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Previous results show that for a Cauchy stress response induced by a strictly 
rank-one convex hyperelastic energy potential, a homogeneous Cauchy stress 
tensor field cannot correspond to a non-homogeneous deformation if the 
deformation gradient has discrete values.

We show that these results do not hold for arbitrary deformations by explicitly 
giving an example of a strictly rank-one convex energy and a non-homogeneous 
deformation such that the induced Cauchy stress tensor is constant.

In the planar case, our example is related to another previous result concerning
criteria for generalized convexity properties of conformally invariant energy 
functions, which we extend to the case of strict rank-one convexity.
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Abstract

It has recently been shown that for a Cauchy stress response induced by a strictly rank-one con-

vex hyperelastic energy potential, a homogeneous Cauchy stress tensor field cannot correspond to a

non-homogeneous deformation if the deformation gradient has discrete values, i.e. if the deformation is

piecewise affine linear and satisfies the Hadamard jump condition. In this note, we expand upon these

results and show that they do not hold for arbitrary deformations by explicitly giving an example of

a strictly rank-one convex energy and a non-homogeneous deformation such that the induced Cauchy

stress tensor is constant. In the planar case, our example is related to another previous result con-

cerning criteria for generalized convexity properties of conformally invariant energy functions, which

we extend to the case of strict rank-one convexity.

Key words: nonlinear elasticity, ellipticity, conformal mappings, Möbius transformations
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1 Introduction

In recent contributions [1, 2] we have exhibited both planar and three-dimensional inhomogeneous (i.e. non-
affine) deformations for which the associated Cauchy stress tensor is homogeneous (i.e. constant). More
specifically, we considered configurations with discrete deformation gradients, i.e. piecewise affine linear
(“laminate”) deformations satisfying the Hadamard jump condition. The hyperelastic energy potentials
which induced a homogeneous Cauchy stress for these deformations happened to be non-elliptic, i.e. not
rank-one convex on the group GL+(n) of invertible matrices with positive determinant. Moreover, we
showed that this loss of ellipticity is essential for the observed phenomenon to occur by proving that for a
strictly rank-one convex energy function, the Cauchy stress corresponding to a non-trivial laminate (i.e. a
non-affine but piecewise affine deformation) is never homogeneous [3]. Here, a function W : GL+(n) → R

is called strictly rank-one convex if

W (F + t(ξ ⊗ η)) < (1− t)W (F ) + tW (F + ξ ⊗ η) for all t ∈ [0, 1]

for all F ∈ GL+(n) and all ξ, η ∈ R
n such that F + ξ ⊗ η ∈ GL+(n).

This observation raises the question whether our result is restricted to the laminate case or whether
the Cauchy stress induced by a strictly rank-one convex function is non-homogeneous for any non-affine
deformation.1 In the following, we will negatively answer this further-reaching conjecture by giving an
explicit example (both for the two-dimensional and the three-dimensional case) of a strictly rank-one
convex energy and a non-affine deformation such that the corresponding Cauchy stress tensor is constant.
In particular, this result also implies that strict rank-one convexity is, in general, not connected to the
invertibility of the Cauchy stress-stretch relation.

The energy functions in our examples are not highly pathological in nature; in fact, they are not only ob-
jective and isotropic, but also satisfy common constitutive conditions such as the correct growth behaviour
for singular deformation gradients, coercivity and the uniqueness of a stress-free reference configuration,
cf. Remark 4.6. Furthermore, the non-affine deformations we consider are conformal, i.e. locally angle
preserving, cf. Section 2.

Our approach is structured as follows. After a brief introduction of conformal mappings, we consider
strictly rank-one convex examples of so-called conformally invariant energ functions and discuss their
connection to conformal mappings, both in the finite and the linearized case. By additively coupling these
purely isochoric energies with an appropriate volumetric expression, we then construct energy functions
which are physically viable, but still induce a constant Cauchy stress tensor field for certain conformal
deformation mappings, which proves our main result as given in Proposition 4.4. We will also point out
that our result does not contradict the statement made in [3] by showing that the (conformal) mappings
we use in our examples do not satisfy the essential Hadamard jump condition.

2 Conformal mappings

As indicated in Section 1, our examples of non-affine deformations corresponding to constant Cauchy stress
are conformal mappings, i.e. of the form

ϕ : Ω → R
n with ∇ϕ(x) ∈ CSO(n) for all x ∈ Ω ,

where Ω ⊂ R
n is the elastic body in its reference configuration and

CSO(n) := R+ · SO(n) = {λ ·R | λ > 0 , R ∈ SO(n)}

denotes the special conformal group; here, R+ = (0,∞) is the set of positive real numbers and SO(n)
denotes the special orthogonal group. In particular, a mapping ϕ is conformal if and only if for each

1Note that the brief summary of our result from [2] in the abstract of [3] could easily be misread to claim the latter.
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x ∈ Ω, there exist λ(x) ∈ R+ and R(x) ∈ SO(n) such that

∇ϕ(x) = λ(x) ·R(x) or, equivalently,
∇ϕ(x)T∇ϕ(x)

det(∇ϕ(x)T∇ϕ(x))1/n
= 1 .

In the two-dimensional case, the (planar) conformal mappings on Ω ⊂ R
2 can be identified with the

holomorphic functions g : Ω ⊂ C → C with g′(z) 6= 0 for all z ∈ Ω.

We consider an example of a non-affine conformal mapping on some open set Ω ⊂ R
2, as shown in Fig. 1.

For Ω ⊂ R
2 \ {0}, let

ϕ : Ω → R
2 , ϕ(x) = ϕ

(
x1
x2

)
=

1

‖x‖2
·

(
x1
−x2

)
.

Then

∇ϕ(x) =
1

‖x‖2

(
1−

2x2

1

‖x‖2 − 2x1x2

‖x‖2

2x1x2

‖x‖2 −1 +
2x2

2

‖x‖2

)
and ∇ϕ(x)T ∇ϕ(x) =

1

‖x‖4
· 1 ; (2.1)

in particular, det(∇ϕ(x)) = 1
‖x‖4 > 0. Thus ϕ is a non-affine conformal mapping with a decomposition

∇ϕ(x) = λ(x) ·R(x) such that λ(x) > 0 and R(x) ∈ SO(2) for all x ∈ Ω; specifically,

λ(x) = det(∇ϕ(x))1/2 =
1

‖x‖2
and R(x) =

∇ϕ(x)

det(∇ϕ(x))1/2
=

(
1−

2x2

1

‖x‖2 − 2x1x2

‖x‖2

2x1x2

‖x‖2 −1 +
2x2

2

‖x‖2

)
∈ SO(2) .

0.5

0.5

−0.5

10 1

1

−1

20

ϕ

Figure 1: Visualization of the conformal mapping ϕ : Ω ⊂ R
2 \{0} → R

2 with ϕ(x) = 1
‖x‖2 ·

(
x1

−x2

)
, showing

that infinitesimal squares are rotated and scaled.

Note that for arbitrary dimension n ≥ 2 and Ω̃ ⊂ R
n \ {0}, the mapping ϕ̃ : Ω̃ → R

n with ϕ̃(x) =
1

‖x‖2 (x1,−x2, x3, x4, . . . , xn)
T
is conformal as well.

Remark 2.1. The above example is a special case of a so-called Möbius transformation, i.e. a mapping
ϕ : Ω ⊂ R

n → R
n given as the composition of finitely many reflections at hyperplanes and/or spheres.2

For n ≥ 3, every non-trivial conformal mapping is a Möbius transformation [4], while in the planar case
n = 2, the orientation-preserving Möbius transformations correspond to the complex functions of the form

f̃ : C → C , f̃(z) :=
az + b

cz + d
with a, b, c, d ∈ C , ad− bc 6= 0 . (2.2)

2The reflection s : Rn \ {x0} → Rn at a sphere Sx0
(r) = {x ∈ Rn | ‖x− x0‖2 = r2} with center x0 ∈ Rn and radius r > 0

is defined by s(x) = x0 + r2

‖x−x0‖2
· (x− x0). Note that a Möbius transformation is orientation preserving if and only if the

number of composed reflections is even.
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3 Conformally invariant energy functions and strict rank-one

convexity

A function W : GL+(n) → R is called conformally invariant if it is objective, isotropic and isochoric, i.e. if

W (aQ1FQ2) =W (F ) for all F ∈ GL+(n) , a > 0 , Q1, Q2 ∈ SO(n) .

In nonlinear elasticity, conformally invariant energy functions are generally not directly suited for modeling
the elastic behaviour of a material due to their invariance under purely volumetric scaling. However, they
are commonly coupled with a volumetric energy term of the form F 7→ f(det(F )) for some function
f : (0,∞) → R. Energy functions of this type, also known as an additive volumetric-isochoric split [5, 6],
will be used in Section 4 in order to establish our main results.

3.1 Conformally invariant energies in the planar case

It is well known [7] that in the planar case n = 2, an energy function W : GL+(n) → R is conformally
invariant if and only if it can be expressed in the form

W (F ) = ψ(K(F )) = ĥ(K(F )) with ψ, ĥ : [1,∞) → R (3.1)

for all F ∈ GL+(2), where

K : GL+(2) → [1,∞) , K(F ) =
1

2

‖F‖2

detF
and K : GL+(2) → [1,∞) , K(F ) =

|||F|||
2

detF

denote the distortion3 and the linear distortion function, respectively; here, ‖X‖ = (
∑n

i,j=1X
2
ij)

1/2 is the

Frobenius matrix norm and |||X||| is the operator norm, i.e. the largest singular value of X ∈ R
n×n.

In the following, let W : GL+(2) → R be of the form (3.1) such that the representation ψ of W in terms
of the classical distortion K is sufficiently smooth with ψ′(1) > 0 as well as strictly monotone increasing
and convex on [1,∞). Since the mapping K itself is polyconvex [7], the function W is polyconvex and
thus rank-one convex in this case as well, and thus the Legendre-Hadamard conditions [8] (cf. [9, 10] for
the planar case)

D2
FW (F ).[ξ ⊗ η, ξ ⊗ η] ≥ c+‖ξ‖2‖η‖2 (3.2)

are satisfied for all ξ, η ∈ R
2 and some c+ ≥ 0. We calculate the derivatives of W in direction of H ∈ R

2×2

explicitly to find

DFW (F ).[H] = ψ′(K(F )) ·DF (K(F )).[H] =
1

2
ψ′(K(F )) ·

[
〈2F − ‖F‖2F−T , H〉

det(F )

]
, (3.3)

3Note that K(F ) ≥ 1 for all F ∈ GL+(2) due to the Hadamard inequality, with K(F ) = 1 if and only if F is conformal.
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thus

D2W (F ).[H,H]

=
1

4
ψ′′(K(F )) ·

(
2〈F,H〉 − ‖F‖2〈F−T , H〉

)2

det(F )2

+
1

2
ψ′(K(F )) · det(F )−1 · [−4〈F−T , H〉〈F,H〉+ 2〈H,H〉+ ‖F‖2〈F−T , H〉2 + ‖F‖2〈F−THTF−T , H〉]

(3.4)

≥
1

2
ψ′(K(F )) · det(F )−1 · [−4〈〈F−T , H〉F,H〉+ 2‖H‖2 + ‖F‖2〈F−T , H〉2 + ‖F‖2〈F−THTF−T , H〉]

≥
1

2
ψ′(K(F )) · det(F )−1 ·

[
−2(〈F−T , H〉2‖F‖2 + ‖H‖2) (3.5)

+ 2‖H‖2 + ‖F‖2〈F−T , H〉2 + ‖F‖2〈F−THTF−T , H〉
]

=
1

2
ψ′(K(F )) · det(F )−1‖F‖2 · [−〈F−T , H〉2 + 〈F−THTF−T , H〉] , (3.6)

where the inequality in (3.5) follows from applying the Cauchy-Schwartz inequality and Young’s inequality,
with strict inequality holding if and only if 〈F−T , H〉2F 6= H.

Now, let H = ξ ⊗ η for ξ, η ∈ R
2. Then (3.6) vanishes due to the mapping F 7→ detF being rank-one

affine.4 Furthermore, since rank(F ) = 2 and rank(H) = 1, we find 〈F−T , H〉2F 6= H and thus

D2
FW (F ) [ξ ⊗ η, ξ ⊗ η] > 0 . (3.7)

Moreover, the Cauchy stress induced by the elastic energy potential W is given by

σ(F ) = DFW (F ) · Cof(F )−1 = ψ′(K(F )) ·

[
FFT

det(F )2
−

1

2

‖F‖2 · 1

det(F )2

]
= ψ′(K(F )) ·

[
FFT

det(F )2
−

K(F )

det(F )
· 1

]
;

note that σ(F )F=1 = 0. Since ψ is assumed to be strictly monotone increasing on [1,∞), and since
K(F ) = 1 if and only if F is conformal, W attains its global minimum exactly on the set CSO(2) of
conformal matrices. In particular, if K(F ) = 1, then FFT = det(F ) · 1 and thus

σ(F ) = ψ′(1) ·

[
FFT

det(F )2
−

1

det(F )
· 1

]
= 0. (3.8)

3.1.1 Approximations in linearized elasticity

In order to examine how the concept of conformal invariance relates to the classical quadratic energy
potential in isotropic linear elasticity, we consider the linearization of the energy potential W given in
(3.1). Applying (3.4) to F = 1 and H = ∇u ∈ R

2×2, we find

D2W (1).[∇u,∇u] =
1

2
ψ′(1)

[
−2〈1,∇u〉2 + 2〈∇u,∇u〉+ 2〈∇uT ,∇u〉

]
= 2ψ′(1) ‖dev sym∇u‖2 , (3.9)

with devnX = X − 1
n tr(X) · 1n, hence the quadratic potential for linearized elasticity corresponding to

W is given by

Wlin(∇u) = µ ‖dev2 sym∇u‖2 (3.10)

with µ = ψ′(1). Moreover,

DWlin(∇u).[H̃] = 2µ 〈dev sym∇u, H̃〉 , D2Wlin(∇u).[H̃, H̃] = 2µ ‖dev2 sym H̃‖2 (3.11)

4Note that 〈DF (detF ) , H〉 = 〈Cof F,H〉 = detF · 〈F−T , H〉 and

D2
F (detF ) .[H,H] = 〈Cof F,H〉〈F−T , H〉+ detF · 〈−F−THTF−T , H〉 = detF · [〈F−T , H〉2 − 〈F−THTF−T , H〉] .
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for H̃ ∈ R
2×2 and thus, for ξ, η ∈ R

2,

D2Wlin(∇u).[ξ ⊗ η, ξ ⊗ η] = 2µ ‖dev sym(ξ ⊗ η)‖2 = µ ‖ξ‖2‖η‖2 . (3.12)

Therefore, Wlin is also strictly elliptic, i.e. satisfies (3.2) with a positive constant c+ = µ. Furthermore,
the kernel of the linearized energy is given by

Wlin(∇u) = 0 ⇐⇒ dev sym∇u = 0

⇐⇒ u(x) =
1

2

[
2〈

(
−γ
β

)
, x〉x−

(
−γ
β

)
‖x‖2

]
+ (p̂ 1+ Â)x+ b̂ (3.13)

with Â ∈ so(2), b̂ ∈ R
2 and β, γ, p̂ ∈ R, where so(2) denotes the set of skew symmetric 2×2–matrices [11].

This in turn is equivalent to the statement σlin(F ) = 2µ dev sym∇u = 0.

If we consider a quadratic approximation of the conformal mapping ϕ : Ω → R
2 with ϕ(x) = 1

‖x‖2 ·

(x1,−x2)
T , which was discussed in Section 2, we obtain

u(x) =
1

2

[
2〈

(
16

0

)
, x〉x−

(
16

0

)
‖x‖2

]
− 13 · 1 · x+

(
6

0

)
. (3.14)

This expression corresponds to the representation in (3.13), thus Wlin(∇u) = 0.

0.25 0.5

0.2

−0.2

0 1

0.5

−0.5

20

u+ id

Figure 2: The “infinitesimal conformal displacement” u given as the the quadratic approximation of the
conformal mapping ϕ : Ω ⊂ R

2 \ {0} → R
2 with ϕ(x) = 1

‖x‖2 · (x1,−x2)
T . Infinitesimal squares are

approximately rotated and scaled.

These fundamental connections between conformal mappings, conformally invariant, strictly elliptic energy
potentials on GL+(2) and their linearizations are shown in Fig. 3.

⇐⇒

⇐⇒ ⇐⇒

⇐⇒ σ(F ) = 0

σlin(∇u) = 0

linearisation

W (F ) = ψ(K) minimal K = 1 ⇐⇒ ϕ conformal

u is infinitesimal conformal

(representation (3.13))

approximationquadraticlinearisation

Wlin(∇u) = µ ‖dev sym∇u‖2 = 0

Figure 3: Connections between conformally invariant, strictly elliptic energies on GL+(2), their linearisa-
tions and conformal mappings.

3.1.2 A general criterion for strict rank-one convexity

In addition to the sufficient criteria for strict ellipticity of a conformally invariant energy W : GL+(2) → R

given above, i.e. the conditions that ψ′(1) > 0 and ψ′′ ≥ 0 on [1,∞) for the representation ψ of W in
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terms of the distortion K, we can also classify all strictly rank-one convex conformally invariant functions
via the representation in terms of the linear distortion K, cf. Remark 4.9.

Theorem 3.1. Let W : GL+(2) → R be conformally invariant, i.e. W (λQ1FQ2) =W (F ) for all λ ∈ R+

and all Q ∈ SO(2), and let h : R+ → R and g : R+ × R+ → R denote the uniquely determined functions
with

W (F ) = g(λ1, λ2) = h

(
λ1

λ2

)
= h

(
λ2

λ1

)

for all F ∈ GL+(2) with singular values λ1, λ2. Then the following are equivalent:

i) W is polyconvex, iv) h is convex on R+,

ii) W is rank-one convex, v) h is convex and non-decreasing on [1,∞).

iii) g is separately convex,

Proof. See [7, Theorem 3.3]. �

Remark 3.2. Note that K(F ) = max{λ1

λ2

, λ2

λ1

} for all F ∈ GL+(2) with singular values λ1, λ2, thus the

representation function ĥ in (3.1) is simply the restriction of h to [1,∞).

Corollary 3.3. Under the conditions of Theorem 3.1, the following are equivalent:

i) W is strictly rank-one convex, iii) h is strictly convex on R+,

ii) g is separately strictly convex, iv) h is strictly convex and increasing on [1,∞).

Proof. See Appendix B. �

3.2 A three-dimensional example

In the three-dimensional case, we consider the conformally invariant energy

W : GL+(3) → R , W (F ) = tr

(
C

det(C)
1

3

)
− 3 =

‖F‖2

det(F )
2

3

− 3 ,

where C = FTF denotes the right Cauchy-Green tensor. To check for (strict) rank-one convexity, we
compute

DFW (F ).[H] =
〈2F − 2

3‖F‖
2 · F−T , H〉

det(F )
2

3

, (3.15)

D2W (F ).[H,H] = −
8

3

〈F−T , H〉〈F,H〉

det(F )
2

3

+ 2
〈H,H〉

det(F )
2

3

+
4

9

‖F‖2

det(F )
2

3

〈F−T , H〉2 +
2

3

‖F‖2

det(F )
2

3

〈F−THTF−T , H〉

≥
4

3

(
〈F−T , H〉2‖F‖2 + ‖H‖2

det(F )
2

3

)
+ 2

‖H‖2

det(F )
2

3

+
4

9

‖F‖2

det(F )
2

3

〈F−T , H〉2

+
2

3

‖F‖2

det(F )
2

3

〈F−THTF−T , H〉 . (3.16)

Hence for H := ξ ⊗ η with ξ, η ∈ R
3, we obtain

D2W (F ).[H,H] ≥
4

3
·

1

det(F )
2

3

· ‖ξ‖2‖η‖2 + 2 ·
1

det(F )
2

3

· ‖ξ‖2‖η‖2 =
10

3
· det(F )−

2

3 · ‖ξ‖2‖η‖2 = c · ‖ξ‖2‖η‖2
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with c = 10
3 ·det(F )−

2

3 , thus W is strictly rank-one convex (and even polyconvex [12]). The Cauchy stress
induced by W is given by

σ(F ) = DFW (F ) · Cof(F )−1 =
2F − 2

3‖F‖
2 · F−T

det(F )
2

3

·
1

det(F )
· FT

= 2 ·
FFT

det(F )
2

3

·
1

det(F )
−

2

3
·
‖F‖2 · 1

det(F )
2

3

·
1

det(F )
; (3.17)

note that σ(F )|F=1 = 0. Moreover, if F ∈ CSO(3), then

σ(F ) =
2

det(F )
· 1−

2

3
·

〈
FFT

det(F )
2

3

, 1

〉
·

1

det(F )
· 1 =

2

det(F )
· 1−

2

det(F )
· 1 = 0 ,

thus the mapping x 7→ σ(∇ϕ(x)) is constant on Ω if ϕ is a conformal mapping.

We also remark that for arbitrary dimension n ≥ 3, the energy function W : GL+(n) → R with W (F ) =
‖F‖2

det(F )
2

n

− n is strictly rank-one convex on GL+(n) as well.

4 Main result

We can now construct our counterexample to the conjecture that homogeneous Cauchy stress implies
homogeneity of the deformation for strictly rank-one convex elastic energies. The first result concerns the
planar case and a purely isochoric (conformally invariant) energy expression.

Proposition 4.1. For K(F ) = 1
2
‖F‖2

detF and K(F ) = |||F|||2

detF = λmax

λmin

, let W : GL+(2) → R be given by

W (F ) =
λ2max

λ2min

− 1 = K(F )2 − 1 =
(
K(F ) +

√
K(F )2 − 1

)2
− 1 =: ψ(K(F )) (4.1)

for all F ∈ GL+(2) with singular values λmax ≥ λmin, and let ϕ : Ω → R
2 be any non-affine conformal

deformation of a planar body Ω ⊂ R
2. Then the Cauchy stress corresponding to the non-homogeneous

deformation ϕ induced by the strictly elliptic isotropic energy W is constant.

Proof. According to Corollary 3.3, the given energy is strictly rank-one convex (and indeed polyconvex).
Moreover, the deformation is non-affine, i.e. non-homogeneous by assumption; cf. Section 2 for the existence
of non-trivial examples of conformal mappings. Finally, since for any isochoric energy the Cauchy stress
corresponding to F = ∇ϕ(x) ∈ CSO(2) is zero (cf. (3.8)) for all x ∈ Ω, the induced Cauchy stress is
constant. �

Remark 4.2. In particular, the Cauchy stress response relation is highly non-invertible in this case.

With the energy considered in Section 3.2, the above result immediately applies to the three-dimensional
case as well.

Proposition 4.3. Let W : GL+(3) → R be given by

W (F ) =
‖F‖2

det(F )
2

3

− 3 = tr

(
C

(detC)
1

3

− 1

)
(4.2)

with C = FTF (right Cauchy-Green tensor) and let ϕ̃ : Ω̃ → R
3 be any non-affine conformal deformation

of a body Ω̃ ⊂ R
3. Then the Cauchy stress corresponding to the non-homogeneous deformation ϕ̃ induced

by the strictly elliptic isotropic energy W is constant. �
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Notice that in Proposition 4.3, the only admissible non-affine conformal mappings are Möbius transfor-
mations (see Remark 2.1). As an example, consider the mapping

ϕ̃ : Ω ⊂ R
3 \ {0} → R

3 , ϕ̃(x) =
1

‖x‖2
(x1,−x2, x3)

T
. (4.3)

Then, similar to (2.1),

∇ϕ̃(x) =
1

‖x‖4
·




‖x‖2 − 2x21 −2x1x2 −2x1x3
2x1x2 −‖x‖2 + 2x22 2x2x3
−2x1x3 −2x2x3 ‖x‖2 − 2x23


 , det(∇ϕ̃) =

1

‖x‖6
. (4.4)

4.1 A physically viable example

In our examples, we observe that the reference configuration is stress free, i.e. σ(1) = 0. However, since
σ(F ) = 0 for all F ∈ CSO(n), the stress free configuration is not unique. This constitutive shortcoming
can be circumvented by adding a volumetric energy term of the form F 7→ f(detF ) for some differentiable
function f : (0,∞) → R such that f ′(t) 6= 0 for all t 6= 1.

In order for such an additively coupled energy to be suitable for our purpose, of course, it must be
ensured that a constant Cauchy stress tensor field can still be achieved with an inhomogeneous conformal
deformation. We therefore choose f such that f ′ is constant, i.e. such that f is linear, on an interval
[a, b] ⊂ (1,∞). For example, consider the function

f : (0,∞) → R , f(t) =





ln2(t) : t < e

1 + 2(t−e)
e : e ≤ t ≤ c

1 + 2
e (e

t−c + (c− e− 1)) : c ≤ t

(4.5)

for some c > e, as shown in Fig. 4. Then f is convex and continuously differentiable with f ′(t) = 2
e for all

t ∈ [e, c]. In particular, adding the volumetric term F 7→ f(detF ) to an energy function preserves (strict)
rank-one convexity, and its contribution to the Cauchy stress tensor [5] is constant if det(F ) ∈ [e, c].
Combined with Propositions 4.1 and 4.3, these observations immediately imply the following main result.

Proposition 4.4. For n = 2 and n = 3, let W : GL+(n) → R be given by

W (F ) =Wiso

(
F

(detF )
1

2

)
+Wvol(detF ) = K(F )2 + f(detF )− 1 =

λ2max

λ2min

+ f(λmaxλmin)− 1 (4.6)

and

W (F ) =Wiso

(
F

(detF )
1

3

)
+Wvol(detF ) =

(
‖F‖2

det(F )
2

3

− 3

)
+ f(detF ) , (4.7)

respectively, where f is given by (4.5). Then

i) the energy W is strictly rank-one convex;

ii for any non-affine conformal deformation mapping ϕ : Ω → R
n on an open and bounded domain

Ω ⊂ R
n such that det(∇ϕ(x)) ∈ [e, c] for all x ∈ Ω, the Cauchy stress tensor field induced by W

corresponding to the non-homogeneous deformation ϕ is constant.
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f(t)
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e
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f ′(t)

Figure 4: Visualization of the volumetric energy term. Note that f is convex but not strictly convex.

Proof. Due to the rank-one convexity of Wvol, which follows via polyconvexity from the convexity of f ,
the energy W is again strictly rank-one convex. The Cauchy stress for the non-affine conformal mapping
ϕ̃ in (4.3) is given by

σ(F ) = σWiso
(F ) + σWvol

(F ) = 0 +DF (Wvol(detF )) · Cof(F )
−1

= [W ′
vol(detF ) · Cof(F )] · Cof(F )

−1 = f ′(detF ) · 1 =
2

e
· 1 , (4.8)

i.e. the Cauchy stress is constant, if det(∇ϕ(x)) ∈ (a, b) for all x ∈ Ω. �

Remark 4.5. Of course, a conformal mapping ϕ with the required properties can easily be obtained via
a simple reflection at a sphere if the domain Ω is chosen accordingly (as a subset of the annulus on which
the condition on the determinant is satisfied).

Remark 4.6. Observe carefully that the elastic energyW in our final example, given by (4.6) and (4.7), is
polyconvex withW (F ) → +∞ as detF → 0, W (F ) → +∞ for detF → +∞ andW (F ) → +∞ for ‖F‖ →

∞. Furthermore, the linearization ofW is well posed withWlin(∇u) = 2 ‖dev3 sym∇u‖2+ f ′′(1)
2 (tr(∇u))

2
,

and W has a unique stress-free state. It is also easy to see that the volumetric term f can be modified
such that the resulting energy W is C∞-regular (and thus strictly Legendre-Hadamard elliptic as well).

Remark 4.7. Our counterexample in Proposition 4.4 is based on a special instance of the volumetric-
isochoric split. Energy functions of this general form have often been considered in the literature for the
modeling of slightly incompressible material behavior [13, 14, 15]. Of course, our specific construction of
the counterexample by no means implies that the observed phenomena are restricted to this particular
case.

Remark 4.8. As an immediate consequence, Proposition 4.4 shows that a strictly rank-one convex energy
may give rise to a non-invertible Cauchy stress-stretch relation. On the other hand, it has previously been
shown [16] that an invertible Cauchy stress-stretch relation based on a volumetric-isochoric split may be
locally non-elliptic. Therefore, invertibility of the mapping B 7→ σ(B) of the left Cauchy-Green tensor
B = FFT to the Cauchy stress is in general not related to rank-one convexity. Note that in linear isotropic
elasticity, invertibility of the stress response ε 7→ σlin(ε) to the infinitesimal strain tensor ε = sym∇u
amounts to strict convexity of the energy and implies (but is not implied by) rank-one convexity.

Remark 4.9. According to Proposition 4.1 and Corollary 3.3, Proposition 4.4 still holds if the isochoric
part K(F )2 − 1 in (4.6) is replaced by any strictly convex, increasing function of K(F ).

4.2 Connection to previous results

As indicated in Section 1, for a strictly rank-one convex energy, a homogeneous Cauchy stress tensor field
cannot correspond to a non-homogeneous deformation if the deformation gradient has discrete values,
i.e. if the deformation is piecewise affine linear and satisfies the Hadamard jump condition, cf. Fig. 5.
Here, however, we have obtained a homogeneous (constant) Cauchy stress tensor which corresponds to
a non-homogeneous deformation (a non-affine conformal mapping) for a strictly rank-one convex energy

10

J
ou

rn
al

P
re

-p
ro

of

Journal Pre-proof



potential. Nevertheless, this result does not contradict the statement made in [3], since conformal mappings
are not compatible with the Hadamard jump condition.

Recall that in order to satisfy the jump condition, the deformation gradients along the interface must
be rank-one connected [2]. However, it can be shown [17, Lemma 8.25] that rank(F1 − F2) 6= 1 for all
F1, F2 ∈ CSO(2); note that each F ∈ CSO(2) is of the form

F =

(
a b

−b a

)
with a, b ∈ R (4.9)

and thus for any F1, F2 ∈ CSO(2) with F1 6= F2,

det(F1 − F2) = det

(
a1 − a2 b1 − b2
−b1 + b2 a1 − a2

)
= (a1 − a2)

2 + (b1 − b2)
2 > 0 ,

hence rank(F1 − F2) = 2. In particular, for a (planar) conformal mapping ϕ : Ω ⊂ R
2 → R

2, the
deformation gradients ∇ϕ(x1),∇ϕ(x2) at x1, x2 ∈ Ω cannot differ by a rank-one matrix.

Figure 5: Structure of a rank-one laminate [18, 19].

5 Conclusion

We have constructed non-trivial, strictly rank-one convex (polyconvex) elastic energies which induce a
constant Cauchy stress tensor field for certain non-homogeneous deformations. Our result motivates a
further investigation of the role of invertibility assumptions on the Cauchy stress response function in
terms of the left Cauchy-Green tensor B. Indeed, a constant Cauchy stress for non-constant stretches
being a rather strange phenomenon in idealized nonlinear elasiticity, we are not yet in a position to judge
on the appropriateness of such constitutive assumptions in nonlinear hyperelasticity.

Acknowledgement

The last author is indepted to Prof. Konstantin Volokh (Technion, Haifa) for interesting discussions
concerning the relevance of our counterexample.

A Necessary and sufficient conditions for rank-one convexity

The following ellipticity condition for the planar case is due to Knowles and Sternberg [20, p. 9] (cf. [9, 21]).

Lemma A.1 (Knowles and Sternberg [20, 9], cf. [21, p. 308]). Let W : GL+(2) → R be an objective and isotropic function
with W (F ) = g(λ1, λ2) for all F ∈ GL+(2) with singular values λ1, λ2, where g : R2

+ → R is two-times continuously

differentiable. Then W is Legendre-Hadamard elliptic on GL+(2) if and only if g satisfies the following conditions for all
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(λ1, λ2) ∈ R2
+:

i) g11 ≥ 0 and g22 ≥ 0 ,

ii)
λ1g1 − λ2g2

λ1 − λ2
≥ 0 if λ1 6= λ2 ,

iii) g11 − g12 +
g1

λ1
≥ 0 and g22 − g12 +

g2

λ2
≥ 0 if λ1 = λ2 ,

iv)
√
g11 g22 + g12 +

g1 − g2

λ1 − λ2
≥ 0 if λ1 6= λ2 ,

v)
√
g11 g22 − g12 +

g1 + g2

λ1 + λ2
≥ 0 ,

where gi = ∂g
∂λi

(λ1, λ2) and gij = ∂2g
∂λ1 ∂λ2

(λ1, λ2). Furthermore, if all the above inequalities are strict, then W is strictly

elliptic.

B Some observations on strict convexity

In order to prove Corollary 3.3, we will discuss some criteria for the strict convexity of real-valued functions. In the following,
we will assume that C ⊂ V is a convex subset of a vector space V and I ⊂ R is an interval.

Definition B.1. A function f : C → R is called semi-strictly convex if

i) f is convex and

ii) if f(ax+ (1− a)y) = af(x) + (1− a)f(y) for some a ∈ (0, 1), then f(x) 6= f(y).

Remark B.2. A convex function is semi-strict convexity if and only if it is not constant along straight lines. Note that strict
convexity can similarly be expressed as the non-linearity along straight lines. It is easy to see that an analogous concept can
be applied to rank-one convexity, although a separate definition seems to be redundant (instead, the definition can simply
be applied to the mapping’s restriction to rank-one lines).

Lemma B.3. If f : C → R ⊂ R is convex and there exists g : R → R such that g ◦f is strictly convex, then f is semi-strictly
convex.

Proof. Let a ∈ (0, 1) and x 6= y for x, y ∈ C. If f(ax+ (1− a)y) = af(x) + (1− a)f(y) and f(x) = f(y), then

g(f(ax+ (1− a)y)) = g(af(x) + (1− a)f(y)) = g(f(x)) = ag(f(x)) + (1− a)g(f(y))

in contradiction to the strict convexity of g. �

Lemma B.4. If f : C → R ⊂ R is semi-strictly convex and h : R → R is strictly convex and (strictly) monotone, then h ◦ f
is strictly convex.

Proof. Let a ∈ (0, 1) and x 6= y for x, y ∈ C.

If f(x) 6= f(y), then

h(f(ax+ (1− a)y)) ≤ h(af(x) + (1− a)f(y)) < ah(f(x)) + (1− a)h(f(y))

due to the strict monotonicity the convexity of f and the monotonicity and strict convexity of h.

If f(x) = f(y), then f(ax+ (1− a)y) < af(x) + (1− a)f(y) due to the semi-strict convexity of f and thus

h(f(ax+ (1− a)y)) < h(af(x) + (1− a)f(y)) = h(f(x)) = ah(f(x)) + (1− a)h(f(y))

due to the strict convexity of h. �

Lemma B.5. If f : I → R is analytic and convex on an interval I ⊂ R, then f is either strictly convex or linear.

Proof. If f is analytic with f ′′ ≥ 0 on the interval I, then either f ′′ ≡ 0 or f ′′ > 0 on the interior of I. �

Corollary B.6. If f : Rn → R is analytic and convex, then f is either strictly convex or the restriction of f to some line
in Rn is linear.

Remark B.7. Observe that the (analytic) mapping F 7→ λmax

λmin

is linear on the “rank-one-(half-)line” 1+ R · e1 ⊗ e1, but

not constant on this line (which would contradict the semi-strict convexity).

The above observations allow us to prove Corollary 3.3 by explicitly demonstrating the strictness of a single composition
with the mapping F 7→ λmax

λmin

.
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Corollary 3.3. Let W : GL+(2) → R be conformally invariant, and let h : R+ → R and g : R+ × R+ → R denote the

uniquely determined functions with W (F ) = g(λ1, λ2) = h
(λ1

λ2

)
for all F ∈ GL+(2) with singular values λ1, λ2. Then the

following are equivalent:

i) W is strictly rank-one convex, iii) h is strictly convex on R+,

ii) g is separately strictly convex, iv) h is strictly convex and increasing on [1,∞).

Proof. i) =⇒ ii): Assume W to be strictly rank-one convex. Then

g(1 + t, a) =W

(
1 + t 0
0 a

)
=W

((
1 0
0 a

)
+ t · e1 ⊗ e1

)

< (1− t) ·W
(
1 0
0 a

)
+ t ·W

((
1 0
0 a

)
+ e1 ⊗ e1

)
= (1− t) · g(1, a) + t · g(2, a).

Thus the function s 7→ g(s, a) is strictly convex which, due to the symmetry of g, implies that g is separately convex.
ii) =⇒ iii): If g is separately strictly convex, then for λ1 = 1, λ2 = (1− t) · x+ t · y and t ∈ [0, 1], we find

h((1− t) · x+ t · y) = g((1− t) · x+ t · y, 1) < (1− t) · g(x, 1) + t · g(y, 1) = (1− t) · h(x) + t · h(y) ,
thus h is strictly convex.
iii) =⇒ iv): It suffices to note that the convexity of h on R+ implies that h is increasing on [1,∞) according to Theorem 3.1.

iv) =⇒ i): First, we show that the energy induced by g̃(λ1, λ2) =
(max{λ1,λ2}
min{λ1,λ2}

− 1
)2

is strictly rank-one convex. Assume

without loss of generality that λ1 ≥ λ2. Then g̃(λ1, λ2) =
(λ1

λ2
− 1

)2
, and after some computation, we find

g̃11 =
2

λ2
2

> 0 and g̃22 =
2λ1 (3λ1 − 2λ2)

λ4
2

> 0 ,

λ1 g̃1 − λ2 g̃2

λ1 − λ2
=

4λ1

λ2
2

> 0 ,

g̃11 − g̃12 +
g̃1

λ1
=

2(λ1 + λ2)(2λ1 − λ2)

λ1λ
3
2

> 0 ,

g̃22 − g̃12 +
g̃2

λ2
=

2(λ1 + λ2)(2λ1 − λ2)

λ4
2

> 0 ,

√
g̃11 g̃22 + g̃12 +

g̃1 − g̃2

λ1 − λ2
= 2

2λ2 − λ1 +
√

3λ2
1
− 2λ1λ2

λ3
2

> 0 ,

√
g̃11 g̃22 − g̃12 +

g̃1 + g̃2

λ1 + λ2
= 2

3λ1λ2 − 2λ2
2
+ λ2

1
+

√
3λ4

1
− 2λ3

1
λ2 + λ2

√
3λ2

1
− 2λ1λ2

λ1λ
3
2
+ λ4

2

> 0 .

According to the Knowles-Sternberg criterion (Lemma A.1), combined with additional calculations by Silhavy [21], the
function W induced by g̃ is therefore strictly rank-one convex.

Now, for F ∈ GL+(2) and ξ, η ∈ R2, consider the function f : [0, 1] → R with f(t) := K(F + t(ξ ⊗ η)), where K(F ) = λmax

λmin

.

Then f is convex due to Theorem 3.1 v) with h := id. The above computations show that for g : R → R with g(s) = (s− 1)2,
the composition g ◦ f is strictly convex. Therefore, according to Lemma B.3, the function f is semi-strictly convex (cf.
Definition B.1).

Finally, under the assumption that h is strictly convex and increasing on [1,∞), Lemma B.4 states that the mapping

h ◦ f : [0, 1] → R , t 7→ h(f(t)) = h(K(F + t(ξ ⊗ η)) =W (F + t(ξ ⊗ η))

is strictly convex for arbitrary F ∈ GL+(2) and ξ, η ∈ R2, which directly implies the strict rank-one convexity of W . �
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