
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/126082/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Pryce, John and Nedialkov, Nedialko S. 2020. Multibody dynamics in natural coordinates through automatic
differentiation and high-index DAE solving. Acta Cybernetica 24 (3) 10.14232/ACTACYB.24.3.2020.4

Publishers page: http://dx.doi.org/10.14232/ACTACYB.24.3.2020.4

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Acta Cybernetica 00 (0000) 1–27.

Multibody Dynamics in Natural Coordinates

through Automatic Differentiation and High-Index

DAE Solvinga

John D. Pryceb and Nedialko S. Nedialkovc

Abstract

The Natural Coordinates (NCs) method for Lagrangian modelling and
simulation of multibody systems is valued for giving simple, sparse models.
We describe our version of it and compare with the classical approach of Jalón
and Bayo (JBNCs). Our NCs use the high-index differential-algebraic equa-
tion solver Daets. Algorithmic differentiation, not symbolic algebra, forms
the equations of motion from the Lagrangian. We obtain significantly smaller
equation systems than JBNCs, at the cost of a non-constant mass matrix for
fully 3D models—a minor downside in the Daets context. Examples in 2D
and 3D are presented, with numerical results.

Keywords: Lagrangian mechanics, differential-algebraic equations, natural
coordinates, simulation, algorithmic differentiation, Yaml

1 Introduction

1.1 Context and aims

We are concerned with simulating multibody systems (MBS, aka mechanisms),
built mainly from rigid bodies, with joints and other ways to interact. Recall some
advantages of a Lagrangian approach [6, 20] to forming their equations of motion.

Economy. Lagrangians, in contrast to direct use of Newton’s three laws, can omit
mention of forces that do no work, e.g. reaction force of smooth sliding contact.

Flexibility. One is free to choose generalised coordinates q = (q1, . . . , qnq
) to

specify system position. Among all possible motions of the system, the actual
one is a stationary point of the action integral

∫
Ldt of the Lagrangian function

L = T − V , where T (t,q, q̇) and V (t,q) are the system’s kinetic and potential

aN. Nedialkov was funded by the Natural Sciences and Engineering Research Council (NSERC)
of Canada.

bCardiff University - corresponding author, E-mail: PryceJD1@cardiff.ac.uk
cMcMaster University, E-mail: nedialk@mcmaster.ca

2 John D. Pryce and Nedialko S. Nedialkov

energies. This is an inherent system property, so the equations of motion that
come from the Euler–Lagrange variational conditions:

d

dt

∂L
∂q̇j
− ∂L
∂qj

+

nc∑
i=1

λi
∂Ci
∂qj

= Qj(t), j = 1, . . . , nq, (1)

Ci = 0, i = 1, . . . , nc, (2)

describe the same set of possible motions, independent of the chosen q. The nc
equations (2) are constraints on the motion due to rigidity etc., with associated
Lagrange multipliers λi. The Qj(t) are generalised external force components if
any, whose definition also involves ∂/∂qj . We assume holonomic constraints, i.e.
independent of velocities, so of the form Ci(t,q) = 0; the positional and velocity
degrees of freedom are then equal:

dof = nq − nc. (3)

So the system state is locally fixed at any t by dof values qj and dof values q̇j .

If constraints are absent (nc = 0), then (1) is reducible to an ordinary differential
equation system (ODE). If present (nc > 0), it is a differential-algebraic equation
system (DAE)—usually true when q consists of cartesian coordinates, because rigid-
body constraints must be included. It has index 3, in the classical differential index
sense [1], when solved as an initial-value problem. High-index DAEs have been
seen as hard to solve numerically, so much effort has gone into making nc = 0, i.e.
finding representations that lead to constraint-free coordinates, typically angles.

We argue firstly, that an efficient high-index DAE solver changes the balance of
advantage, thereby encouraging the use of Natural Coordinates with their benefits
of simple, sparse, human-readable equations. We use the C++ code Daets (DAE
by Taylor Series) [11, 12] that can integrate numerically arbitrary index DAEs.

Secondly, we avoid symbolic manipulation to convert the Lagrangian L into the
equations of motion (1) given to a numerical solver. Daets’s built in algorithmic
differentiation (AD) system does this at run time—the Lagrangian facility [19].

Thirdly, only shown briefly by examples here, the mechanism facility reads at
run time a “MechSpec” text file describing a mechanism, and constructs from it a
Natural Coordinates model of the Lagrangian and constraints, which is passed to
the Lagrangian facility and thence to Daets for numerical solution.

This article is about purely continuous systems and does not touch on the large
area of hybrid systems, with a mixture of continuous and discrete-event behaviour.

In the following, Section 2 is about Natural Coordinates: §2.1 describes differ-
ences between other versions of NCs and ours, and §2.2 presents ours in detail.
Section 3 outlines our numerical infrastructure. Section 4 gives to 2D and 3D ex-
amples, with numerical results. Section 5 summarises the effect of our method’s
theory and software architecture, and discusses the resulting system’s friendliness,
in particular in a teaching context.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 3

2 Natural Coordinates

2.1 Our method compared with others

As with other Natural Coordinates (NCs) methods, our q holds mainly cartesian
coordinates in the world-frame (WF) of points or vectors (PVs) fixed on mechanism
parts. We compare with the 1994 de Jalón and Bayo presentation (JBNCs) in [4]
and later ones by von Schwerin [22] and Kraus et al. [8]; see also the surveys by
Nikravesh (2004) [15], and de Jalón (2007) [3].

Four-PVs versus three-PVs NCs. Maybe influenced by classical finite ele-
ments, these authors put emphasisis on computing a mechanism’s mass matrix M
and on methods that lead to a constant M, independent of system position.

This leads them, see [4, pp. 44–51], [22, p. 54], [8, end of §1], to define a general
3D rigid body’s position by four PVs—i.e. 12 scalar coordinates. E.g. from [3, §1]
“When all the bodies contain at least two points and two unit vectors the inertia
matrix is constant and there aren’t velocity dependent inertia forces”.

A free rigid body has 6 DOF so there must be 12−6=6 scalar constraints to
impose rigidity, per body. For us, constant M is nearly irrelevant because of the
underlying algorithm architecture, see below. Hence, we choose three PVs, 9 scalar
coordinates, to define a body’s position. In JBNC terminology, these are basic PVs,
or BPVs. To produce 6 DOF, we use 9− 6 = 3 rigidity constraints per body.

Frame definition and rigidity. Three BPVs determine the origin and x, y di-
rections of an orthonormal frame. We define the z direction by a cross product—a
nonlinear operation, which is what makes our M a function of q in general. In 2D
M is always constant, and for simple mechanisms in 3D can often be made so by
a good choice of BPVs. The cross product makes our frames positively oriented,
which need not hold in the other approaches.

JBNC devote several pages [4, pp. 47–51] to setting up the frame and the
rigidity constraints for various cases of points/vectors defining body position; and
more (pp 130–143) to cases of computing the mass matrix. Mostly they aim at a
constant M, but include a case [4, p. 139, see Fig 4.7] of defining the frame by a
cross product exactly as we do, leading to a varying M. By contrast, we have one
unified method, that treats point and vector frame elements in the same way. (An
exception, that applies to all approaches, is the case of a dimensionally deficient
part such as a particle or a thin rod, for which a 3D frame makes no sense.)

Kraus et al. [8, §4] trade increased model size for the benefit of increased simplic-
ity and sparsity. They define frames in a unified way close to how our method would
work if we used a “four PVs” rather than “three PVs” representation; if one makes
a QR factorisation of their matrix X (the R is constant so can be precomputed;
the Q is varying), the methods become very similar.

Von Schwerin does not give great detail of his NCs but [22, p. 48] says “one of
the advantages of the natural coordinate approach is that the resulting mass matrix
M is constant”, suggesting he only considers a “four PVs” system.

4 John D. Pryce and Nedialko S. Nedialkov

Basic and dependent PVs. For us, points/vectors fixed to a body R are either
basic or dependent. Basic ones, BPVs, are either fixed in the WF, or moving. Vector
q comprises all moving BPVs1, plus some needed scalars such as turn angles. We
specify a dependent PV by giving its coordinates in the frame defined by the BPVs.
It might be part of defining a joint, or a point where a force is applied to R, etc.

Since each BPV is either fixed or a component of q, each dependent PV is an
explicit function of q. Jalón–Bayo [4, p. 51] describe this dependent point method,
but merely as a useful trick for bodies with many PVs, not as a primary technique.

Dynamics data. We specify R’s dynamics by storing the local coordinates of the
centroid, the mass, and the inertia matrix about the centroid. This seems more
natural than the method, described in [15, §4.4], of “lumping” the mass into virtual
particles at the BPVs in such a way as to preserve the inertial properties.

Assembly process. We assemble L one part at a time. Think of the method as
a function whose input is the values q, q̇ at current time and whose output is L,
plus rigidity and joint constraints as a vector of residual values to be driven to zero.
Fixed PVs are global constants, dependent PVs are local variables (temporaries).

For each part, in a loop, use q, q̇ to find its current WF position and linear
and angular velocity. Using its dynamics data, find the part’s kinetic and where
relevant its potential energy and accumulate these into L. Include (the residuals
of) the part’s rigidity equations in the constraints array.

Similarly loop over joints to add their constraints, over any springs to add their
PE contributions, and so on.

The objects to which this is all done are not numbers but Taylor series. The
output is passed to the Lagrangian facility, which uses automatic differentiation to
do the needed d/dt, ∂/∂q and ∂/∂q̇ that converts them into the Euler–Lagrange
DAE in a form Daets can handle.

Relevant matrices. The mass matrix M is not mentioned in the above steps.
However Daets produces for any DAE, from analysing its structure, a numerical
system Jacobian matrix J that is central to its Taylor expansion process. In our
context, the DAE was created by the Lagrangian facility, so J is formed by the
interplay between the latter and Daets. J turns out to be exactly the symmetric
matrix

[
M GT

G 0

]
that is ubiquitous in numerical treatment of MBS. Here M is the

mass matrix and G is the constraint Jacobian. In general, for our method both M
and G depend on q. But each instance of J is re-used 12 to 20 times (to solve linear
systems) as part of the high-order Taylor series expansion, so the cost of evaluating
and factorising it is well amortised.

Descriptor form. This is a point of theory that seems to affect how MBS are
solved in practice. The Euler–Lagrange DAE (1, 2) is usually manipulated into the
descriptor form, e.g. as given in [22, p. 25, eq. (1.2.8a,b)]

M(q)q̈ = f(t,q, q̇)−G(q)Tλ

g(q) = 0

1That always works, but one can often get a smaller q via dependency analysis.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 5

Figure 1: From [7, §VI.9]. Straight rod K4, bent rod K5 are two of ASM’s 7 parts,
drawn with local frames based at C4, C5. Table on right gives lengths ta, tb etc.

and similarly p. 124 Example 4.1 and p. 158 eq. (5.4) in [4]. The cost of bringing
in q̈ explicitly is that the right hand side involves forming Ṁ, which brings in
quadratic terms q̇2i and q̇iq̇j that are identified as centrifugal and Coriolis force
terms respectively. Avoiding such terms is one reason why constant M is valued.

However one can formulate the system as a coupled first-order DAE in (p,q),
where p is the vector of generalised momenta ∂L/∂q̇—as used in a Hamiltonian
formulation, and see §4.1.2 below. Indeed [4, p. 130, eqs (4.28-29)] presents exactly
this form and points out that Ṁ is absent. We wonder why it is not used more as
a basis for numerical methods.

The above point is not relevant to how Daets works; but we note that the
generalised accelerations q̈, if needed, drop out of its Taylor series solution.

Other points.

1. Our method aids automatic conversion from a high-level description of a mech-
anism to the Lagrangian (as the MechSpec does) e.g. for representing existing
mechanisms. For instance Figure 1 is part of the geometry description of the
Andrews Squeezing Mechanism [7, 16]. This is mainly a list of coordinates of
dependent points in local frames and transcribes simply to a MechSpec text file.

2. The issue of sharing several points between bodies needs some thought. Figure 2
is from Nikravesh [15]. Here item b) shows bodies sharing two points, call
them A,B at a distance L apart, creating a revolute joint. In the NC systems,
the author describes, rigidity is enforced purely by length constraints—here the
equation (B−A)·(B−A) = L2, which is only given once. In our method, the
most general case is that each of A and B is a dependent point in the frame
of either body, so distance L is not explicitly stated but can be found by a

Pythagorean calculation L =
√∑3

k=1(Ak −Bk)2. The computed values of L in

the two bodies might disagree, owing to data error, or roundoff. We solve this
by letting a point and a vector be shared between bodies, but not two points.

6 John D. Pryce and Nedialko S. Nedialkov

Figure 2: From [15, p. 192]

2.2 Our NCs in more detail

The world (fixed space) in which motion takes place is Euclidean space Ed of
dimension d (2 or 3 in practice), with some point O chosen as origin. Identifying a
point with its position-vector (henceforth just point) relative to O, it is a real inner
product space. With a frame (orthonormal basis) chosen, it becomes the world-
frame (WF). The style q is used for a generalised-coordinates vector; X for a point
in a world or local frame; x for a vector, a difference of points. A rotation means
a member of the group of orthogonal transformations on Ed with determinant +1.

Subscript t, and the word “moving”, mean “function of t”, e.g. Ot is a moving
point, synonymous with O(t). A rigid body R has its own local copy of Ed. Rigid
motion of R is defined, with respect to a local frame and the WF, by

Rt = Ot +QtR

for some moving point Ot and rotation matrix Qt, which means by definition that
each point X or vector u fixed in R moves in the WF according to

Xt = Ot +QtX, ut = Qtu. (4)

We now assume the 3D case till said otherwise.

Tracking position. As said in §2.1, we track the motion of R by an ordered list of
three non-collinear BPVs fixed in R. Denote them O,A,B, but A and/or B might
be a vector. They define the local frame as follows.
– O must be a point and is the local origin.
– A is a point or a vector and is on (along, if a vector) the local x axis.
– B is a point or a vector and is in/toward the local xy plane.
In the resulting local frame, the BPVs are columns of a matrix P of the form

P = [O,A,B] =

0 r11 r12
0 0 r22
0 0 0

 =

0
0

R

0 0 0

 . (5)

A user specifies the frame by explicitly giving the coordinates of A,B—equivalently,
the numbers rij . The 2×2 upper triangular matrix R must be nonsingular, rii 6= 0.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 7

Usually rii > 0, but this need not be so, e.g. by setting r11 < 0, the user puts A on
the negative side of the x axis.

Example 1. Let OA, OB have lengths 3 and 2
√

2 and make an acute angle 45o.
We may give coordinates A = (3, 0, 0)T along x direction, or A = (−3, 0, 0)T in the
opposite direction. Any of (±2,±2, 0)T can be coordinates of B.

We form the unit vectors x̂ = (1, 0, 0)T and ŷ = (0, 1, 0)T in R as follows. In
P = [O,A,B], if A [resp. B] is a point, we must replace it by the vector A−O [resp.
B− O]. We write the subtraction(s) as PS, where

S =

−α −β
1 0
0 1

 , α =

{
1 if A is a point,

0 if A is a vector,

similarly for β and B.

(6)

Denoting U = SR−1, we have

[x̂, ŷ] =

1 0
0 1
0 0

 = PU. (7)

During motion, the time-varying matrix in the WF corresponding to (5) is

Pt = [Ot,At,Bt].

The properties of rigid motion (4) imply that the relation (7) in the local frame
must hold in the WF for all t, that is

[x̂t, ŷt] = Pt U = [Ot,At,Bt]U ; (8)

x̂t, and ŷt are the first two columns of Qt. Its third column is, by the assumed
positive orientation,

ẑt = x̂t×××ŷt. (9)

We write (8, 9) compactly as follows. For a 3 × 2 matrix M , let M ×© be the
3× 3 result of appending the cross product of its columns to it:

[u,v] ×© = [u,v,u×××v]. (10)

Combining (8, 9, 10), finding the moving Qt from BPVs Ot,At,Bt is given, for all
point/vector combinations of BPVs, by one formula

[x̂t, ŷt, ẑt] = Qt =
(
[Ot,At,Bt] U

)
×© . (11)

Dependent PVs in R are defined by giving their coordinates in the local frame.
Once Ot and Qt are found, we simply compute by (4). For instance, if M is the
(fixed) position of the centroid in the local frame, then at any time Mt = Ot+QtM.

Henceforth we drop the t.

8 John D. Pryce and Nedialko S. Nedialkov

Example 2. Let R be a 30o60o90o triangle ABC with long side AB of length 2.

Define the frame by points A =
[
0
0
0

]
and B =

[
2
0
0

]
and a vector c =

[√
3
1
0

]
in the

direction AC. Then

S =

−1 0
1 0
0 1

 , R =

[
2
√

3
0 1

]
, and U = SR−1 =

−1/2
√

3/2

1/2 −
√

3/2
0 1

 .
At time t, we are given computed A,B and c, and (8, 9) say

[x̂, ŷ] = [A,B, c] U =
[
− 1

2A + 1
2B,

√
3
2 A−

√
3
2 B + c

]
, ẑ = x̂×××ŷ.

Tracking velocities and kinetic energy. Just as BPVs are in q or computable
therefrom, the velocities Ȯ, Ȧ, Ḃ are in q̇ or computable therefrom. To express R’s
KE in terms of them, differentiate (11). Eq. (8) is linear in the BPVs, so

[˙̂x, ˙̂y] = [Ȯ, Ȧ, Ḃ]U,

and from (9), on differentiating the bilinear operation x̂×××ŷ,

Q̇ = [˙̂x, ˙̂y, ˙̂z] where ˙̂z = ˙̂x×××ŷ + x̂××× ˙̂y. (12)

Let M be the constant position of R’s centroid in its local frame. Then by (4, 12),
the WF velocity Ṁ of this centroid is

Ṁ = Ȯ + Q̇M, (13)

Recall that differentiating QTQ = I shows QT Q̇ is a skew-symmetric matrix

equal to
[0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

]
, where ωi are the components of the angular velocity vector

ωωω as seen from R’s frame. Extracting the relevant matrix entries, we have

ωωω =

ẑ · ˙̂y

x̂ · ˙̂z

ŷ · ˙̂x

 . (14)

From (13, 14), we obtain R’s kinetic energy T as a function of q and q̇:

T = 1
2mṀ2 + 1

2ωωω
T IIIωωω, (15)

where m is R’s mass, and III is the moment of inertia matrix about axes through
the centroid parallel to the local frame axes.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 9

Example 3. Consider a Free Top: a general rigid body R moving under no forces,
except the constraint that its centroid is fixed at the WF origin O. Define the local
frame by O and two orthogonal unit vectors u,v fixed in R. Let I be the inertia
matrix in this frame. In the working leading to (11), x̂t and ŷt equal ut and vt so
we use the latter, whence Qt = [ut,vt,wt] where wt = ut×××vt. Let q = (u,v).

There is no potential energy so the Lagrangian is just the kinetic energy, which
is purely rotational. Thus the complete formulation, in terms of q and q̇, is

w = u×××v, ẇ = u̇×××v + u×××v̇, ωωω =

w · v̇
u · ẇ
v · u̇

 , L = 1
2ωωω

T IIIωωω, C =

u·u− 1
v·v − 1

u·v

 ,

where the t have been dropped, L is the Lagrangian, and C is the vector of (residuals
of) constraints. See the example code for this in §3 Lagrangian facility.

Kinematic constraints. As with JBNCs, we make a pin joint in 2D and a
spheric joint in 3D happen implicitly, without generating constraint equations, just
by sharing a point between two bodies. Similarly, a revolute joint in 3D can happen
implicitly by sharing a point on, and a vector along, the joint spine.

We try to use linear algebra ideas valid in any number of dimensions. E.g. in
3D, to say line AB is in the direction of u, do not use cross product u×××(B−A) = 0,
which makes three equations but only two are independent. Instead say B−A = µu:
3 scalar equations plus a new scalar variable µ, correctly removing 3−1 = 2 DOF.
Usually µ must be put in q. If this is part of the definition of a cylindric or prismatic
joint, µ might have the practical meaning of an actuator position.

One may reduce the number of coordinates by using assignments. E.g. the
cylindrical joint in §4.2 is modelled in B−A = µu form, with A on one body, B on
another, and u shared between the bodies. But by the assignment B := A + µu,
we keep B out of q and make the joint happen implicitly. Doing this depends on
how q’s components relate to the joint and is not always possible.

Shared vectors and points. One of the main uses of vectors is to be shared
between parts, e.g. the definition of the revolute and cylindric joints in the RSCR
mechanism of §4.2 involves the joined parts having a common vector. We use vectors
to give direction, not distance. Any positive multiple has the same meaning: in
effect, vector v denotes the unit vector v/|v|. JBNCs (see [4, §1.2.2]) also use this
policy, that for vectors, direction is relevant but length isn’t.

Shared points give no difficulty when two bodies have at most one in common.
But as mentioned in §2.1, with two shared points they do, so we forbid this. The
desired effect is gained by sharing a point and a vector.

2.3 The 2D case

This is similar to 3D but with smaller matrices:
• There are two BPVs O,A, where O must be a point.

10 John D. Pryce and Nedialko S. Nedialkov

• The local frame is the one in which [O,A] =

[
0 r11
0 0

]
, then R = [r11] is 1×1.

• (6) becomes S =

[
−α
1

]
, with α as there.

• ×© acts on a 2×1 matrix

[
u
v

]
to produce the 2×2 matrix

[
u
v

]
×© =

[
u −v
v u

]
.

• U = SR−1 as before, and (11) becomes [x̂, ŷ] = Q =
(
[O,A] U

)
×©.

• QT Q̇ =

[
0 −ω
ω 0

]
with scalar angular velocity ω, and (14, 15) become

ω = ŷ · ˙̂x, T = 1
2mṀ2 + 1

2I ω
2,

where I is the scalar moment of inertia about the centroid.

3 The numerical infrastructure

The DAETS solver. The Daets (DAE by Taylor Series) solver [11, 12] accepts
a system of n DAEs in n state variables xj(t), 1 ≤ j ≤ n :

fi(t, the xj and derivatives of them) = 0, 1 ≤ i ≤ n. (16)

The fi can be arbitrary expressions built from the xj and t using arithmetic oper-
ations, standard functions (sin, exp, etc.), and the dp/dtp operation. We assume
the fi are sufficiently differentiable and hence exclude functions such as abs, min,
and max in their definitions.

This solver implements a variable-stepsize, fixed-order2, explicit Taylor series
(TS) method, where a typical order is in the range 12–20. Since the underlying
method for computing TS is not affected by the index, Daets handles any index
DAE. Furthermore, ODEs and pure algebraic systems are handled as a particular
case of the general formulation (16).

We outline how TS are computed for the simple pendulum given as a second-
order, index-3 DAE:

0 = ü+ λu

0 = v̈ + λv −G
0 = u2 + v2 − L.

Here
(
u(t), v(t)

)
is position, λ(t) is a Lagrange multiplier, G is gravity, and L is

the length of the pendulum.

2An order is chosen at the beginning of an integration and is fixed throughout it.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 11

Write (at t = 0 without loss) u(t) = u0 + u1t+ u2t
2 + · · · and similarly for v(t)

and λ(t). Substituting them into

a(t) = ü+ λu (17)

b(t) = v̈ + λv −G (18)

c(t) = u2 + v2 − L, (19)

we have for the coefficients in the expansions of a(t), b(t), and c(t): a0 = 2u2 + λ0u0
b0 = 2v2 + λ0v0 −G
c0 = u20 + v20 − L2

(20)

 a1 = 6u3 + λ0u1 + λ1u0
b1 = 6v3 + λ0v1 + λ1v0
c1 = 2u0u1 + 2v0v1

(21)

 a2 = 24u4 + λ0u2 + λ1u1 + λ2u0
b2 = 24v4 + λ0v2 + λ1v1 + λ2v0
c2 = 2u0u2 + u21 + 2v0v2 + v21

(22)

and so on. We refer to the above coefficients as Taylor coefficients (TCs). By
equating the TCs in (20, 21, 22) to zero, we solve for the TCs of u, v, λ. This is not
obvious from (20, 21, 22), but proceeds as follows.

Given initial values for u0 and v0, check if they satisfy the constraint

0 = c0 = u20 + v20 − L2, (23)

and if not adjust u0 or v0 or both.
Using u0, v0 as constants, and given values for u1 and v1, check if they satisfy

the constraint

0 = c1 = 2(u0u1 + v0v1), (24)

and if not adjust u1 or v1 or both.
Then for k = 0 up to some order K, we solve a linear system

0 = ak+0, bk+0, ck+2 for uk+2, vk+2, λk+0 (25)

using previously computed coefficients as constants. E.g., when k = 0, we solve

0=a0=2u2+λ0u0
0=b0=2v2+λ0v0−G
0=c2=2u0u2+2v0v2+u21+v21

 , i.e.

 2 0 u0
0 2 v0

2u0 2v0 0

u2v2
λ0

=

 0
G

−u21−v21

 (26)

for u2, v2, λ0 using u0, v0, u1, v1 as known.
The computational scheme for TCs is guided by two nonnegative integer vectors,

equation offsets ci and variable offsets dj , here (0, 0, 2) and (2, 2, 0), respectively;

12 John D. Pryce and Nedialko S. Nedialkov

cf. (25). These vectors are found by Pryce’s structural analysis (SA) [18], details
omitted. There is a set of “SA-amenable” DAEs that (when smooth enough) can
be expanded in TS in a similar way. This is the same set on which one can use
Pantelides SA [17] and the Mattsson–Söderlind dummy derivative method [10]. It
includes all index-3 Euler-Lagrange DAEs [18, Theorem 5.3].

From

u(t) ≈ ũ(t) =

K+2∑
i=0

uit
i, v(t) ≈ ṽ(t) =

K+2∑
i=0

vit
i, λ(t) ≈ λ̃(t) =

K∑
i=0

λit
i,

given stepsize h, we compute an approximate TS solution at t1 = h, and by differ-
entiating ũ(t) and ṽ(t), we approximate u̇ and v̇ at t1 and repeat the above process
starting at t1.

We present a few implementation details below. Daets requires a templated
C++ function for evaluating the fi’s. The simple pendulum is encoded e.g. as

template <typename T>

void fcn(T t, const T* x, T* f, void* param) {

double G = 9.81, L = 10.0;

T u = x[0], v = x[1], lam = x[2];

f[0] = Diff(u, 2) + lam * u;

f[1] = Diff(v, 2) + lam * v - G;

f[2] = sqr(u) + sqr(v) - sqr(L);

}

On input, t is the time variable (not used here), x[j-1] contains the jth state
variable; on output f[i-1] stores fi. The last argument, param (not used here), is
to pass parameters from the solver. The Diff(·, p) function implements dp/dtp.

Before integration starts, Daets performs SA by executing the fi’s code, here
fcn, through operator overloading to find the DAE index, dof, and the offset
vectors. Then the solver executes the same function with FADBAD++’s Taylor
series class to build in memory a computational graph, which is evaluated on each
integration step to compute TCs for the fi’s; in our example (20, 21, 22).

The constraints of the problem are satisfied by orthogonal projection. For ex-
ample, denoting u = (u, v), u0 = (u0, v0), (23) is done by solving

min
u
‖u− u0‖2 s.t. 0 = u2 + v2 − L2;

similarly for (24).
Since the stepsize is selected based on a tolerance specified by the user, the TS

solution on each integration step is very close to satisfying the constraints, and one
or two iterations of Gauss-Newton suffice to project this solution. On the first step
though, the IVs given by the user may not be close to satisfying the constraints:
here we use the Ipopt [23] optimisation package, see below. In terms of IVs, the
user can fix one of the values for u and v, and Daets would try to solve for the
other; similarly for u̇, v̇.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 13

Computing TCs requires solving linear systems, all with the same matrix (which
is factorised when k = 0), the Jacobian J = (Jij) determined by the offsets ci, dj :

Jij = ∂fi/∂x
(dj−ci)
j , or 0 where dj < ci, (27)

for details see [11]. We handle sparsity using the Klu solver [2].

Lagrangian facility. Given a C++ encoding of a Lagrangian function L and ex-
pressions for the Ci in (2), this facility applies the backward/reverse mode of AD to
perform the partial differentiations in (1) and applies Diff(·, 1) to the result of ∂L

∂q̇j
,

and together with (2), constructs a system in the form of (16) of nq +nc equations
fi in variables (q1, . . . , qnq

, λ1, . . . , λnc
).

Below on the left are the Lagrangian for the simple pendulum and the length
constraint, and on the right is the Daets function using this facility:

L = 1
2

(u̇2 + v̇2) +Gv (28)

C1 = u2 + v2 − L2 (29)

1 template <typename T>

2 void PEND(T t, const T* x, T* f, void* param) {

3 double G = 9.81, L = 10.0;

4 int nq = 2, nc = 1;

5 std::vector<fadbad::B<T>> q(nq), qdot(nq), C(nc);

6 init_q_qp(x, q, qdot);

7 B<T> Lag;

8 {

9 Lag = 0.5*(sqr(qdot[0])+sqr(qdot[1])) + G*q[1];

10 C[0] = sqr(q[0]) + sqr(q[1]) - sqr(L);

11 }

12 setupEquations(Lag, x, q, qdot, C, f);

13 }

The block between lines 8 and 11 is where a Lagrangian and constraints are pro-
vided; the rest is boilerplate.

The function init_q_qp “connects” the input variables at x to the q = (u, v)
and q̇ = (u̇, v̇) vectors, whose components are of templated backward differentiation
type B<T> of FADBAD++. The setupEquations function takes as input the
L and C1, stored in Lag and C[0], respectively, and x, q, qdot; performs the
differentiations in (1) using FADBAD++, produces from (28, 29) a computational
graph in memory to evaluate3 the TCs of (17, 18, 19), and stores the result at the
output parameter f. From the solver’s perspective, fcn and FCN perform the same
computation. The main advantage of the latter is that we do not need to derive and
program the actual differentiated equations: they are constructed automatically at
runtime, and invisible to the user.

To improve the performance of the AD in FADBAD++, we have implemented
techniques to eliminate common subexpressions when building a computational
graph [9]. In effect symbolic manipulation is being done, but entirely behind the
scenes and without symbolic algebra software.

As another example of the Lagrangian facility, we show below the encoding of
the Free Top from Example 3. For brevity it is assumed that the axes are the

3In practice a(t) and b(t) in (17, 18) become a(t) = ü+2uλ and b(t) = v̈+2λv−G, respectively,
but this does not affect the computation.

14 John D. Pryce and Nedialko S. Nedialkov

principal axes of inertia so that only the diagonal entries Iu, Iv, Iw of the inertia
matrix I are nonzero. We omit initial code that copies from arrays holding q, q̇ to
variables u,v,udot,vdot holding u,v, u̇, v̇. These variables are of a 3-vector class
vec3 that supports linear operations like +, and dot and cross product written as
* and cross respectively.

w = u×××v
ẇ = u̇×××v + u×××v̇
ωu=w · v̇, ωv=u · ẇ, ωw=v · u̇
0 = C1 = u · u− 1
0 = C2 = v · v − 1
0 = C3 = u · v
L = 1

2
(Iuω2

u + Ivω2
v + Iwω2

w)

vec3 w = cross(u,v),

wp = cross(udot,v) + cross(u,vdot);

B<T> omu = w*vdot, omv = u*wp, omw = v*udot;

C[0] = u*u - 1;

C[1] = v*v - 1;

C[2] = u*v;

Lag=0.5*(Iu*sqr(omu)+Iv*sqr(omv)+Iw*sqr(omw));

Finally, we have also constructed and experimented with a Hamiltonian facility,
which allows one to provide a Hamiltonian function, and the resulting equations
are produced through AD in a similar manner.

Mechanism facility. This lets one specify a mechanism by a MechSpec text file,
which the facility parses and converts to a Lagrangian plus constraints. That is,
a generic function similar to FCN determines a Lagrangian and constraints from a
MechSpec file. It is written in Yaml, a human-readable data serialisation language.
Yaml readers exist for C++ and other programming languages to convert the file to
an internal program data structure. We say little about the syntax and semantics
of Yaml and MechSpec—for details see [14]—and hope the examples used are self-
explanatory.

IPOPT. Daets incorporates the widely used Ipopt software library [23] for large
scale nonlinear optimisation. Daets uses it to find an initial “consistent point” of
a general DAE. In the mechanism context this is the initial position problem: given
dof (initial) constraining equations on q, e.g. the values of dof components, to fix
the whole of q; and similarly for q̇.

The q problem is often highly nonlinear with multiple solutions, so guesses of
some components are necessary to ensure convergence to the desired initial position.
Success depends on the quality of the guesses one can supply, but subject to this
our experience is that Ipopt is a robust solver of this problem. The q̇ problem by
contrast is always linear.

4 Examples

We illustrate our approach on one 2D and two 3D examples in §4.1 to §4.3.

4.1 Mechanism0

4.1.1 Specification, Lagrangian and constraints

Figure 3 shows on the right a picture of Mechanism0: rod OA pivots at fixed
point O; at its end pivots a spring AB; a particle is attached at B. The system

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 15

1 TitleTitleTitle: Mechanism0 ##

2 PhysicalParamsPhysicalParamsPhysicalParams: {L: 2, M: 1, ##

3 k: 1000, l: 1, mu: .5, m: .1} ##

4 DimensionDimensionDimension: 2 ##

5 PartDataPartDataPartData: ##

6 FixedFixedFixed: {O: [0,0]} ##

7 RigidsRigidsRigids:

8 OA: {GeomGeomGeom: [[L,0]], DynaDynaDyna: [[L/2,0],M,M*L**2/12]} ##

9 SpringsSpringsSprings:

10 AB: [k, l, mu] ##

11 ParticlesParticlesParticles:

12 B: m ##

13 AppliedForcesAppliedForcesAppliedForces: ##

14 GravityGravityGravity: ##

15 ProblemDataProblemDataProblemData: ##

16 t0t0t0: 0

17 tendtendtend: 1

18 positionspositionspositions: {A: [0,-L], B: [0,-(L+l)]}

19 fixedpositionsfixedpositionsfixedpositions: {Ax, B} ##

20 velocitiesvelocitiesvelocities: {Ax: 1, B: [0,0]} ##

B

A

O

Click to pause

Figure 3: Mechanism0 specification in Yaml.

moves under gravity. On the left is a MechSpec description of it (lines 1–14) and a
particular IVP for numerical solution (lines 15–20).

Line 8 specifies the geometry and dynamics of rod OA. In GeomGeomGeom, the coordinates
of the first point are not stored as always (0, 0), and [L,0] gives (Ax,Ay) = (L, 0).
In DynaDynaDyna, [L/2,0] is the centre of mass, M is the mass, and M*L**2/12 is the moment
of inertia. Line 10 defines AB to be a spring of stiffness k, rest length ` and mass µ
(modelled as a stretchable uniform rod). Line 12 defines B to be a particle of mass
m. Line 14 makes the system move under default gravity. Lines 2–3 give values to
the various parameters (in SI units since this is what is used for default gravity).

Lines 15–20 define a numerical IVP: integrate over 0 ≤ t ≤ 1 with initially
the system hanging vertically with the spring at its rest length, and point A given
1 ms−1 velocity in the x direction. Line 19 specifies that the initial positions of Ax,
Bx, and By must not be changed when finding a consistent initial point.

From the MechSpec description, the mechanism facility defines the coordinate
vector (Ax is the x-coordinate of A, and so on)

q = (A,B) = (Ax,Ay,Bx,By).

16 John D. Pryce and Nedialko S. Nedialkov

and constructs all the kinetic and potential energy contributions:

KE gravitational PE spring PE

TOA =
M

6
|Ȧ|2, VOA =

Mg

2
Ay,

TAB =
µ

6
(|Ȧ|2+Ȧ · Ḃ+|Ḃ|2), V

[g]
AB =

µg

2
(Ay+By), V

[s]
AB =

k

2
(|B− A| − `)2 ,

TB =
m

2
|Ḃ|2, VB = mg By.

(30)

Here, the expression TAB is the KE (in any number of dimensions) of a thin rod of
mass µ with endpoints A,B.

Then the system is specified by the Lagrangian, plus the rod’s length constraint:

L = L(q, q̇) = T − V = (TOA + TAB + TB)− (VOA + V
[g]
AB + V

[s]
AB + VB), (31)

0 = lOA(q) = |A|2 − L2. (32)

These are processed by the Lagrangian facility.

Including angles. An angle θ between two bodies is needed for instance to mea-
sure the position of a rotational actuator, or the work done by a torque. A q made
of only cartesian coordinates cannot do this safely—it thinks θ and θ + 2π are the
same—so we include θ explicitly in q. We show this here just for the 2D case.

Suppose Mechanism0 has a constant torque τ on rod OA—that is, between OA
and the WF. We omit how this appears in the data file, but the effect on the model
is as follows. (a) Append to q a variable θOA defined as the angle from the WF x
axis to OA’s local-frame x axis. (b) Replace (32) by two equations Ax = L cos θOA,
Ay = L sin θOA. (c) Include in (30), hence (31), the PE contribution

V
[τ]
OA = −τ θOA. (33)

The Euler–Lagrange DAE then automatically tracks θOA as a continuous quantity.

4.1.2 Verification and numerical results for Mechanism0

As a check, we described Mechanism0 in a Lagrangian form without constraints,
leading to an ODE, transcribed into Matlab and solved using its ODE suite. This
and the mechanism facility solution agree closely; we take this as sufficient evidence
that both models and implementations are correct.

The chosen coordinates are

q = (θ, r, φ)

with

θ : angle of OA from downward vertical;
r : current length of spring AB;
φ : angle of AB from downward vertical.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 17

With these coordinates, we have positions and velocities

A = L (sin θ,− cos θ), B = A + r (sinφ,− cosφ),

Ȧ = L (cos θ, sin θ)θ̇, Ḃ = Ȧ + (sinφ,− cosφ)ṙ + r (cosφ, sinφ)φ̇.

}

The Lagrangian is still given by (31) with extra term (33). Now (30) becomes

KE gravitational PE spring or torque PE

TOA = 1
6
ML2θ̇2, VOA= − 1

2
MgL cos θ V

[τ]
OA = −τθ

TAB = 1
2
µ
(
L2θ̇2 + L sin(φ− θ)θ̇ṙ + Lr cos(φ− θ)θ̇φ̇+ 1

3
(ṙ2 + r2φ̇2)

)
,

V
[g]
AB = −µg(L cos θ + 1

2
r cosφ), V

[s]
AB = 1

2
k (r − `)2 ,

TB = 1
2
m
(
L2θ̇2 + 2L sin(φ− θ)θ̇ṙ + 2Lr cos(φ− θ)θ̇φ̇+ ṙ2 + r2φ̇2

)
,

VB= −mg(L cos θ + r cosφ),

where θOA has been changed to θ in the torque PE, which is valid because these
two angles differ by a constant. This gives three equations of motion

d

dt

∂L
∂q̇

=
∂L
∂q

, call the latter F (q, q̇). (34)

For the numerics, introduce the Hamiltonian generalised momentum vector

p = ∂L/∂q̇, here, q̇ = (θ̇, ṙ, φ̇).

Now p = M(q)q̇—linear in q̇—where M is the symmetric mass matrix. Here

M = M(θ, r, φ) = (
1
3M + µ+m

)
L2 (1

2µ+m)L sin(φ− θ) (1
2µ+m)Lr cos(φ− θ)

(1
2µ+m)L sin(φ− θ) 1

3µ+m 0
(1
2µ+m)Lr cos(φ− θ) 0 (1

3µ+m)r2

Now (34) becomes two first-order vector ODEs, making 6 scalar equations:

q̇ = M(q)−1p, ṗ = F (q, q̇).

Note the block triangular structure: find q̇ first, and use it to find ṗ.
The mechanism facility program and the Matlab program read the same Yaml

problem file. The IVs specify the position and velocity of A = (Ax,Ay) and B =

(Bx,By). They might not be consistent: A might not lie on, and Ȧ might not
be tangential to, the circle of radius L round O. Daets finds consistent points
by calling the optimisation code Ipopt. To make the result predictable, we use
Daets’s ability to specify some IVs “fixed”, not to be modified by Ipopt. Here,
one of Ax,Ay may be fixed and also one of Ȧx, Ȧy. To ensure both codes solve the
same IVP, the Matlab code is made to do the same, e.g. if Ax is “fixed” it sets

18 John D. Pryce and Nedialko S. Nedialkov

0 1 2 3 4 5 6 7 8 9 10
time t

10-14

10-12

10-10

10-8

10-6

10-4

10-2

no
rm

(O
D

E
 s

ol
 -

 D
A

E
T

S
 s

ol
)

Mechanism0: difference of solutions including both position & velocity

tol=1e-5
tol=1e-7
tol=1e-9
tol=1e-11
tol=1e-13

(a)

0 1 2 3 4 5 6 7 8 9 10
time t

10-14

10-12

10-10

10-8

10-6

10-4

10-2

no
rm

(O
D

E
 s

ol
 -

 D
A

E
T

S
 s

ol
)

Mechanism0: approx global error including both position & velocity
tol=1e-5
tol=1e-7
tol=1e-9
tol=1e-11
tol=1e-13

(b)

Figure 4: (a) Comparison of Daets and ode113 solutions at different tolerances.
(b) Estimated global error: (ode113 solution at tol = 2.2e-14) – (Daets solution).

Ay = ±
√
L2 −A2

x. We omit details to do with choice of sign and possible numerical
ill-conditioning.

To test agreement between Daets and ODE solution, we used ode113. For
each tolerance tol, the 8-element vector v = (A,B, Ȧ, Ḃ) (positions and velocities)
was formed for each solver at each t. A feature of the Matlab ODE suite is that
output can be produced, to full accuracy, at each t in a vector of values that is given
as input to the solver call. That is, we produced output with ode113 at points t
selected by Daets.

Figure 4(a) shows ‖vDaets − vODE‖2 against t for 5 tolerances tol, with a
vertical log scale. The growth of the difference is much the same for each tol:
about 3 orders of magnitude over the range. The curves at different tol obviously
are strongly correlated; so far we have not looked into why this is.

Figure 4(a) shows an assessment of the global error of the Daets solution.
Namely vODE (at the given tol) is replaced by a reference solution vref which we
took to be the ode113 solution with tol = 2.2e-14, about the smallest tolerance
it allows. So it plots ‖vDaets−vref‖2 against t for each tol. The plots show these
errors grow more slowly than the differences on the left: they are about ten times
smaller at t = 10. This suggests the difference vDaets−vODE is mostly due to global
error in the ode113 solutions, and Daets is somewhat more accurate than ode113.

4.2 The RSCR mechanism

Specification and design parameters. Figure 5 shows on the right a picture of
the RSCR (Revolute-Spherical-Cylindrical-Revolute) mechanism, a four-bar linkage
in 3D with 1 DOF, of which the classic plane four-bar linkage is a special case. On
the left is a MechSpec description of it.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 19

1 DimensionDimensionDimension: 3

2 PartDataPartDataPartData:
3 FixedFixedFixed:
4 D: [0,0,0]

5 A: [-L0,0,0]

6 w: [cos(d2r*d),sin(d2r*d),0]

7 u: [cos(d2r*a)*sin(d2r*b),

8 sin(d2r*a)*sin(d2r*b),cos(d2r*b)]

9 RigidsRigidsRigids:
10 ABu: {GeomGeomGeom:[[L1],[0,1]],
11 DynaDynaDyna:[[L1/2],m1,m1*L1**2/12]}
12 CBv: {GeomGeomGeom:[[L2],[0,1]],
13 DynaDynaDyna:[[L2/2],m2,m2*L2**2/12]}
14 DC1wv: {GeomGeomGeom:[[L3],[0,1],[0,cos(c),sin(c)]],
15 DynaDynaDyna:[[L3/2],m3,m3*L3**2/12]}
16 Collinears: {C1vC}

v

D

CB

A

C₁

w

ɠ ɢ

ɡ

C is fixed on ɡ
C₁ is fixed on ɢ
v is fixed on both

u

Figure 5: RSCR mechanism. MechSpec text on the left. The 8 parameters defining
the geometry are L0, L1, L2, L3 (lengths DA, AB, BC, C1D), and α, β, γ, δ (angles,
see text), written a,b,c,d in the MechSpec; d2r stores π/180. By a “padding
convention”, omitted trailing coordinates are zero, e.g. [L1] means [L1,0,0], the
point (L1, 0, 0).

As a mnemonic, WF-fixed items are underlined, e.g. A for a point, u for a vector;
others are moving. The moving parts are 1©, 2©, 3©, with joints at A, B, C, D. The
joint spines at A and D are fixed in the WF, along vectors u and w respectively.
Point C1 is fixed on 3© and on the cylindric joint spine which is along v. We can
put A,C,C1,D anywhere along the relevant spines, so without loss assume
• line AB ⊥ (perpendicular to) spine at A;
• line CB ⊥ spine at C;
• line DC1 ⊥ spines at both D and C1.
We fix the WF to have origin at D with DA the negative x axis, A at (−L0, 0, 0),

and the joint spine at D in the xy plane. The latter’s direction w is arbitrary in
this plane, say w = (cos δ, sin δ, 0)T . The spine at A is now in an arbitrary WF
direction, say u = (cosα sinβ, sinα sinβ, cosβ)T with spherical polar angless α, β.

In 3©, the cylindric and the revolute joint spines are skew, non-intersecting lines
in general. Projected on a plane normal to DC1, the former, at C1, is rotated an
arbitrary γ from the latter, at D, so in 3©’s local frame it is along

v = (0, cos γ, sin γ)T (35)

Vector v moves in the WF and is fixed in both 2© and 3©.

Local frames and coordinate vector. We choose 1©’s local origin at A, 2©’s at
C, 3©’s at D, and in each case the x axis along the part’s length, and the xy plane
defined by a unit vector along the joint spine that passes through the local origin.
Since these spines are orthogonal to the part lengths by construction, the R matrix
(5) of each frame is diagonal.

20 John D. Pryce and Nedialko S. Nedialkov

Bring in Assign Equate DOF

3©: DC1wv rigidity.

C1

x̂3 := C1/L3

ẑ3 := x̂3×××w

v := cos(γ)w + sin(γ)ẑ3

0 = C2
1 − L2

3

0 = C1 ·w
+3 − 2 (37)

2©: CBv rigidity, and specify cylindric joint

B, µ C := C1 + µv
0 = (B− C)2 − L2

2

0 = (B− C) · v
+3 + 1 − 2 (38)

1©: ABu rigidity

0 = (B− A)2 − L2
1

0 = (B− A) · u
− 2 (39)

Net DOF: 1 = +7 − 6

Table 1: RSCR: assignments and equations.

To specify the constraints in Table 1, only 3© needs full frame details, given by
the BPVs DC1w in that order, so from (5, 6, 8), its U -matrix U3 comes from

A3=[D,C1,w]=

0 L3 0
0 0 1
0 0 0

 , U3 =

−1 0
1 0
0 1

[L3 0
0 1

]−1
=

− 1
L3

0
1
L3

0

0 1

 .
The moving basic points are C1,B. Bringing in parts in order 3©, 2©, 1© as in

Table 1, we express v by an assignment in terms of C1, then C by an assignment
in terms of C1, v and a scalar µ. So the coordinate vector need only be

q = (C1,B, µ) with 3× 2 + 1 = 7 scalar components. (36)

Kinematics: the constraint equations. Here all positions and vectors are in the
WF. The joints, handled as in §2.2 Kinematic constraints, generate no equations,
so the only constraints are rigidity equations. Namely for each part: (i) a line
joining two points has specified length and (ii) a unit vector is orthogonal to this
line. This makes 2 equations per part, a total of 6.

The moving frame of 3© is needed to define vector v along the spine of the
cylindric joint. Denote its unit vectors (the columns of Q3) as x̂3, ŷ3, ẑ3, where x̂3

along DC1 is defined by

x̂3 = (C1 − D)/L3 = C1/L3. (40)

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 21

˙̂x3 := Ċ1/L3, ˙̂z3 := ˙̂x3×××w, v̇ := sin(γ) ˙̂z3, Ċ := Ċ1 + µv̇ + µ̇v,

x̂2 = (B− C)/L2, ŷ2 = v, ẑ2 = x̂2×××ŷ2, Q2 = [x̂2, ŷ2, ẑ2],

˙̂x2 = (Ḃ− Ċ)/L2, ˙̂y2 = v̇, ˙̂z2 = ˙̂x2×××ŷ2 + x̂2××× ˙̂y2, Q̇2 = [˙̂x2, ˙̂y2,
˙̂z2],

Ṁ2 = Ċ + Q̇M2, ωωω2 =

ẑ2 · ˙̂y2

x̂2 · ˙̂z2
ŷ2 · ˙̂x2

 .

Table 2: RSCR dynamics calculation for simple model in text. M2 is the fixed local
position of body 2©’s centroid (Mass centre), M2 its moving WF position.

Vector ŷ3 is an alias of the fixed w, whose name will be used instead, and

ẑ3 = x̂3×××w.

From (35), in 3©’s local frame

v = (0, cos(γ), sin(γ))T = cos(γ)w + sin(γ)ẑ3. (41)

Then (40, 41) remain true during motion, by (4). Finally, define the cylindric joint
by saying C is on the line through C1 along v, i.e. for some scalar µ we have

C = C1 + µv. (42)

Table 1 summarises this. Equations (40) to (42) become assignments that ex-
press x̂3, ẑ3, v and C as functions of C1, µ only. The “Bring in” column shows
when elements of q enter the calculation. The “DOF” column is a running count—
increased by “Bring in” items, not changed by “Assign” items, and reduced by
“Equate” items.

Dynamics. Take a simple model where: 2© is a fully 3D rigid body; 1© and 3©
have the simpler dynamics of (uniform) thin rods AB, DC1 of masses m1, m3; the
mass of joints is neglected; no forces act, so the Lagrangian L is just the total
kinetic energy.

Part 2©’s KE T2 involves Ċ, so differentiate the assignments in Table 1, and
apply (11)–(15) to get 2©’s moving frame, centroid velocity and angular velocity,
shown in Table 2.

Similarly to the KE of rod OA in (30), the KE of 1© is T1 = 1
6m1Ḃ

2, and 3© is

similar. Then L is given as a function of q = (C1,B, µ) and q̇ = (Ċ1, Ḃ, µ̇) by

L = T1 + T2 + T3 =
(m1

6
Ḃ2
)

+
(

1
2m2Ṁ

2
2 + 1

2ωωω
T
2 III2ωωω2

)
+
(m3

6
Ċ1

2
)
,

see Table 2 for M2. This, plus Table 1’s constraints, gives the equations of motion.
Fully 3D dynamics of parts 1©, 3© would be handled as has been done for 2©.

22 John D. Pryce and Nedialko S. Nedialkov

(a) (b)

Figure 6: Robot model from [5]: (a) perspective diagram; (b) kinematic scheme.

4.3 Closed-chain robot

Article [5] presents the 6 DOF industrial robot model in Figure 6 as a vehicle to
teach MBS, and gives NCs kinematic equations of it. We give our, significantly
shorter, version of the kinematic equations, explaining the notation but without
derivations, which follow the scheme in §4.2. Simplifying assumptions are made to
illustrate the “assign, don’t equate” policy: ABCD (called r2r3r4r5 in Figure 6 (b))
is an exact parallelogram; AB is horizontal with midpoint O on the WF vertical axis
of rotation OZ. Table 4 shows how DAE size increases without these assumptions.

The parameters defining the geometry are LAB, LAC, . . . which are the constant
lengths |AB|, |AC|, etc.; Ex,Ez, are E’s coordinates within 5©. As before, X,u denote
a fixed WF position or vector, and X,u a moving one, and so on. Vectors u1 to u5

are as in Figure 6(b).

In general, we want as many joints as possible to be defined by point and vector
sharing. This is useful here, because subsystem ABCD becomes overconstrained if
the spine directions of its four revolute joints are treated as independent. With
exact alignment it can move but with small random deviations, mathematically it
cannot—the issue of “paradoxical mobility”, see Talaba [21] for a good discussion.

In practical manufacture this is overcome by engineering tolerances and the
slight elasticity of real rigid bodies. Mathematically however, a model based on
independent joint directions is statically indeterminate when these directions coin-
cide, so the Lagrange multipliers to the constraint reactions at the joints are not
uniquely determined. Numerically one might seek e.g. minimum-norm solutions
using matrix singular value analysis, but this is needlessly complicated. We cut
the Gordian knot, as does [5], by making the joint directions a shared vector, u3

in Figure 6 (b). In the resulting model the overconstrainedness simply goes away.

The frame definitions, which make each R matrix (5) diagonal, are

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 23

Part BPVs Part BPVs
2© Ou1u3 with useful points A,B 3© ACu3

4© frame not used 5© CDu3 with useful point E
6© 7© EFu4 8© 9© FGu5

Fixed in the WF are O = (0, 0, 0)T and u1 = (0, 0, 1)T . The coordinate vector is

q = (u3,C,u4,F,u5,G) making 18 scalars.

In Table 3, “Bring in” lists the parts in the order natural to the topology, and
the elements of q in the order they are used. “DOF” is a running count of degrees
of freedom, e.g. rotating base 2© on its own has 3−2=1 DOF. The parallelogram
assumption implies 4©, 5© only generate assignments without changing the DOF.

Bring in Assign Equate DOF

2©; u3

u2 := u1×××u3

A := 1
2LABu2

B := −A

0 = u2
3 − 1

0 = u3 · u1

+3 −2

3©;C
0 = (C− A)2 − L2

AC

0 = (C− A) · u3

+3 −2

4© D := C + B− A
5© E := C + Exu2 + Ezu1

6© 7©; u4,F

0 = (F− E)2 − L2
EF

0 = (F− E) · u4

0 = u2
4 − 1

+6 −3

0 = (F− E) · u3 −1

8© 9©; u5,G

0 = (G− F)2 − L2
FG

0 = (G− F) · u5

0 = u2
5 − 1

+6 −3

0 = (G− F) · u4 −1
Net DOF: 6 = 18−12

Table 3: Assignments and equations for kinematics of closed chain robot.

5 Conclusions

Summary. What we have presented has two main aspects. First, a “3 points/vec-
tors per body” (3PVs) natural coordinates way of tracking rigid body motion that
basically treats all bodies in a unified way, without the different cases in the usual
kind of NCs. Second, a software architecture for MBS simulation where much of
what is traditionally done explicitly, is done inside the DAE solver Daets. This
makes the mass matrix, though present, appear as a byproduct in the background—
readers used to finite elements or structural mechanics might find this unusual. The

24 John D. Pryce and Nedialko S. Nedialkov

Table 4: Number of equations de Jalón–Bayo and Nedialkov–Pryce NCs (JBNCs
and NPNCs) use to define kinematics of two models in the text. For RSCR: JBNCs
part 2© is our 1©, etc. For robot: [3] notes part 4© has a redundant equation; NPNCs
(a), (b) are without and with assuming ABCD is a parallelogram. DAE sizes for
JBNCs in parentheses are as given to a DAE code after reduction to first-order.

1 DOF RSCR from [4, p. 73] 6 DOF closed-chain robot from [3]

JBNCs NPNCs JBNCs NPNCs(a) NPNCs(b)

part # eqns part # eqns part # eqns # eqns # eqns
2© 2 1© 2 2© 8 2 2
3© 3 2© 2 3© 2 2 2
4© 5 3© 2 4© 1 of 2 2 0

cyl. joint. 2 of 3 0 5© 5 2 0
6© 2 2 2
7© 2 2 2
8© 2 2 2
9© 2 2 2

Total eqns 12 6 24 16 12
Length of q 13 7 30 22 18
DAE size 25 (38) 13 54 (84) 38 30

notorious initial position problem is also solved in the background: not because we
have a magic bullet, but because the Ipopt large scale nonlinear optimiser is built
into Daets.

The two aspects are related. Our Lagrangian facility works equally well for a
Lagrangian based on any coordinate system: 3PVs NCs, the standard 4PVs NCs,
relative coordinates, etc. The 3PVs method has the advantage of conciseness—
it usually leads to a shorter coordinate vector q and fewer rigidity constraints—
but the seeming disadvantage of a non-constant M matrix—inefficient on large
problems when a standard DAE solver is used. In fact we think non-constant M
shouldn’t matter much because of Daets’s algorithm structure: it re-uses many
times each evaluation of the Jacobian J, of which M is a part.

At present, we solve small to medium systems, for which easy formulation of the
model is more important than efficiency. Our many experiments have shown very
efficient integrations, see [13]. We are at an early stage of overall development and
objective benchmarking against other systems is not easy; we have not yet tried it.

In examples taken from de Jalón et al., we do indeed get more concise models,
mainly by specifying a moving 3D frame by at most 9 scalars vs 12, and by replacing
equations with assignments where possible. Table 4 compares equation-counts for
the RSCR model, and for the closed-chain robot of [3, 5] outlined in §4.3.

User-friendliness and potential in teaching. How easily can a new user enter
their own problem into the system? A common paradigm when programming
is involved, both for research and when teaching students, is to take a working
example program and edit it to solve a different but related problem. We think
our examples show this is straightforward for small models in the context of the

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 25

Lagrangian facility. One forms the mathematical Lagrangian and constraints by
hand, and transcribes to C++ code in a natural way as shown by examples in §4.

mechanism specification
YAML file

output data file

animation

solve numerically by
DAETS

animate by
animate3Dmech.manimatemech.m

Figure 7: MBS simulation workflow.

By contrast, use of the MechSpec—
see the workflow in Figure 7—is for
quick turnaround and a higher level
view. The user specifies the mechanism
in a Yaml file, and a script automates
the following steps. The Yaml is read
into a data structure in the C++ main
program. The part and joint specifica-
tions are interpreted and converted to
a Lagrangian and constraints, passed
to the Lagrangian facility which con-
verts it to an FCN function suitable for
Daets. The data structure also holds
initial values etc. to control the inte-
gration, from which Daets (if all is
well) finds an initial consistent point
and solves to the requested end time,
writing to the output data file at each time step. This and the MechSpec file are
read by a Matlab program that produces an animation of the motion.

For systems such as the examples in this article, over a modest time range,
running on a laptop, one typically goes from submitting the MechSpec file to view-
ing the animation in a few seconds. We solved the Andrews Squeezing Mechanism
up to t = 0.3, ten times the reference solution range, in 2.5 CPU seconds—tricky
because the system, driven by a constant torque, rotates faster and faster requiring
gradually reducing time steps.

De Jalón in his survey [3] of Natural Coordinates argues cogently for their
use in teaching: “Teaching 3-D multibody system analysis is probably the most
important application of natural coordinates, particularly when there are severe
time limitations”, and [5] gives experience of putting this into practice.

We agree, and think that whether one uses a Lagrangian or a Newtonian ap-
proach to setting up the equations of motion, the extra brevity that comes from
using our methods makes Natural Coordinates even more attractive for this purpose
at an undergraduate or a graduate level.

Future plans. The Lagrangian facility works in both 2D and 3D. We have a
well-tested 2D MechSpec and are part way through converting this to handle 3D.

Important features so far missing, and in hand, are: a general applied force
F(t,q, q̇) applied at a point on a body, or a torque similarly; an actuator similarly,
giving a prescribed linear or angular position; a Rayleigh dissipative term, often
a convenient way to model damping forces within the Lagrangian. All have been
tested by hand-coded 3D examples using the Lagrangian facility.

26 John D. Pryce and Nedialko S. Nedialkov

References

[1] Brenan, Kathy E., Campbell, Stephen L., and Petzold, Linda R. Numerical
Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM,
Philadelphia, DOI: 10.1137/1.9781611971224, second edition, 1996.

[2] Davis, Timothy A. and Palamadai Natarajan, Ekanathan. Algorithm 907:
KLU, a direct sparse solver for circuit simulation problems. ACM Trans. Math.
Softw., 37(3):36:1–36:17, September 2010. DOI: 10.1145/1824801.1824814.

[3] de Jalón, Javier Garćıa. Twenty-five years of natural coordinates. Multibody
System Dynamics, 18(1):15–33, 2007. DOI: doi.org/crvphq.

[4] de Jalón, Javier Garcia and Bayo, Eduardo. Kinematic and Dynamic Simula-
tion of Multibody Systems: The Real Time Challenge. Springer-Verlag, Berlin,
Heidelberg, 1994.

[5] de Jalón, Javier Garćıa, Shimizu, Nobuyuki, and Gómez, David. Natural
coordinates for teaching multibody systems with Matlab. In Proc. IDETC/-
CIE 2007, September 4–7, 2007, Las Vegas, Nevada, USA, volume 5, pages
1539–1548. ASME, 2007. DOI: 10.1115/DETC2007-35358.

[6] Greiner, Walther. Classical Mechanics: Systems of Particles and Hamilto-
nian Dynamics. Number v. 1 in Classical theoretical physics. Springer, DOI:
10.1007/978-3-642-03434-3, 2003.

[7] Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II.
Stiff and Differential–Algebraic Problems. Springer Verlag, Berlin, DOI:
10.1007/978-3-642-05221-7, second edition, 1991.

[8] Kraus, C., Winckler, M., and Bock, H.G. Modeling mechanical DAE us-
ing natural coordinates. Mathematical and Computer Modelling of Dynamical
Systems, 7(2):145–158, 2001. DOI: 10.1076/mcmd.7.2.145.3645.

[9] Li, Xiao. Incremental computation of Taylor series and system Jacobian in
DAE solving using automatic differentiation. Master’s thesis, Computational
Science and Engineering, McMaster University, Hamilton, Ontario, Canada,
2017. hdl.handle.net/11375/22521.

[10] Mattsson, Sven Erik and Söderlind, Gustaf. Index reduction in differential-
algebraic equations using dummy derivatives. SIAM J. Sci. Comput.,
14(3):677–692, 1993. DOI: 10.1137/0914043.

[11] Nedialkov, Nedialko S and Pryce, John D. Solving differential-
algebraic equations by Taylor series (III): the DAETS
code. JNAIAM J. Numer. Anal. Indust. Appl. Math,
3:61–80, 2008. DOI: jnaiamcont.org/new/uploads/files/

b4e0bdaa7990bbd1896fa3fafdd09f71.pdf.

Multibody Dynamics in Natural Coordinates through AD and DAE Solving 27

[12] Nedialkov, Nedialko S. and Pryce, John D. DAETS user guide. Technical
Report CAS 08-08-NN, Department of Computing and Software, McMaster
University, Hamilton, ON, Canada, June 2013. 68 pages, DAETS is available
at http://www.cas.mcmaster.ca/~nedialk/daets.

[13] Nedialkov, Nedialko S. and Pryce, John D. Multi-body Lagrangian simula-
tions, 2017. YouTube channel,
https://www.youtube.com/channel/UCCuLchOx0W0yoNE9KOCYlVQ.

[14] Nedialkov, Nedialko S. and Pryce, John D. YAML specification of 2D mech-
anisms for the DAETS Lagrangian facility. Technical report, Department of
Computing and Software, McMaster University, 2018. In preparation.

[15] Nikravesh, Parviz E. An overview of several formulations for multibody dy-
namics. In Talabă, D. and Roche, T., editors, Product Engineering, pages
181–207. Springer, Dordrecht, 2004. DOI: doi.org/bj6272.

[16] OpenSim. OpenSim implementation of MBS Benchmark, 2008 (accessed July
2017). rehabenggroup.github.io/MBSbenchmarksInOpenSim/index.html.

[17] Pantelides, Costas C. The consistent initialization of differential-algebraic sys-
tems. SIAM J. Sci. Stat. Comput., 9:213–231, 1988. DOI: 10.1137/0909014.

[18] Pryce, John D. A simple structural analysis method for DAEs. BIT Numerical
Mathematics, 41(2):364–394, 2001. DOI: 10.1023/A:1021998624799.

[19] Pryce, John D., Nedialkov, Nedialko S., Tan, Guangning, and Li, Xiao. How
AD can help solve differential-algebraic equations. Optimization Methods and
Software, 33(4-6):729–749, 2018. DOI: 10.1080/10556788.2018.1428605.

[20] Susskind, L. and Hrabovsky, G. Classical Mechanics: The Theoretical Mini-
mum. The theoretical minimum. Penguin Books, DOI: 10.1119/1.4816681,
2014.

[21] Talabǎ, Doru. Mechanical models and the mobility of robots and mechanisms.
Robotica, 33(1):181–193, 2015. DOI: 10.1017/S0263574714000149.

[22] von Schwerin, Reinhold. Multibody system simulation: numerical methods,
algorithms, and software, volume 7. Springer Science & Business Media, DOI:
10.1007/978-3-642-58515-9, 2012. Softcover reprint of the original 1st ed.
1999.

[23] Wächter, Andreas and Biegler, Lorenz T. On the implementation
of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical programming, 106(1):25–57, 2006. DOI:
10.1007/s10107-004-0559-y.

Received ...

