionuclide calibrator was used for this purpose.  

Sample volumes were determined by weighing. For safety reasons, the weight of each 

eluate vial was measured using electronic weighing scales (model NA114, Oertling, 

Bermingham, England) after a few days to allow the 99mTc to decay. Each weighing was 

done five times and the average and standard deviation values calculated. Previously, 

20 empty eluate vials had been weighed once using the same scales and the average 

empty weight determined. The eluate weight was obtained by subtracting the empty vial 

weight from that of the vial with residual eluate. The value of the eluate volume (ml) 

was set to be the same as the weight (g), assuming a density (mass divided by volume) 

of  1 g/ml. 

The samples were then left for a further period of time to allow the 99mTc to decay to a 

sufficiently low value such that photopeaks due to radionuclidic impurities were not 

hidden in the background continuum created by the 99mTc 140 keV radiation in fresh 

radiation samples. This process gave an adequate dead time of less than 3%. The 

gamma-ray spectrum of each eluate vial was acquired using the HPGe detector. Spectra 

were examined to identify photopeaks due to the main radionuclide and possible 

radionuclidic impurities. The latter were identified from various sources including the 

scientific literature and information from the supplier. Details of the gamma emission 

energies and yields per disintegration were obtained from the (ICRP 1983). In this case, 

the main radionuclide was 99mTc and the expected impurities were 99Mo and 103Ru 

(Tomarchio 2012; Currium 2018). 
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The vials were examined separately by placing them in contact with the cap at the centre 

of the detector. The live time was varied depending on the residual volume, the activity 

of 99mTc in the vial and the 99Mo activity. It was set to obtain at least 10,000 counts 

within the three strongest gamma photopeaks of 99Mo (181 keV, 739 keV and 778 keV), 

with a corresponding statistical uncertainty (CoV) of 1% or less. These acquisitions 

gave about 6000 counts in the gamma photopeak of energy 366 keV, which was 

associated with an uncertainty of about 1.3%. Net count rate (NCR) in each gamma 

photopeak was then determined, corrected for decay during counting and the activity of 

99Mo calculated according to equation (2-17). However, the eluate and Schott vials did 

not have the same size and shape and the residual eluate volumes differed between the 

samples. Corrections to both 99mTc and 99Mo activities were made for these two effects. 

5.5.2.1 99mTc activity correction 

The dimensions of the eluate vial were different to those of the Schott vial used as a 

reference container in this work. Furthermore, the volume of the eluate differed from 

the 4 ml used as a reference volume. Thus, corrections had to be made for these different 

conditions. For the vial correction, 4 ml of 99mTc eluate from the same stock solution 

was dispensed into a Schott vial and an eluate vial. The volumes were confirmed by 

weighing. The eluate vial was placed in the eluate vial jig of the Fidelis radionuclide 

calibrator, activity readings were recorded every second for 1 minute (60 readings) and 

mean (SD) values calculated. The same procedure was applied to the Schott vial in the 

Fidelis Schott vial jig. In each case, the time of measurement was recorded. 

 

The activity for the Schott vial was corrected for radioactive decay to the time of the 

eluate vial measurement. The ratio of eluate vial activity reading to Schott vial reading 

was calculated to give the vial correction factor C1. 

 

To correct for the variation in eluate volume, a small volume of eluate was dispensed 

into an eluate vial and its volume increased by the addition of tap water. Again the exact 

volumes were determined by weighing. The initial volume of 99mTc eluate was about 

0.2 ml and the second volume of the solution was about 0.5 ml. Subsequently, 

successive additions of about 0.5 ml were made up to a total volume of about 5 ml. The 

same procedure was repeated with successive additions of 1 ml up to a total volume of 

around 15 ml, giving a total of 21 different volumes. For each volume, activity was 
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measured using the Fidelis eluate jig and the mean (SD) of 60 readings calculated. The 

time of the measurement was also recorded.  

 

The activity reading for each volume was corrected for radioactive decay to the time of 

the first measurement (volume of 0.2 ml). A set of eluate volume correction factors (C2) 

was calculated by dividing the corrected activity at each volume by the activity reading 

at the reference volume of 4 ml. The values of C2 were plotted against volume (ml) and 

a second degree polynomial equation was fitted to the data. 
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5.5.2.2      99Mo net count rate correction 

Similar correction was needed for the values of NCR for 99Mo. For the vial correction, 

the previously prepared Schott and eluate vials with 4 ml of eluate in each were 

separately placed on the HPGe detector. Spectra were acquired for a live time of 77400s 

(dead time was 0.09%) for the Schott vial and 61200s (dead time 0.11%) for the eluate 

vial,. NCR was calculated and the corrected for decay during counting for each of the 

four main gamma photopeaks of 99Mo.  

The Schott vial NCR values were corrected for radioactive decay to time of 

measurement of the eluate vial. Vial correction factors (C3) were then calculated for 

each gamma photopeak by dividing the corrected NCR of the eluate vial by that of the 

Schott vial. 

To obtain the 99Mo NCR eluate volume correction factors, a procedure similar to that 

used for the 99mTc volume correction was used. An eluate vial with a fixed activity of  

99Mo was filled with 21 different volumes. Spectra were acquired using the HPGe 

detector for each volume with a live time of 900 s. The dead time was short (1.34%) for 

the first acquired spectrum. In each case, the NCR calculated, corrected for decay during 

counting and further corrected for radioactive decay to the time of acquisition of the 

first spectrum.  

For each photopeak a set of 99Mo NCR volume correction factors C4 was obtained by 

dividing the corrected NCR at each volume by the corrected NCR at the reference 

volume of 4 ml. The values of C4 were plotted against volume (ml) and a second degree 

polynomial equation was fitted to the data. 

5.5.2.3 Comparison of  99mTc and 99Mo activities measured in the 

radiopharmacy  

For all the individual eluates, the corrected 99mTc and 99Mo activity values measured 

using the Fidelis radionuclide calibrator and the LO-AX HPGe detector respectively 

were further corrected for radioactive decay to the corresponding time of generator 

elution in the radiopharmacy using equation (2-4). 

For both radionuclides, the activity concentration of the residual eluates were expressed 

in MBq/ml. Using information from the radiopharmacy, the activities of the total 
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volume of eluate that would be in the vial at the time of elution were then determined. 

These were compared with the corresponding values obtained in the radiopharmacy 

using the Capintec calibrator.  

5.5.2.4 Comparison of  relative 99Mo activity in eluates 

For each eluate sample, the 99Mo activity was expressed as a percentage of the 99mTc 

activity at the time of generator elution. Comparisons between eluates from the Monday 

generators and Wednesday generators and between successive eluates of each generator 

were made using the t-test. In addition, the relative 99Mo activity was plotted against 

eluate number for each generator and the data analysed by logarithmic regression. 

5.5.3       Results  

 

5.5.3.1    99mTc activity correction 

The value of the vial correction factor C1 obtained in the Fidelis calibrator was 0.999. 

The values of the volume correction factor C2 obtained with a Schott vial are shown in  

Table 5-5 and plotted against volume in Figure 5-7. Also shown in the figure is the 

quadratic regression equation.  
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Table 5-5: Volume correction factors C2 obtained with a Schott vial in the Fidelis 

calibrator 

Volume (ml) Volume correction factor C2 

0.2257 1.012 

0.5389 1.012 

1.0503 1.011 

1.5607 1.008 

2.0687 1.007 

2.5714 1.001 

3.0799 1.003 

3.5972 1.001 

4.0049 1.000 

4.5194 0.998 

5.0280 0.997 

6.0338 0.994 

7.0504 0.993 

8.0651 0.991 

9.0766 0.990 

10.0911 0.989 

11.0094 0.987 

12.0301 0.989 

13.0388 0.984 

14.0555 0.985 

15.0755 0.982 
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Figure 5-7: Volume correction factor (C2) versus volume of 99mTc 

5.5.3.2        99Mo net count rate correction 

99Mo NCR vial correction factors (C3) obtained with the HPGe detector are shown in 

Table 5-6 for the four main photopeaks. 

The values of the volume correction factor C4 obtained with a Schott vial for these 

photopeaks are shown in Table 5-7 and plotted against volume in Figure 5-8. The 

corresponding regression equations and R-squared values are shown in Table 5-8. 

 

Table 5-6: 99Mo NCR vial correction factors for four photopeaks 

99Mo gamma peak 

(keV) 

Vial correction factor 

(C3) 

181 0.984 

366 0.962 

739 1.007 

778 0.978 
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Table 5-7: Volume correction factors C4 obtained with a Schott vial on the HPGe 

detector for 99Mo photopeaks 

 

Volume 

(ml) 

Volume 

correction 

factor C4  for 

181 keV 

Volume 

correction 

factor C4 for 

366 keV 

Volume 

correction 

factor C4 for 

739 keV 

Volume 

correction 

factor C4 for 

778 keV 

0.210 1.186 1.276 1.200 1.227 

0.522 1.179 1.190 1.190 1.201 

1.051 1.176 1.251 1.194 1.215 

1.563 1.134 1.176 1.157 1.185 

2.008 1.103 1.138 1.119 1.139 

2.504 1.079 1.148 1.083 1.130 

3.001 1.056 1.050 1.063 1.075 

3.500 1.016 1.046 1.041 1.039 

3.999 1.000 1.000 1.000 1.000 

4.504 0.969 0.994 0.993 0.956 

5.003 0.954 0.882 0.975 0.958 

5.937 0.889 0.887 0.946 0.904 

7.022 0.866 0.853 0.876 0.878 

8.006 0.809 0.832 0.858 0.838 

9.011 0.786 0.783 0.802 0.785 

10.013 0.744 0.761 0.793 0.751 

11.003 0.714 0.745 0.743 0.721 

12.023 0.676 0.659 0.724 0.685 

13.018 0.658 0.666 0.711 0.674 

14.016 0.632 0.645 0.695 0.651 

15.026 0.609 0.601 0.659 0.602 
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Figure 5-8: NCR volume correction factor C4 versus volume for the 181 keV, 366 

keV, 739 keV and 778 keV photopeaks of 99Mo 

 

Table 5-8: Quadratic regression equations and R-squared values for the 

relationship between NCR volume correction factor C4 and volume for the 181 

keV, 366 keV, 739 keV and 778 keV photopeaks of 99Mo 

Energy 

 keV 
Regression equation R2 

181 Y= 0.00132x2 - 0.0605x + 1.218 0.998 

366 Y= 0.00209x2 - 0.0749x + 1.279 0.981 

739 Y= 0.00142x2 - 0.0588x + 1.229 0.996 

778 Y= 0.00165x2 - 0.0673x + 1.259 0.993 
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5.5.3.3 99mTc and 99Mo activities in generator eluates 

Table 5-9 shows the 99mTc activity (MBq) for the Monday and Wednesday generators 

as measured with the Fidelis and the Capintec radionuclide calibrators. 

Table 5-10 shows the 99Mo activity (MBq) for Monday and Wednesday eluates at 

elution time based on the HPGe detector gamma photopeaks at 181 keV, 366 keV, 739 

keV and 778 keV, compared with the Capintec MBT reading, while Table 5-11 shows 

the corresponding values of the 99Mo activity expressed as a percentage of the 99mTc 

activity.  

Table 5-12 shows % 99Mo activity by eluate number for different Monday generators 

whereas Table 5-13 shows same data for different Wednesday generators. The Mo 

activities were the average of those obtained at 366 and 778 keV. 

Table 5-14 and  

Table 5-15 show the t-test P-values for the comparison of % 99Mo activity in different 

eluates of the Monday and Wednesday generators respectively.  

Table 5-16 gives the t-test P-values for the comparison of corresponding eluates of the 

two generators. 

Figure 5-9 show the percentage of 99Mo to 99mTc activity versus the eluate number for 

the Monday and Wednesday generators. Each point on the curve represents the average 

of several measurements of the same eluate number, while the error bars represent 

standard error of the mean (SEM).  
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Table 5-9: Activity (MBq) of 99mTc for Monday and Wednesday eluates corrected 

to 4 ml in a Schott vial and corrected for decay to the time of elution  

No. of 

eluate 

Monday eluates Wednesday eluates 

N 
Fidelis 

Mean (SD) 

Capintec 

Mean (SD) 
N 

Fidelis 

Mean (SD) 

Capintec 

Mean (SD) 

Eluate 1 10 
94291  

(7119) 

98390 

(8916) 
8 

65341 

(6139) 

70688 

 (3386) 

Eluate 2 8 
74756  

(8504) 

78613 

 (970) 
9 

54238 

(5216) 

59611 

 (3143) 

Eluate 3 10 
59295 

 (5759) 

59730 

(4638) 
10 

42124 

(4443) 

44580 

(3674) 

Eluate 4 11 
44585 

 (3545) 

46045 

(3567) 
/ / / 

Eluate 5 11 
33917  

(3858) 

35336 

(4004) 
10 

20496 

(1064) 

21280 

(976) 

Eluate 6 / / / 11 
15951  

(953) 

16552 

(797) 

 

  

Table 5-10: 99Mo activity (MBq) for Monday and Wednesday eluates at elution 

time based on HPGe detector gamma peaks at 181 keV, 366 keV, 739 keV and 

778 keV and the Capintec MBT reading 

 
Monday eluates (n=50) Wednesday eluates (n=48) 

Mean SD Mean SD 

HPGe 181 keV 0.485 0.485 0.305 0.375 

 366 keV 0.562 0.567 0.342 0.417 

 739 keV 0.423 0.419 0.261 0.319 

 778 keV 0.549 0.547 0.335 0.406 

Capintec 
99Mo 

activity 
0.704 0.528 0.491 0.442 
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Table 5-11: 99Mo activity as % of 99mTc activity for Monday and Wednesday 

eluates at elution time based on HPGe detector gamma photopeaks at 181 keV, 

366 keV, 739 keV and 778 keV and the Capintec MBT reading 

 

Monday eluates (n=50) Wednesday eluates (n=48) 

Mean SD Mean SD 

HPGe 181 keV 0.00071 0.00047 0.00066 0.00054 

 366 keV 0.00082 0.00055 0.00074 0.00060 

 739 keV 0.00062 0.00041 0.00056 0.00046 

 778 keV 0.00081 0.00053 0.00072 0.00057 

Capintec MBT 0.00131 0.00183 0.00116 0.00063 

 

Table 5-12: 99Mo Activity as % 99mTc activity for Monday eluates according to 

the eluate number for different generators 

 Eluate Number 

Generator 

number 
1 2 3 4 5 

1 0.00050 0.00039 0.00039 0.00074 0.00048 

2 0.00162 0.00131 0.00104 0.00012 0.00012 

3 0.00029 0.00092 0.000153 0.00057 0.00033 

4 0.00081 0.00066 0.00085 0.00042 0.00029 

5 0.00140 0.00103 0.00067 0.00007 0.00059 

6 0.00092 0.00081 0.00085 0.00106 0.00060 

7 0.00194 0.00103 0.00104 0.00115 0.00021 

8 0.00251 0.00065 0.00065 0.00167 0.00033 

9 0.00100  0.00046 0.00044 0.00063 

10 0.00253  0.00082 0.00079 0.00074 

11    0.00138 0.00073 

Mean 0.00135 0.00085 0.00069 0.00077 0.00046 

SD 0.00079 0.00029 0.00029 0.00051 0.00021 
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Table 5-13: 99Mo Activity as % of 99mTc activity for Wednesday eluates according 

to the eluate number for different generators 

No. 1st 2nd 3rd 5th 6th 

1 0.00151 0.00014 0.00015 0.00034 0.00043 

2 0.00016 0.00019 0.00051 0.00036 0.00027 

3 0.00012 0.00056 0.00118 0.00072 0.00055 

4 0.00131 0.00135 0.00053 0.00031 0.00038 

5 0.00222 0.00086 0.00038 0.00035 0.00030 

6 0.00149 0.00109 0.00074 0.00048 0.00038 

7 0.00152 0.00126 0.00050 0.00066 0.00040 

8 0.00284 0.00209 0.00085 0.00033 0.00027 

9  0.00123 0.00093 0.00042 0.00023 

10   0.00080 0.00064 0.00024 

11     0.00050 

Mean 0.00140 0.00097 0.00066 0.00046 0.00036 

SD 0.00092 0.00062 0.00030 0.00015 0.00011 

 

 

Table 5-14: P-values of comparison between % 99Mo activity in different Monday 

eluates (t-test) 

Eluate 

Number 
1 2  3 4 

2 0.087    

3 0.030 0.263   

4 0.055 0.680 0.690  

5 0.006 0.003 0.048 0.088 
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Table 5-15: P-values of comparison between % 99Mo activity in different 

Wednesday eluates (t-test) 

 

Eluate 

Number 
1 2  3 5 

2 0.280    

3 0.061 0.187   

5 0.025 0.038 0.090  

6 0.016 0.018 0.013 0.092 

 

 

 

 

Table 5-16: P-values of comparison between % activity of 99Mo in corresponding 

Monday and Wednesday eluates (t-test) 

 

Monday eluate 

number 

Wednesday eluate 

number 
P-value 

1 1 0.915 

2 2 0.595 

3 3 0.796 

5 5 1.000 
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Figure 5-9: % 99Mo activity versus eluate number for the Monday and 

Wednesday generators (mean± 1 SEM) 

5.5.4 Discussion 

In this study, the radionuclidic purity of 98 generator eluates was investigated. 99mTc 

activity was measured using a Fidelis secondary standard radionuclide calibrator that is 

used for testing the accuracy of field radionuclide calibrators such as those made by 

Capintec. Sample volume and vial geometry corrections were necessary as the Fidelis 

calibration factors are only available for specific geometries and volumes. It was shown 

that as the sample volume increased, the recorded activity decreased. This was due to 

the fact that the energy deposited within the calibrator ionisation chamber, and, in turn, 

the ionisation  current decreased with volume.  

Compared to the Fidelis calibrator readings, the Capintec field calibrator measurement 

of 99mTc activity gave approximate results and, in general, overestimated the 99mTc 

activity. 
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Similar behaviour was noticed as regards the effect of volume on the 99Mo NCR using 

the LO-AX HPGe detector. It was shown that as a small volume of radioactive solution 

of fixed activity was diluted progressively by the addition of water, the counting rate 

recorded from the sample decreased. 

Only photopeaks associated with the gamma emissions of 99mTc and 99Mo were 

consistently observed in the eluate spectra (e,g. Figure 5-6). In addition to the main 

photopeaks, a number of sum peaks were also seen. The photopeaks and sum peaks are 

are listed in Table 5-17. For the measurement of 99Mo activity, the photopeaks at 

823keV and 960 keV were not used because of their low intensity. 

 

Table 5-17: Photopeaks and sum peaks observed in the eluate spectra 

Gamma 

energy (keV) 
Yield Description 

140 0.889 99mTc photopeak 

181 0.061 99Mo photopeak 

366 0.012 99Mo photopeak 

739 0.122 99Mo photopeak 

778 0.043 99Mo photopeak 

823 0.001 99Mo photopeak 

880 / 
Sum of 140 keV and 739 keV 

photopeaks 

920 / 
Sum of 181 keV and 739 keV 

photopeaks 

960 0.001 99Mo photopeak 

 

Using the HPGe detector, it was found that the greatest 99Mo activity was registered by 

the gamma photopeaks at 366 keV and 778 keV. The difference in activity calculated 

using these two photopeaks was significant (t-test, P<0.01). However, it was only 2% 

and so the values were combined for the comparison of eluates and generators. The 739 

keV photopeak registered the least 99Mo activity with the 181 keV peak giving an 

intermediate value. In turn, the ratio of 99Mo/99mTc activity based on the 366 keV and 
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778 keV peaks gave higher values than those for the other two peaks (181 keV and 739 

keV). These effects are attributed to the existence of sum peaks in the 99Mo spectrum.  

Table 5-17 shows that the 739 keV photons contributed to two sum peaks resulting in 

the greatest decrease in count rate and, in turn, 99Mo activity and activity ratio. On the 

other hand, the 181 keV photons contributed to just one sum peak leading to a smaller 

effect on count rate, activity and activity ratio. No sum peaks were identified involving 

the 366 keV and 778 keV photons. Thus, these photopeaks registered greater 99Mo 

activities than these associated with the 181 and 739 keV photons. 

Given the problem created by sum peaks, the determination of 99Mo activity was based 

on data from the 366 keV and 778 keV peaks of the HPGe detector spectrum.  

99Mo activity obtained using the MBT with the Capintec calibrator gave approximate 

results and, in general, overestimated activity compared with the HPGe detector. This 

observation was similar to that reported in the literature although the differences found 

in this study were smaller by far. However, the activity of 99Mo in all eluates using both 

devices were below the limit set by the European Pharmacopoeia. It is worth noting that 

determining the 99Mo activity using a HPGe detector is much more accurate than using 

the MBT and a Capintec calibrator. In the latter, 99Mo activity was estimated by 

multiplying the reading by a suitable correction factor to account for attenuation of 739–

778 keV photons by the 6 mm lead shielding. Such attenuation correction was not 

needed using the HPGe detector as the elution vial was put directly at the centre of the 

detector and time had been allowed for almost complete decay of 99mTc. 

No significant difference in 99Mo activity was observed between corresponding eluates 

from the two generators (P>0.05, Table 5-16). This agrees with the results of previous 

studies published in the literature.  

In addition, no significant difference (P>0.05) was observed between eluates 1 and 2, 

and eluates 2 and 3 from both generators; between eluates 3 and 4, eluates 4 and 5 and 

1, 2 and 4 from the Monday generator and between eluates 3 and 5, eluates 5 and 6 and 

eluates 1 and 3 from the Wednesday generator (Table 5-14 and  

Table 5-15). However, there was a significant difference (P<0.05) between other 

eluates: (a) eluates 1 with 5 and eluates 2 with 5 from both generators; (b) Monday 

eluates 1 and 3 and eluates 3 and 5 and (c) Wednesday eluates 1 and 6, eluates 2 with 6 

and eluates 3 and 6.  



Chapter 5:                                                                                       Radionuclidic purity of 99mTc eluates 

 
125 

 

Finally, it was found that the activity of 99Mo as a percentage of 99mTc activity decreased 

logarithmically with the eluate number in both generators (Figure 5-9). This may 

happen because the chemical binding of some molybdate ions to the alumina column is 

relatively weak and these ions are preferentially removed with successive elutions. 

Another possibility is that there are some alumina particles that are loosely attached to 

the column and these are removed in the early elutions. This trend has not been reported 

previously.  

5.6 Determination of 103Ru contamination in 99mTc eluates 

5.6.1 Method 

The radio-contaminant 103Ru (497 keV) was identified in a total of 21eluates of both the 

Monday and Wednesday generators. However, this radionuclide was not seen in the 

spectra of samples used to derive 99Mo NCR vial and volume correction factors. Thus, 

the NCR correction factors used for 103Ru were the same as those for the closest gamma 

peak of 99Mo, which was 366 keV. 

5.6.2 Results 

Table 5-18 shows the activity of 103Ru (MBq) and its value as a percentage of 99mTc 

activity for both the Monday and Wednesday generators. Figure 5-10 shows a graph of 

the 103Ru activity as a percentage of 99mTc activity versus the eluate number. Each point 

on the curve represents the average of several readings for the Monday and Wednesday 

eluates combined, while the error bars represent the standard error of the mean. 
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 Table 5-18: Activity of 103Ru (MBq) and its ratio to that of 99mTc for Monday and 

Wednesday generators 

 

 
 

 

 

Figure 5-10: Variation of the ratio of 103Ru activity to that of 99mTc versus eluate number 

combined for the Monday and Wednesday generators combined (mean±1 SEM) 
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(%) 

Mean  

(SD) 

N 

103Ru 

activity 

Mean  

(SD) 

103Ru/99mTc 

(%) 

Mean  

(SD) 

Eluate 1 2 
5.23×10-03 

(3.41×10-03) 

2.91×10-06 

(8.51×10-06) 
3 

7.20×10-03 

5.81×10-03 

1.13×10-05 

(1.02×10-05) 

Eluate 2 1 9.02×10-04 1.00×10-06 1 2.11×10-03 4.00×10-06 

Eluate 3 3 
1.63×10-03 

(1.50×10-03) 

5.03×10-06 

(6.93×10-08) 
1 3.53×10-04 7.69×10-07 

Eluate 4 1 1.99×10-03 4.32×10-06 / 
/ 

/ 

Eluate 5 1 1.97×10-04 5.96×10-07 4 
5.33×10-04 

7.08×10-04 

2.55×10-06 

(3.43×10-06) 

Eluate 6 / / / 4 
1.41×10-04 

5.22×10-05 

8.71×10-07 

(3.69×10-07) 
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5.6.3 Discussion 

The fission product 103Ru was identified in 21 out of 98 eluates for a combination of 

both generators. In all cases it was found that the ratio of 103Ru activity to that of the 

main radionuclide 99mTc was within European Pharmacopoeia limits (5×10-03%). 

However, the 497 keV photopeak had a relatively high statistical uncertainty of 7% as 

a maximum value. 

 

In general, the 103Ru/99mTc activity ratio decreased with the eluate number for the two 

generators. Following the approach for 99Mo (Figure 5-9), the data were analysed by 

logarithmic regression (Figure 5-10). However, it may be that most of the 103Ru is 

removed at the first elution with little or no change in relative activity thereafter. 
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6.1 Introduction 

This chapter describes the evaluation of the radionuclidic purity of radioactive sodium  

iodide solution (123I and 131I). Iodine is one of the halogen group of elements, these are 

fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and astatine (At). In its elemental 

form, iodine appears as a greyish-purple, non-metallic solid. It is not very soluble in 

water. All the non-elemental forms of iodine can be readily converted to I2 by exposure 

to heat and light. Iodine has 24 radioisotopes that are equally distributed on either side 

of one stable isotope, 127I. The radioiodines that are most used in nuclear medicine are 

123I and 131I (Rhodes and Croft 1978).  

Radioactive isotopes of iodine were first used as tracers of thyroid function. Radioiodine 

was first used in 1941 in the Massachusetts General Hospital by Saul Hertz. Since then, 

radioiodine has been successfully used for many thousands of patients to treat 

hyperthyroidism and benign thyroid diseases (McCready 2017). 

Sodium iodide labelled with 123I and 131I is the simplest inorganic pharmaceutical that 

incorporates radioactive iodine. In this chemical form, the two radioisotopes have been 

used for the diagnosis of thyroid dysfunction and the treatment of thyroid cancer for 

over 50 years, based on the ability of the thyroid gland to accumulate iodine. Sodium  

iodide (131I) is also useful in treating hyperthyroidism (Graves’ disease), by utilising 

emitted beta radiation.  

As with other products, the quality control of radiopharmaceuticals labelled with 

radioiodine is important to avoid unnecessary radiation dose to the patient.  

6.2 Properties of 123I 

123I decays 100% via electron capture to 123Te (Figure 6-1 and Table 6-1). It is a useful 

radionuclide for diagnostic applications due to its short half-life of 13.3 h and the fact 

that its principal gamma energy is 159 keV (Chilton and Witcofski 1986; Talboys 

2016). In diagnostic nuclear medicine, this is the gamma radiation that is used as it falls 

within the energy range 80 – 400 keV, which is ideal for detection using a NaI(Tl) 

scintillation crystal.  

However, there are other gamma emissions in the decay scheme. They are generally at 

higher energies than the predominant gamma emission but at a much reduced 
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abundance, about 100-1000 times less than that of the 159 keV. The decay of 123I is also 

characterised by the emissions of K-alpha and K-beta characteristic x-rays at energies 

ranging between 27 and 31 keV.  

 

 

Figure 6-1: Decay scheme for 123I (Cherry et al. 2012) 
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Table 6-1:Emissions of 123I. y(i) is the yield per disintegration, E(i) is the energy 

of the emission, y(i)×E(i) is the product of the yield and the energy of the 

disintegration and ce are conversion electrons (Cherry et al. 2012) 

 

6.3 Clinical applications of 123I 

Iodine is one of the important elements for life, although the total amount in the human 

body (for an adult weighing 70 kg) is just 10–30 mg. It is a chemical element that exists 

as inorganic iodide ions, is ingested by the body via beverages and foods and localises 

mainly in the thyroid gland. The human thyroid gland is a small organ positioned in the 

throat region; its length is < 5cm and it weighs between 15 and 20 g, which is only about 

1/3500 of the body weight of a reference 70 kg adult. The iodide ions are eventually 

utilised  for the formation of thyroid hormones such as thyroxine and triiodothyronine. 

Iodine may also be found in trace amounts in the brain, heart and mammary glands 

(Kaiho 2015). 

As the half-life of iodine-123 is about 13 h, the expiration date of its labelled 

pharmaceuticals is within 48 h of production. In other words, 123I–labelled 

pharmaceuticals are manufactured on a particular day, delivered to hospitals the next 

day and used for clinical applications on the same day. Therefore, manufacturing 

methods should be as simple as possible (Kaiho 2015). 
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There are different types of 123I radiopharmaceuticals that are used for different clinical 

applications (Table 6-2). However, inorganic sodium iodide (Na123I) is the simplest 

type. Na123I is used for the diagnosis of thyroid dysfunction and thyroid tumours. It is 

usually administered orally (as capsules) to patients with activities ranging between 3.7 

and 7.4 MBq, and imaging is normally done 3 to 24 h after administration.  

Table 6-2: 123I radiopharmaceuticals and their clinical applications (Kaiho 2015) 

123I- pharmaceuticals Clinical applications 

Iofetamine 123I Imaging agent (injection) used for the diagnosis of ischamic 

brain diseases 

Ioflupane 123I 

Diagnostic imaging agent (injection) that has a high affinity for 

dopamine transporter (DAT). DAT is a membrane protein that 

is intensely expressed in the substantia nigra of the brain to 

reuptake dopamine released from nigrostriatal dopamine nerve 

terminals 

Betamethyl‐p‐
iodophenylpentadecanoic 

acid (BMIPP) 123I 

Diagnostic imaging agent (injection) for myocardial fatty acid 

metabolism 

Iobenguane 123I 

Diagnosis of heart diseases 

Diagnosis of neuroblastomas 

Diagnosis of pheochromocytomas 

Detection of primary and metastatic pheochromocytomas and 

neuroblastomas 

Cardiac risk evaluation in heart failure patients 

Iomazenil 123I Detection of epilepsy 

 

When Na123I is administered orally to patients, radioactive iodide ions in the stomach 

gradually move into blood and accumulate chiefly in the thyroid gland (target organ). 

Within 24 h of administration, 10–40% of the radioactive iodine is located in the thyroid 

and is synthesised into thyroid hormones (such as thyroxine and triiodothyronine). In 

patients with hyperthyroidism, however, the thyroid uptake of radioactive iodine may 

be greater than 70%. The remaining radioactivity is excreted from the body in urine 

(Kaiho 2015).  

Na123I is also available as an intravenous injection with activity between 3.7 and 14.8 

MBq for an adult patient (70 kg). The lower activity is recommended for thyroid uptake 

studies, while the higher value is recommended for thyroid scintigraphy. However, the 

effective (whole body) dose depends on the uptake in the thyroid gland. Table 6-3, Table 

6-4 and Table 6-5 show absorbed dose to a variety of organs for different thyroid 
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uptakes; six standard organs with the highest absorbed dose marked with * for (ICRP 

1987).  

Table 6-3: Absorbed and effective dose due to 123I at a thyroid uptake of 15% 

 

Table 6-4: Absorbed and effective dose due to 123I at a thyroid uptake of 35% 
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Table 6-5: Absorbed and effective dose due to 123I at a thyroid uptake of 55% 

 

6.4 Production of 123I 

The predominant method of 123I production is the use of a cyclotron. 123I can be 

produced by various nuclear reactions (Nikjou and Sadeghi 2018), but there are two 

main routes. The first is direct reactions, while the second  is an indirect route via the 

decay of 123Xe (Table 6-6) (Schlyer et al. 2009).  

There are two common reactions to produce 123I. The older one is 124Te(p,2n) 123I with 

a solid TeO2  target from which the iodine could be distilled off under an inert gas flow 

at high temperature. This production method gives a relatively high yield of impurity. 

Besides the existence of a small quantity of 125I impurity, it results in contamination 

with the higher energy radioisotope 124I (β+
max: 973.6 keV, annihilation radiation: 511 

keV, gamma radiation: 603, 723, 1690 keV). Moreover, the radioiodine solution that is 

obtained is normally contaminated with traces of tellurium or tellurium oxide (TeO2), 

which might sometimes significantly affect the labelling yield significantly (Eersels et 

al. 2005).  
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Table 6-6: Nuclear reactions to produce 123I (Schlyer et al. 2009) 

 

Nuclear reaction 
Useful particle 

energy range (MeV) 

Natural abundance of 

target material (%) 

122Te(d, n)123I 14–8 2.4 

123Te(p, n)123I 15–8 0.87 

124Te(p, 2n)123I 26–20 4.6 

121Sb(4He, 2n)123I 15–25 57.4 

123Sb(3He, 3n)123I 20–30 42.6 

124Xe(p, pn)123Xe:123I 15–30 0.10 

127I(p, 5n)123Xe:123I 55+ 100 

127I(d, 6n)123Xe:123I 83 100 

 

The current method of 123I production, which results in the least contamination with 

radioactive impurities, is the proton bombardment of highly enriched 124Xe (Figure 6-2). 

The percentage activity of radionuclidic impurities, such as 125I and 121Te, is less than 

0.05% with this technique (Eersels et al. 2005). 

In this method, a target chamber is filled with 124Xe under high pressure and irradiated 

with a beam of protons. After bombardment, the gas is kept in the chambe,r for several 

hours to allow for the radioactive decay of 123Xe to 123I (Eersels et al. 2005). The 

reaction requires an incident proton energy range between 20 and 30 MeV (Synowiecki 

et al. 2018).  

The 123I samples used in this study were produced by this method with a proton beam 

energy of 30 MeV and beam current of 270 µA.  
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 Figure 6-2: Production of 123I from enriched 124Xe (Eersels et al. 2005) 

6.5 Previous studies of the measurement of the radionuclidic purity 

of 123I   

Undesirable contaminant radionuclides associated with the different 123I production 

reactions degrade the resolution of gamma camera images and increase the absorbed 

radiation dose (Goolden et al. 1968; Wellman and Anger 1971; Baker et al. 1976; 

Hughes et al. 1979; Graham and Zielinski 1979; Hušák et al. 1980; Polak et al. 1983; 

Palmer and Rao 1985).  

Each nuclear reaction has its own set of radionuclidic impurities that is produced 

alongside the main radionuclide 123I. However, as mentioned earlier, the 123I used in this 

study was produced using a proton reaction with isotopically enriched 124Xe as a target 

gas. Thus, only studies dealing with this specific reaction will be discussed.  

Several studies investigated this production method without addressing the 

radionuclidic purity of the product. For example, Sumiya and Sciani (2008) produced 

high-purity 123I through the reactions 124Xe(p, 2n)123Cs with decay to 123Xe and 123I, and 

124Xe(p, pn)123Xe with decay to 123I. The target gas was irradiated with protons of 

energy 30 MeV. The target system consisted of a chamber made of copper coated with 

a thin layer of nickel. The cooling system comprised circuits of water and helium. After 

the irradiation, the target was left to cool in order for radioactive to decay to take place.  

Lapolli et al. (2017) also produced ultrapure 123I with the same reaction. An automated 

system was designed for the this purpose; it consisted of a target port, water cooling 

system, helium cooling system, cryogenic system, removal of 123I and cleaning and 
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drying of the irradiation system. In this way, 123I was successfully produced in a short 

time. 

There are other studies in which the radionuclidic purity of 123I has been assayed. 

Firouzbakht et al. (1987) found that the radionuclidic purity of 123I depended on the 

experimental methods to recover it. 123I was produced by the proton irradiation of 

enriched 124Xe (isotopic enrichment of 20% and 40%) with an energy range of 15 to 34 

MeV. Product yield was obtained using two procedures. The first involved the use of 

two different types of target cells, which after several methodological steps, were finally 

rinsed with NaOH. After allowing 123Xe  to decay in the vessel, the cells and the 

solutions were counted with a Ge(Li) detector to evaluate the concentration of 123I  and 

contaminants. In the second  procedure, the xenon gas was removed from the cells after 

half an hour. It was found that the latter procedure gave 123I without contamination (less 

than 0.1%), whereas the first procedure yielded a significant amount of 127Cs and 129Cs 

contaminants. These impurities arose from heavier isotopes of xenon in the 40% 

enriched gas. 

Venikov et al. (1991) identified the level of radioactive contaminants (121Te and 123Te) 

in 123I produced by proton-induced reactions. Again the target material was highly 

enriched 124Xe (>99%). The energy and current of the proton beam were 35 MeV and 

20 μA respectively. The 123I was produced in the Institute of Atomic Energy (IAE), 

Moscow using target technology that involved cryogenic extraction of the product from 

the gas target. In the cryogenic facility, the irradiated xenon was transferred into a decay 

vessel located in a Dewar containing liquid nitrogen. The temperature in this vessel was 

raised to room temperature during the transfer; as 123Xe decayed to 1231, the latter 

radionuclide was absorbed onto the vessel walls. 

The vessel was then cooled for an optimum time of 6.6 hrs. During cooling,  the 

irradiated gas in this vessel was transferred to the initial one using the cryogenic 

technology, while the decay vessel with 1231 on its internal walls was separated 

remotely. The 1231 was thrown off into a container and then transferred to the 

radiochemical laboratory for use in labelling radiopharmaceuticals.  

Product analysis revealed the existence of radionuclidic impurities with extremely low 

content. These impurities were 121Te and 123Te (≤ 10-4%) and 125I (<10-3%).  
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Tárkányi et al. (1991) also determined the activity of 121Te impurity in 123I produced by 

two proton induced reactions in 124Xe: (p, 2n) and (p, pn). The target vessels were 

stainless steel cells filled with 124Xe at  a specific pressure. These cells were irradiated 

in a cyclotron with different proton energies. The contents of the irradiated cells were 

left to decay for about 20 hrs, the cells were connected to a vacuum line and the 

irradiated 124Xe gas was removed cryogenically. The activity of the radioiodine on the 

walls of the cells was determined 15-24 hrs after end of bombardment (EOB) using a 

Ge(Li) detector coupled to an Ortec 4k  MCA. Photopeak analysis was done using 

Maestro II software. The distance between the detector and the gas cell was > 20cm.  

Regarding the purity of the radioiodine solution, it was found that the contaminant 121I 

was not identified in samples irradiated with proton energies ≤ 35 MeV. However, in 

production runs at proton energies 22-30 MeV, 121Te, which is the decay product of 121I, 

was present at an percentage activity of 5×10-05% of 123I and its level increased with 

increasing proton beam energy. 

Venikov et al. (1993) determined the activity of 125I impurity for a proton induced 

nuclear reaction in 124Xe. The initial proton energies were 37, 35.1, 32 and 28.9 MeV. 

The impurity measurement was done at 6.6 hrs after the EOB of highly enriched 124Xe 

(99% with 1% of 126Xe). This contaminant activity was estimated for two processes. In 

the first, the irradiated gas was left in the target vessel to give the maximum activity of 

123I. In the second process, after the EOB, the irradiated gas was pushed to a decay 

vessel and left there for 6.6 hrs again obtain the maximum activity of 123I. The activity 

in the gas capsules was assessed using a Ge(Li) detector. The activity of contaminant 

125I was higher for the second  process than for the first one. For the first process, the 

estimation revealed that for the presence of 1% of 126Xe in the target gas, the 125I 

contaminant activity was <0.005% at the time of maximum activity of 123I.  

Hermanne et al. (2011) showed that 121I (t1/2 =2.12h) is unavoidable contaminant in the 

production of 123I due to the 124Xe(p,α) reaction. In this study 123I was produced by 

proton irradiation of highly enriched 124Xe in dedicated gas target set-ups, and utilising 

the decay chain 123Cs–123Xe–123I. Measurements of 123I were done using HPGe gamma-

ray spectroscopy and gamma photopeaks were evaluated using Canberra GENIE 

analysis software. The activity of contaminant 121Te ,which is a daughter of the short-

lived 121I, was derived for realistic production conditions. It was found that this activity 

of 121Te, depended on  different parameters such as target thickness, irradiation time, 
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123I separation time and time of 123I use after separation (AST). However, no specific 

permissible limits of 121Te contamination are recommended by the European 

Pharmacopoeia. 

Nikjou and Sadeghi (2018) investigated the activities of 122I, 123Xe and 122Xe in 123I. 

Several nuclear reactions were evaluated, one of which was the proton reaction 

124Xe(p,2n)123Cs. The activity of 123I produced via this reaction was theoretically 

calculated and compared with the experimental value. The theoretical percentages of 

the impurities were also estimated. The contaminant values were 122I (t1/2= 3 min) 

0.001%, 123Xe (t1/2= 2 hrs ) 39.77%, 122Xe (t1/2= 20 hrs) 14.65%. The contamination 

activity of both 121I (which decreased with time) and 121Te (which increased with time) 

were presented as functions of AST. A 1% 121I contamination activity decreased to a 

permissible 5×10-4 % at AST=52 h. 

As regards contaminants within the 123I samples investigated in this present study, the 

product leaflet provided by the supplier (GE Healthcare) indicated that the main 

radionuclidic impurities were 125I and 121Te with values less than 0.05% at calibration 

time, exactly the same as the value repeated by Eersels et al. (2005). 

The aim of this portion of the thesis is to investigate the activity of these contaminants 

and to look for other radioactive impurities in 123I.  

6.6 Assessment of the radionuclidic purity of 123I delivered to the 

University Hospital of Wales 

 

6.6.1 Method 

Sodium iodide (123I) was supplied by GE Healthcare to the Medical Physics Department 

at the University Hospital of Wales once each fortnight. The solution was provided in a 

special vial with a volume of 10 ml with a reference activity of 370 MBq. After the 

required volume of solution had been used for clinical purposes, the residual volume (if 

there was some left) was taken for the assessment of radionuclidic impurities. 

The residual volume had to be prepared to the same standards as used for HPGe 

efficiency calibration i.e. contained in a standard vial (Schott vial) with a standard 

volume (4 ml). Dilution was done for one sample as the available residual volume was 
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less than 4 ml and for some of the other samples to avoid a long waiting time for the 

123I to decay until a suitably low dead-time was achieved with the HPGe detector. 

Ten 123I samples were prepared in-house. For each one, an empty Schott vial was 

weighed 5 times using the electronic weighing scales (Oertling NA 114) and 4 ml of 

sodium  iodide (123I) solution was dispensed into the vial using a pipette. The weight of 

the vial was measured again to determine the exact volume dispensed. For the samples 

that required dilution, 2 ml of sodium  iodide (123I) solution was dispensed into a pre-

weighed Schott vial. The vial was weighed again to calculate the solution volume 

accurately and to determine precisely how much tap water needed to be added to the 

vial to make the volume up to 4 ml.  

The 123I activity of the samples prepared under standard conditions was determined 

using the Fidelis secondary standard radionuclide calibrator. No correction was required 

as an appropriate calibration factor corresponding to the standard conditions was 

available. 

Each sample was left to decay for a sufficient time to be measurable in the HPGe 

detector with a reasonable dead time. Vials were put at the centre of the capped detector. 

The live time was set to obtain 10,000 counts within the photopeaks of the main 

impurities, which were 125I and 121Te as mentioned by the supplier in the product leaflet 

(GE Healthcare 2011). Spectra were acquired, contaminants were identified, NCRs (c/s) 

were calculated and corrected for decay during counting. In addition to 125I and 121Te, 

the impurities 96Tc, 126I and 124I were also identified together with trace amounts of 

95mTc (Gilbert 2018).The HPGe detector efficiency at each contaminant gamma energy 

was calculated. From equation 2-17, the activity of the impurities within the sodium  

iodide (123I) solution was determined.  

The activities of both the main radionuclide 123I and the identified impurities were decay 

corrected to the reference time in the product delivery note and the contaminant activity 

expressed as a percentage of 123I activity. The mean and the standard deviation (SD) 

were calculated for the ten samples. 

 

6.6.2 Result 

Figure 6-3 shows a typical spectrum of a sodium  iodide (123I) solution recorded with 

the HPGe detector. The main photopeaks and sum peaks are listed in Table 6-7.  
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Table 6-7: Observed photopeaks and sum peaks in the spectrum of 131I 

Gamma 

energy (keV) 
Yield Description 

≈ 26  0.615 121Te x-ray photopeak 

≈ 27 0.704 123I x-ray photopeak 

35 0.0667 125I radionuclidic impurity photopeak 

159 0.828 123I Main radionuclide photopeak 

186 / 123I sum peak (159 keV and 27 keV x-ray) 

204 0.619 95mTc radionuclidic impurity  photopeak 

470 0.0141 121Te radionuclidic impurity photopeak 

507 0.177 121Te radionuclidic impurity photopeak 

533 / 121Te sum peak (507 keV and 26 keV x-ray) 

573 0.803 121Te radionuclidic impurity photopeak 

599 / 

121Te sum peak (573 keV 121Te and 26 keV x-

ray) 

666 0.331 126I radionuclidic impurity photopeak 

778 0.101 96Tc radionuclidic impurity photopeak 

 

Table 6-8 shows the 125I activity (measured with the HPGe detector) as the percentage 

of the 123I activity (measured with Fidelis calibrator).  

Table 6-9 and Table 6-10 show the corresponding data for 121Te (based on its two 

gamma peaks at 573 keV and 507 keV). The percentage difference between the 

activities derived from these two photopeaks was just 1.05 %. 

Table 6-11, Table 6-12 and Table 6-13 show the activities of 126I, 124I and 96Tc as a 

percentage of 123I activity respectively. Traces of another contaminants (95mTc, 204 

keV) were also seen in some samples. Table 6-14 show the corresponding data for this 

radioactive impurity. 
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Table 6-8: 125I activity as a percentage of 123I activity 

Sample 

no. 

Net Peak 

Area 

NCR 

(cps) 
Corrected 

NCR 

125I 

activity 

(HPGe) 

(MBq) 

123I 

activity 

(Fidelis) 

(MBq) 

% 
125I/123I 

1 84927 34.0 34.0 0.006 35.3 0.0169 

2 122588 81.7 81.7 0.021 155.4 0.0138 

3 80656 80.7 80.7 0.019 156.4 0.0121 

4 119358 91.8 91.8 0.023 155.2 0.0150 

5 155063 77.5 77.5 0.019 157.3 0.0121 

6 91314 60.9 60.9 0.011 77.9 0.0143 

7 78841 52.6 52.6 0.010 80.1 0.0120 

8 78105 65.1 65.1 0.012 77.8 0.0155 

9 91018 75.8 75.9 0.014 77.4 0.0180 

10 81211 62.5 62.5 0.011 77.2 0.0149 

Mean      0.0145 

SD      0.0021 

 

Table 6-9: 121Te activity (based on 573 keV photopeak) as a percentage of 123I 

activity  

Sample 

no. 

Net Peak 

Area 

NCR 

(cps) 

Corrected 

NCR  

121Te 

activity  

(HPGe) 

(MBq)  

123I 

activity 

(Fidelis) 

(MBq)  

%  
121Te 

/123I 

1 62273 24.9 24.9 0.0015 35.3 0.00437 

2 52261 34.8 34.9 0.0090 155.4 0.00577 

3 44653 44.7 44.7 0.0077 156.4 0.00490 

4 45319 34.9 34.9 0.0080 155.2 0.00513 

5 80036 40.0 40.0 0.0080 157.3 0.00511 

6 83717 55.8 55.8 0.0040 77.9 0.00518 

7 108595 72.4 72.4 0.0052 80.1 0.00654 

8 68756 57.3 57.3 0.0043 77.8 0.00554 

9 63837 53.2 53.2 0.0038 77.4 0.00497 

10 77148 59.3 59.4 0.0043 77.2 0.00557 

Mean      0.00531 

SD      0.00059 

 



Chapter 6:                                                                                           Radionuclidic of Iodine Radiopharmaceuticals 

 
144 

 

Table 6-10: 121Te activity ( based on 507 keV photopeak) as a percentage of 123I 

activity  

Sample 

no. 

Net Peak 

Area 

NCR 

(cps) 

Corrected 

NCR  

121Te 

activity  

(HPGe) 

(MBq) 

123I 

activity 

(Fidelis) 

(MBq)  

% 
121Te 

/123I 

1 15631 6.3 6.3 0.0016 35.3 0.00439 

2 12860 8.6 8.6 0.0088 155.4 0.00569 

3 11033 11.0 11.0 0.0076 156.4 0.00484 

4 11174 8.6 8.6 0.0079 155.2 0.00507 

5 19958 10.0 10.0 0.0080 157.3 0.00510 

6 20570 13.7 13.7 0.0040 77.9 0.00510 

7 26723 17.8 17.8 0.0052 80.1 0.00644 

8 17208 14.3 14.3 0.0043 77.8 0.00555 

9 15879 13.2 13.2 0.0038 77.4 0.00495 

10 18853 14.5 14.5 0.0042 77.2 0.00545 

Mean      0.00526 

SD      0.00056 

 

Table 6-11: 126I activity as a percentage of 123I activity  

Sample 

no. 

Net 

Peak 

Area 

NCR 

(cps) 

Corrected 

NCR  

126I activity 

(HPGe) 

(MBq) 

123I activity 

(Fidelis) 

(MBq)  

% 
126I /123I 

1 43.6 0.017 0.017 3.35×10-6 35.3 9.48×10-6 

2 16.9 0.011 0.011 1.39×10-5 155.4 8.95×10-6 

4 22.0 0.017 0.017 1.79×10-5 156.4 1.15×10-6 

5 24.7 0.012 0.012 1.10×10-5 155.2 7.01×10-6 

6 40.3 0.027 0.027 6.32×10-6 157.3 8.11×10-6 

8 17.1 0.014 0.014 3.53×10-6 77.9 4.54×10-6 

9 39.6 0.033 0.033 7.76×10-6 80.1 1.00×10-5 

10 36.1 0.028 0.028 6.55×10-6 77.8 8.48×10-6 

Mean      8.51×10-6 

SD      2.09×10-6 
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Table 6-12: 124I activity as a percentage of 123I activity  

 

Sample 

no. 

Net 

Peak 

Area 

NCR 

(cps) 

Corrected 

NCR  

124I 

activity  

(HPGe) 

(MBq) 

123I 

activity 

(Fidelis) 

(MBq)  

 % 
124I /123I 

1 58.8 0.024 0.024 3.62×10-5 35.3 1.03×10-4 

6 302.9 0.202 0.202 5.85×10-4 77.9 7.51×10-4 

7 22.1 0.015 0.015 4.27×10-5 80.1 0.53×10-4 

8 18.5 0.015 0.015 5.23×10-5 77.8 0.67×10-4 

Mean      2.43×10-4 

SD      3.39×10-4 

 

 

Table 6-13: 96Tc activity as a percentage of 123I activity 

  

Sample 

no. 

Net 

Peak 

Area 

NCR 

(cps) 

Corrected 

NCR  

96Tc 

activity 

(HPGe) 

(MBq) 

123I activity 

(Fidelis) 

(MBq)  

% 
96Tc /123I 

1 342.6 0.137 0.137 2.24×10-5 35.3 6.34×10-5 

6 295.0 0.197 0.197 5.96×10-5 77.9 7.64×10-5 

7 230.8 0.154 0.154 4.67×10-5 80.1 5.82×10-5 

8 40.3 0.034 0.034 1.19×10-5 77.8 1.53×10-5 

9 198.2 0.165 0.165 5.00×10-5 77.4 6.46×10-5 

10 187.7 0.144 0.145 4.39×10-5 77.2 5.69×10-5 

Mean      5.58×10-5 

SD      2.10×10-5 
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Table 6-14: 95mTc activity as a percentage of 123I activity  

Sample 

no. 

Net 

Peak 

Area 

NCR 

(cps) 

Corrected 

NCR  

95mTc 

activity 

(HPGe) 

(MBq) 

123I activity 

(Fidelis) 

(MBq)  

 % 
95mTc /123I 

3 178.3 0.178 0.178 5.11×10-6 156.359 3.27×10-6 

5 311.3 0.156 0.156 4.66×10-6 157.307 2.96×10-6 

10 274.0 0.211 0.211 4.75×10-6 77.184 6.15×10-6 

Mean      4.13×10-6 

SD      1.76×10-6 

6.6.3 Discussion 

Ten samples of 123I sodium iodide were prepared in standard vials and volumes similar 

to those used for the efficiency calibration of the HPGe detector.       

Various 123I radionuclidic impurities were identified in this study; these were: 125I, 121Te, 

126I, 124I, 96Tc, 95mTc. The first two impurities have been reported in the literature. 

However, there have been no reports of the existence of 126I, 124I, 96Tc, 95mTc as 

impurities produced by proton reactions in isotopically enriched 124Xe. 

The 125I impurity had the highest percentage activity and it was identified in all samples 

of this study. The mean value was 0.0145 % of 123I activity and this was within the limit 

given by the supplier. However, it was higher than values reported in the literature due 

to different irradiation conditions such as proton energy.  

The existence of the 125I contaminant was attributed to the reaction: 126Xe (p,pn) 125Xe 

with 125Xe (t1/2=17.1 hrs) decaying to 125I (t1/2=60 d). Here 126Xe was an impurity within 

the target gas 124Xe.  

The existence of 121Te as a contaminant has also been reported in the literature. The two 

gamma photopeaks of 121Te were analysed in this study (573 keV and 507 keV). There 

was a significant difference (P<0.05) between the activities derived from these two 

peaks of 121Te. This is likely to be due to the existence of sum peaks. However, the 

percentage difference between the activites was just 1.05%. Thus, the use of both peaks 

was judged to be valid for the estimation of 121Te contamination in the 123I samples.  
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121Te was identified in all samples of this study. The mean activity of this contaminant 

was 0.0053 % of the 123I main radionuclide activity, which is within the limit given in 

the leaflet provided by the supplier. Similar to 125I, the level of this contaminant was 

higher than reported in the literature, again due to different irradiation conditions. The 

existence of this impurity in this study was attributed to the reaction 124Xe (p,α) with 

121I 121I (t1/2=2.12 hrs)decaying 121Te (t1/2=16.8 d). 

 

It was mentioned in the product delivery note (GE Healthcare 2011) that the existence 

of these two impurities (125I and 121Te) increases the effective dose by approximately 

0.6% at the calibration time.  

The percentage activities of 126I and 124I were 8.51×10-6 and 2.43×10-4 respectively. As 

mentioned earlier, these contaminants have not been reported in the literature on proton 

reactions in isotopically enriched 124Xe. It is worth mentioning that these two impurities 

were not identified in all the samples; 126I was noted in 8 samples, whereas 124I was seen 

in just 4 samples out of 10.  

96Tc and 95mTc have also not been reported in the literature. Their percentage activities 

were 5.58×10-5 and 4.13×10-6 respectively. Their existence as trace impurities was 

ascribed to the activation of the target chamber and the entrance foil during 

bombardment. Again, these two impurities were not identified in all the samples; 96Tc 

was noted in 6 samples, whereas 95mTc was identified in just three.  

6.7 Properties of 131I 

This reactor-produced radioisotope was discovered at the University of California in 

1938. 131I is by far the most widely used radioiodine isotope for therapeutic applications 

on patients suffering from hyperthyroidism, persons who have long lives ahead of them 

(Rhodes and Croft 1978; Neacsu et al. 2013). It is also used for the treatment of thyroid 

cancer. It is suitable for therapeutic applications because it is a beta-emitting 

radionuclide, with a principal beta emission energy of about 610 keV. The beta particles 

normally have a range of 0.5–2 mm in human tissues (Chilton and Witcofski 1986). 

This radioiodine has many gamma photopeaks; the predominant one having energy 364 

keV (Figure 6-4 and Table 6-15), the half-life is 8.1 days. This value of half-life makes 

131I convenient for radiolabelling compounds for slow-uptake target organs. 
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Conversely, the short half-life of 123I limits it usefulness for those compounds that have 

a prolonged clearance process from the blood (Chilton and Witcofski 1986). 

Iodine enters the human body through ingestion, inhalation or penetration through the 

skin. Once in the body, it is concentrated in the thyroid gland. A high activity of 131I in 

a contaminated environment from radioactive fallout gives a high radiation dose to the 

thyroid. Thus, there is an increased chance of radiogenic thyroid cancer occurring in 

later life or at least the possibility of thyroiditis (Rivkees et al. 1998). 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Thyroid
https://en.wikipedia.org/wiki/Fallout
https://en.wikipedia.org/wiki/Radiogenic
https://en.wikipedia.org/wiki/Thyroid_cancer
https://en.wikipedia.org/wiki/Thyroiditis
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Figure 6-4: Decay scheme of 131I with energies in MeV (Cherry et al. 2012) 
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Table 6-15: Emissions of 131I where y(i) is the yield per disintegration, E(i) is the 

energy of the emission, y(i)×E(i) is the product of the yield and the energy of the 

disintegration and ce represents conversion electrons (Cherry et al. 2012) 

 

6.8 Clinical applications of 131I 

Sodium iodide 131I has been utilised  for both diagnostic and therapeutic purposes. It 

has been used for 60 years in the treatment of thyroid hyperfunction. For diagnostic 

procedures, it may be given as a tracer to study radioiodine kinetics. Thyroid uptake 

obtained with such a tracer dose can be used  to calculate the activity required for 

radioiodine therapy. In the management of thyroid carcinoma, sodium iodide is used to 

detect thyroid remnants and metastases (after ablation).  

Radioiodide thyroid therapy is useful for: 

- Graves’ disease, toxic multinodular goitre or autonomous nodules  

- Papillary and follicular thyroid carcinoma including metastatic disease. 

Sodium iodide 131I is available as capsules and as an injection. It is normally 

administered orally in activities ranging between 0.185 and 3.7 MBq for diagnostic 
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purposes. For therapy, it is administered orally in multiple doses greater than 1000 times 

the comparable diagnostic activity (up to 7.4 GBq per dose) (Kaiho 2015). 

When 131I is administered intravenously, the recommended activity for an adult patient 

with a weight of 70 kg ranges between 0.2 and 3.7 MBq for thyroid uptake studies and 

7.4 and 11 MBq for thyroid imaging. A maximum activity of 400 MBq is used for the 

identification of metastases and thyroid remnants after thyroid ablation. 

There are other 131I radiopharmaceuticals such as tositumomab, which is one of the few 

successful examples of a radioimmunotherapy agent. It was approved in the United 

States in 2004 as the world’s first pharmaceutical for radioimmunotherapy. 

Tositumomab is a monoclonal antibody (MoAb) and the 131I label is suitable for 

radioimmunotherapy due to the fact that its half-life is similar to the biological half-life 

of MoAbs in vivo (Kaiho 2015). 

6.8.1 Production of 131I 

131I can be obtained by two different methods: the irradiation of a tellurium target (130Te) 

in a nuclear reactor or by separation from uranium (235U) fission fragments (Neacsu et 

al. 2013). 

6.8.1.1 131I production by irradiation of 130Te 

The nuclear reactions for producing 131I by the irradiation of 130Te in a nuclear reactor 

have been given by Neacsu et al. (2013) (Figure 6-5). The target material can be either 

tellurium dioxide (TeO2) or metallic tellurium (Te). Table 6-16 shows the abundance of 

different tellurium isotopes in target material with natural composition. 
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Figure 6-5: Nuclear reactions in a tellurium target for iodine-131 production 

(Neacsu et al. 2013) 

 

Table 6-16: Abundance of different tellurium isotopes in natural target material 

 

Tellurium Isotope Isotopic abundance [%] 

120Te 0.09 

122Te 2.47 

123Te 0.89 

124Te 4.74 

125Te 7.03 

126Te 18.72 

128Te 31.75 

130Te 34.24 

 

As the natural target material contains different tellurium isotopes (not just 130Te), its 

irradiation can result in the production of radionuclidic impurities or stable isotopes, 

which are presented in Table 6-17. 
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Table 6-17: Tellurium isotope impurities produced by the irradiation of natural 

tellurium  

Target 

isotope 

Isotope produced by 

irradiation 
t1/2 Disintegration 

products 

120Te 

121mTe 

121Te 

130 days 121Te →121Sb 

(stable) 17 days 

122Te 123mTe 104 days 123Te (stable) 

123Te 124Te stable  

124Te 125mTe 58 days 125Te (stable) 

125Te 126Te stable  

126Te 

127mTe 

127Te 

104 days 127Te →127I 

(stable) 9.3 hrs 

128Te 

129mTe 

129Te 

33 years 129Te →129I 

(stable) 7.4 min 

6.8.1.2 131I production by separation from the uranium (235U) fission fragments 

There are many routes by which 131I is produced as a fission product. One possibility is 

the following reaction: 

 

𝑼 (𝒏, 𝒇) 𝐈 + 𝒀 + 𝟒 𝒏𝟑𝟗
𝟏𝟎𝟏

𝟓𝟑
𝟏𝟑𝟏

𝟗𝟐
𝟐𝟑𝟓

 ………………Equation 6-1 

 

However, it is also produced by the radioactive decay of other fission products. In this 

method, 131I is normally separated by a complicated radiochemical process followed by 

advanced purification. As regards potential impurities, 235U fission generates more than 

300 different radionuclides that appear in nearly 90 decay chains. During the fission 

process, many iodine isotopes are generated (Table 6-18). These nuclides are isolated 

along with 131I during the process of chemical purification. For stable or long lived 

nuclides, the yields are very small and do not reach a value that may cause a significant 

decrease in the specific activity of 131I. After purification, 131I is usually contaminated 

with two short lived radionuclides: 133I and 135I. The ratio of the activities of both these 

radionuclides to that of the main radionuclide 131I quickly decreases with time, and in 

turn the contamination level decreases. 
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Table 6-18: Iodine isotopes generated during the fission process 

Isotope t1/2 Fission yield (%) 

127I stable 0.13 

129I 1.7 x 107 years 0.8 

131I 8.1 days 3.1 

132I 2.3 hrs 4.7 

133I 20.8 hrs 6.62 

134I 52.5 minutes 8.06 

135I 6.7 hrs 6.3 

 

The sodium iodide (131I) samples included in this study were produced by this method 

as reported by the supplier. It was also reported that the only possible radionuclidic 

impurities were other iodine isotopes and the specified radionuclidic purity was greater 

than 99.9 %. 

 

6.8.2 Previous studies of the measurement of the radionuclidic purity of 131I   

There are not many studies dealing with the evaluation of the radionuclidic purity of 

131I. However, such an investigation was done by Iwahara et al. (2001) using gamma-

ray spectrometry with a germanium detector. No impurities were found in their 131I 

samples.  

Neacsu et al. (2013) assessed the radionuclidic purity of sodium iodide (131I) solution 

and sodium iodide (131I) capsules used for diagnosis purposes. A HPGe detector with a 

built-in amplifier and coupled to a MCA was used to do the evaluation. A basic gamma-

ray spectrometry system was employed (Canberra S 502C-GENIE 2000).. The sample 

was either the radiopharmaceutical sodium iodide (131I) solution, or a solution obtained 

by dissolution a sodium iodide (131I) capsule in distilled water. A volume of 10 μL was 

dropped onto a paper stripe, which  was placed in a glass container with a rubber stopper 

to prevent detector contamination. This container was placed at the centre of the 

detector and the spectrum was acquired with a measuring time of 1000 s. The distance 

between the sample and the detector was determined according to the sample activity 

so that the dead time was less than 10% 
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It was found that more than 99.9% of the total sample activity was ascribed to the 

presence of 131I, while less than 0.1% was attributed to the presence of 133I and 135I and 

other possible radioactive contaminants. However, these suspected contaminants were 

not identified as visible in the acquired gamma radiation spectrum.  

6.8.3 Assessment of radionuclidic purity of 131I delivered to University Hospital 

of Wales 

6.8.3.1 Method 

A similar procedure to that implemented for sodium iodide (123I) was used. Sodium 

iodide (131I) was also supplied by GE Healthcare to the Medical Physics Department at 

the University Hospital of Wales once each fortnight. The solution was provided in a 

special vial with a volume of 10 ml with a reference activity of 1850 MBq. After the 

required volume of solution had been used for clinical purposes, the residual volume (if 

there was some left) was taken for the assessment of radionuclidic impurities. 

The preparation of the 131I samples was done in-house. Five samples in a standard Schott 

vial with a standard 4ml volume were prepared. For each one, an empty Schott vial was 

weighed 5 times using the electronic weighing scales (Oertling NA 114). In most cases, 

the original vial was essentially empty. Therefore, it was washed very well using tap 

water and 4 ml of the diluted sodium iodide (131I) solution was dispensed into the 

weighed Schott vial. The weight was measured again to obtain the exact volume in the 

vial.  

The 131I activity of the samples prepared in this way was determined using the Fidelis 

secondary standard radionuclide calibrator. The samples were then left to decay for a 

sufficient time to be measurable in the HPGe detector with reasonable dead time. 

Spectra were acquired for about an hour.  

 

6.8.3.2 Results 

Figure 6-6 shows a typical spectrum of a sodium  iodide (131I) solution recorded with 

the HPGe detector. This spectrum shows gamma photopeaks of the main radionuclide 

131I (80, 163, 177, 284, 325, 364, 405, 503, 637 and 723 keV) and one peak with an 

energy of 314 keV. 
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6.8.3.3 Discussion 

No identifiable impurities were found within the sodium iodide 131I spectra. This agreed 

with the literature. However, a peak at 314 keV, which was not associated with the 

decay of 131I, was seen in all the spectra. Its origin was not identified. It  might  be 

possible to obtain further information by repeated measurement of one sample and 

determining the half-life of the decrease of the NCR of this peak with time. 
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7.1 Introduction 

Gallium-68 is a positron emitting radionuclide that is having a great impact in nuclear 

medicine. In particular, it is used to good effect in positron emission tomography 

(PET) imaging, which is a non-invasive medical imaging technology that can produce 

relatively high resolution images of physiologic function with clinical application in 

cardiology, oncology and neurology. 

An important feature of the decay of 68Ga is its high positron abundance. In recent 

years, the radionuclide has been used for different clinical applications in PET 

imaging, such as the diagnosis of malignancies, especially neuroendocrine tumours 

(NETs) (Jalilian 2016). This gives an  indication of the great importance and future 

impact zof68Ga radiopharmaceuticals in human health. 

As with other radionuclide imaging, the quality control of radiopharmaceuticals 

labelled with 68Ga is important to avoid unnecessary radiation dose to the patients due 

to the presence of long-lived impurities as will be explained later in this chapter.  

7.2 Properties of 68Ga 

Gallium (Ga) was discovered by a French chemist called Paul E. Lecoq de 

Boisbaudran  in Paris (1875) using a spectroscope. Gallium has 24 different isotopes 

with mass numbers between 61 and 84. Of these isotopes, two are stable; these are 

69Ga and 71Ga with natural abundances of 60.1% and 39.9% respectively. Among the 

available Ga radioisotopes, three are well known and widely used in the field of 

nuclear medicine (66Ga, 67Ga and 68Ga). Of these, Ga-68 has the appropriate positron 

emission for use in PET imaging. The physical properties of 68Ga make it an 

interesting radionuclide for developing new PET tracers (Jalilian 2016). Gallium-68 

decays with a half-life of 67.71 min by a combination of EC and positron emission to 

the ground state of 68Zn (Figure 7-1 and Table 7-1).  

Different 68Ga-labeled compounds have been developed for use in medical 

applications where the physical half-life of this radionuclide corresponds well with the 

biological half-life of synthetic peptides. The development of 68Ga 

radiopharmaceuticals has occurred in parallel with the development of  peptide-based 

pharmaceuticals during the last two decades. 68Ga-labelled tetraazacyclododecane-
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tetraacetic acid (DOTA) combined with somatostatin analogue octreotide (NOC) 

(68Ga-DOTANOC) is an example of one of these 68Ga radiopharmaceuticals (Jalilian 

2016). 

 

 

Figure 7-1: Decay scheme of gallium-68 (Cherry et al. 2012) 

 

 

 

 

Table 7-1: Emissions of 68Ga. y(i) is the yield per disintegration, E(i) is the 

energy of the emission and y(i)×E(i) is the product of the yield and the energy of 

the disintegration (Cherry et al. 2012) 
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7.3 Clinical applications of 68Ga 

An important aspect of the development of 68Ga radiopharmaceuticals is the 

theranostic properties of the radionuclide. Theranostics is a combination of therapeutic 

(‘thera’-)  emissions such as beta particles, alpha particles or Auger electrons, and 

diagnostic (-‘nostic’) emissions such as gamma radiation or positrons. Key advantages 

of these properties include the personalisation of therapy based on the uptake of the 

lower-dose diagnostic radiopharmaceutical. This includes the optimisation of radiation 

dose based on personal dosimetry, and the selection of patients who have a high chance 

of responding to therapy (Jalilian 2016). 

One of the earliest 68Ga radiopharmaceuticals to be used in clinical procedures was 

68Ga-citrate. It has been known as an infection and inflammation imaging agent for 

several decades. Researchers have demonstrated the application of this 

radiopharmaceutical in inflammation due to atherosclerotic plaques in animal models. 

Over the last decade, the use of 68Ga-labelled DOTA conjugated with somatostatin 

(SST) peptide derivative groups, including active octapeptides (Octreotride, OC) and 

related peptide analogues, such as TOC (Tyr3-OC), TATE (Tyr3-Thr8-OC) and NOC 

(NaI3-OC) for the diagnosis of NETs has been reported extensively. The application 

of these radiopharmaceuticals for planning and monitoring the therapy of NETs has 

increased. It is beneficial to implement 68Ga based PET imaging agents worldwide in 

order to increase the therapy capability of this radionuclide (Jalilian 2016).  

Of these radiopharmaceuticals, 68Ga-DOTATOC was the first to be utilised  in the 

detection of malignancies. 68Ga-DOTATOC was demonstrated to be a highly accurate 

in the diagnosis of NETs, meningiomas, thyroid malignancies and prostatic cancers as 

well as many other tumours. However, DOTATOC imaging has some limitations for 

non-cancerous tissues in the pancreas and pituitary gland, and in chronic inflammatory 

conditions (Jalilian 2016). 

Another SST ligand developed for PET applications is 68Ga-DOTATATE. Recent 

studies revealed that 68Ga-DOTATOC and 68Ga-DOTATATE perform equally well 

for cancer staging and patient selection for peptide receptor radionuclide therapy. 

However, 68Ga-DOTATATE may be preferable due to a slight difference in healthy 

organ distribution and excretion. In many NET studies, 68Ga-DOTATATE has shown 

high specificity and sensitivity. Also initial results have demonstrated that 68Ga-
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DOTATATE has a higher lesion uptake even in well differentiated thyroid cancer 

patients and may be preferable to 68Ga-DOTANOC (Jalilian 2016). 

68Ga-DOTANOC (Figure 7-2) is yet another peptide-based chelator used in clinical 

procedures. Recent studies have indicated that 68Ga-DOTANOC PET imaging may 

provide better images in a shorter acquisition time than ¹¹¹In-DTPA-octreotide in the 

assessment of NETs. Furthermore, this radiopharmaceutical detected considerably 

more lesions than 68Ga-DOTATATE in patients with NETs. However, the clinical 

relevance of these finding has to been proven in larger studies (Jalilian 2016). 

 

 

 

 

 

 

 

 

 

Figure 7-2: Chemical structure of 68Ga-DOTANOC (Jalilian 2016)  

 

Several other 68Ga radiopharmaceuticals are under investigation in addition to SST 

analogues. The development of 68Ga non-peptide tracers could have considerable 

benefit. They can be used as bone seeking agents, inflammation markers (for tumour 

diagnosis) or myocardial perfusion imaging tracers. However, application of these 

agents needs further research (Jalilian 2016). Table 7-2 shows some of the 68Ga 

radiopharmaceuticals with their diagnostic applications (Kilian 2014).  
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Table 7-2: 68Ga tracers and their diagnostic applications (Kilian 2014) 

Ligand Diagnostic applications 

68Ga-phosphonates Bone metastases 

68Ga-EDTA (ethylenediaminetetraacetic acid) Renal function 

68Ga- BAPEN (Trisdimethoxysalicylaldimine-

aminopropyl-ethylenediamine) 
Cardiac function 

68Ga-MAA (macroaggregated albumin)  Lung function 

68Ga-IDA (iminodiacetic acid)  Hepatobiliary function 

68Ga- citrate Infection 

7.4 Production of 68Ga 

There are two different ways to produce 68Ga. The most common method is through 

the decay of its parent germanium-68 (half-life=271 days) in a generator. The other 

(and preferred) method is through the use of a cyclotron. 

 

In a 68Ge/68Ga generator, the parent radionuclide 68Ge continuously decays to 68Ga by 

electron capture. Germanium-68 may be produced via several nuclear reactions (Table 

7-3), all of which use charged particles in a particle accelerator. However, the most 

common reaction pathway is nat,69Ga(p,xn)68Ge via cyclotrons with proton energy > 20 

MeV (IAEA 2010). 

 

Table 7-3 : Nuclear reactions that produce 68Ge (IAEA 2010) 

Reaction No. Particle Target nucleus Nuclear reaction 

1 Proton 69Ga (p,2n) 

2 Deuteron 69Ga (d,3n) 

3 Helium-4 66Zn (α,2n) 

4 Proton natGa (69,71Ga) (p,xn), x = 2, 4 

5 Helium-3 66,67,68Zn (3He,xn), x = 1, 2, 3 

 

https://www.sciencedirect.com/topics/nursing-and-health-professions/edetic-acid
https://www.sciencedirect.com/topics/physics-and-astronomy/albumins
https://www.sciencedirect.com/topics/nursing-and-health-professions/diglycine
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In a generator, germanium is normally embedded in a sorbent material that is eluted 

with an HCl solution to recover gallium in its ionic form (Ga3+) (Ferreira 2013).  

Producing 68Ga via this method has some limitations; in contrast to the ease of this 

generator use, the production of 68Ge is complex and time-consuming. Furthermore, 

breakthrough of the long-lived 68Ge parent radionuclide into the eluted 68Ga remains a 

concern due to the long half-life of the former. Moreover, the  activity of 68Ga produced 

each day is restricted, which is especially problematic with the increasing demand for 

68Ga for both clinical and research applications. All these reasons trigger the need for 

an alternative production method using a cyclotron (Pandey et al. 2014; Alves et al. 

2017). 

 

68Ga production via irradiation of Zn using a cyclotron is the preferred method as it 

gives a relatively large product yield. Several radioisotopes of gallium with longer 

half-lives are also produced when irradiating natural Zn. Thus it is necessary to 

irradiate enriched 68Zn. However, the irradiation of 68Zn by protons still results in the 

production of undesired long-lived radioactive impurities such as 67Ga, depending on 

irradiating proton energy (Alves et al. 2017). 
 

The 68Zn target material can be either solid or liquid. The use of a solid target has the 

advantage of producing 68Ga with a high yield. However, a high yield is achieved at 

the expense of some important practical difficulties in the form of long and complex 

processes taking from a few hours up to 20 h. The approach requires considerable 

optimisation studies and additional quality control before target irradiation to ensure 

that it is appropriate for 68Ga production and to avoid contaminant production (Alves 

et al. 2017).  

In order to avoid the technical difficulties associated with the irradiation of solid 

targets, an alternative production method has been suggested. This involves 

bombarding a liquid target containing a solution of enriched target material. The liquid 

target is normally prepared by dissolving the enriched material in a nitrate solution 

which is then diluted with nitric acid (Alves et al. 2017). 

PETIC was the first organisation in the UK to produce 68Ga in a cyclotron (Cyclone 

18/9, IBA, Louvain-la-Neuve, Belgium) (Figure 7-3)) using a liquid target in the form 

of 68Zn nitrate solution (density of 33 g/l). This cyclotron was specially intended for 

large hospitals and medical research centres. It is optimised to produce both protons 
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(18 MeV) and deuterons (9 MeV). However, this type of cyclotron is unable to perform 

irradiation with alpha particles.  

The cyclotron incorporates a large vacuum tank and the target vessel contains a foil 

separating the vacuum region from a region of helium coolant in front of the target. For 

68Ga production, two types of target windows were used for energy degradation: 

titanium and Havar. However, another type of window was used for zirconium-89 

production (Chapter 8). 

In general, liquid-target radiometal production technology is not yet mature and 

requires more experiments to optimise production yield. The literature review in this 

chapter will just deal with studies of 68Zn in the form of a liquid material; these are 

recent and few in number. 

 

 

Figure 7-3: The IBA Cyclone 18/9 cyclotron in PETIC, Cardiff 
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7.5 Previous studies of the assessment of the radionuclidic purity of 

68Ga  

Ferreira (2013) produced 68Ga in a low energy cyclotron via the nuclear reaction 

68Zn(p,n)68Ga. A Monte Carlo simulation was performed using SRIM (Stopping and 

Range of Ions in Matter) software to determine the irradiation conditions. The energy 

of the irradiating beam was 28 MeV and the target material was ZnCl2 solution with 

98% purity. The activity measurements were done using a radionuclide calibrator that 

was set to measure 68Ga. As there was no available way to store the calibrator output 

in a computer, the activity of the sample as a function of time was determined by 

filming the display screen for several hours (10h-40h). The data were then inserted 

into a computer file for analysis. It was found that the contaminants produced 

alongside 68Ga were 66Ga (through the reaction 66Zn(p,n)66Ga) and 13N (through the 

reaction 16O(p,α)13N). The measured half-life (10min) of the latter radionuclide (13N) 

showed good agreement with the expected value (9.96 min), whereas that of 66Ga did 

not (54% difference, expected t1/2=569 min and measured t1/2=260 min). It was claimed 

that this was due to the fact that the measurement time (10h) was very close to one 

half-life of 66Ga. With a longer measurement time (23h), the difference from the 

expected value was lower (18%).  

In the same year, zinc chloride solution was also used as a target material for the 

production of 68Ga by Moreira (2013). Irradiation under different conditions was done 

with a Cyclone 18/9 cyclotron (IBA, Louvain-la-Neuve, Belgium), using 18 MeV 

protons. The beam energy was degraded using a niobium window foil with a thickness 

of 0.125 mm. According to a SRIM simulation, the attenuated proton beam had an  

energy of 16.28 MeV on reaching the target solution. After irradiation, the activity of 

the 68Ga product was measured using a COMECER® PET radionuclide calibrator. For 

the identification of specific gamma radiation from other radionuclides, a CRC®-

55tW well counter, with a NaI crystal detector, was used. Count rates were recorded 

over a period of 23 hours, with a time lapse of 2 minutes between each measurement. 

66Ga, 67Ga and 13N were identified and the time-activity curve was used to determine 

the half-life of the gallium isotopes. The experimental and theoretical half-life values 

of the identified isotopes were approximately equal.  
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Pandey et al. (2014) produced 68Ga by irradiating 68Zn nitrate solution (isotopic 

enrichment of 99.23%) with a proton beam of energy ~14 MeV. Energy degradation 

was done using dual foils of aluminium and a Havar window. A Havar window has 

very high strength at high temperatures and excellent corrosion resistance. It 

withstands the high pressure and temperatures generated at the target by bombardment 

with protons. An HPGe gamma spectrometer was used to measure the radionuclide 

purity, while a radionuclide calibrator was used to measure the activity of the main 

radionuclide.    

A purified sample of 68Ga was subjected to HPGe spectrometry 36 h after EOB. The 

spectrum revealed some photopeaks associated with the impurity 67Ga, whose activity 

on decay correction to EOB was estimated to be <0.07% of the total 68Ga activity. The 

presence of 67Ga impurity can be attributed to two possible nuclear reactions: 68Zn 

(p,2n)67Ga and 67Zn (p,n)67Ga. 
 

68Zn nitrate solution was also used to produce 68Ga by Alves et al. (2017). The liquid 

target solution was prepared by dissolving enriched material in a nitrate solution which 

was then diluted in nitric acid. The energy of the irradiating proton beam was 18 MeV. 

As the cyclotron delivered a fixed energy proton beam, it was crucial to degrade the 

beam energy to reduce the production of long-lived impurities. For this purpose, a 

target window consisting of two foils was used; these comprised a Havar window 

followed by a thick niobium window in contact with the liquid target solution. Pure 

niobium was chosen due to its chemical inertness, which prevented the creation of 

additional metallic contaminants. 

Particular attention was paid to isotopic impurities with a longer half-life than 68Ga, 

namely 66Ga and 67Ga, both of which were found in the final purified solution of 68Ga 

(Table 7-4). Activity was measured using a calibrated HPGe detector. The dead-time 

was kept to 4% or less and the photopeak areas were determined using a software 

package called Gamma Vision. 

Despite degrading the energy of the irradiating beam to minimise the activity of 67Ga 

and using enriched 68Zn (with a reduced amount of 66Zn) to minimise the activity of 

66Ga due to the reaction 66Zn(p, n)66Ga, both of these longer-lived radionuclides were 

found in the final product. Therefore its purity was seen to deteriorate over time. 
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Table 7-4: Experimental measurements of 68Ga purity (%) at EOB  

Target window 67Ga 66Ga 

35 μm Havar 

and 35 μm niobium 
0.48 0.009 

35 μm Havar 

and 250 μm 

niobium 

0.042 0.0037 

7.6 Assessment of the radionuclidic purity of 68Ga produced by 

PETIC 

 

7.6.1 Method 

As mentioned earlier, 68Ga was produced in PETIC using 68Zn nitrate solution as a 

target material.  

After irradiation, 68Ga samples were purified by loading the irradiated target solution 

onto a strong cation exchange resin column to separate 68Ga from 68Zn and other 

impurities. The column was washed with 5 ml of water to remove radionuclides such 

as 11C, 13N and 18F and then eluted with 30 mL of 0.5M HBr in 80% acetone to remove 

zinc ions. This was followed by 5 ml of water to remove any traces of HBr and acetone. 

Subsequently, 68Ga cations were eluted with 6 mL of 3M HCl, mixed with 

concentrated HCl (to increase molarity) and passed through an anion exchange 

column. 68Ga was absorbed on the column and a flow of inert gas was applied to dry 

the column and remove any traces of HCl. Finally, 68Ga was eluted from the column 

with 0.1M HCl to obtain a final product in the form of 68GaCl3 in a vial. 

Pairs of liquid samples (each with a volume of 4 ml in a Schott vial) were prepared 

before and after chemical purification of the target material for three validation 

productions.  

68Ga activity in these samples was measured in a Capintec CRC 25R radionuclide 

calibrator rather than the Fidelis calibrator, as the latter had no identified calibration 

factor for 68Ga. After decay of the primary radionuclide, gamma spectra were acquired 

with the energy and efficiency-calibrated HPGe detector. Samples were placed 
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individually in direct contact with the centre of the detector end-cap. Each of the six 

samples was measured several times. 

Spectra were analysed using the Canberra Genie 2000 MCA software to give net 

counts for recognised photopeaks. The live time was set initially at 1300s and this was 

increased to a maximum of about 7200s as the samples decayed. NCR was then 

calculated and corrected for radioactive decay during spectrum acquisition. The 

identification of impurities was based on information obtained from the scientific 

literature and experience gained from the study of 89Zr (Chapter 8). For identified 

impurities, NCR was converted to activity according to Equation (2-17). 

The activities of the main radionuclide 68Ga and the identified impurities were decay 

corrected to EOB and the impurity activity expressed as a percentage of the 68Ga 

activity. Mean and the standard deviation (SD) values were calculated.  

Determination of half-life was done by plotting the logarithm of the contaminant NCR 

(before decay correction to EOB) versus time and applying linear regression. 

7.6.2 Results 

A typical spectrum from a gallium-68 solution recorded with the HPGe detector is 

shown in Figure 7-4. 67Ga, 66Ga and 56Co were identified as radioactive impurities. 

Table 7-5 shows the mean and the SD activity of the main radioactive impurity (67Ga) 

in MBq and as a percentage of 68Ga activity for three productions. Figure 7-5 and 

Figure 7-6 show graphs of the logarithm of NCR versus decay time for the identified 

67Ga peaks of the pre-purification and post-purification samples respectively from the 

first production. Table 7-6 and Table 7-7 show the corresponding regression equations, 

R-squared values and the calculated half-life of 67Ga for the pre-purification and post-

purification samples respectively. 

Table 7-8 shows the mean and the SD activity of 66Ga radioactive impurity in MBq 

and as a percentage of 68Ga activity for two productions. It was not identified in the 

third production. 

Figure 7-7 shows a graph of the logarithm of corrected NCR versus decay time and 

the calculated half-life for this impurity in the pre-purification sample of the first 
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production. Table 7-9 shows the mean and the SD activity of 56Co radioactive impurity 

in MBq and as a percentage of 68Ga activity for three productions. 
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Figure 7-5: Determination of 67Ga half-life (78.26 hrs) from its gamma 

photopeaks for the pre-purification sample of the first production                       

(7 measurements) 

 

Table 7-6: Linear regression equations and calculated t1/2 values of 67Ga for the 

pre-purification sample of the first production 

 

Energy 

(keV) 
Regression equation R2 

Calculated t1/2(hrs)= 

ln(2)/slope(λ) 

93 Y= -0.00885x + 6.515 0.999 78.28 

184 Y= -0.00892x + 5.592 0.999 77.72 

209 Y= -0.00892x + 3.108 0.999 77.68 

300 Y= -0.00895x + 4.797 0.999 77.46 

887 Y= -0.00919x - 0.978 0.992 75.42 

Mean(SD)   77.31 (1.10) 
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Figure 7-6: Determination of 67Ga half-life (78.26 hrs) from its gamma 

photopeaks for a post-purification sample of the first production                        

(5 measurements) 

 

Table 7-7: Linear regression equations and calculated t1/2 values of 67Ga for the 

post-purification sample of the first production 

 

Energy 

(keV) 
Regression equation R2 

Calculated t1/2(hrs) = 

ln(2)/slope(λ) 

93 Y= -0.00880x + 7.943 0.999 78.76 

184 Y= -0.00885x + 7.030 0.999 77.30 

209 Y= -0.00889x + 4.622 0.999 77.98 

300 Y= -0.00892x + 6.269 0.999 77.72 

887 Y= = -0.00904x + 0.484 0.999 76.66 

Mean(SD)   77.68 (0.78) 
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Figure 7-7: Determination of 66Ga half-life (9.4 hrs) from its gamma photopeak 

(1039 keV) for the pre-purification sample of the first production 
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7.6.3 Discussion 

67Ga (gamma energy 93, 184, 209, 300 and 887 keV), 66Ga (833 keV and 1039 keV) 

and 56Co (846 keV, 1038 keV and 1238 keV) were identified as impurity radionuclides 

in 68Ga solutions. However, 67Ga was considered to be the main impurity because it 

had the greater relative activity and this is in agreement with results mentioned in the 

literature. The presence of 67Ga in this study was confirmed (in both pre- and post-

purification samples of the first production) by determination of its half-life for all the 

identified photopeaks. The values obtained showed good agreement with the actual 

half-life (78.26 hrs). 

For the first production, the activity of this impurity (67Ga) as a percentage of 68Ga 

activity at EOB varied between 0.66% and 0.83% for the pre-purification sample, 

while for the post-purification the range was 0.42% to 0.49%. This subtle difference 

may be attributed to the peak summing effect.  

However, the relative activity of 67Ga was less in the 2nd and 3rd productions. In the 

pre-purification samples, the range was 0.17%-0.23%, whereas for the post-

purification samples it was 0.20%-0.25%. This difference is thought to be due to 

changes in irradiation conditions (e.g the proton energy) having a genuine effect on 

the activity of the impurity produced. After the three productions were completed, 

maintenance of the cyclotron revealed that the titanium window was broken for some 

reason. This was thought to be behind the changes in irradiation conditions, which in 

turn affected the percentage of impurity activity. 

66Ga was the other significant radioactive contaminant identified in the 68Ga solutions. 

Its existence was confirmed by the determination of experimental half-life (9.06 hrs) 

which agreed with the actual value (9.4 hrs, % diff. = -3.606%). The ratio of 66Ga 

activity to 68Ga activity for the first production was about 0.006% before purification 

but this radionuclide was not identified in the purified sample. For the second 

production, the relative activity of 66Ga was about 0.003% for both pre-purification 

and post-purification samples.  

Regarding 56Co, the relative activity in the first production was about 0.0005% for the 

pre-purification sample and only traces were identified in the post-purification sample. 

For the second and third productions, the relative activity was 0.0001% pre-
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purification in both cases, with no trace of 56Co found in the purified samples. This 

means that the chemical purification was effective, as the aim of his process is to 

remove elements with different chemical properties to those of the required nuclide. 

This impurity (56Co) has not been reported in the literature. It is thought that this 

radioactive contaminant was generated during irradiation of the Havar window.  
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8.1 Introduction 

The development of radiopharmaceuticals in the form of biological targeting agents 

such as proteins, antibodies, peptides and nanoparticles with a wide range of biological 

half-lives requires the production of new radionuclides with physical half-lives 

compatible with these biological properties. 89Zr is one of these radionuclides that has 

emerged as a promising radiometal for targeted molecular imaging using PET in both 

animal models and humans. This radionuclide is particularly important for cancer 

research as it is well-suited for the in vivo targeting of macromolecules and 

nanoparticles to the surfaces of cancer cells. 

The demand for 89Zr for research purposes is increasing because this radionuclide 

remains in tumour cells after its administration so that time series studies are possible 

without administering further radiopharmaceuticals. 

Once again, quality control of radiopharmaceuticals labelled with 89Zr is important to 

avoid unnecessary dose to the patient. 

 

8.2 Properties of 89Zr 

Zirconium is a group IVB transition metal. It was discovered in 1789 by the German 

chemist Martin Heinrich Klaproth, who prepared zirconium oxide from the mineral 

zircon, ZrSiO4. Zirconium exists only in the 4+ oxidation state  in aqueous solutions 

(Vugts et al. 2013).  

Zirconium-89 has proven to be very useful in drug development, for instance for new 

antibody therapies. This is due to its long half-life (≈78 hrs) that is appropriate for 

studying the biodistribution of long-circulating proteins and antibodies. It also has 

balanced physical decay properties (Figure 8-1 and Table 8-1), i.e. sufficiently small 

positron energy to give good PET image resolution and acceptable patient radiation 

dose (Synowiecki et al. 2018).  

 

Zirconium-89 decays through β+ emission and electron capture into 89Y. The 

characteristic x-rays are of very low energies at about 15 keV. The decay is followed 

by a prompt gamma ray at 909 keV. Thus the detection of 511 keV annihilation 

photons is relatively unaffected by both the gamma photon and the characteristic x-
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rays because of the large energy differences. This helps to improve image quality 

(Alfuraih et al. 2013). 

 
 

Figure 8-1: Decay scheme for 89Zr (Cherry et al. 2012) 

 

Table 8-1: Emissions of 89Zr: y(i) is the yield per disintegration, E(i) is the 

energy of the emission, y(i)×E(i) is the product of the yield and the energy of the 

disintegration and ce are conversion electrons (Cherry et al. 2012) 
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8.3 Clinical applications of 89Zr 

Recently, there has been increased interest in using positron emitters such as 89Zr for 

immuno-PET. Immuno-PET is an attractive novel tumour imaging option, which 

integrates the use of PET and monoclonal antibodies (mAbs). Immuno-PET has the 

potential to improve diagnostic tumour identification by combining the high sensitivity 

and resolution of PET/CT with the specificity of a mAb localisation. In fact, each mAb 

that targets a specific tumour cell is a candidate for use in immuno-PET, allowing the 

development of a new generation of mAb-based imaging methods. Immuno-PET 

might also play a role in the characterisation, efficient selection and optimisation of 

novel high-potential mAbs for diagnosis and therapy (Kasbollah et al. 2013). 

89Zr has good physical characteristics for immuno-PET and has been recommended 

for use in quantifying slow processes such as the deposition of mAbs in tissue and 

tumour. Over the last few years, several 89Zr-labeled antibodies directed against 

different tumour types have been assessed in preclinical and clinical studies (Table 

8-2). Intact antibodies need about 2–4 days to penetrate into a solid tumour. As the 

half-life of 89Zr is about 3 days, it is considered to be compatible with the time needed 

for these mAbs to achieve optimal results (Kasbollah et al. 2013).  

 However, there is a need for an efficient chelator in order to prevent the release of 

89Zr4+ from the antibodies, because the free radionuclide can accumulate in bone 

mineral and can associate with plasma proteins. This results in depositing a significant 

radiation dose to the bone marrow. A compatible chelator system is crucial to minimise 

the disassociation of 89Zr from the antibodies. Over the years, different chelators have 

been utilised  with different degrees of success; examples include 

diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA) 

and desferoxamine (DFO) (van de Watering et al. 2014). 
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Table 8-2: Overview of 89Zr-labeled antibodies used in pre-clinical and clinical 

studies (van de Watering et al. 2014) 

Target Type of tumour 

CD147 Pancreas 

CD20 Non-Hodgkin’s lymphoma 

CD44v6 Head and neck squamous cell carcinoma 

EGFR Multiple 

EGP-1 Prostate 

GPC3 Liver 

HER1 Colorectal 

HER2 Breast and ovarian  

IGF-1R Triple negative breast cancer 

MET Head and neck squamous cell carcinoma and gastric 

MN/CA Renal cell carcinoma 

PSMA Prostate 

PIGF Liver 

VEGF Breast, head, and neck squamous cell carcinoma and 

ovarian 
 

DFO was thought to be the most successful chelator of Zr4+ as it showed good stability, 

releasing less than 0.2% of Zr4+ after 24 h in serum and less than 2% after seven days. 

However, several proof-of-principle pre-clinical studies indicated that the in vivo 

stability of this complex remains an issue as free 89Zr was observed in bone (van de 

Watering et al. 2014). 

Therefore, there remains a need for novel chelators that allow more stable 

complexation of 89Zr with antibodies. Pandya et al. (2017) reported that 89Zr–DOTA 

is superior to 89Zr–DFO, which is considered to be the “gold standard” in the clinical 

development of 89Zr-radiopharmaceuticals. These results may pave the way to enhance 

the development of radiolabelled agents for accurate medical applications. 
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8.4 Production of 89Zr 

Three nuclear reactions have been explored for 89Zr production in a cyclotron. The 

first reaction (natSr(α,xn)89Zr) is not applicable as PETIC is unable to perform α 

irradiation. The second  reaction, deuteron bombardment of 89Y, is also not feasible as 

the cyclotron in PETIC can only accelerate deuterons to an energy of 9 MeV, which is 

not sufficiently high to implement this reaction (Dabkowski et al. 2015). 

89Y(p,n)89Zr is regarded as the best nuclear reaction for 89Zr production executed on a 

medium to small cyclotron. The fact that natural yttrium consists of only 89Y affords 

an extra advantage in the production of 89Zr with a proton biomedical cyclotron; the 

target does not require  costly enriched target material (Infantino et al. 2011). 

The yttrium target material can be either a foil or sputtered material with copper 

backing to improve heat dissipation during irradiation. Additionally, it could be 

yttrium metal or Y2O3 in powder form (Severin et al. 2011).  

In PETIC, the yttrium target material was a foil with a thickness of 150μm. This foil 

was positioned in an aluminium solid target holder (Figure 8-2). The irradiating proton 

energy was 18 MeV. This energy was degraded to ≈ 13.4 MeV using a niobium foil 

window (Figure 8-3) with a thickness of 300μm. 

 

Figure 8-2: Aluminium solid target holder with 89Y target foil (in the centre) 

 
 

Figure 8-3: Niobium vacuum chamber window for proton energy degradation-

the dark area is the beam trace 
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After irradiation, the yttrium target was removed from the aluminium holder and  

dissolved in 2 to 6 M HCl and 30% H2O2 heated to 110 oC; it was washed with HCl 

and water through a specific separation column. Hydroxamate functionalised ion 

exchange resin was used to separate the 89Zr product from yttrium target material. The 

89Zr was eluted as zirconium-oxalate with 1.0 M oxalic acid. 

To produce 89Zr-chloride, the 89Zr-oxalate was passed through a NaCl activated 

cartridge. The cartridge was then washed and the 89Zr-chloride eluted. 

8.5 Previous studies of the assessment of the radionuclidic purity 

of 89Zr 

Ciarmatori et al. (2011) produced 89Zr via the 89Y(p,n)89Zr nuclear reaction. Irradiation 

was performed using a 16.5 MeV cyclotron. Yttrium metallic foils (of thickness 150 

μm) were used as a target material. The target was firmly positioned in a copper 

backing support having a central cavity and covered by an aluminum disc with a 

thickness of 500μm. The aluminum disc was used for energy degradation and for 

protection of the yttrium target foil from possible motion. After irradiation, the yttrium 

foil was dissolved in HCl and 3 samples were prepared from the solution. 

For radionuclidic purity assessment, the samples were measured in a calibrated HPGe 

detector after a sufficient waiting time to avoid pulse pile-up. Sample spectra were 

acquired for 14000 s and analysed using Canberra Genie 2000 software; the accuracy 

of the activity values was in the range 5-7%. The only significant radioactive impurity 

produced was 56Co. The activity of this radionuclide at EOB was 530±60 Bq, while 

that for the main radionuclide (89Zr) was about 200×106 Bq. This meant that the ratio 

of the radio-contaminant to 89Zr was about 0.00000265, which was considered to be 

negligible. The production of 56Co was most likely due to the interaction of protons 

with 56Fe, a small amount of which was present in the yttrium target. 

In the same year, Walther et al. (2011) produced 89Zr in an IBA Cyclone 18/9 cyclotron 

using the same foil thickness of 150μm. However, the production was done by proton 

irradiation with a greater energy of 18 MeV. The foil was positioned in an aluminum 

support and another aluminum foil was used as an energy degrader. This aluminum 

target set-up helped in facilitating the preparation of the target and avoiding the 

formation of undesired radionuclidic impurities in the crude product. The irradiating 
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energy was degraded from 18 MeV to 15 MeV, 12 MeV and finally to 10 MeV using 

vacuum aluminum foil (380 mm) and additional energy degrader foils with a thickness 

of 320 and 500 mm, respectively.  

The radionuclidic purity of the samples (n=7) was measured using a HPGe detector. 

The samples were left for sufficient time (26–42 days), to allow most of the 89Zr 

activity to decay.  

Table 8-3 shows the ratios of the activity of radioactive impurities (88Zr and 88Y) to 

that of the main radionuclide (89Zr). 

 

Table 8-3: Activity ratio of 88Zr/89Zr and 88Y/89Zr as determined by HPGe 

detector (Walther et al. 2011) 

 

Thickness of Al  

energy degrader 

foils 

Ep 

(MeV) 
n 

Mean value 

88Zr/89Zr(%) 

Mean value 

88Y/89Zr(%) 

Vacuum foil 380μm 15 1 4.0 0.164 

380+320μm 12 3 0.249±0.0025 0.041±0.0035 

380+500μm 10 3 0.004±0.0008 0.001±0.00006 

 

Infantino et al. (2011) used a Monte Carlo code (FLUKA) to stimulate the production 

of 89Zr with a prototype solid target. 89Zr was produced by the irradiation of a 89Y 

target foil through the reaction 89Y(p,n)89Zr using 16.5 MeV protons. An aluminum 

foil with a thickness of 500μm was used for energy degradation, while the thickness 

of the target foil was 300μm. This foil was positioned in a deep cavity carved in a 

copper holder. Simulations were done both with and without the presence of the 

aluminum degrader. With the degrader, the energy of protons entering the target foil 

was 12.6 MeV.  

Results of the simulated irradiations without the aluminum energy degrader predicted 

significant contamination from 88Zr, with limited activity of 86Y and 90Y as expected. 

However, only 89Zr was produced with the use of the aluminum degrader because it 

reduced the energy of the beam entering the target to below 13 MeV, thus excluding 

the reaction 89Y(p, 2n)88Zr that occurs at 13 MeV. 
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Monte Carlo simulation was also used by Alfuraih et al. (2013) to predict the 

production of 89Zr and associated contaminants using a cyclotron. In the simulations, 

the thickness of the 89Y foil target varied between 0.1 and 0.5 mm, whereas the 

thickness of the Al degrader varied from 0 (i.e no degrader) to 1 mm. The irradiating 

energy was the same as that in the previous study (16.5 MeV). 88Zr and 88Y were 

identified as radioactive contaminants and their activities were reduced using the 0.5 

mm degrader: 88Y from 0.4 or 0.6 MBq to 4 Bq and 88Zr from 5 or 10 MBq to less than 

1 Bq.  

 

Wooten et al. (2013) irradiated a thicker (640μm) yttrium foil with protons of energy 

about 14.7 MeV to produce 89Zr. The foil was positioned in a target holder made of 

niobium. This element was selected due to its high melting temperature and high 

chemical inertness. The final product was purified and produced as a solution. For the 

evaluation of the radionuclidic impurities, the solution was diluted to a volume of 2 ml 

and this sample was measured with a HPGe detector for 10 minutes within one 89Zr 

half-life of the original bombardment. To identify longer-lived radioactive impurities, 

the sample was allowed to decay for several 89Zr half-lives (≈22 days) and a spectrum 

was acquired for 12 h. 88Zr was identified as the only radio-contaminant with a 

percentage activity of 0.002% of the total. 

Lin et al. (2016) also used yttrium-89 foil of the same thickness (640μm), but with 

different irradiation conditions. The foil was positioned and locked inside a target 

holder. Initial tests were done with a proton beam energy of 15.2 MeV. After analysis 

of radionuclide impurities, the incident proton energy was reduced to 14.5 MeV. After 

irradiation, 89Zr-oxalate and 89Zr-chloride were prepared. The radionuclidic impurity 

assessment of these samples was done with a HPGe detector after preparing the 

samples in special tubes with a volume of 1 ml. The samples were counted for 4 hrs 

after EOB.  

It was observed that with an irradiation energy of 15.2 MeV, there was a slight 

radioactive contamination (<0.01%) of 88Y and/or 88Zr. However, with a reduced 

proton energy of 14.5MeV, no gamma-rays other than these from 89Zr were identified 

indicating a higher radionuclidic purity at EOB. 

In PETIC, Dabkowski et al. (2015) produced 89Zr using different thicknesses of 

niobium window foil as degraders. The proton energy of the IBA Cyclone 18/9 
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cyclotron was degraded from 18 MeV to ≈ 9.8 MeV using a thickness of 500 and to ≈ 

11.6 MeV using a thickness of 400 μm. The target material was yttrium as a foil with 

a thickness of 150μm. 

The activity of the produced 89Zr was measured using a Capintec CRC 25R 

radionuclide calibrator at least 4 h after EOB, to allow for the decay of the short-lived 

radionuclide 89mZr, which is produced alongside 89Zr. The activity was then decay 

corrected to EOB. Assessment of the long-lived radioactive impurities was done using 

EG&G Ortec NaI and HPGe detectors. 

It was found that 89Zr produced with a 500 μm thick niobium degrader was not 

accompanied by long-lived impurities such as 88Zr or 88Y. Similarly, 89Zr produced 

with a 400 μm thick niobium degrader showed no evidence of the existence of these 

long lived impurities (88Zr and 88Y) in the acquired spectrum. 

Dias et al. (2018) irradiated yttrium foil with protons of energy 13.8 MeV to produce 

89Zr. The energy was degraded using an aluminum ring. After irradiation, the sample 

was dissolved in HCl. The radionuclidic purity of the unpurified sample was assessed 

using a HPGe detector calibrated for both energy and efficiency. The spectrum was 

acquired 72hrs after EOB with a measurement time of 30 min and a dead time of <5%. 

Two gamma peaks were observed in the spectrum; these were at 511 keV and 909 keV 

and both seemed to be related to 89Zr. 

8.6 Assessment of radionuclidic purity of 89Zr delivered to 

University Hospital of Wales produced by PETIC 

8.6.1 Method  

 

The purpose of the work described in this section is to confirm the ability of PETIC to 

limit the production of radionuclidic impurities in 89Zr to negligible levels. Several 

89Zr validation productions were made, for which the produced 89Zr was not ready to 

be used in patients.  

89Y foil with a thickness of 150 μm was used as a target material positioned in an 

aluminium holder and irradiated with a proton beam of energy about 13.4 MeV in an 
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IBA Cyclone 18/9 cyclotron. For energy degradation, a niobium window with a 

thickness of 300μm was used. 

After the irradiation of the yttrium disc, 89Zr was automatically separated by dissolving 

the disc in HCl and  H2O2 heated to 110 ̊C, allowing the solution to cool to room 

temperature then washing it with HCl and water through a separation column. 

Hydroxamate functionalised ion exchangers were used for separation of the 89Zr 

product from the yttrium target material. The 89Zr was eluted as Zr-oxalate with 1.0 M 

oxalic acid. 

The same procedure as was used for 68Ga was followed to measure the activity of the 

main product (89Zr) and impurities. Liquid samples of the standard 4 ml volume in a 

standard  Schott vial were prepared before and after chemical purification of the target 

material. This was done for two validation productions. The activity of 89Zr in the 

samples was measured with the Capintec CRC 25R radionuclide calibrator. The 

samples were left for sufficient time (about a month) to allow the main radionuclide 

(89Zr) to decay. For each sample, series of gamma spectra were acquired over a long 

period of time (a maximum time of about 75 days) with the energy and efficiency 

calibrated LO-AX HPGe detector.  

Spectra were analysed using the same method as mentioned previously. Radionuclidic 

impurities were identified using information from the scientific literature and for each 

photopeak, NCR was calculated and corrected for radioactive decay during spectrum 

acquisition. For the identified impurities, NCR was corrected for radioactive decay to 

EOB and converted to activity according to Equation (2-17). Contaminant activity was 

expressed as a percentage of  89Zr activity at EOB. Mean and the standard deviation 

(SD) values were calculated. Determination of radionuclide half-life was done by 

plotting the logarithm of the NCR (without decay correction) over the period of the 

experiment. 

8.6.2 Results  

Figure 8-4 shows a typical spectrum of a 89Zr solution recorded with the HPGe 

detector. The following impurities were identified: 88Zr, 88Y and 56Co. Table 8-4, Table 

8-5 and Table 8-6 show the mean and the SD activity (MBq) of these three 
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radionuclides respectively, and the activity as a percentage of  that of the main 

radionuclide (89Zr), for two productions.  

Figure 8-5 shows the determination of 88Zr half-life (83.4 days) from its 392 keV 

gamma photopeak for both pre- and post-purification samples of the first production, 

while  

Table 8-7 shows the corresponding linear regression equations and the calculated t1/2 

values. The equivalent data for the second production are shown in Figure 8-9 and 

Table 8-8. 

Figure 8-6 and Figure 8-7 show the variation with time of ln (NCR) for the 88Y 898 

keV and 1836 keV photopeaks respectively for both pre- and post-purification samples 

of the first production. The equivalent data for the second production are shown in 

Figure 8-10 and Figure 8-11. 

Figure 8-8 shows the determination of 56Co half-life (78.76 days) from its gamma 

peaks (846 keV and 1238 keV) for the pre-purification sample of the first production, 

while Figure 8-12 shows the corresponding data for the second production. 
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Figure 8-5: Determination of 88Zr half-life (83.4 days) from its 392 keV gamma 

photopeak for both pre- and post-purification samples of the first production     

(5 measurements) 

 

 

Table 8-7: Regression equations and calculated t1/2 values of 88Zr for both pre- 

and post-purification samples of the first production 

 

1st production Regression equation R2 
Calculated t1/2 (days)= 

ln(2)/slope(λ) 

Pre-purification Y= -0.000383x + 0.741 0.988 75.39 

Post-purification Y= = -0.000337x + 1.232 0.976 85.78 
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Figure 8-6: Ln (NCR) of 88Y 898 keV photopeak versus time for both pre- and 

post-purification samples of the first production (5 measurements) 

 

 

Figure 8-7: Ln (NCR) of 88Y 1836 keV photopeak versus time for both pre- and 

post-purification samples of the first production (5 measurements) 
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Figure 8-8: Determination of 56Co half-life (78.76 days) from its gamma 

photopeaks (846 keV and 1238 keV) for the pre-purification sample of the first 

production 

 

 

Figure 8-9: Determination of 88Zr half-life (83.4 days) from its 392 keV gamma 

photopeak for both pre- and post-purification samples of the second production 

(5 measurements)  
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Table 8-8: Regression equations and calculated t1/2 values of 88Zr for both pre- 

and post-purification samples of the 2nd production 

 

2nd production Regression equation R2 
Calculated t1/2 (days)= 

ln(2)/slope(λ) 

Pre-purification Y= -0.000407x - 0.662 0.998 71.027 

Post-purification Y=  0.000310x - 0.674 0.989 93.171 

 

  

 

Figure 8-10: Ln (NCR) of 88Y 898 keV photopeak versus the time for both pre- 

and post-purification samples of the second production (4 measurements) 
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Figure 8-11: Ln (NCR) of 88Y 1836 keV photopeak versus time for both pre- 

and post-purification samples of the second production (5 measurements) 

 

 

Figure 8-12: Determination of 56Co half-life (78.76 days) from its gamma 

photopeaks (846 keV and 1238 keV) for the pre-purification sample of the 

second production (5 measurements) 
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8.6.3 Discussion  

 

The results show that three radioactive impurities were identified in the 89Zr solutions: 

88Zr, 88Y and 56Co. However, 88Zr was the main impurity amongst them and this is in 

agreement with the literature. This radioactive contaminant was identified in both pre-

and post-purification samples and for both productions. The presence of this 

radionuclide was confirmed by a determination of its half-life; over the period of the 

experiments, the logarithm of the counting rate decreased linearly with time, giving 

deviations of -9.6% and 2.9% from the expected half-life value for pre-and post-

purification samples respectively. Values of 88Zr activity as a percentage of 89Zr 

activity were 0.0012 and 0.0010 for the pre-and post-purification samples respectively 

in the first production, while those for the 2nd production were 0.0006 and 0.0005 

respectively. These ratios are less than those reported in the literature. However, it is 

difficult to compare values of radioactive contaminant activity with those of other 

researchers because the literature is sparse and shows great inconsistency. This is due 

to the fact that researchers have used different parameters, such as the thickness of the 

foil target, the material of the degrader, the thickness of the degrader and the proton 

energy used to irradiate the target. 

The second identified radioactive contaminant (88Y) was also seen in both pre-and 

post-purification samples and for both productions. However, its existence was not 

confirmed by a determination of its half-life as the logarithm of the counting rate 

increased with time over the period of the experiments (for both of its gamma peaks at 

898 keV and 1836 keV). This is due to the presence of the first impurity (88Zr), which 

exclusively decays to 88Y by electron capture. Thus, the percentage activity of 88Y was 

estimated from the first NCR readings as these were expected to be the closest to the 

actual values. These values were 0.0001-0.0003% for pre-purification samples and 

about 0.00005-0.0002% for post-purification samples.  

The third identified radioactive impurity was 56Co. This radionuclide was identified in 

just the pre-purification samples for both the first and the second productions, which 

means that the chemical purification was effective as the aim of this process is to 

remove elements with different chemical properties compared with the required 

nuclide. The existence of 56Co was confirmed by a determination of its half-life from 

the NCR of the gamma photopeaks at 846 keV and 1238 keV. Over the period of the 
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experiments, the logarithm of the count rate decreased linearly with time, giving 

differences from the expected half-life value of -20.8% and -13.3% for the 846 keV 

and 1238 keV photopeaks respectively in the first production. The corresponding 

values for the second production were 0.6% and -4.3% respectively. The ratio of 56Co 

activity to 89Zr activity was about 0.001-0.002%. The presence of this impurity is most 

likely due to the interaction of protons with 56Fe present in the yttrium target 

(56Fe(p,n)56Co). 
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9.1 Introduction 

This project investigated the presence of the radioactive impurities that are produced 

alongside the main radionuclides used for diagnostic or therapeutic applications. This 

results in degradation of the spatial resolution of diagnostic images and an increase in 

the absorbed radiation dose to the patient. 

9.2 HPGe detector at the University Hospital of Wales 

A HPGe detector was used in this study to detect, identify and quantify radioactive 

impurities in some available radionuclides. The type of the HPGe detector was an 

Ortec LO-AX device at the University Hospital of Wales, Cardiff. The detector was 

repaired during the course of the study, but all the experimental measurements reported 

in this thesis were made after repair. 

9.2.1 Peak area and count rate calculation 

In order to achieve precise and accurate photopeak detection and counting, an 

automatic peak-search routine was used. This method was implemented in a 

CANBERRA Genie-2000 software package. The software automatically subtracts the 

background, giving the net area of the peak (net counts). The net count rate (NCR) was 

then calculated by dividing the net counts by the counting live time. The calculated 

NCR was corrected to the beginning of the measurement to account for radioactive 

decay during the counting time 

9.2.2 HPGe energy calibration 

Energy calibration was performed on each day that measurements were made. Three 

standard energy calibration sources were used. These were 133Ba, 137Cs and 60Co. The 

sources were placed together at a distance of 8 cm from the HPGe detector to limit the 

dead time. The relationship between energy and MCA channel number was found to 

be essentially linear. 
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9.2.3 HPGe detector stability 

A long-lived  137Cs sealed source was used to investigate the count rate stability of the 

HPGe detector over the period of the study. For the detection system to be stable, the 

count rate for a given radionuclide should not change with time after correction for 

radioactive decay. Linear regression analysis of NCR with time showed that the 

detector was stable after repair. 

9.2.4 HPGe detection efficiency 

Seven gamma emitters were used  to estimate the absolute efficiency of the HPGe 

detector; these were 125I, 99mTc, 123I, 131I, 137Cs, 54Mn and 65Zn. Each of these sources 

was separately prepared as an aqueous solution in a Schott vial with a volume of 4 ml 

adopted as a standard. Some of these sources were prepared in house, while others 

were bought. The samples were prepared with different activities ranging between 0.9 

kBq and 12 kBq, which gave a reasonable dead time (less than 3%).  

The stability of the HPGe detector was tested for each gamma source. Investigation of 

sensitivity (NCR/Activity) variation with the time was done using linear regression 

analysis. It was found that the sensitivity of the HPGe detector was stable (P>0.05) 

over the period of each experiment for all the radionuclides except for 65Zn (second  

gamma peak at 1115 keV). However, the actual variation at that gamma line was small 

(CoV=0.35%), which was even less than that for the other gamma line of the same 

nuclide (1.2% for 511 keV). 

Half-life quantification of some sources was done by plotting the logarithm of the 

uncorrected NCR against time over the period of the experiment. The half-life 

determinations were done only for the short-lived radionuclides. It is difficult to do 

this for long‐lived radionuclides, for which the variation in disintegration rate may not 

be noticeable within a reasonably short period of time. The determined half-lives of 

99mTc and 131I revealed good agreement with the actual values, while the calculated 

half-life of 123I showed a difference of -17.67% from the actual value. This was due to 

the relatively short duration of the experiments (about 1 hr), which was much less than 

one half-life of this radionuclide (13 hrs). It is likely that counting for a longer period 

would improve the agreement between the experimental and actual values. 
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A curve of efficiency vs. photon energy was displayed using a log-log plot and separate 

curves fitted to the low and high energy regions. Due to the photoelectric effect, the 

efficiency increased rapidly at very low energies reaching a maximum at about 80 keV. 

Above this energy, the detection efficiency decreased due to Compton scattering, 

which is the dominant interaction at high energy. 

The efficiency curve obtained in this study showed a similar trend to that of a previous 

work in which exactly the same make and model of HPGe detector was used.  

9.2.5 HPGe energy resolution 

The energy resolution of the LO-AX HPGe detector was determined for the seven 

radionuclides. In general, the FWHM showed a linear response with energy in the 

explored range. However, the photopeak at 511 keV had a higher FWHM than 

expected. This is attributed to the fact that it is produced by annihilation radiation, 

unlike gamma rays produced by radioactive decay, therefore subject to greater 

Doppler broadening. The difference in FWHM between the annihilation radiation peak 

and other gamma peaks is more apparent with high resolution detectors, such 

as germanium detectors, than with low resolution detectors such as sodium 

iodide detectors.  

The FWHM at 122 keV (57Co) was 0.708 keV back to 1995 as mentioned in the 

detector manual provided by the supplier. However, at the present time the FWHM at 

this energy is 1.233 keV, which means that the resolution has worsened since that time.  

9.3 Radionuclidic purity of 99mTc eluates 

The radionuclidic purity of 98 99mTc eluates was assessed. These samples were eluted 

from two different size of generator. The first was delivered every Monday with a 

99Mo activity of 138 GBq and the other was delivered every Wednesday with an 

activity of 104 GBq. Fifty elutes were taken from the Monday generator and forty eight 

elutes from the Wednesday generator. The Monday generator was normally eluted 

once a day over five consecutive working days starting from Monday, while for the 

Wednesday generator, the first three eluates were obtained over three consecutive  

https://en.wikipedia.org/wiki/Gamma_ray
https://en.wikipedia.org/wiki/Radioactive_decay
https://en.wikipedia.org/wiki/Germanium
https://en.wikipedia.org/wiki/Sodium_iodide
https://en.wikipedia.org/wiki/Sodium_iodide
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working days starting from Wednesday, and a further two eluates were obtained on 

consecutive days after the weekend. 

The activity of 99mTc for each eluate was measured on the day after elution using a 

Fidelis secondary standard radionuclide calibrator that is used for testing the accuracy 

of field radionuclide calibrators such as those made by Capintec. The eluate volume 

(ml) was calculated by subtracting the empty vial weight from that of the vial 

containing the eluate and assuming a density of 1 g/ml. 

9.3.1  99mTc activity reading correction 

The dimensions of the eluate vial were different to those used as a standard (Schott 

vial). Moreover, the volume of the eluate differed from the 4 ml used as a reference 

volume. Thus, corrections were made for these different measurement conditions.  

For the vial correction, 4 ml of 99mTc eluate from the same stock solution was 

dispensed into a Schott and an eluate vial. The volumes were confirmed by weighing. 

Both vials were separately placed in the Fidelis radionuclide calibrator, activity 

readings were recorded every second for 1 minute (60 readings) and mean (SD) values 

calculated. The activity for the Schott vial was corrected for radioactive decay to the 

time of the eluate vial measurement. The ratio of eluate vial activity reading to Schott 

vial reading was calculated to give the vial correction factor C1, which was 0.999. 

For the eluate volume correction, a small volume of eluate was dispensed into an eluate 

vial and its volume increased by the addition of tap water to a total volume of around 

15 ml, giving a total of 21 different volumes. For each volume, activity was measured 

using the Fidelis calibrator and the mean (SD) of 60 readings calculated. The time of 

the measurement was also recorded.  

The activity reading for each volume was corrected for radioactive decay to the time 

of the first measurement. A set of eluate volume correction factors (C2) was calculated 

by dividing the corrected activity at each volume by the activity reading at the 

reference volume of 4 ml. The values of C2 were plotted against volume (ml) and a 

second-degree polynomial equation was fitted to the data. It was shown that as the 

volume of the solution in an eluate vial increased, the 99mTc activity recorded by the 

Fidelis calibrator decreased. 
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9.3.2      99Mo net count rate reading correction 

Similar corrections were needed for the NCR values for 99Mo. For the vial correction, 

the previous prepared Schott and eluate vials with 4 ml of eluate in each were 

separately placed on the HPGe detector. Spectra were acquired, NCR calculated and 

corrected for decay during counting for each of the four main gamma photopeaks of 

99Mo (181, 366, 739 and 778 keV).  

The Schott vial readings were corrected for radioactive decay to the measurement time 

of the eluate vial. Vial correction factors (C3) then calculated for each gamma 

photopeak by dividing the corrected NCR of the eluate vial by that of the Schott vial. 

Values in the range 0.962-1.007 were found. 

To obtain the 99Mo NCR eluate volume correction factors, a similar procedure was 

followed to that for the 99mTc activity volume correction. Spectra were acquired using 

the HPGe detector for each volume. The counting live time was set to 900s. In each 

case, NCR was calculated and corrected for decay during counting and further 

corrected for radioactive decay to the time of acquisition of the first spectrum.  

A set of 99Mo NCR volume correction factors C4 was obtained by dividing the 

corrected NCR at each volume by the corrected NCR at the reference volume of 4 ml. 

The values of C4 were plotted against volume (ml) and a second-degree polynomial 

equation was fitted to the data. It was shown that the count rate recorded from the 

sample progressively decreased with increasing volume. 

9.3.3 Determination of 99Mo activity 

The corrected 99mTc and 99Mo activity readings measured using the Fidelis 

radionuclide calibrator and the LO-AX HPGe detector respectively were further 

corrected for radioactive decay to the corresponding time of generator elution in the 

radiopharmacy. For both radionuclides, the activity concentration of the residual 

eluates were expressed in MBq/ml. The activities of the total volume of eluate that 

would be in the vial at the time of elution were then determined.  

It was found that measuring 99mTc activity and 99Mo activity using a Capintec 

calibrator gave approximate results and, in general, overestimated both. 99Mo activity 

values using the HPGe detector, and in turn the percentage of 99Mo to 99mTc activity, 
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were determined using the two gamma lines at 366 keV and 778 keV, which gave the 

least significant activity difference (2%) amongst all the gamma lines for both 

generators (P<0.01). The 739 keV line registered the least 99Mo activity, while the 181 

keV line gave intermediate values; these effects were due to the influence of sum 

peaks.  

It was found that the ratio of 99Mo/99mTc in all eluates was below the limit stated by 

the European Pharmacopoeia. 

It was concluded that there was no significant difference between the relative activity 

of 99Mo in the eluates from the Monday and the Wednesday generators (P>0.05). This 

was in agreement with the literature. However, one of the main contributions of this 

part of the study was an investigation of the relationship between the ratio of 99Mo 

activity to 99mTc activity and eluate number. It was concluded that the ratio decreased 

logarithmically with eluate number for both generators. 

The other main contribution was an investigation of the differences in activity ratio 

between all the eluates using the t-test. According to the literature, such investigation 

has been done for just eluates 1, 2 and 4. The results show a tendency for differences 

to be significant only between the early and late eluates (Table 9-1 and Table 9-2).  

 

Table 9-1: Differences between % 99Mo activity in Monday generator eluates. 

No means no significant difference while Sig. means significant difference 

(p<0.05) 

 

Eluate 

Number 
1 2  3 4 

2 No    

3 Sig. No   

4 No No No  

5 Sig. Sig. Sig. No 
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Table 9-2: Differences between % 99Mo activity in Wednesday generator 

eluates. No means no significant difference while Sig. means significant 

difference (p<0.05) 

 

Eluate 

Number 
1 2  3 5 

2 No    

3 No No   

5 Sig. Sig. No  

6 Sig. Sig. Sig. No 

9.3.4 Determination of 103Ru contamination in 99mTc eluates 

The radionuclide 103Ru was observed in 21 of the 98 eluates from the two generators. 

As this radio-contaminant was not identified in the spectra of the eluate used for the 

NCR volume and vial correction, correction factors derived from the closest gamma 

line of 99Mo (366 keV) were used. 

In all cases it was found that the ratio of 103Ru to that of the main radionuclide 99mTc 

was within European Pharmacopoeia requirements (5×10-3%). However, the results 

had a high statistical uncertainty (7% maximum). 

There was a large decrease in the percentage of 103Ru/99mTc activity after the first 

elutions with little change thereafter. 

9.4 Radionuclidic purity of iodine radiopharmaceuticals 

Sodium iodide labelled with 123I and 131I is the simplest inorganic pharmaceutical that 

incorporates radioactive iodine. Investigation of the radioactive impurities in these 

radionuclides was done. 

 

9.4.1 Radionuclidic purity of 123I 

Ten samples of 123I sodium iodide solution were prepared in house. These samples 

were prepared to the same standards as used for HPGe detector efficiency calibration 

i.e. standard vial (Schott vial) with a standard volume (4 ml). The 123I activity of the 
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prepared samples was determined using the Fidelis secondary standard radionuclide 

calibrator. 

The acquired spectra showed the presence of the expected radionuclidic impurities; 

125I and 121Te. However, the main contribution of this work was the identification of 

other impurities, which have not been reported in the literature; these were 126I, 124I, 

96Tc, 95mTc.  

125I was identified in all  the samples included in this study and it was the impurity 

with the highest relative activity, 0.0145% of that of 123I. This value was within the 

limits reported by the supplier. 

The second impurity was 121Te and this was also seen in all  the samples. Ratio of the 

activity of this contaminant to 123I  activity was 0.00528%, which is also within the 

limit provided by the supplier. Two gamma lines of 121Te were analysed in this study: 

573keV and 507keV. These were the strongest lines. There was a significant difference 

in the activity obtained with these two lines (P<0.05) and this was attributed to the 

existence of sum peaks. However, the percentage difference between the activites was 

just 1.048%. Thus, both of them were included in the calculation of 121Te 

contamination activity. 

126I and 124I were identified in some of the samples: 126I was found in 8 samples 

whereas 124I was identified in just 4 of them. The activity ratio of these two impurities 

were calculated to be 8.51×10-6 % and 2.43×10-4 %respectively.  

Similarly, 96Tc and 95mTc were identified in some of the samples of this study. 96Tc 

was identified in six samples, whereas 95mTc was identified in just three. The activity 

ratios of these two impurities were 5.58×10-5 % and 4.13×10-6 % respectively. 

 

9.4.2 Radionuclidic purity of 131I 

Five samples of sodium iodide (131I) solution were also prepared in standard vials and 

with standard volumes. No impurities were identified within the acquired spectra, in 

agreement with the literature. However, a gamma peak at 314 keV was seen in all the 

131I spectra. This was not one of the 131I gamma peaks and its origin was not identified. 

It may be possible to gain further information by determining the half-life of the NCR 

of this peak by repeated measurements. 
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9.5 Radionuclidic purity of gallium-68 radiopharmaceuticals 

Gallium-68 is a positron emitting radionuclide that is having a great impact in nuclear 

medicine. 68Ga in this study was produced by PETIC for the first time in the UK using 

a liquid target in the form of 68Zn nitrate solution. The main contribution of this part 

of the study was the identification of radioactive contaminants and the measurement 

of the ratio of their activities to 68Ga activity. 

Pairs of liquid samples (with the standard 4 ml of volume solution and in a Schott vial) 

were prepared before and after chemical purification of the target material for three 

validation productions.  

In this case, the activity of the 68Ga was measured using a Capintec CRC-25R 

radionuclide calibrator as there was no identified Fidelis calibration factor for 68Ga. 

The analysed HPGe detector spectra showed the presence of 67Ga (gamma energy 93, 

184, 209, 300 and 887 keV), 66Ga (833 keV and 1039 keV) and 56Co (846 keV, 1038 

keV and 1238 keV) as impurity radionuclides. 67Ga was the main impurity amongst 

them. The experimental half-life of this radionuclide showed good agreement with the 

actual value. The percentage activity of 67Ga to 68Ga for the first production was found 

to be between 0.66% and 0.83% at the EOB for the pre-purification sample, while it 

was 0.42%-0.49% for the same production after purification.  

However, better productions were achieved at the second and third attempts with 67Ga 

activity in the range 0.17%-0.19% and 0.19%-0.23% respectively for the pre-

purification samples and 0.20% to 0.23% respectively for the post-purification 

samples. 

The relative activity of 66Ga was about 0.006% before purification for the first 

production and no trace was found in the purified sample. A smaller value (0.003%) 

was obtained in the second production for both the pre-purification and post-

purification samples. The experimental half-life of this impurity showed good 

agreement with the actual value with a difference of only -3.6%.  

This other impurity (56Co) was not identified by other researchers. Its activity ratio was 

about 0.0005% in the first production for the pre-purification sample with only traces 

identified in the post-purification sample. Smaller ratios (0.0001%) were noticed in 

the second and third productions for pre-purification. No traces were found in the 
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purified samples which means that the chemical purification was effective as the aim 

of his process is to remove elements with different chemical properties compared with 

the required nuclide. 

9.6 Radionuclidic purity of cyclotron-produced zirconium-89  

89Zr is a radiometal that has emerged as a promising label for targeted molecular 

imaging. The demand for 89Zr for research purposes is increasing as this radionuclide 

remains in tumour cells after its administration so that time series studies are possible 

without administrating further radiopharmaceuticals. 

The main contribution of this part of the study was confirm PETIC’s ability to limit 

the production of long-lived radionuclidic impurities in 89Zr to negligible levels. Pairs 

of 89Zr liquid samples (with the standard 4 ml volume of solution in a Schott vial) were 

prepared before and after chemical purification of the target material for two validation 

productions. Like 68Ga, the activity of 89Zr was measured in a Capintec calibrator and 

for the same reason. The samples were left for a sufficiently long time to allow the 

main radionuclide (89Zr) to decay. 

The acquired HPGe detector spectra showed the presence of 88Zr, 88Y and 56Co. 

However, 88Zr was the main one amongst them. This radioactive contaminant was 

identified in both productions; its existence was confirmed by the experimental half-

life which showed agreement with the expected value with differences of -9.6% and 

2.9% for the two samples. The activity ratios of 88Zr to the main radionuclide were 

0.00112%and 0.00095% for the pre-and post-purification samples of the first 

production respectively, while those for the second production were 0.00065% and 

0.00053% respectively. 

88Y was the other radioactive contaminant identified in both productions. However, it 

was difficult to determine its half-life as the logarithm of the counting rate showed an 

increase with the time over the period of the experiments. This was attributed to the 

existence of the first impurity (88Zr), which exclusively decays to 88Y. Therefore, the 

activity ratio of 88Y was determined using the first acquired spectrum as this was 

expected to be the closest to the actual value. These ratios were 0.0001-0.0003% for 
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the pre-purification samples and about 0.00005-0.0002% for the post-purification 

samples.  

The third radioactive impurity was 56Co. It was identified just in pre-purification 

samples for both the first and the second production, which means that the chemical 

purification was effective as the aim of this process is to remove elements with 

different chemical properties compared with the required nuclide. The determination 

of its experimental half-life gave differences from the expected value of -20.8% and    

-13.3% based on the two photopeaks at 846 keV and 1238 keV respectively for the 1st 

production. The corresponding values were 0.63% and -4.29% for the 2nd production. 

The ratio of the activity of this radioactive cobalt to that of the main radionuclide (89Zr) 

was about 0.001-0.002%. 

9.7 Conclusion 

The work described in this thesis includes several contributions to the advancement of 

knowledge as regards radioactive impurities in medical radionuclides and the methods 

used to identify and quantify such impurities. The radionuclides investigated 

comprised 99mTc generator eluates, commercial 123I and 131I sodium iodide solutions 

and cyclotron-produced 68Ga and 89Zr. 

A LO-AX HPGe radiation detector (Ortec) was used for the experimental aspects of 

the work because of its availability at the University Hospital of Wales. This device is 

designed for the detection of relatively low energy photons (< 100 keV), but the 

gamma emissions from the radionuclides that were investigated ranged in energy from 

35-1836 keV. Nevertheless, the detector provided adequate sensitivity for the 

detection of even the highest energy photons with the source placed in contact with 

the detector cap and the use of sufficiently long spectrum acquisition times. The 

efficiency calibration confirmed that the LO-AX detector may be used for high energy 

gamma radiation and showed good agreement with a previous study that used the same 

instrument. It also showed the usefulness of the Fidelis secondary standard 

radionuclide calibrator (Southern Scientific) in preparing radionuclide sources for 

detector calibration. 
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As expected, in all the eluates from the Tekcis 99mTc generators (Curium), the relative 

activity of 99Mo expressed as a percentage of 99mTc activity was found to be within the 

limits recommended by the European Pharmacopeia. The HPGe detector gave more 

reliable results than the conventional molybdenum breakthrough test using a lead 

shield and a radionuclide calibrator. No significant difference in relative 99Mo activity 

was found between corresponding elutions of the generators delivered on a Monday 

(138 GBq reference activity) and Wednesday (104 GBq reference activity). However, 

significant differences were noted between the early and late eluates from each 

generator. Overall, it was found that the relative 99Mo activity decreased 

logarithmically with eluate number and this has not been reported previously. This 

suggests that as regards 99Mo content, the later eluates are safer for patients than the 

earlier ones because they deliver lower additional radiation dose. 

The radionuclide 103Ru was also identified as an impurity in some 99mTc generator 

eluates, but at a much lower relative activity than 99Mo and within European 

Pharmacopoeia limits. This means that it could not be detected by a conventional 

breakthrough test, only by gamma spectroscopy. The relative activity of 103Ru 

decreased rapidly after the first elution; this suggests that, in effect, its presence may 

be eliminated by pre-elution of the generator. 

For the commercial Na123I solution (GE Healthcare), the main contaminants were 125I 

and 121Te, for both of which the relative activity was within European Pharmacopeia 

limits. However, also observed were trace activities of 124I, 126I, 95mTc and 96Tc, which 

have not been reported in the literature. As these impurities were found only in some 

samples with very small relative activity and as their half-lives are similar to or shorter 

than the half-life of the longer-lived main impurity (125I), they do not present a 

significant hazard to patients. For the commercial Na131I solution (also GE 

Healthcare), no impurities were identified from the pulse height spectra. However, a 

gamma photopeak was noted at 314 keV; this is not related to 131I and its origin is 

unknown. 

The radionuclides 68Ga and 89Zr were produced with the Cyclone 18/9 cyclotron (IBA) 

in PETIC on the University Hospital of Wales site. The identified impurities were 

67Ga, 66Ga and 56Co for 68Ga and 88Zr, 88Y and 56Co for 89Zr. In most cases, it was 

possible to confirm the identity of the contaminants through half-life measurement as 
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well as photopeak identification on pulse height spectra. For both main radionuclides, 

the relative activities of the impurities were within the PETIC goal of 2% or less. The 

results of this study may be used to optimise the irradiation conditions for the 

production of the two radionuclides. This is work that is still in progress as PETIC 

pursues its goal of developing clinically useful radiopharmaceuticals labelled with 

68Ga and 89Zr. 

9.8 Future work 

 

The study has identified possibilities for future work as indicated below. 

• It would be beneficial to extend the efficiency calibration of the LO-AX HPGe 

detector using radionuclides that provide a wider range of photon energies and 

a greater number of energies at about 80 keV, where the efficiency curve 

reaches a maximum. This would improve the usefulness of the detector for a 

variety of applications at the University Hospital of Wales. 

• In some nuclear medicine applications, the 99mTc generator eluate (in the 

chemical form of sodium pertechnetate) is administered directly to patients. In 

these cases, the patients would also receive any radionuclidic contaminants that 

may be present in the eluate. However, it would be interesting to measure the 

radionuclidic purity of more complex 99mTc labelled radiopharmaceuticals (as 

opposed to generator eluates) to see whether the 99Mo and 103Ru impurities are 

excluded by the radio-labelling process. 

• Further work is needed to identify the origin of the 314 keV photopeak in the 

Na131I spectra. A possible approach would be to do repeated measurements 

over a period of time on individual samples to see whether a half-life could be 

determined from the change in net count rate. 

• The cyclotron production of 68Ga and 89Zr is still under development by PETIC. 

There is considerable scope to refine the process by identifying and quantifying 

impurity radionuclides after each modification of the proton irradiation 

conditions. In due course, the approach could also be applied to determine the 

radionuclidic purity of an extended range of cyclotron-produced radionuclides 

and the final radiolabelled radiopharmaceuticals. 
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There is a bright and exciting future for the application of high-resolution gamma 

spectroscopy in the advancement of radiopharmacy and nuclear medicine. 
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