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Abstract

We report on metal-assisted chemical etching of Si for the synthesis of mechanically-

stable, hybrid crystallographic orientation Si superstructures with high aspect ratio,

above 200. This method sustains high etching rates and facilitates reproducible results.

The protocol enables the control of the number, angle and location of the kinks via

successive etch-quench sequences. We analysed relevant Au mask catalyst features to

systematically assess their impact on a wide spectrum of etched morphologies that can

be easily attained and customized by fine tuning of the critical etching parameters.

For instance, the designed kinked Si nanowires can be incorporated in biological cells,

without affecting their viability. An accessible numerical model is provided to explain

the etch profiles and the physico-chemical events at the Si-Au-electrolyte interface and

offers guidelines for the development of finite-element modeling of metal-assisted Si

chemical etching.
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Introduction

Nanostructures unfold exciting avenues for the well-established Si-based semiconductor in-

dustry. Exceptional properties for novel Si-enabled nanomaterials can harness high perfor-

mance devices in the fields of electronics, photonics, energy conversion and storage as well

as biotechnology.1–11 However, the synergy between these properties and their target appli-

cation requires precise tuning of the characteristic parameters of the nanostructures such as

morphology, size or crystallographic orientation. In particular, controlled design of Si nanos-

tructures, including silicon nanowires (SiNWs), is a prerequisite in order to explore their

potential for biomedical purposes. Understanding SiNW-cell interaction has been identified

as a subject of primary importance and seminal work addressed the challenging mismatch

between the physico-chemical properties of the SiNWs, like topographic features and surface

functionalization, and the biological matter. These studies offered insight into the design

of substrate-free single SiNWs for integration with biotic and semi-biotic systems12,13 and

cellular responses to SiNWs arranged in arrays and three-dimensional architectures.14–17

A plethora of techniques were proposed for the reliable fabrication of Si nanostruc-

tures and SiNWs.18–24 Yet, most of these methods require specialized equipment and in-

volve highly sensitive procedures for mass production. In contrast, metal-assisted chemical

etching (MACE) associated with a nanostructured continuous catalyst profits from the sim-

plicity of the electroless etching process while allowing for the control of various parameters:

morphology (solid or porous), diameter, length, and to a certain extent, crystallographic

orientation.18,21,25–29 MACE essentially works as a localized, short-circuited, galvanic cell

comprising an intimately connected Si anode with a nano-shaped catalyst cathode in a hy-

drofluoric acid (HF) and hydrogen peroxide (H2O2)-based electrolyte, that controls both the

H2O2 reduction and Si dissolution.

While the general understanding of MACE emphasizes on the anisotropic 〈100〉-etching

predisposition as prescribed by the back-bone theory, non-〈100〉 SiNWs have been demon-

strated, regardless of the initial Si wafer orientation.25 In particular, hybrid orientation

4



SiNWs or kinked SiNWs (k-SiNWs) are extremely interesting from both theoretical and

experimental standpoints considering their morphology that has a positive impact on the

photon absorption, elastic properties as well as thermal insulation.27,30–32 Targeted hybrid

peptide–k-SiNWs, can be tailor-made from optimized directed assembly of biological mat-

ter,12,33 with kinks, diameter modulations and asymmetric features adapted to the vis-

coelastic response of the cellular membranes. In this context, the development of simple

approaches that allow for large-area, controlled fabrication of k-SiNWs is essential for ex-

ploring their physical properties and enable their use as building blocks in complex pat-

terned environments.34–36 Along this direction, several reports analyzed advanced etching

schemes to control the etching direction and ultimately engineer custom crystallographic su-

perstructures.37–40 Temperature and oxidant agent concentration were identified as critical

parameters for suppressing the preferred <100> etching direction. For instance, temperature

control of the electrolyte was used to wafer-scale, zigzag etch of SiNWs on (111)-Si wafers.40

Alternating between different etching solutions with different oxidant concentration allows

the etching of orientation-modulated SiNWs on (111)-Si wafers.25 The etching would fol-

low <100> etching at low oxidizing agent concentration and non-<100> etching at higher

concentrations.

Similarly, a recent report also details the controlled fabrication of k-SiNWs via the use of

various electrolytes where the etchants’ availability is constrained because of additives in the

etching environment.37 Addition of high surface tension additives like glycerol can greatly al-

ter the availability of etchants creating diffusion barriers for the chemical species. Indeed, the

miscibility of the etchants is a critical MACE parameter, in particular for etching conditions

without mechanical agitation. As a matter of fact, the kinks are almost exclusively asso-

ciated with static etching conditions, while stirring typically renders vertical 〈100〉 SiNWs

since the etchants are continuously replenished. However, such a procedure cannot account

for reliable large-scale fabrication of high aspect ratio k-SiNWs, ubiquitously required for

surface-to-volume sensitive applications, considering that the induced perturbations are local
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and difficult to control. Because Si MACE is a dynamic process with parameters changing as

the etching advances, controlling the etching patterns to produce k-SiNWs, such as deviating

the catalyst motion and turning on and off crystallographic dependencies are particularly

challenging. For instance, the noble metal catalyst plays a fundamental role in MACE, ac-

celerating the dissolution of Si in the areas where an intimate contact is preserved, while

exclusively dictating the features of the resulting nanostructures such as shape and crystal-

lographic orientation. While the motion of catalyst is uniform, it can be ruled by its shape:

a metal nanoparticle has six degrees of freedom, while a pinned catalyst such as a rigid, con-

tiguous mask is able to move with three degrees of freedom, two translational components

and one rotational. Template-based MACE with nano-patterned Au masks is the landmark

for large-scale, controlled fabrication of SiNWs and k-SiNWs. Thus, assessing the impact of

the catalyst shape on the etched morphologies is critical for developing a reliable synthesis

of Si superstructures.

Here we describe a simple and efficient k-SiNWs etching scheme that facilitates the fabri-

cation of high aspect ratio Si superstructures with hybrid crystallographic orientation. This

etching mechanism relies on repetitive etch-quench sequences to induce the kinks using low

surface tension ethanol co-solvent. Multiple etching baths are no longer required since the

etchant availability is modulated via the methanol quencher, and risks related to the etchant

baths imbalance at advanced etching stages are reduced. This one-pot-type synthesis facil-

itates the etching of mechanically-stable, high aspect ratio superstructures at high etching

rates. The systematic assessment of the main MACE parameters, namely Au mask thickness

coupled with the opening diameter, has allowed the etching of a wide spectrum of nanos-

tructures. We highlight that the development of well-controlled morphology k-SiNWs could

help uncover cellular responses and interactions with extracellular matrix. Experimental

data are coupled with a numerical model to explain the etched morphologies as well as the

observed kink angles. We particularly emphasize: (i) mass transport of the chemical species,

(ii) Si interfaces from an electrical charge transport perspective, (iii) flow and passive mixing
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in microchannels delimited by k-SiNWs and (iv) the general mechanism for the k-SiNWs

formation. The knowledge provided here helps to clarify the mechanism of kinks formation

and enables large-scale fabrication of high aspect ratio k-SiNWs, while establishing novel

guidelines for the development of MACE complex numerical simulations.

Controlled k-SiNWs synthesis

Figure 1a presents a route for the controlled fabrication of k-SiNWs with high aspect ratio,

enabled by a simple MACE scheme. The first step is the nano-patterning of the Au catalyst

mask via colloidal lithography. This operation requires the self-assembly of closed-packed

polystyrene (PS) spheres of 260 nm in diameter on the Si substrate. The PS spheres are

further etched with reactive ion etching to the desired size representing the final diameter

of the SiNWs. Subsequently, the Au catalyst is deposited on the PS-decorated Si substrate.

The nano-patterned Au mask is obtained by lift-off of the PS spheres with adhesive tape. The

next step is the Si etching in an HF and H2O2-based etchant with ethanol as co-solvent, under

static etching conditions. To form the kinks at the desired location, Si etching is interrupted

at specific times by submersing the sample in methanol. Varying these etch-quench sequences

at specific times renders superstructures of k-SiNWs; Ep is used for designating an etching

step with the etching time of p minutes and Qq for a quenching event lasting q minutes.

The number of kinks n is simply controlled by the performed (n +1) [E−Q] sequences. The

cross section scanning electron microscopy (SEM) pictures in Figure 1a show highly-ordered

k-SiNWs fabricated by 5 sequences E5 − Q1. On the one hand, by altering the etching

time we can control the length of the etched segment and related to this, the location

of the kink. On the other hand, the geometrical parameters of the gold catalyst mask

are extremely important. They will influence the porous or solid nature of the etched Si

nanostructures, the etching rate as well as the mechanical stability of the Au mask during the

downward movement and the gas evolution reactions associated with Si etching. As a matter
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of fact, catalysts greatly impact the mass transport of active species and reaction products.18

For instance, as the catalyst thickness decreases, transport of reactants and byproducts is

expected to occur also via small pores in the catalyst. In addition, collision and coalescence of

gas bubbles can alter the Si-catalyst contact resulting in hazardous etching and, ultimately,

in catalyst delamination. To get insight into the etching possibilities provided by various

catalyst morphologies, we evaluated different catalyst thicknesses, t (10 nm, 15 nm, 30 nm),

associated with different opening diameters, s (100 nm, 120 nm, 150 nm). Details of the

deposited Au mask morphologies are shown in Figure S1.

Kink physical parameters

Figure S2 shows the kink formation according to the number of times the reaction was

quenched, for a 10 nm thick Au mask and 3 different hole diameters. For this particular case,

vertically aligned NWs are obtained for the first E2 segment. The type of the first segment

is particularly intriguing: vertical NWs are obtained only for thin Au masks, while for larger

Au thickness the etching proceeds in a non-〈100〉 direction, as illustrated in Figure S3. After

a 2-minute quenching time, the etching proceeds in a non-〈100〉 direction, leading to a kink

formation. To characterize the kink, its segments’ length and angle have to be considered

in relation to the Au mask’s geometrical parameters. For this study, to control the kink’s

segment length, we used etching times, p, ranging from 2 to 5 minutes. The k-SiNWs

fabricated by 9 repetitive E2 − Q1 and E5 − Q1 sequences are shown in Figure 1b for a

t = 15 nm and s = 120 nm Au mask. Figure 1c shows the k-SiNWs fabricated with a 10

nm thick Au mask with s equal to 150 nm and 100 nm and reveals the tilted nature of the

k-SiNWs, dictated by s. Note that the length is reported as the etching depth of the Si

substrate, normal to the surface. The average etching rates evaluated for various t and s

are shown in Figure 1d. The highest etching rates are obtained for thin catalysts since the

active species can easily diffuse along the grain boundaries. The etching rates are found to

generally increase as s increases. Specifically, the highest etching rate reaches 1.4 µm per
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Figure 1: MACE details. a. Sketch of MACE for synthesis of k-SiNWs. First, the Si
substrate is patterned with a holey Au mask by PS nanosphere lithography. Second, the
nanostructuring of Si follows repetitive etch-quench [E − Q] sequences. The SEM pictures
show the k-SiNWs with s = 120 nm resulted after 5 successive E5 −Q1 sequences. b. High
aspect ratio k-SiNWs fabricated by 9[E2 − Q1] (left) and 9[E5 − Q1] (right) sequences for
a t = 15 nm, s = 120 nm Au mask. c. The longitudinal axis of the k-SiNWs deviates by
different angles with respect to the Si substrate, depending on the diameter of the Au mask
openings [150 (left) or 100 nm (right)]. The Au mask is 10 nm thick. d. Etching rates
associated with the geometrical parameters of the Au masks. e. Occurrence probability for
the observed kink angles as a function of s. The dashed lines in the histograms are fits of
experimental data and are only intended as guides to the eye.
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minute for t = 10 nm, s = 150 nm Au masks since less Si has to be removed. Such fast

etching rates are not common for MACE since aggressive gas evolution leads to Au mask

delamination. The quenching step mitigates hazardous etching and maintains etching speed

accuracy as discussed later.

The angles of the kinks are found to be dependent on s, as it can be observed from the

statistical analysis of Figure 1e. Thus, for small diameters, there is a clear angle preference,

while for bigger diameters, a wide range of angles is possible. The dependency of the kink

angle as a function of metal mask thickness was further evaluated: t does not appear to

influence the distribution of the kink angles, as shown in Figure S4.

Finally, note that kinks will also form by employing a thin catalyst mask with a random

pattern (Figure S5). Thus, kink generation does not require a uniformly patterned or a

pinned catalyst. Nonetheless, the stability of the mask is expected to be affected by gas

bubble evolution leading to the loss of Si-Au contact and eventually to Au exfoliation and

the stop of the etching (Figure S4 and S5).

Customized Si superstructures

Our etching protocol combines the simplicity and scalability of MACE to enable functionality-

driven design of Si nanostructures. Figure 2 shows the fabrication of ordered, high aspect

ratio superstructures of k-SiNWs by quenching the etching at user-defined points during

MACE. These results indicate that k-SiNWs and complex Si nanostructures with a large

range of angles and user-defined segment lengths are possible by simply controlling the

etching time and the catalyst parameters. The catalyst mask parameters are intimately

coupled with the etching rates and curvature effects and will greatly influence the k-SiNWs

morphology. SEM images in Figure S6 and S7 provide further information on the etch-

ing opportunities of this procedure. Zigzag SiNWs are locally observed under the studied

etching conditions as shown in Figure S8. Once a SiNW segment is etched, the electrolyte

concentration is altered by flushing the sample with methanol. Flushing with water renders
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Figure 2: I A wide spectrum of morphologies can be achieved by superposing different etching
times with different catalyst shapes. a. t = 30 nm, s = 150 nm, Ep−Q1 ; p = {5, 3, 3, 3, 5}. b.
t = 15 nm, s = 120 nm, Ep−Q1 ; p = {5, 7, 3, 3, 3}. c. t = 30 nm, s = 120 nm, Ep−Q1 ; p =
{2, 2, 2, 3, 3, 3}. d. t = 30 nm, s = 120 nm, Ep − Q1 ; p = {3, 2, 2, 2, 2}. e. t = 15 nm,
s = 120 nm, Ep − Q1 ; p = {5, 3, 3, 3, 3}. f. t = 30 nm, s = 150 nm, Ep − Q1 ; p = {5, 5}.
II Interfacing k-SiNWs with mammalian cells. a. k-SiNWs (red) distribution and their
intra- and intercellular interfaces in a dense culture media. b. Penetration of k-SiNWs into
individual cells seeded on micropatterned substrates. c. k-SiNWs interfacing with nucleus
(blue) as well as the actine cytoskeleton (green).
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highly porous SiNWs as displayed and further discussed in Figure S9 and Figure S10. Such

versatile fabrication opens extensive research possibilities to fully explore and activate the

properties of these Si superstructures.

We highlight key fabrication features of MACE strategies developed for k-SiNWs and

high aspect ratio Si superstructures in Table 1. While k-SiNWs can be formed by several

MACE methods, the geometrical parameters remain hard to control, with kinking or NW

diameter and segment modulation being randomly (or progressively37) attained. The present

one-pot synthesis technique offers precise control over the segment length and aspect ratio,

reaching values commonly observed in studies with mechanically-clamped catalysts.41 Note

that the morphology of the surface plays an important role in establishing the overall me-

chanical properties of SiNWs. In this respect, the possibility to generate, besides diameter

modulations during synthesis,42,43 a catalyst-dense coating as functional layer is peculiarly

appealing.

Table 1: Overview of MACE protocols enabling k-SiNWs and high aspect ratio Si structures.

Details Type AR Surface Source
Vertical directionality-controlleda SiNWs >100:1 Smooth Ref.41

Nano-shaped catalyst-drivenb k-SiNWs '20:1 Smooth (Rough) Refs.25,38–40,44

Diffusion-controlledc k-SiNWs '20:1 Smooth Ref.37

One-pot synthesis k-SiNWs >200:1 Smooth (Rough) This work
a The catalysts are mechanically clamped during the process. b Patterned metal catalysts
display superior performances compared to nano-particle based catalysts. c Zigzag SiNWs

can be formed as well above a critical nanowire length of about 1 micron.

High aspect ratio SiNWs and k-SiNWs as well as Si superstructures obtained by MACE

enabling straightforward cell internalization experiments are essentially missing, as specific

applications demand different categories of k-SiNWs.45 The combination of biological cells

and SiNWs has been recognized as an efficient way to control the differentiation of stem cells

by modulating the activation of Ca2+ ion channels in response to a mechanical stimulation

at the nanoscale46 and scaffolds of SiNWs could provide unique shape- and composition-

controlled sensing interfaces for cells.47 To address these issues, we carried out a series of
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experiments with epithelial cells (Supporting Information). In agreement with previous work

on embryonic stem cells and human embryonic kidney cells,14 our results indicate that the

penetration of the as-fabricated k-SiNWs into individual epithelial cells naturally occurred

during the incubation without affecting their viability. The 120 nm diameter k-SiNWs started

to internalize within 45 ± 15 minutes in epithelial cells and the number of incorporated

nanowires doubled after 120 minutes of incubation. The surface functionalization of the

nanowires with peptides or proteins that can bind to transmembrane integrins is certainly

an interesting way to quicken k-SiNW cell internalization.17 Such Si superstructures can

be further sharpened into a compelling tool for studying intra- and intercellular biological

processes and deciphering complex mechano-transduction pathways.48

Vizualization of Si superstructures was accomplished by transmission electron microscopy

(TEM). Figure 3a shows results obtained for a 15 nm Au mask, for all studied s values. It is

clear that the initial SiNW diameters are altered by the horizontal movement of the catalyst.

The deviations from the initial diameter are more important as s increases. Furthermore, the

Au catalyst oscillatory motion is clearly visible in the SiNW wall close up from Figure 3b and

also revealed by the 3D reconstruction of the SiNW kink (Figure 3c). The expected cylin-

drical shape is altered, confirming the horizontal shift of mask in addition to the downward

movement associated with the Si etching. This behaviour mirrors the three-directional mo-

tion expected for a weakly pinned catalyst. In addition, a closer examination of the SiNWs,

Figure 3b and d, shows that their surface is decorated with Au nanoparticles, some of them

reaching ≈15 nm in diameter for thick Au catalysts, as displayed in the inset to Figure 3d.

This relates to energetic etching conditions that can attain rates as high as ≈20 nm/sec, in-

ducing significant mechanical stress into the metal layer, finally leading to Au disintegration.

Note that the Au nanoparticles couple to the surface of SiNWs (Figure S11). The elemental

mapping from Figure 3e confirms the Au decoration of k-SiNWs. This feature, as highlighted

in Figure 2, is particularly interesting for biological applications where Au-decorated SiNWs

are known for their distinctive photothermal response under near-infrared laser irradiation,
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which can potentially be used for the destruction of cancerous cells.49 Porous trenches form

in the Si substrate, beneath the Au, at the lithographic openings of the metal catalyst (Fig-

ure 3e, Figure S12). Such porous regions are known to facilitate diffusion of the electrolyte.50

In addition, the shape of the porous trenches hints at an anisotropic kinetics or a preferential

electrolyte diffusion via the lithographic openings of the Au mask. This is surprising since

mass transport of reactants usually occurs via pores or cracks in thin films or discontinuous

catalyst masks, therefore an isotropically expanded porous segment at the metal-Si interface

is expected.51 In particular, the porous region does not extend completely to the foot of the

SiNW as previously reported.50
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Figure 3: Microscopic characterization of SiNW kinks and Si-Au interface. a. TEM images
of SiNW kinks obtained from the indicated s with t = 15 nm Au masks. b. SiNW kink close
up as imaged with scanning TEM (STEM) with a bright field detector for a s = 100 nm,
t = 10 nm Au mask. c. Three-dimensional reconstruction of a SiNW kink obtained with
a s = 150 nm, t = 30 nm Au mask. d. Au nanoparticles decorated SiNW kink produced
by a s = 100 nm, t = 30 nm Au mask. e. Elemental mapping by energy-dispersive X-ray
spectroscopy of the Au-Si interface via STEM.
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Analysis and modeling

The broad spectrum of the etched Si superstructures suggests a synergy between various

physico-chemical processes depending on the characteristic dimensions of the Au-Si system.

metal-assisted chemical etching resides on a noble metal catalyst to accelerate the dissolution

of Si into a HF and H2O2-based electrolyte by generating instantaneous electrical currents

flowing between cathodic sites where H2O2 is reduced and the anodic sites where Si is

oxidized and further dissolved. Under the current understanding, the etching proceeds with

the catalytic decomposition of H2O2 providing the holes (h+) that are further required for Si

oxidation, facilitating its dissolution. The etching is an uninterrupted process as the catalyst

protected Si is continuously etched leaving the SiNWs as residues on the Si substrate. Thus,

MACE is associated with the movement of the catalyst that needs to preserve an intimate

contact with the Si substrate.

Etching parameters

We performed time-dependent numerical simulations following the current understanding

of MACE. The two-dimensional (2D) system used for the finite-element model is shown in

Figures 4a and d and represents a projection of a Si substrate partially covered with a Au

mask in contact with the HF and H2O2-based electrolyte. The Si-Au interface is described

by the Schottky junction model.51,52 The electrolyte is modeled here as an ohmic solution

with the kinetics of the electrolyte interfaces, i.e. with Si and Au, governed by Butler-Volmer

expressions.53

It is well known that chemical etching of silicon in HF solutions proceeds very slowly

without an external potential.52 If holes are readily available, Si dissolution can proceed

according to

Si + 4HF−
2 + 2h+ → SiF2−

6 + 2HF + H2. (1)

This reaction has a potential of -1.24 V (versus standard hydrogen electrode). The avail-
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Figure 4: Time-dependent numerical calculations of Si MACE. a. Zoom into the bi-
dimensional domain used for the finite-element model. It includes a pre-etched line in the
Si-electrolyte boundary. The blue line corresponds to the conducting Si-electrolyte boundary,
while the yellow line to the Si-Au-electrolyte boundary. To avoid exceendingly high electric
field values, these boundaries are separated by a 10 nm gap. b. Electric current density
profiles (logarithmic scale) at t = 0 and 1 s etching advancements. The highlighted rectan-
gle corresponds to the area zoomed in panel (a). c. Temperature and time dependence of
the etching rates associated with radial and normal etching directions. d. Two-dimensional
sketch representing the interfaces included in the calculation. φext (blue curve) and electrical
current density (red curve) corresponding to t = 1 s.
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ability of holes will be determined by the electrical polarization and properties of the silicon.

For this case, the electric polarization is provided by the positive charge generated via the

Au mask by the reduction of hydrogen peroxide:

H2O2 + 2H+ → 2H2O + 2h+. (2)

This reaction has a potential of +1.76 V (versus standard hydrogen electrode). Due to the

Schottky barrier, not all the positive charges can be drained into the silicon, therefore, a

positive potential is expected on the Au side. Moreover, a positive potential buildup is also

favored due to the relationship of the reduction potentials. Butler-Volmer dependences53

relate the module of the outgoing, normal-to-interface, current density |jn| to the external

potential φext, the electrolyte potential φl, and the equilibrium potential at the electrodes

φeq (see Supporting Information).

Figures 4b shows the calculated electric current density and etching profiles. The etch rate

is around 100 nm/s at room temperature for both the in-plane (radial) and the out-of-plane

(normal) directions, with small differences due to the electrical current density variation

with the distance from Au. Since the electrical current is maximum near the Au border,

due to the high electric field there, the highest etching rate will be close to Au (Figure 4b).

These numerical profiles are in agreement with the experimental observations of Figure 3e,

confirming the lithographic openings of the metal catalyst as hot spots for the Si etching.

The calculated etching rates display the expected dependence with temperature (Figure 4c).

For jn ∼= 300 A/m2 at t = 1 s, a normal etch rate of 1.125 µm/min is observed, closer to

the experimentally observed etch rates at large s, 1.25± 0.15 µm/min. The reactions at the

electrolyte interfaces generate an electric potential difference, that is seen in Figure 4d. This

electric potential difference is lower than the open circuit potential φeqAu − φeqSi due to the

electrical current circulating in the electrolyte. The electrical current density has maxima

near the Au mask border (Figure S11).
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The adopted model provides insight into the experimental trends, although it relies on

ideal interfaces. While isotropic properties are assumed in the model, it is clear that the

normal-to-interface etching is preferred in the realistic three-dimensional environment. The

etching direction is expected to be a vector combination of both normal and radial directions.

Local variations of the etching conditions such as the chemical species’ availability or local

heating will likely influence which component controls the etching direction. Indeed, while

the experimental observations indicate that s plays a subtle role in the etching direction

preference (Figure 1c), the present numerical calculations unveil the time and temperature

dependencies of the radial and normal etch rates. From the numerical calculations we can

estimate an electrolyte-Si Schottky barrier of ∼ 0.45 V (Figure S14). Although the SiNW

kinks formation clearly implies a deviated catalyst motion, the employed model ignores the

catalyst motion, since the driving force is still unknown.

Kink formation

We turn next to SiNW kink formation. Figure 5a shows snapshots of the advancements of

the wetting front for methanol and water in k-SiNWs relevant superstructures. For k-SiNWs

morphologies, methanol completely wets the sample after 16 seconds, while water travels only

half of the sample length. Liquid invasion follows a diffusion law with parameters dependent

on the structural geometry of the SiNWs:54

z =
√

Dt, (3)

where z is the displacement of the wetting front, t the time and D a coefficient that captures

the characteristic velocity of the liquid and the viscous forces developed according to the

wetting geometry. From Figure 5b we can conclude that 1 minute quenching will remove

all the electro-active species required for the etching of k-SiNWs. Furthermore, if the SiNW

etched segment is tilted, there is a preferential formation of a methanol rich meniscus in the

19



concave part of the nanowire base as shown in Figure 5c. This preferential accumulation of

methanol results in the retarded action of the etchants when the etching resumes. The local

concentration of species is altered, triggering a change in the etching direction.

For numerical calculations, two phases are considered, namely methanol and air, in con-

tact with a nanowire of 100 nm diameter and its base. A continuous phase field model

based on the Cahn-Hilliard55,56 equation is used, considering the surface tension σma = 22.7

mN/m2 of the methanol-air interface and θc = 60◦ contact angle for the methanol-Si inter-

face (Figure S10). Further details can be found in the Supporting Information. In the initial

configuration, the methanol is a uniform layer of 7 nm height surrounding the base of the

SiNW. As time runs, the methanol rises on the inner part for a tilted SiNW with respect

to the substrate, receding on the other side, as can be seen in Figure 5c. This droplet not

only modifies the concentration of the etchants, it also can exert a pull up force on the

underlying Au film, changing the etching conditions and contributing to the etch direction

change. Note that meniscus formation along vertical SiNW segments does not show any

preferential location (Figure S15). Since the contact angle for the liquid-Si interface is ex-

pected to evolve as the etching advances, we evaluated the meniscus formation at different

contact angles to account for any changes in this parameter (Figure S16, 60◦-tilted SiNW).

The meniscus formation around a 45◦-tilted SiNW for different contact angles is shown in

Figure S17. There is a clear preferential location for the meniscus formation, except for low

θc where the methanol layer rather uniformly surrounds the SiNW. However, a low contact

angle scenario is unlikely since the surface roughness of the SiNWs is expected to increase

θc.

The curvature of the SiNW kink segments is an intriguing phenomenon and the etching

of curved SiNWs has been associated with co-solvent etchants such as methanol, ethanol

or glycerol.37,57,58 While experimental observations sustain the curvature dependence with

the co-solvent concentration, curved segments are typically linked to large thicknesses and

large diameter openings of the Au mask. MACE begins as a thermodynamically favored
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Figure 5: Wetting properties. a. Macroscale: Snapshots of the distance traveled by the
wetting front for water and methanol in Si superstructures. b. Plot of the distance traveled
by the etching front with t1/2 for water and methanol wet samples [k-SiNWs (closed symbols)
vs SiNWs (open symbols)]. c. Nanoscale: Time evolution of methanol boundary around a
60◦ tilted SiNW, with a diameter of 100 nm, as resulted from numerical calculations with
periodic boundary conditions. The color bar indicates the phase field variable. The final
configuration is persistent.
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process, however, as the etching advances other forces interfere with the reactions. First,

methanol meniscus formation will alter the concentration of species at the Si-electrolyte

interface. Once the etchant concentration is re-established the etching resumes. Secondly,

the etched geometry is expected to impact both the electrolyte flow as well as the quenching

agent flow as the etching advances, giving rise to parasite capillarity and viscous forces. The

curvature formation has to be associated with the development of directional forces related

to the NW geometry. As the etched geometry develops into opened zig-zag nanochannels, it

is well known that these are prone for developing turbulent flow, providing efficient mixing

of electrolyte and quenching agent. This explains the fact that the SiNW kink angles are

increasing with the etched length.

In summary, we described the versatility of MACE to fabricate high aspect ratio and

orientation-customized k-SiNWs based on successive etch-quench sequences. We found that

the parameters of the catalyst Au mask greatly influence the geometry and porosity of the

etched Si superstructures. On the one hand, the opening diameter impacts the etching rate

and the overall kink angle distribution. On the other hand, the thickness of the Au mask

has a pronounced effect on the porosity of the produced nanostructures and small catalyst

thicknesses are not suitable for long etching times. Fine tuning of these parameters have

allowed the etching of functionally-designed, complex Si nanostructures with high aspect

ratio. Focusing on the quenching step, we propose a simple mechanism for kink formation

through preferential formation of an alcohol-rich meniscus in the concave region of the etched

Si segment. Our time-dependent calculations corroborate the current understanding of the

mechanisms involved in MACE of Si and represent another step towards more complex

finite-element models for Si superstructures corrosion. The numerical computing approach

could be extended to other electrochemical systems requiring modeling of the semiconductor

electrode-electrolyte interfaces. While we used the fabricated k-SiNWs in a substrate-free

approach to address cell internalization, the Si superstructures can be employed, for example,

in frustrated phagocytosis experiments to shuttle biomolecular cargo once the density and
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diameter are matched to the cell size and the aspect ratio is tuned for cellular adhesion

and penetration. Our findings open extensive opportunities for Si superstructures tailored

for enhanced functionalities and encourage numerical investigations for understanding the

MACE fundamentals.
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van het Europees Fonds voor Regionale Ontwikkeling - INTERREG V France-Wallonie-

Vlaanderen). The work was supported by the Belgian F.R.S. - FNRS in the frame of the

research conventions n◦ T.1004.14 and n◦ T.0106.16. This research connects to the ARC

project entitled ”BATTAB” (research convention n◦ 14/19-057) sponsored by the Commu-
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(35) Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Rev.

Mod. Phys. 2016, 88, 045006.

(36) Nawroth, J. C.; Guo, H.; Koch, E.; Heath-Heckman, E. A. C.; Hermanson, J. C.;

Ruby, E. G.; J.O., D.; Kanso, E.; McFall-Ngai, M. Proc. Natl. Acad. Sci. 2017, 114,

9510.

(37) Chen, Y.; Li, L.; Zhang, C.; Tuan, C.-C.; Chen, X.; Gao, J.; Wong, C.-P. Nano Lett.

2017, 17, 1014–1019.

26



(38) Kim, J.; Kim, Y. H.; Choi, S.-H.; Lee, W. ACS Nano 2011, 5, 5242–5248.

(39) Huang, Z.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X.; Lee, W.; Geyer, N.; Gösele, U.
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