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Abstract 

The vast majority of rock masses is anisotropic due to factors such as layering, unequal in-situ 

stresses, joint sets, and discontinuities. Meanwhile, given the frequently asymmetric distribution 

of pores, grain sizes or different mineralogical compounds in different locations, they are often 

classified as inhomogeneous materials. In such materials, stress intensity factors (SIFs) at the crack 

tip, which control the initiation of failure, strongly depend on mechanical properties of the material 

near that area. On the other hand, crack propagation trajectories highly depend on the orthotropic 

properties of the rock mass. In this study, the SIFs are calculated by means of anisotropic crack tip 

enrichments and an interaction integral are developed for inhomogeneous materials with the help 

of the extended finite element method (XFEM). We also use the T-stress within the crack tip fields 
to develop a new criterion to estimate the crack initiation angles and propagation in rock masses. 

To verify and validate the proposed approach, the results are compared with experimental test 

results and those reported in the literature. It is found that the ratio of elastic moduli, shear 

stiffnesses, and material orientation angles have a significant impact on the SIFs. However, the 

rate of change in material properties is found to have a moderate effect on these factors and a more 

pronounced effect on the failure force. The results highlight the potential of the proposed 

formulation in the estimation of SIFs and crack propagation paths in inhomogeneous anisotropic 

materials. 

Keywords: Extended Finite Element Method; stress intensity factor; anisotropic rock; crack 

trajectory; Hollow Center Cracked Disc; Anisotropic Maximum Tangential Stress. 
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1. Introduction 

There are many defects such as cracks, joints, fissures and fractures in rock structures. 

Consequently, when a rock is subjected to mechanical loading in different situations, it may fail 

and local cracks may extend from the tips of preexisting discontinuities. Therefore, understanding 

of rock failure mechanics plays an important role in addressing a number of important engineering 

issues. Rock fracture simulation requires computing the stress intensity factors (SIFs), from which 

the crack propagation trajectory can be simulated. Evaluating SIFs and predicting the crack 

propagation trajectory are necessary in different fields of rock engineering including hydraulic 

fracturing, underground excavation, rock mass stability analysis, hydrocarbon reservoirs, and 

blasting operations [1-6]. However, irregular layering, unequal in-situ stresses, existing of joint 

sets and discontinuities make rock masses intrinsically anisotropic [7]. In addition, given the 

asymmetric distribution of pores, grain sizes and the presence of different mineralogical 

compounds in different locations, rocks are often classified as heterogeneous materials. Robertson 

[8] states that the distance from a heat source (being at different temperatures) causes variations in 

rock mechanical properties as a function of location. Moreover, Mohtarami et al. [9] reported that 

some engineering operations such as acidizing of oil wells, can also intensify the inhomogeneous 

and anisotropic behavior of geo-materials. 

Although most researchers categorize rocks as inhomogeneous anisotropic materials [7, 10], 

the majority of studies in the rock fracture mechanics have assumed rocks to behave as 

homogeneous and isotropic materials. For instance, Eftekhari et al. [11] studied the crack initiation 

angle and propagation path in homogeneous isotropic disk-shaped specimens and then examined 

the effect of initial crack lengths and angles on a variety of disk-shaped specimens [12, 13]. Aliha 

et al. [14] studied the size of limestone disk-shaped specimens and showed that the Maximum 

Tangential Stress (MTS) criterion is not suitable for analysis of crack propagation. The effect of 

material anisotropy on the mode I stress intensity factors (SIFs) by a 3D Finite Element Method 

was also investigated and reported by Hirose et al. [15]. Recently many attempts have been 

conducted to characterize the effects of geometric parameters (crack length, crack inclination 

angle, geometric shape of specimen) and mechanical properties (Poisson’s ratio, degree of material 

anisotropy and anisotropic orientation) in homogeneous anisotropic materials [9, 12, 14, 16-26]. 

However, the assumption of inhomogeneity and variations in rock mass properties have not been 
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considered. Researchers argue that the simplified assumption of inhomogeneous isotropic media 

cannot satisfy the actual conditions of rocks [16, 17, 27]. Furthermore, failure initiation, crack 

initiation angle and propagation paths in inhomogeneous anisotropic materials strongly depend on 

mechanical properties of the material near the crack tip and its anisotropy characteristics [9, 17, 

18, 20, 28-30]. Several theoretical models [31-35] and experimental techniques [36-40] were 

developed to investigate the mixed mode crack growth (the combination of opening and shearing 

modes) in rocks. However, existing theoretical models are limited to simple geometries, load 

conditions, and materials behaviors. 

Nowadays, numerical methods mostly use in engineering and science. To model 

discontinuities and singularities, the Extended Finite Element Method (XFEM) is a strong 

contender. The XFEM was initially introduced by Belytschko and Black [41]. Significant 

improvements in this procedure were introduced by Moës et al. [42] and Dolbow [43]. Bordas et 

al. [44] provided an XFEM library which is able to solve many problems of fracture mechanics. 

This method was firstly used to investigate isotropic Functionally Graded Materials (FGMs) by 

Dolbow and Gosz [45]. In order to take into account the anisotropy in computations, Asadpoure 

et al. [16, 46, 47] introduced a set of enrichment functions inspired by analytical solutions of Sih 

et al. [48] and Viola et al. [49] which used the notion of complex numbers. Recently XFEM has  

been developed to model a 3D crack propagation [50-53] and multi-crack growth [24-26]. In 

addition, in the field of rock engineering, XFEM is one of the powerful tools that has been 

successfully applied to simulate hydraulic fracturing in hydrocarbon reservoirs, given the inherent 

anisotropy of the rock formations [54-56]. The XFEM basic concept is to enrich the solution 

through a local partition of unity [17]. The fracturing process can be modeled by enriching a 

polynomial basis with new functions thereby enabling the method to reproduce the (arbitrary) 

enrichment functions. For example, by employing the discontinuous Heaviside function, crack 

surfaces can be modeled without being considered as geometric boundaries i.e. without meshing 

our re-meshing process. Also, the singularity of the stress field can be reproduced by the use of 

appropriate asymptotic displacement functions. This study is an attempt to provide an accurate 

simulation of failure mechanisms of an inhomogeneous anisotropic rock material. For this purpose, 

obtaining anisotropic enrichment functions, incorporating inhomogeneity into the formulations, 

and determining a criterion for accurate prediction of crack trajectory are necessary. To overcome 

these problems, we need to employ precise analytical solutions in the XFEM context. 
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To our knowledge, the first analytical solution of inhomogeneous materials dates back to 

1960s, when Gibson [57] modeled soil as an inhomogeneous material. Atkinson [58], Dhaliwal 

and Singh [59], Delale and Erdogan [60] analyzed the cracking problem of inhomogeneous 

materials through a variable modulus of elasticity. Delale and Erdogan [60] showed that the order 

of singularity of the stress field near a crack tip in non-homogeneous materials is of order -1/2 (i.e., 

O(r -1/2)), as it is for homogeneous materials. Since the mechanical properties of inhomogeneous 

materials vary with location, the applied analysis method should be able to account for these 

variations at any desired point. Recently, Kim and Paulino [61] analyzed the mixed mode failure 

of inhomogeneous FGMs by using finite element approach with a path independent Jk
* integral, a 

modified crack closure integral method, and a displacement correction technique. The interaction 

integral for homogeneous isotropic materials is attributed to Yau et al. [62]. Wang et al. [63] further 

developed the approach for homogeneous orthotropic materials and this method is robust and 

accurate for the calculation of SIFs in inhomogeneous materials. 

There are several failure criteria in predicting the direction of crack initiation and propagation 

[24-26]. The Maximum Tangential Stress (MTS) criterion in which a crack propagates from its tip 

in the direction maximizing the tangential stress has been frequently used to model crack growth 

in XFEM [64]. However, deviations of results provided by the MTS from experimental results 

have encouraged the development of alternatives or improvements to this method [14, 65-68]. 

Eftekhari et al. [21] used a stress-based criterion to introduce an improved MTS theory in the 

XFEM framework. Smith et al. [69] utilized the T-stress as well as singular terms of the crack tip 

to develop a criterion called the GMTS to predict crack initiation and propagation trajectory in 

homogeneous isotropic materials. They reported that the mixed mode toughness of a cracked 

specimen depended on the magnitude and sign of the T-stress, a notion that was ignored in previous 

studies. Aliha and Ayatollahi tested this criterion for a variety of rock specimens with the 

assumption of homogeneity and isotropy and confirmed its validity [70-72]. They reported that 

this criterion was capable to predict the crack trajectory. Mohtarami et al. [23] recently developed 

a crack propagation criterion in anisotropic rocks using the concept of T-stress. 

The absence of a comprehensive criterion for understanding the failure mechanism of 

inhomogeneous anisotropic rocks encouraged the authors to investigate the use of extended finite 

element method simulation to study the effect of inhomogeneity and anisotropy on the failure 
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mechanism of such rocks. In this case, anisotropic enrichment functions along with a developed 

interaction integral method for inhomogeneous materials are applied. In addition, the concept of 

T-stress is incorporated into the formulation of the stress field near a crack tip in an inhomogeneous 

anisotropic material in order to introduce a new criterion called “Inhomogeneous Anisotropic 

Maximum Tangential Stress (IAMTS)” to predict the crack initiation angle and fracture path in 

such materials. In three dimensions, incorporating such higher order terms require special 

treatments proposed recently in [50-52]. 

Following the concept of T-stress, the method to calculate the stress and the displacement 

fields near the crack tip in an anisotropic body is described using the solution proposed by Sih et 

al. [48]. This method is then utilized to develop the MTS criterion for anisotropic solids. In the 

next stage, the extended finite element method, enrichment functions, and interaction integrals in 

inhomogeneous anisotropic bodies are developed to show how to reproduce the near tip stresses 

and to calculate the SIFs. Then, the validity and the accuracy of the proposed method in predicting 

rock failure mechanisms are investigated. The XFEM simulation results are compared with 

laboratory experimental test results and provided results in the literature. Due to the availability 

and simple preparation of core-based specimens in estimating rock fracture toughness, these 

specimens are mostly used to study rock fracture mechanisms. Therefore, a sensitivity analysis of 

the geometric and mechanical parameters of an inhomogeneous anisotropic disk-shaped specimen 

is also addressed. 

2. Governing equations in Inhomogeneous Anisotropic materials 

Rocks are often formed by gradual cooling and crystallization of magma and experience 

asymmetric in-situ stresses throughout their lifetime, so that they are typically inhomogeneous and 

anisotropic materials. The trend of anisotropy and inhomogeneity can be gradual or drastically 

near a discontinuity. In fact, such variability can be found at all scales, from the microstructural, 

granular, crystalline through the laboratory upon and to the engineering scales. Hudson and 

Harrison [7] introduced two acronyms CHILE and DIANE to distinguish traditional simplified 

assumptions used in rock modeling from actual rock characteristics. A Continuous, Homogeneous, 

Isotropic and Linearly-Elastic (CHILE) material is one that is most commonly assumed for the 

purposes of modelling, while a Discontinuous, Inhomogeneous, Anisotropic, Non-Elastic 

(DIANE) rock is the material which the engineer has to deal with in practice [7]. 
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The linear elastic plane stress fields near the crack tip can be described as symmetric and 

asymmetric fields called Mode I and Mode II, respectively. The stresses associated with each field 

can be expressed as a series expansion of eigenvalues [73]; with general form as follows, 
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where x and y are Cartesian coordinates, and r and θ are polar coordinates defined with respect 

to the crack tip (see Fig. 1). The parameters KI, and KII are stress intensity factors in mode I and 

II, and T is the T-stress, which all depend on the geometry and loading, and can vary significantly 

from specimen to specimen [69]. Near the crack tip, higher order terms of the series are negligible 

[74]. In the conventional MTS criterion [31], only the singular term of Eq. (1) is considered, but 

for the criterion introduced in our model, the impact of both the singular term and the T-stress is 

considered. Thus, the two terms in the right hand side of Eq. (1) yield the stress fields near the 

crack tip, and can be used to predict the crack propagation trajectory. 

 

Fig. 1. (a) Elastic tangential stress along the direction of fracture initiation [69]; (b) an environment with 

inhomogeneous anisotropic behavior and the respective Cartesian and polar systems. 

A constant stress parallel to the crack, term T, appears only due to the symmetrical component 

of loading, and vanishes in pure mode II [75]. Several methods have been developed to calculate 
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stress depends on the stress or displacement fields associated with the crack, if the higher precision 

is considered, the higher T-stress is approximated. In the conventional finite element method, this 

operation is considered by increasing the number of elements of the crack tip zone [80, 81]. The 

enrichment functions, however, allow the stress singularity and the discontinuity-induced 

displacements to reproduce accurately without fine mesh generation or re-meshing process. 

Ayatollahi et al. [75] developed an improved method to obtain T-stress by using the displacements 

along crack surfaces with less dependency on the number of elements. They assert that for a mixed 

mode I/II, term T can be expressed as follows, 

𝑇 =
1

2
𝐸′ ((

𝑑𝑢𝑥

𝑑𝑥
)

𝜃=−𝜋
+ (

𝑑𝑢𝑥

𝑑𝑥
)

𝜃=𝜋
) (2) 

where ux represents the displacement along the x-axis, and E   is defined as follows, 

𝐸′ = {
𝐸        plane stress

𝐸

1 − 𝜈2
plane strain

 (3) 

Replacing the slope dux / dx with displacement values gives [75], 

𝑇 =
1

2𝑥
𝐸′[𝑢𝑥(𝑥, −𝜋) + 𝑢𝑥(𝑥, 𝜋)] (4) 

where x is a small distance from the crack tip. Aliha et al. [14] suggested an optimum value of this 

parameter as follows, 

𝑟𝑐 =
1

2𝜋
(

𝐾𝐼𝐶

𝜎𝑡
)

2

 (5) 

where KIC and σt are the toughness and the tensile strength of the tested rock, respectively. Smith 

et al. [69] suggested that within the critical distance rc, the singular term of Eq. (1) was limited and 

T-stress could be a major contributor to the tangential stress σθ (Fig. 1a). The role of T-stress on 

the fracture mechanism of various materials has been previously investigated by several 

researchers and it has been suggested that T-stress has a significant effect on crack trajectory in 

mixed mode. Generally, positive T-stress increases the crack initiation angle, while negative T-

stress decreases the crack initiation angle. For more details, one can refer to references [23, 82-

84]. 

The singular term of Eq. (1) can be obtained using Sih’s solution method [48] for 

inhomogeneous anisotropic materials. In this method, the problem is solved by expressing stresses 
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and displacements as complex functions where the real parts should be determined. A cracked 

inhomogeneous anisotropic medium with material orientation angle , arbitrary boundary 

conditions and loading is shown in Fig. 1b. As can be seen, (X, Y) are considered as the global 

Cartesian coordinates and (x, y) as the local crack tip Cartesian system that defines the local crack 

tip in the polar coordinate system (r, θ), when x+iy=reiθ. The term ω is defined as the angle 

between the local and the global coordinate systems. If boundary stresses σ0
X and σ0

Y are applied 

in the X and Y directions, respectively, the Cartesian stress components (σx, σy, σxy) and the polar 

stress components (σr, σθ, σrθ) can be calculated for any arbitrary element (see Fig. 1b). In this 

hypothetical body, the degree of anisotropy at any point is defined as the ratio E1/E2 and the 

intensity of changes in elastic modulus from point to point is known as the pattern of heterogeneity 

or inhomogeneity order. 

In such media, the characteristic equation relating to a fourth order partial differential 

equation, which results from equilibrium and compatibility conditions, is as follows [85], 

𝑎11𝜇4 − 2𝑎16𝜇3 + (2𝑎12 + 𝑎66)𝜇2 − 2𝑎26𝜇 + 𝑎22 = 0 (6) 

where a represents components of the fourth order material compliance tensor and is defined 

as 𝜀𝛼 = 𝑎𝛼𝛽𝜎𝛽 (𝛼, 𝛽 = 1,2,6) [85]. Lekhnitskii [85] showed that the roots of Eq. (6) were either 

complex or entirely imaginary, and existed in the form of conjugate pairs 𝜇1, 𝜇1̅̅ ̅,  𝜇2 and 𝜇2̅̅ ̅. In 

this case, the stress fields near the crack tip (mixed mode) are as follows, 

𝜎𝑥𝑥(𝑟, 𝜃) =
𝐾𝐼

√2𝜋𝑟
𝑅𝑒 {

𝜇1𝜇2

𝜇1 − 𝜇2

[
𝜇2

𝑔2(𝜃)
−

𝜇1

𝑔1(𝜃)
]} +

𝐾𝐼𝐼

√2𝜋𝑟
𝑅𝑒 {

1

𝜇1 − 𝜇2

[
𝜇2

2

𝑔2(𝜃)
−

𝜇1
2

𝑔1(𝜃)
]} + 𝑇 + 𝑂 (𝑟

1
2⁄ ) (7a) 

𝜎𝑦𝑦(𝑟, 𝜃) =
𝐾𝐼

√2𝜋𝑟
𝑅𝑒 {

1

𝜇1 − 𝜇2

[
𝜇1

𝑔2(𝜃)
−

𝜇2

𝑔1(𝜃)
]} +

𝐾𝐼𝐼

√2𝜋𝑟
𝑅𝑒 {

1

𝜇1 − 𝜇2

[
1

𝑔2(𝜃)
−

1

𝑔1(𝜃)
]} + 𝑂 (𝑟

1
2⁄ ) (7b) 

𝜎𝑥𝑦(𝑟, 𝜃) =
𝐾𝐼

√2𝜋𝑟
𝑅𝑒 {

𝜇1𝜇2

𝜇1 − 𝜇2

[
1

𝑔1(𝜃)
−

1

𝑔2(𝜃)
]} +

𝐾𝐼𝐼

√2𝜋𝑟
𝑅𝑒 {

1

𝜇1 − 𝜇2

[
𝜇1

𝑔1(𝜃)
−

𝜇2

𝑔2(𝜃)
]} + 𝑂 (𝑟

1
2⁄ ) (7c) 

where Re is the real part of the complex term, KI and KII are the stress intensity factors in mode I 

and II, the higher order terms are negligible near the crack tip, and parameter g is defined as 

follows; 

𝑔𝑖(𝜃) = √cos(𝜃) + 𝜇𝑖 sin(𝜃)    (𝑖 = 1,2) (8) 
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It should be noted that in numerical computations for variable material parameters which vary 

from point to point, crack tip properties are used in calculations. 

3. Concept of Extended Finite Element Method 

In the XFEM solution, an unknown displacement field is divided into two parts. One part is 

due to the conventional finite element solution, and the other part is due to the enriched domain, 

which can be presented as follows, 

𝑢ℎ(𝑥) = 𝑢𝐹𝐸𝑀(𝑥) + 𝑢𝑋𝐹𝐸𝑀(𝑥) = ∑ 𝑁𝑗(𝑥). 𝑢𝑗

𝑛

𝑗=1

+ ∑ 𝑁𝑘(𝑥). 𝜓(𝑥). 𝑎𝑘

𝑚

𝑘=1

 (9) 

where, ψ is an enrichment function and the ak are additional degrees of freedom which are added 

to the nodes whose support is split by the discontinuity, and m and n are number of enriched nodes 

and total number of nodes, respectively. In Eq. (9), function ψ can represent any specific behavior 

to be reproduced by the enriched approximation; discontinuities (uHe) or/and singularities (utip), 

𝑢ℎ = 𝑢𝑋𝐹𝐸𝑀 + 𝑢𝐹𝐸𝑀 = 𝑢𝑡𝑖𝑝 + 𝑢𝐻𝑒 + 𝑢𝐹𝐸𝑀 (10) 

In Fig. 2, three aforementioned zones are shown, where utip is the displacement due to the 

crack tip enrichment functions, uHe is the displacement field due to the domain enriched by the 

Heaviside function, and uFEM is the displacement due to conventional finite element method. In 

Fig. 2, blending elements refer to elements that have at least one or more enriched nodes. For more 

details, one can refer to references [30, 86]. 

 
Fig. 2. Description of different elements in XFEM modelling. 
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 Anisotropic enrichment functions 

Asadpoure et al. [16, 46, 47] and Cahill et al. [18] investigated various enrichment functions 

for orthotropic texture. In general, crack tip enrichment functions in polar coordinates (r,θ) are 

described as follows [16], 

𝐹(𝑟, 𝜃) = {√𝑟 cos (
𝜃1

2
) √𝑔1(𝜃), √𝑟 cos (

𝜃2

2
) √𝑔2(𝜃), √𝑟 sin (

𝜃1

2
) √𝑔1(𝜃), √𝑟 sin (

𝜃2

2
) √𝑔2(𝜃)} (11) 

where 𝜃1, 𝜃2, 𝑔1 and 𝑔2 are defined as follows; 

𝑔𝑗(𝜃) = √(cos(𝜃) + 𝛼𝑗 sin(𝜃))
2

+ (𝛽𝑗 sin(𝜃))
2

     (𝑗 = 1,2) (12) 

𝜃𝑘(𝜃) = 𝑡𝑎𝑛−1 (
𝛽𝑘 sin(𝜃)

cos(𝜃) + 𝛼𝑘 sin(𝜃)
)       (𝑘 = 1,2) (13) 

As previously mentioned, the roots of the characteristic equation (Eq. (6)) are in complex 

form. These roots are in form of 1=α1+iβ1 and 2=α2+iβ2, where αk and βk (k=1, 2, see Eqs. 12 

and 13) are the real and imaginary parts. According to the study of Bayesteh and Mohammadi [17] 

the asymptotic crack tip fields can be considered as auxiliary fields for the calculation of SIFs at 

crack tips in anisotropic materials. 

 Calculating stress intensity factors 

Mode I and II SIFs can be calculated by means of interaction integrals. In recent years, Kim 

and Paulino have introduced various solutions including non-equilibrium, incompatibility, and 

constant-constitutive-tensor formulations to compute the J integral in inhomogeneous materials 

[87]. Bayesteh and Mohammadi stated that an incompatible formulation is more suitable for J 

integral [17] because this method contains less complicated derivatives while having the same 

degree of accuracy as a non-equilibrium formulation. Meanwhile, constant-constitutive-tensor 

results in unacceptable accuracy in finite element formulation [17, 86]. 

To combine actual and auxiliary fields based on superposition, the J integral may be divided 

into three components: the real (J), auxiliary (Jaux) and the interaction (Ml), respectively; 

𝐽𝑠 = 𝐽 + 𝐽𝑎𝑢𝑥 + 𝑀𝑙, (14) 
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where J and Jaux are related to the actual and auxiliary parts of the J integral, respectively. Jaux is 

defined as follows, 

𝐽𝑎𝑢𝑥 = ∫
𝐴

 (𝜎𝑖𝑗
𝑎𝑢𝑥𝑢𝑖,1

𝑎𝑢𝑥 − 𝑤𝑎𝑢𝑥𝛿1𝑗)𝑞,𝑗𝑑𝐴 + ∫
𝐴

 (𝜎𝑖𝑗
𝑎𝑢𝑥𝑢𝑖,1

𝑎𝑢𝑥 − 𝑤𝑎𝑢𝑥𝛿1𝑗)
,𝑗

 𝑞𝑑𝐴 (15) 

where w, is the strain energy density and q is a smooth function which varies from 1 on the interior 

boundary of A to 0 on the outer one [30]. In Eq. (14) Ml is a local integral which is calculated with 

the following conversion, 

𝑀𝑙 = 𝑀1
𝐺 cos(𝜃) + 𝑀2

𝐺 sin(𝜃) (16) 

where 
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The equivalent domain integral (A) of Eq. (17) is shown in Fig. 3 where in each arbitrary 

representative region around the crack tip Cijkl(r)≠Ctip for r ≠ 0 because of heterogeneity in material 

properties. 

 

Fig. 3. Equivalent domain integral. Notice that C(r) ≠ Ctip for r ≠ 0. 

The energy release rate can be described as follows [87], 

𝐺 = 𝐽 = 𝑐11𝐾𝐼
2 + 𝑐12𝐾𝐼 + 2𝑐22𝐾𝐼𝐼

2  (18) 

in which components cij are related to the crack tip and can be calculated as follows, 
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𝑐11 = −
𝑎22

𝑡𝑖𝑝

2
𝐼𝑚 (

𝜇1
𝑡𝑖𝑝 + 𝜇2

𝑡𝑖𝑝

𝜇1
𝑡𝑖𝑝

. 𝜇2
𝑡𝑖𝑝

) (19) 

𝑐12 = −
𝑎22

𝑡𝑖𝑝

2
𝐼𝑚 (

1

𝜇1
𝑡𝑖𝑝

. 𝜇2
𝑡𝑖𝑝

) +
𝑎11

𝑡𝑖𝑝

2
𝐼𝑚(𝜇1

𝑡𝑖𝑝. 𝜇2
𝑡𝑖𝑝) (20) 

𝑐22 =
𝑎11

𝑡𝑖𝑝

2
𝐼𝑚(𝜇1

𝑡𝑖𝑝 + 𝜇2
𝑡𝑖𝑝) (21) 

where μi
tip are the roots of characteristic Eq. (6) and are calculated at the crack tip. Results are 

simultaneously presented in the simplified equation below by using the superposition of both 

actual and auxiliary fields in Eq. (18) and replacing 𝐾𝐼𝐼
𝑎𝑢𝑥 = 0, 𝐾𝐼

𝑎𝑢𝑥 = 1 and 𝐾𝐼𝐼
𝑎𝑢𝑥 = 1, 𝐾𝐼

𝑎𝑢𝑥 = 0 

[17, 30, 86], 

{
𝑀1

𝑙 = 2𝑐11𝐾𝐼 + 𝑐12𝐾𝐼𝐼         (𝐾𝐼
𝑎𝑢𝑥 = 1, 𝐾𝐼𝐼

𝑎𝑢𝑥 = 0)

𝑀2
𝑙 = 𝑐12𝐾𝐼 + 2𝑐22𝐾𝐼𝐼         (𝐾𝐼

𝑎𝑢𝑥 = 0, 𝐾𝐼𝐼
𝑎𝑢𝑥 = 1)

 (22) 

These series of equations should be solved to evaluate mode I and II of SIFs. In 

inhomogeneous problems, any material properties (we show them with P in general), such as 

elastic modulus E11, E22, shear modulus G12, Poisson ratios v12, v21, vary within the domain in a 

specified range. If function φ is predefined e.g. from laboratory experiments; then we could have, 

𝑃(𝑥, 𝑦) = 𝜑(𝑥, 𝑦) (23) 

A solution to handle local variation in the constitutive tensor is the isoparametric graded finite 

element method [88]. The different material properties are interpolated using the FEM shape 

functions as follows [30], 

𝑃(𝑥, 𝑦) = ∑ 𝑁𝑖(𝑥, 𝑦) �̂�𝑖

𝑚

𝑖=1

 (24) 

where �̂�𝑖 are nodal desired material properties, Ni are shape functions, and m is the number of nodal 

points in the element. In the interaction integral of Eq. (17), Cijkl, can be considered the same as 

the variable mechanical property P and their derivatives may be calculated as follows, 

𝜕𝑃(𝑥, 𝑦)

𝜕𝑥
= ∑

𝜕𝑁𝑖(𝑥, 𝑦)

𝜕𝑥

𝑚

𝑖=1

 �̂�𝑖 

𝜕𝑃(𝑥, 𝑦)

𝜕𝑦
= ∑

𝜕𝑁𝑖(𝑥, 𝑦)

𝜕𝑦

𝑚

𝑖=1

 �̂�𝑖 

(25) 
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 Crack initiation and propagation criterion 

In this study, the maximum circumferential stress presented by Saouma et al. [89] is adapted 

for crack propagation in anisotropic inhomogeneous materials. This method and other available 

criteria are tested and validated by Sutula et al. [24-26]. Saouma et al. [89] used the singular values 

of Eq. (7) in polar form to determine the direction of the maximum circumferential stress σθ in 

anisotropic media. Following the same procedure and by adding the contribution of the T-stress 

and removing the higher order terms, we obtain the following form for an arbitrary mixed mode, 

𝜎𝜃(𝑟, 𝜃) =
𝐾𝐼

√2𝜋𝑟
𝑅𝑒[𝐴(𝜇1𝐵1 − 𝜇2𝐵2)] +

𝐾𝐼𝐼

√2𝜋𝑟
𝑅𝑒[𝐴(𝐵1 − 𝐵2)] + 𝑇𝑠𝑖𝑛2𝜃 , (26) 

where A and Bi are calculated as follows, 

𝐴 =
1

𝜇1 − 𝜇2
 

(27) 

𝐵𝑖 = (𝜇𝑖 sin(𝜃) + cos(𝜃))
3

2⁄       (𝑖 = 1,2) 

Thus, crack propagation starts at a position where the following condition is satisfied 

𝜎𝜃

𝜎𝜃
𝑚𝑎𝑥 =

𝐾𝐼𝑅𝑒{𝐴(𝜇1𝐵1 − 𝜇2𝐵2)} + 𝐾𝐼𝐼𝑅𝑒{𝐴(𝐵1 − 𝐵2)} + 𝑇𝑠𝑖𝑛2𝜃

𝐾𝐼𝐶
𝑥 𝑐𝑜𝑠2(𝜃 + 𝑤) + 𝐾𝐼𝐶

𝑦
𝑠𝑖𝑛2(𝜃 + 𝜔)

= 1 (28) 

where 𝐾𝐼𝐶
𝑥  and 𝐾𝐼𝐶

𝑦
 are the mode-I critical stress intensity factors along x and y directions, 

respectively, and θ and ω are introduced in Fig. 1b. 

4. Verification and validation of the proposed method in an inhomogeneous anisotropic body 

To execute the proposed formulation and perform the required calculations, an XFEM-based 

numerical code was developed using Matlab programming language. To verify the validity of the 

present approach, the developed numerical code was applied to three specimens with different 

geometrical and mechanical specifications, and simulation results (SIFs, crack initiation angle, and 

crack propagation trajectory) were compared with those obtained from experimental tests and 

reported in the literature. Given the simple shape and ease of preparation of disc specimens, the 

majority of studies on rock failure mechanisms utilize this type of specimen. Therefore, two 

numerical examples were conducted on common disk shaped specimens in the form of Cracked 
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Brazilian Disc (CBD) subjected to diametrical compression and Hollow Centre Cracked Disc 

(HCCD). Considering the lack of any comprehensive rock mechanics study on the failure of 

inhomogeneous anisotropic materials, one of the numerical models presented in the related 

literature was selected to investigate such materials. Fig. 4 shows the geometry and boundary 

conditions of the three selected examples. 

 

Fig. 4. The geometry and mixed-mode (I/II) loading conditions on selected specimens; (a) homogeneous anisotropic 

cracked Brazilian disc; (b) inclined center crack in an inhomogeneous anisotropic plate; (c) hollow centre cracked 

inhomogeneous anisotropic disc. 

 Mixed-mode fracture in anisotropic homogeneous CBD specimens 

Cracked Brazilian Disc (CBD) is one of the rock mechanics specimens commonly used for 

the study of rock fracture toughness. As shown in Fig. 4a, CBD is a disc of radius R and a crack 

of length 2a at its center. The load P must be applied diagonally on the specimen up to the failure 

point. In this test, the initial crack angle (β) is defined as the angle between the crack direction and 

the direction of loading. Depending on the crack angle, the specimen can undergo pure mode I, 

pure mode II, or mixed mode I/II failure [21]. 

In a series of studies conducted by Chen et al. [20, 22, 27], the crack initiation angle in 

homogeneous anisotropic CBD specimens made of marble and shale were investigated both 

experimentally and numerically with the Boundary Element Method (BEM). Chen et al. [90, 91] 

proposed the indirect (Brazilian) tensile strength to determine mechanical properties of rock 

specimens. They also studied the effects of crack length, initial crack angle, and anisotropic 

orientation on the mixed mode stress intensity factors of a hypothetical anisotropic material using 

the CBD configuration and BEM analysis. Table 1 shows the obtained crack initiation angles from 
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the experiments, reported BEM analysis [20], and the proposed XFEM approach for the CBD 

specimens with a/R= 0.3, anisotropic orientation angles of λ= 0º, 45º, 90º, and different values of 

initial crack angle β. As the table shows, the observed results from the XFEM analysis fit well with 

the other methods. It should be noted that the counterclockwise rotation of the crack with respect 

to the initial orientation is assumed as positive, and the opposite direction is assumed as negative. 

Table 1- Comparing different methods to predict the crack initiation angle for anisotropic CBD specimens 

Num. results 

by XFEM 

Num. results 

by BEM [20] 

Ave. Exp. 

results (deg.) 
β (deg.)  

0 0 -0.5 0 

λ = 0° 
0 0 -0.3 0 

75.43 71.87 74.6 28.2 

75.59 71.78 77.7 28.2 

3.68 0.99 3.0 0.8 

λ = 45° 
3.71 1.06 5.3 0.8 

70.09 70.50 66.4 27.6 

70.21 70.46 70.7 27.6 

0 0 -1.9 0 

λ = 90° 
0 0 1.0 0 

67.01 69.44 65.4 25.9 

67.11 69.49 66.6 25.9 
 

Fig. 5 shows the variation of the normalized mode I and II of SIFs for different anisotropic 

orientations of λ, and initial crack angles of β (these parameters are introduced schematically in 

Fig. 1b). In this example, E1/E2=7, E1/G=3, a/R=0.5, v=0.25, and the normalized mode I and II 

of SIFs are as follows; 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑜𝑑𝑒 𝐼 𝑜𝑓 𝑆𝐼𝐹 =
𝐾𝐼

𝐾0
 ,      𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑀𝑜𝑑𝑒 𝐼𝐼 𝑜𝑓 𝑆𝐼𝐹 =

𝐾𝐼𝐼

𝐾0
 , 𝐾0 =

𝑝

𝜋𝑅𝑡
√𝜋𝑎 

Fig. 4a provides the descriptions of all the above-mentioned parameters for the CBD 

specimen. According to Fig. 5, the SIFs are considerably influenced by not only the initial crack 

angle β, but also the material orientation angle λ. For example, at β=0º, variation of λ from 0º to 

90º causes to change the normalized KI up to -61.6%. While at β=38º, with increasing the value of 

λ from 0º to 90º, the maximum fluctuation in the absolute value of the normalized KII is +75.2%. 

Given such an effect, the simplification of anisotropic materials by assuming isotropy will result 

in unrealistic solutions. When the material orientation angle λ is fixed and the crack is parallel to 

the loading direction (i.e. β = 0º), the mode I of SIF becomes positive and reached maximum value. 

When the crack is perpendicular to the loading direction (i.e. β = 90º), this factor shows a minimum 

negative value. When the crack angle β, is 0º and 90º, the mode II stress intensity factor is 

negligible, and the maximum absolute value is achieved about β = 40º. Pure mode II occurs when 
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KI = 0. According to Fig. 5a, this angle significantly depends on the orientation of the anisotropy 

axes. Thus, suggesting a constant initial crack angle for all cases is not justified. For the elastic 

ratios assumed in this example, this angle varies from 15 to 42 depending on the value of λ. In 

general, the SIFs are significantly dependent not only on β, but also on λ. 

  

(a) (b) 

Fig. 5. Variation of normalized mode I (a); and II (b), stress intensity factors for different values of anisotropic 

orientation angle λ, and initial crack angle β. 

 Inhomogeneous (isotropic and anisotropic) plate with an inclined center crack 

Consider, as shown in Fig. 4b, an inhomogeneous plate subjected to plane stress and 

experiencing a uniform strain 𝜀 ̅that corresponds to an uncracked structure. The plate has a crack 

length of a at angle �̅� (counter-clockwise) subjected to fixed-grip loading. Two states are 

considered for the plate: i) inhomogeneous and isotropic and ii) inhomogeneous and anisotropic. 

For the former state we have 𝜎22(𝑋1, 10) = 𝜀�̅�0𝑒𝛼𝑋1, and for the later, we have 𝜎22(𝑋1, 10) =

𝜀�̅�2
0𝑒𝛼𝑋1. Young’s modulus and shear modulus are exponential functions of X1, the Poisson ratio 

is constant, and geometric parameters are as follows; 

𝛼 = 0.5 ,          𝑎 𝑊⁄ = 0.1 ,         𝐿 𝑊⁄ = 1.0 ,         �̅� = 0 − 90 ,         𝜀 ̅ = 1 (29) 

where in the inhomogeneous isotropic case; 

𝐸(𝑋1) = 𝐸0𝑒𝛼𝑋1  ,         𝜈(𝑋1) = 𝜈 

𝐸0 = 1.0 ,           𝜈 = 0.3 
(30) 

and in the inhomogeneous anisotropic case; 

𝐸1(𝑋1) = 𝐸1
0𝑒𝛼𝑋1  ,      𝐸2(𝑋1) = 𝐸2

0𝑒𝛼𝑋1  ,      𝐺12(𝑋1) = 𝐺12
0 𝑒𝛼𝑋1  ,      𝜈12(𝑋1) = 𝜈12

0  

𝐸1
0 = 104 ,              𝐸2

0 = 103 ,              𝐺12
0 = 1216 ,              𝜈12

0 = 0.3 
(31) 
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The isotropic case was previously studied by Konda and Erdogan [92] with semi-analytical 

solutions, Dolbow and Gosz [45] with the XFEM approach, and Kim and Paulino [87] by singular 

finite element method. The anisotropic case was also studied by Kim and Paulino [87] assuming 

non-equilibrium and incompatibility formulations of the M integral. 

To simulate this example by the proposed method, approximately 2944 degrees of freedom 

were used (1396 four-node elements), while it was solved by Kim and Paulino [87] with the 

singular finite element method and 10672 degrees of freedom (5336 elements). Table 2 shows the 

normalized SIFs of both the inhomogeneous isotropic and inhomogeneous anisotropic cases for 

the present method and the reported results in the literature, where R and L superscripts indicate 

the SIFs at the right and left crack tips, respectively. Clearly good agreement is observed between 

the present method and reference results. 

Table 2- Comparison of normalized mixed-mode SIFs in isotropic (𝐾0 = 𝜀�̅�0√𝜋𝑎) and anisotropic (𝐾0 = 𝜀�̅�2
0√𝜋𝑎) 

inhomogeneous cases. 

 Isotropic case 

Method �̅� 𝐾𝐼
𝑅 𝐾0⁄  𝐾𝐼𝐼

𝑅 𝐾0⁄  𝐾𝐼
𝐿 𝐾0⁄  𝐾𝐼𝐼

𝐿 𝐾0⁄  

Konda and Erdogan 

[86] 

0° 1.424 0.000 0.674 0.000 
36° 0.925 0.548 0.460 0.365 
72° 0.146 0.314 0.059 0.269 

Nonequilibrium 

formulations of the M 

integral [81] 

0° 1.4234 0.0000 0.6657 0.0000 
36° 0.9224 0.5502 0.4559 0.3625 
72° 0.1451 0.3147 0.0587 0.2670 

Constant-constitutive 

tensor formulations of 

the M integral [81] 

0° 1.4262 0.0000 0.6629 0.0000 

36° 0.9224 0.5512 0.4546 0.3607 

72° 0.1439 0.3144 0.0596 0.2670 

Dolbow and Gosz 

(XFEM) [45] 

0° 1.445 0.000 0.681 0.000 
36° 0.930 0.560 0.467 0.364 
72° 0.142 0.316 0.062 0.268 

Presented XFEM 

formulations 

0° 1.4291 -0.0000 0.6683 0.0002 

36° 0.9231 0.5557 0.4570 0.3598 

72° 0.1400 0.3215 0.0658 0.2583 

 Anisotropic case 

Method �̅� 𝐾𝐼
𝑅 𝐾0⁄  𝐾𝐼𝐼

𝑅 𝐾0⁄  𝐾𝐼
𝐿 𝐾0⁄  𝐾𝐼𝐼

𝐿 𝐾0⁄  

Nonequilibrium 

formulations of the M 

integral [81] 

0° 1.4279 0.0000 0.6663 0.0000 
36° 1.0177 0.4097 0.4150 0.4160 
72° 0.2154 0.2906 0.0056 0.2822 

Incompatiblity 

formulations of the M 

integral [81] 

0° 1.4285 0.0000 0.6663 0.0000 
36° 1.0177 0.4111 0.4149 0.4156 
72° 0.2158 0.2906 0.0052 0.2823 

Presented XFEM 

formulations 

0° 1.4294 0.0000 0.6601 0.0000 

36° 1.0097 0.4132 0.4083 0.4180 

72° 0.2178 0.3017 0.0059 0.2792 
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The first mode of normalized stress intensity factors at the right crack tip in the case of �̅� = 0 

is considered to investigate convergence of error of normalized SIFs. Fig. 6 shows the convergence 

rate of results for both isotropic and anisotropic cases. In isotropic case, results are compared with 

semi-analytical solution by Konda and Erdogan [92]. Since there is no available exact solution for 

anisotropic case in the literature, the average value of normalized stress intensity factors which are 

obtained by Nonequilibrium and incompatible formulations of the M integral by Kim and Paulino 

[87], has been considered as the exact value. In both cases, a good convergence rate is observed. 

 

Fig. 6. Semi-logarithmic graph for convergence rate of normalized KI at the right crack tip in the case of �̅� = 0 for 

both isotropic and anisotropic cases. 

 Inhomogeneous anisotropic Hollow Centre Cracked Disc 

To gauge the strength of the proposed method in simulating the failure mechanism of 

inhomogeneous anisotropic rocks, it needs to be validated for such materials. According to 

Mohtarami et al. [9], when a porous rock material is exposed to a corrosive acidic fluid, the pH 

and concentration of the chemical solution and thus its corrosiveness decrease as it penetrates into 

the rock. This behavior diminishes mechanical properties of the points in the vicinity of the 

chemical source [93]. In other words, the mechanical properties of rocks will be functions of time 

and distance to the location of the acid source. Mohtarami et al. [4, 94] utilized this observation to 

simulate the effect of different parameters on the efficiency of oil wells acidizing. They found that 

the degree of variations and the type of rock inhomogeneity depend on the parameters such as 

temperature, acid injection pressure, acid-rock contact time, confining pressure, concentration and 

type of acidic fluid, and the type of rock. Based on this concept, the device shown in Fig. 7 was 
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designed and constructed to create inhomogeneous and anisotropic specimens by injecting acid to 

the permeable porous rock material. The device is able to inject acidic fluid with a specific pressure 

or flow rate, apply confining pressure and heat, and then measure the parameters of the outflow. It 

consists of a 4 cm thick hollow stainless steel cylinder capable of sustaining confining stress and 

acid pressures of up to 30 MPa and temperatures up to 200ºC. Also according to Fig. 8, cylindrical 

rock specimens with an outer diameter of 123 mm and height of 180 mm and with a central hollow 

with diameter of 20 mm and depth of 150 mm were prepared. The device has an internal cap that, 

once mounted on the specimen, drives the acid path in a way that it enters in and contacts only 

with the exposed surface within the central hole. This would result in acid penetration into the 

specimen as radially as possible. 

 

Fig. 7. Schematic and real view of designed device to simulate the acidizing process. 
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Fig. 8. Prepared cylindrical specimens for acidizing tests (external diameter 123 mm, inner diameter 20mm, length 

180 mm). 

The specimens were extracted from a rock body belonging to Asmari formation in Iran. The 

major mineral composition of this formation is calcite and dolomite (totally 86%) with a small 

portion of siderite and other minerals. All samples were obtained from the same location and with 

the minimum distance from each other. Samples were also subjected to a series of ultrasonic tests 

to identify the most similar samples for the ensuing tests. Fig. 9 compares the produced images by 

a scanning electron microscope (SEM) with a magnification of 500, in sound sample and acidized 

sample with 15% HCl at 60ºC. As evident, the porosity of the sample has increased by acidizing. 

Fig. 10 also shows the locus of pores in two orthogonal directions with respect to distance from 

the acid source in the same rock specimen. It can be seen that, zones near the central hollow exhibit 

a higher value of porosity. This means that acidizing creates an inhomogeneous environment 

where points closer to the chemical source exhibit more reduced mechanical properties. The 

increasing rates of porosity along two orthogonal directions are dissimilar. The reason for this 

dissimilarity is the presence of weakness planes (joint sets and fractures), which facilitate the 

penetration of acid along a particular direction (parallel to the weakness plane). This phenomenon 

shows that acidizing creates an anisotropic environment. 

  
(a) (b) 

Fig. 9. Images of a SEM with magnification of 500 for: a) a sound sample; b) an acidized sample with 15% HCl at 

60ºC. 
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Fig. 10. Increasing porosity (bright spots) in two orthogonal directions in acidizing by 15% HCl at 60ºC. Left to right 

in distance of 5, 20, 35, 45 mm from acid contact point; photos by a fluorescent microscope and 40 magnification. 

Determining mechanical properties at a desired point of the rock material requires access to 

the mechanical properties of the rock matrix, the porosity percentage, and the shape of the pores 

in that point. The properties of a porous material largely depend on the extent of porosity as well 

as internal pore structure, so that several models have been developed specifically to predict the 

structure-dependent mechanical performance of porous materials [95-97]. The Mori-Tanaka (MT) 

model [98, 99] is one of the best-known analytical solutions for determining the effective constants 

of porous and composite materials by the use of homogenization techniques. In this method, the 

Eshelby tensor is determined by the use of Eshelby’s equivalent inclusion theory [100] and then 

the homogenization technique is utilized to determine the properties of porous materials. Gang et 

al. [101] have resolved the limitations of the Mori-Tanaka model by the use of a stepped equivalent 

substitution (SES) approach to calculate the elastic constants of porous materials with different 

amounts of pores of different sizes. 

Consider a material containing ellipsoid pores subjected to a uniform stress σ0. An 

inhomogeneous material that contains inclusions (or pores) is an Eshelby’s inhomogeneous 

inclusion problem, so the equivalent stiffness matrix of the porous solid (Le) will be as follows, 

𝐿𝑒 = 𝐿𝑚(𝐼 + 𝜙𝐴)−1 (32) 

where Lm is the stiffness matrix of the matrix material, I is the fourth rank identity tensor, ϕ is the 

volume fraction of the pores (i.e. porosity), and 

𝐴 = {𝐿𝑚 − 𝐿𝑚[𝜙𝐼 + (1 − 𝜙)𝑆]}−1 𝐿𝑚 (33) 
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where S is the Eshelby’s tensor for pores [99]. In the extended Mori-Tanaka (EX-MT) approach, 

when a matrix contains multiple groups of pores with different shapes, sizes and directions, the 

MT model must be used to turn the matrix and the first group of pores into an equivalent material 

with stiffness matrix L1. This equivalent material is considered as a new matrix which makes a 

porous material with the remaining pores. Reusing the MT model with the second pore group gives 

another equivalent material with stiffness matrix L2. By repeating this process, the interaction 

between all pores can be analyzed and a final equivalent material (with the stiffness matrix of Le) 

will be obtained. Hence, the equivalent flexibility matrix will ultimately be equal to  e = (Le)-1. 

The effective transverse elastic modulus ( ||E ) and the effective longitudinal elastic modulus ( E ) 

of the porous material can be obtained as follows [101]; 

𝐸∥ = (𝜇11
𝑒 )−1,         𝐸⊥ = (𝜇33

𝑒 )−1 . (34) 

This method has been validated in compound materials [102], metal alloys [103], composites 

[104], and recently in concrete [105], brittle [106, 107] and quasi-brittle [108] rocks. Having the 

shape and distribution of porosity and the properties of rock matrix, the mechanical properties of 

any desired point of the object can be easily determined. Fig. 11 shows the distribution of elastic 

moduli obtained by the use of extended Mori-Tanaka method for a specimen after 24 hours of 

acidizing with 15% HCl and injection pressure of 4 MPa. As can be clearly observed, this method 

allows the mechanical properties of any desired point to be determined. 

  
(a) (b) 

Fig. 11. Distribution of elastic modulus (unit: Pa) in tested HCCD specimens in a similar scale, a) distribution of 

E11; b) distribution of E22. 
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After initial preparations and acidizing process, the cylindrical specimens were cut at t=30 

mm intervals along the cylinder axis to obtain disc-shaped specimens. Two straight cracks 

(according to HCCD sample in Fig. 4c) were then created in the disc specimens at different initial 

angles (β) such that a /(ro-ri)=0.2 and ro=123 mm, using a wire saw. The specimens were placed 

between the steel jaws of testing machine as suggested by ISRM [109], and were subjected to a 

linear load at a slow deformation rate of 0.5 mm/min until failure. The ultimate loads and crack 

propagation trajectory of all the specimens were recorded. Table 3 shows the geometric 

characteristics of the selected specimens, and Fig. 12 also presents a view of these tested HCCD 

specimens after failure. Secondary cracks which are formed after the main crack, were mostly 

located along the weakness planes due to the fact that the loading does not stop immediately. Non-

original cracks propagation because of reasons such as absence of momentary interruption in 

loading and the effects of boundary conditions has already been reported for rocks in the literature 

[14, 19, 23, 91]. In all of these specimens, cracks showed a tendency to propagate toward the 

loading point. 

Table 3- The geometric characteristics of the selected HCCD specimens for comparison of experimental and 

numerical results 

Sample’s Fig. No. β (Deg) λ (Deg) ro (mm) ri / ro a / ro - ri t (mm) 

Fig. 12a 0 0 163 0.20 0.2 29.9 

Fig. 12b 15 60 163 0.18 0.2 30.2 

Fig. 12c 28 90 163 0.22 0.2 30.0 

 

   
(a) (b) (c) 

Fig.12. Selected HCCD specimens after failure; a) pure mode I; b) mixed mode I/II; c) pure mode II. 

In Fig. 13, the experimental crack propagation path is compared with the trajectory predicted 

by the XFEM. This figure demonstrates the excellent ability of the proposed method to predict 

crack trajectory in inhomogeneous anisotropic materials. Fig. 14 shows the distribution of stresses 
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in the three selected samples. Examination of the stress distribution shows that whenever the crack 

deviates from the vertical position or anisotropic axes deviate from 0º or 90º, the induced stresses 

become asymmetric. In addition, a closer examination of shear stresses and σxx applied to the crack 

surfaces shows that as a crack deviates from the pure mode I (β = 0°) to the pure mode II (β = 

28°), the shear stresses within this region increase substantially. This suggests an increase in the 

contribution of the sliding mode on sample fracturing. On the other hand, tensile stresses acting 

on the crack surfaces decrease (reduction of tensile mode) and instead, the maximum tensile 

stresses become concentrated at the top of the central hollow. With further increase in the initial 

crack angle and in the presence of sufficient diagonal force, this point of the body becomes 

susceptible to nucleation and propagation of a new crack. 

   
(a) (b) (c) 

Fig. 13. Comparison of crack propagation trajectory obtained by numerical method (continuous line) and 

experimental method (line with solid circles) respectively for: a) pure mode I; b) mixed mode I/II; c) pure mode II. 

5. Effect of geometrical and mechanical properties on SIFs in the HCCD specimen 

As previously mentioned, the assumptions of isotropy and homogeneity cannot account for 

actual conditions in rock formations and furthermore, there is no comprehensive rock mechanics 

test for investigating the toughness of inhomogeneous anisotropic geo-materials. Therefore, in this 

section, we conduct a parametric study on the geometric and mechanical properties of such 

materials by the use of a HCCD configuration. The reason for choosing this particular specimen 

and test configuration was the ease of specimen preparation, the simplicity of the test procedure 

and apparatus operation, and the fact that this is the only option for high-pressure acid injection. 

This test has already been successfully used for homogeneous isotropic [110] and homogeneous 

anisotropic rocks [19]. Since previous studies [17, 27, 87] have shown the insignificant effect of 

Poisson’s ratio on SIFs and failure parameters, in all analyses, this ratio was assumed to be 
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constant. According to Bayesteh and Mohammadi [17] and Kim and Paulino [87], in 

inhomogeneous materials, the degree of anisotropy (E1/E2), material orientation angle (λ), and 

magnitude of variation pattern (α) have significant effects on determination of SIFs. Chen et al. 

[19, 20] have studied the impact of varying E1/E2 within the range of 1/7 - 7 on SIFs of anisotropic 

homogeneous cracked Brazilian disks. In the present study, the same values of degree of material 

anisotropy were considered for HCCD test of anisotropic inhomogeneous material. The material 

orientation angle (λ) can vary in the range of 0°-90°, so this study was conducted with four 

orientation angles of λ=0,30,60, and 90. Concurring with the study of Chen et al. [20] on the effect 

of shear modulus in homogeneous materials, five ratios of E1/G = 0.25, 0.5, 1, 2, and 4 were 

selected. Finally, to study the effect of inhomogeneity, the rate of varying mechanical properties 

(α) (see Sec. 4.2 and Eqs. 30-31) was changed in the range of -10 to +10 and the resulting effects 

were examined. Assuming exponential changes in mechanical properties, the numbers in the 

aforementioned range provide reasonable elastic moduli. Sensitivity analysis was conducted on 

the degree of anisotropy (E1/E2), orientation angle (λ), shear stiffness (G), and the rate of 

inhomogeneity (α) as mechanical parameters, and the initial crack length (a), and its angle (β) as 

geometrical parameters. But before discussing the results, the following definitions need to be 

outlined. 

Normalized Stress intensity factors (NSIFs): This ratio is defined for Modes I and II as follows, 

𝐾𝐼
̅̅ ̅ =

𝐾𝐼

𝐾0
 ,             𝐾𝐼𝐼

̅̅ ̅̅ =
𝐾𝐼𝐼

𝐾0
 

where, for a sample with thickness t and radius R, the specified factor is 𝐾0 = 𝑃√𝜋𝑎 (𝜋𝑅𝑡)⁄ . 

Pure mode I and pure mode II: Typically, loads are a mixture of Modes I and II. In the HCCD 

test, specimens may undergo different conditions depending on the crack angle β. The β angle at 

which 𝐾𝐼𝐼
̅̅ ̅̅ = 0 is called the pure mode I angle (βI), and its corresponding 𝐾𝐼

̅̅ ̅ is called the pure mode 

I normalized stress intensity factor (pure mode I NSIF). In this case, there is no sliding mode, and 

the sample experiences only the tensile mode. Conversely, the β angle at which 𝐾𝐼
̅̅ ̅ = 0 is called 

the pure mode II angle (βII), and its corresponding 𝐾𝐼𝐼
̅̅ ̅̅  is called the pure mode II normalized stress 

intensity factor (pure mode II NSIF). 

Signs: The sign of 𝐾𝐼
̅̅ ̅ refers to the relative normal displacement of the crack surfaces, so a positive 

𝐾𝐼
̅̅ ̅ represents an opening crack and a negative 𝐾𝐼

̅̅ ̅ represents a closing one. While the sign of 𝐾𝐼𝐼
̅̅ ̅̅  
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refers to the sliding displacement of the crack surfaces relative to each other, a positive 𝐾𝐼𝐼
̅̅ ̅̅  denotes 

a clockwise sliding and a negative 𝐾𝐼𝐼
̅̅ ̅̅  denotes a counterclockwise one. 

Crack length ratio: The dimensionless ratio of a/(ro-ri) (see Fig. 4c) is called crack length ratio. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 14. Distributions of stresses (unit: MPa) in HCCD specimens; a, b, c) for sample 12a; d, e, f) for sample 12b; 

g, h, i) for sample 12c. 

 Degree of material anisotropy 

The effect of material anisotropy (E1/E2) on the values of SIFs, with three different degrees 

of anisotropy E1/E2=
1/7, 1 (isotropic), and 7 are conducted numerically. The material orientation 

angle and Poisson's ratio are selected as λ = 0 and ν = 0.23, respectively. The dimensionless 
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geometric parameters are also selected to be the same as the setup of laboratory experiments, and 

are a/(ro-ri)=0.2 and ri/ro=0.17. Fig. 15 represents the effect of different degrees of anisotropy on 

the NSIFs for various initial crack angles (β). As it can be clearly seen, the NSIFs of the first 

fracture mode 𝐾𝐼
̅̅ ̅ decrease substantially with the increase in the initial crack angle (β), while the 

NSIFs of the second mode 𝐾𝐼𝐼
̅̅ ̅̅  increase. This trend indicates SIFs dependency to the crack angle. 

The observed trend in this example is also found in the study of all other parameters. It is seen that 

with increasing E1/E2; the angle of pure mode II (βII) increases from 25º to 37º, the NSIF of pure 

mode I (where 𝐾𝐼𝐼
̅̅ ̅̅ = 0) decreases by about 15% and the NSIF of the pure mode II (where 𝐾𝐼

̅̅ ̅ = 0) 

increases by about 18%. 

 
Fig. 15. Variation of normalized SIFs versus the crack initiation angle β, for different degrees of material anisotropy. 

 Anisotropic orientation 

Numerical analysis of the effect of anisotropy orientation (λ) on SIFs of inhomogeneous 

anisotropic material was carried out at anisotropy degrees of E1/E2=1.5 and 7. For a better 

comparison, the results of the isotropic specimen (E1/E2=1) were also examined. The anisotropy 

orientation was set to λ=0, 30, 60, 90 and the rest of the variables were set to the same values as 

in the example 5.1. Figs. 16a and 16b show the variations of NSIFs for anisotropy orientation of 

1.5 and 7, respectively. A closer examination of these figures shows that: 

 In both graphs, for material orientation angle λ=0, 90, pure mode I occurs when β=0. This 

state is diverted for other values of λ (60 and 30), and the deviation increases with the 

increase in the degree of anisotropy (chart b). 

 Comparing the NSIFs of two charts at the same λ indicates that as E1/E2 increases from 1.5 
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to 7, the greatest change in 𝐾𝐼
̅̅ ̅ NSIFs graph is related to λ=90 (+10% variation) while the 

greatest change in 𝐾𝐼𝐼
̅̅ ̅̅  NSIFs curve is related to λ = 60 (-16.6% variation). 

 Although for small anisotropy degrees (Fig. 16a) a change in material orientation angle 

triggers a small variation in pure normalized mode I and II SIFs, for large anisotropy 

degrees (Fig. 16b) the resulting variations are more significant. 

 For small anisotropy degrees (E1/E2=1.5), when λ changes from 0º to 90º, the degree at 

which pure mode II occurs, decreases from about 34º to 26º while for large anisotropy 

degrees (E1/E2=7), the reduction is from 38° to about 20°. 

 

 
Fig. 16. Normalized SIFs versus the crack initiation angle β, for different material orientation angle; a) for isotropic 

case and anisotropy degree of 1.5; b) anisotropy degree of 7. 

 Shear modulus 

The effect of shear stiffness on NSIF was investigated when E1/E2=1.5, λ=0, and for a 

constant value of E1 but variable ratio of E1/G. The rest of the parameters were set to the same 

values as in example 5.1. Fig. 17 shows the effect of changes in shear modulus G on NSIFs. It is 

clearly observed that the decrease in G (increase in E1/G) has caused a 9% reduction in the pure 

mode I NSIF (𝐾𝐼
̅̅ ̅) and has reduced βII from about 38º to 31º. However, this reduction rate is more 

significant (18.4%) in the pure mode II NSIF (𝐾𝐼𝐼
̅̅ ̅̅ ). This observation shows that shear modulus has 

a greater effect on the pure mode II mechanism (shear mode) compared to the other failure mode. 
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Fig. 17. NSIFs versus the crack initiation angle β, for different shear modules. 

 Inhomogeneity order 

Similar to the numerical example of Section 4.2, we assume that mechanical properties of the 

object change exponentially by the equation 𝜉 =  𝜉0𝑒𝛼 𝑅, where ξ is the desired mechanical 

property (E1, E2, G12) at the desired point, ξ0 is the mechanical property at the center of the object, 

e is the Napier number, α is the inhomogeneity order, and R is the distance from the center of the 

specimen. For this particular example, E1
0/E2

0=1.5, and the rest of the variables were set to the 

same values as in the first example, except that the simulated model was not only anisotropic but 

also inhomogeneous. The inhomogeneity order (α) varied from -10 to +10. Negative α values cause 

the structure to exhibit weaker properties at its outer layers than its center and positive α values 

cause the opposite effect. Meanwhile, the greater absolute values of α results in sharper changes 

in the mechanical properties. Fig. 18 shows the effect of the inhomogeneity order on the values of 

𝐾𝐼
̅̅ ̅ and 𝐾𝐼𝐼

̅̅ ̅̅  for different β values. In this numerical experiment, we can conclude that:  

 For mode I NSIFs variations do not follow a uniform trend with the inhomogeneity order.  

For crack initiation angles β of -5º to 15º in particular, there is a negative correlation 

between α and the absolute value of NSIF (mode I) whereas for bigger β values, this 

correlation is positive. Also, the slope of the variations is not uniform and increases more 

significantly once the orientation angle is beyond 15º. 

 For mode II NSIFs, the absolute values of SIF decrease with an increase in the 

inhomogeneity order. These variations become sharper as β deviates from the pure mode I 

(β = 0) toward pure mode II. 
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(a) (b) 

Fig. 18. NSIFs versus variation of inhomogeneity order (α) for different crack initiation angles; a) mode I of failure; 

b) mode II of failure. 

 Effect of initial crack length in homogeneous/inhomogeneous anisotropic materials 

The effect of initial crack length was investigated by considering cracks of different length 

ratios a/(ro-ri) in homogeneous and inhomogeneous anisotropic HCCD specimens. This was done 

to examine not only the effect of geometric parameters but also the effect of inhomogeneity on the 

NSIF results. In this part of the work, the homogeneous material was modeled with E1/E2=3 and 

a/(ro-ri)=0.2,0.4,0.6 and the inhomogeneous material was modeled with E1
0/E2

0=3, a/(ro-

ri)=0.2,0.4,0.6 and α=10. Fig. 19 shows the effect of initial crack length on the two aforementioned 

materials. Individual investigation of Fig. 19a or 19b shows that the increase in crack length has 

increased the pure mode I and II NSIFs by about 25% and 28%, respectively. This increase is far 

higher in 𝐾𝐼𝐼
̅̅ ̅̅ . Conversely, this increase has reduced the angle of pure mode II (βII) from about 30º 

to about 22º. On the other hand, a comparison of these two charts shows that inhomogeneity order 

has caused a slight change in NSIFs. More specifically, in the homogeneous material, the minimum 

and maximum 𝐾𝐼
̅̅ ̅ values at β=0 are respectively 1.345 and 1.686 but in the inhomogeneous 

material, these values are 1.301 and 1.737, respectively. Meanwhile, the minimum and maximum 

𝐾𝐼𝐼
̅̅ ̅̅  are respectively -2.293 and -2.860 in the homogeneous material and -2.117 and -2.819 in the 

inhomogeneous material. Also, inhomogeneity has increased the angle of pure mode II by 

approximately 1 to 2 degrees. 

It should be noted that even insignificant variations in SIFs do not mean that inhomogeneity 

can be ignored, as it may disrupt the stress distribution and material deformation and the stiffer 

part will receive a larger contribution of the applied external force. Also, as suggested by Saouma 
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et al. [89] and Mohtarami et al. [9], inhomogeneity changes the material’s toughness by altering 

its mechanical properties. Therefore, the required fracture force in an inhomogeneous body is 

usually not the same as a homogeneous one and it is a function of the mechanical properties of the 

point where the crack tip is located. 

 
Fig. 19. NSIFs versus crack initiation angles for different crack length ratios; a) a homogeneous anisotropic material 

with E1/E2=3; b) an inhomogeneous (α=10) anisotropic media with E1
0/E2

0=3. 

6. Discussion and conclusions 

In view of the inherent inhomogeneity and anisotropy of rocks and the absence of a 

comprehensive study on rock materials with such properties, this study provided an appropriate 

solution for the accurate simulation of such materials. For this purpose, the concept of T-stress was 

used in an anisotropic framework. In addition, inhomogeneity and anisotropy were incorporated 

into the calculations by the use of the M-integral with incompatible formulations and anisotropic 

crack tip enrichments functions, respectively. For validation, the NSIFs obtained from the 

proposed method were compared with the results of previous research works on anisotropic or 

inhomogeneous materials. Comparison of the results showed that the proposed method gives 

satisfactory results with a lower number of degrees of freedom. Furthermore, the fact that 

mechanical properties of a rock exposed to an acid source is a function of time and space was 

utilized to produce anisotropic inhomogeneous specimens. The fluorescent microscopic 

photographs and the extended Mori-Tanaka method were used to determine the mechanical 

properties at each point of the specimen. Then, the crack initiation angle and propagation trajectory 

obtained from the proposed XFEM analysis and the laboratory method were compared with each 

other. Next, a sensitivity analysis was carried out on the geometric and mechanical parameters of 
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anisotropic inhomogeneous HCCD specimens. The results of this study are summarized as 

follows: 

 The results demonstrate the capability of the proposed method to estimate crack initiation 

angles and propagation paths, especially in the mixed mode case. Previous studies have largely 

neglected the inhomogeneity-anisotropy of materials and consequently, their results cannot be 

generalized to actual materials encountered in the field. 

 The results show that not only the initial crack angle (β), but also the material orientation angle 

(λ) and the degree of anisotropy (E1/E2) have significant effects on the SIF and the crack 

initiation angle. In presence of such effects, using the simplifying assumption of isotropy for 

anisotropic materials will lead to unrealistic results. 

 HCCD test configuration was used due to its simple specimen preparation process and the fact 

that it requires less sophisticated test apparatus. Under pure mode I (β = 0), this specimen 

experiences negligible shear stress distribution but under mixed-mode loading (e.g. with 

inclined crack), it experiences a significant shear stress at the crack tip, which becomes one of 

the main factors influencing its failure. Crack deviation from β=0 (parallel to the loading 

direction) disrupts the balance of stress fields near the crack tip and causes pure mode (I) to be 

turned into the mixed mode (I/II). 

 The degree of material anisotropy (E1/E2) has a strong effect on Mode I NSIFs (𝐾𝐼
̅̅ ̅) and the 

angle at which the pure mode II occurs (βII). However, this effect is not significant on Mode II 

NSIFs (𝐾𝐼𝐼
̅̅ ̅̅ ). 

 When the anisotropic orientation is λ=0 and 90, the specimen will definitely experience pure 

mode I at β=0. But with any deviation of λ from these angles, βI will diverge as well. This 

result shows that failure mode is a function of not only the geometric conditions but also the 

mechanical properties of the material. It was also found that as the degree of anisotropy (E1/E2) 

increases, material orientation angle (λ) has a significantly greater impact on 𝐾𝐼
̅̅ ̅ and 𝐾𝐼𝐼

̅̅ ̅̅  and 

the angle at which pure mode I and pure mode II occur (βI and βII). 

 The effect of the inhomogeneity order (α) on NSIFs is not uniform but rather a function of 

initial crack angle (β). More specifically, deviation of the crack angle to values beyond 15° 

(deviation toward pure mode I or pure mode II) results in much sharper changes in NSIFs with 

the increase of α. 
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 The inhomogeneity order (α) has a mild effect on 𝐾𝐼
̅̅ ̅ and 𝐾𝐼𝐼

̅̅ ̅̅ , but it will inevitably impact the 

failure force. 

 The increase in crack length led to an increase in the pure mode I and II NSIFs. This effect was 

far more noticeable in 𝐾𝐼𝐼
̅̅ ̅̅ , but in turn decreased the pure mode II angle (βII). 

The calculated stress intensity factors, crack initiation angles, and crack propagation paths 

demonstrate the capability of the proposed XFEM formulation in simulating the fracture 

mechanism in inhomogeneous anisotropic materials. Therefore, the study results can be used 

confidently in various cases (in terms of geometry, boundary conditions, and scale) for 

inhomogeneous anisotropic brittle materials. 
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