

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/126031/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Dai, Xiaoxia, Wang, Xinwei, Long, Yunpeng, Pattisson, Samuel, Lu, Yunhao, Morgan, David John, Taylor, Stuart H., Carter, James H., Hutchings, Graham J., Wu, Zhongbiao and Weng, Xiaole 2019. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: a hydrolytic destruction route. Environmental Science and Technology 53 (21), pp. 12697-12705. 10.1021/acs.est.9b05088

Publishers page: http://dx.doi.org/10.1021/acs.est.9b05088

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Supporting Information

Efficient Elimination of Chlorinated Organics on A Phosphoric Acid Modified CeO₂ Catalyst: A Hydrolytic Destruction Route

Xiaoxia Dai, Xinwei Wang, Samuel Pattisson, Yunhao Lu, David J. Morgan, Stuart H. Taylor, James H. Carter*, Graham J. Hutchings, Xiaole Weng*, Zhongbiao Wu

Number of Pages: 5 Number of Figures: 4 Number of Tables: 3

Figure S1. Optimized model of CeO_2 (110) with oxygen vacancy. The models were constructed by removing single oxygen atom from $CeO_2(110)$ supercell to introduce oxygen vacancies. During geometry optimization, the atoms in the top two layers of CeO_2 slab were allowed to relax while atoms in the bottom two layers were fixed in their optimized bulk positions.

Figure S2. TEM images of CeO₂ and HP-CeO₂

	p load	ling				
sample	(mmol g ⁻¹)	(nm ⁻²)	surface area	lattice parameter	Ce ³⁺ /Ce _{total} ^a	
			$(m^2 g^{-1})$	(Å)		
CeO ₂	0	0	96	5.411	29%	
HP-CeO ₂	0.21	1.18	108	5.413	26%	

Table S1. Physical properties of HP-CeO₂ and CeO₂

Note: (a) caculated from XPS results

Figure S3. Stability test of CB oxidation over HP-CeO₂ at 230 °C. Reaction condition: GHSV at 10,000 mL/(g h), chlorobenzene at ca. 500 ppm, H₂O at 5000 ppm, N₂ flow rate at ca. 145 mL/min, O₂ flow rate at ca. 15 mL/min.

Figure S4. *in-situ* FTIR spectra of CB oxidation at 150 °C over CeO₂ catalyst in dry condition.

Species	Adsorption energy (eV)
O ₂ /O _{vac}	2.20
H_2O/O_{vac}	1.57
O ₂ +H ₂ O/O _{vac}	2.82
C ₆ H ₅ Cl/O _{vac}	0.39
C ₆ H ₅ Cl+O ₂ /O _{vac}	2.37

Table S2. Adsorption energies on various active sites

C ₆ H ₅ Cl+H ₂ O/O _{vac}	1.21
O ₂ /Ce	0.20
H ₂ O/Ce	0.62
O ₂ +H ₂ O/Ce	0.72
C ₆ H ₅ Cl/Ce	0.48
C ₆ H ₅ Cl+H ₂ O/Ce	1.81
O ₂ /P group	-1.59
H ₂ O/P group	0.63
O ₂ +H ₂ O/P group	-0.94
C ₆ H ₅ Cl/P group	0.50
C ₆ H ₅ Cl+O ₂ /P group	-0.56
C ₆ H ₅ Cl+H ₂ O/P group	2.77
HCl/P group	0.74
C ₆ H ₅ OH/P group	0.76

Table S3.	Ingredients	of 17 toxic	dioxins in	the off-gas	of CeO ₂ and	d HP-CeO ₂ at	250 °C to	est with
H ₂ O stream	m							

			CeO ₂		HP-Ce	
Commonwel	Detection	TEF	Cout (pg)	I-TEQ	Cout (pg)	I-TEQ
Compound	limit (pg)			(ng/m ³)		(ng/m ³)
2378TCDD	0.5627	1	<0.5627	ND	< 0.5627	ND
12378PeCDD	0.6234	0.5	<0.6234	ND	< 0.6234	ND
123478HxCDD	0.6574	0.1	<0.6574	ND	<0.6574	ND

123678HxCDD	0.625	0.1	1.4879	0.00155	< 0.625	ND
123789HxCDD	0.6931	0.1	<0.6931	ND	<0.6931	ND
1234678HpCDD	0.5632	0.01	6.2856	0.000655	<0.5632	ND
OCDD	0.7633	0.001	4.2767	4.45E-05	<0.7633	ND
2378TCDF	0.4675	0.1	0.9775	0.001018	<0.4675	ND
12378PeCDF	0.642	0.05	1.2645	0.000659	<0.642	ND
23478PeCDF	0.6132	0.5	1.04855	0.005461	<0.6132	ND
123478HxCDF	0.6015	0.1	2.3201	0.002417	<0.6015	ND
123678HxCDF	0.6329	0.1	2.5632	0.00267	<0.6329	ND
123789HxCDF	0.6512	0.1	0.57475	0.000599	<0.6512	ND
234678HxCDF	0.6877	0.1	2.3671	0.002466	<0.6877	ND
1234678HpCDF	0.7022	0.01	5.3266	0.000555	<0.7022	ND
1234789HpCDF	0.6934	0.01	<0.6934	ND	<0.6934	ND
OCDF	0.7142	0.001	3.3276	3.47E-05	<0.7142	ND
Total				0.01813		ND

Note: (1) CDD/CDF: chlorinated dibenzo-p-dioxin/dibenzofuran, structural formula represents as Fig S10 ; (2) ND: not detectable; (3) I-TEQ = Cout \times TEF; (4) TEF: Toxic Equivalent Factors, toxic factors relative to the most toxic congener, 2,3,7,8-tetrachlorodibenzo-dioxin; (5) I-TEQ: International Toxicity Equivalence Quotient, the weighted value of the concentrations of 17 PCDD and PCDF congeners with chlorine in the 2, 3, 7 and 8 positions on the dibenzo skeleton, weighted according their Toxic Equivalent Factors (TEF) relative to the most toxic congener, 2,3,7,8tetrachlorodibenzo-dioxin.

Polychlorinated dibenzo-p-dioxins

Structure diagrams of chlorinated dibenzo-p-dioxin/dibenzofuran