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The simulation of transport processes in cementitious materials with 

embedded healing systems 
Brubeck Lee Freeman, Tony Jefferson 

Abstract 
A new model for simulating the transport of healing agents in self-healing (SH) cementitious materials is 

presented. The model is applicable to autonomic SH material systems in which embedded channels, or 

vascular networks, are used to supply healing agents to damaged zones. The essential numerical components 

of the model are a crack flow model, based on the Navier-Stokes equations, which is coupled to the mass 

balance equation for simulating unsaturated matrix flow. The driving forces for the crack flow are the 

capillary meniscus force and the force derived from an external (or internal) pressure applied to the liquid 

healing agent. The crack flow model component applies to non-uniform cracks and allows for the dynamic 

variation of the meniscus contact angle, as well as accounting for inertial terms. Particular attention is paid 

to the effects of curing on the flow characteristics. In this regard, a kinetic reaction model is presented for 

simulating the curing of the healing agent and a set of relationships established for representing the variation 

of rheological properties with the degree of cure. Data obtained in a linked experimental programme of work 

is employed to justify the choice and form of the constitutive relationships, as well as to calibrate the model’s 

evolution functions. Finally, a series of validation examples are presented that include the analysis of a series 

of concrete beam specimens with an embedded vascular network. These examples demonstrate the ability 

of the model to capture the transport behaviour of this type of SH cementitious material system. 
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1 Introduction 
Despite being one of the most widely used materials in construction, concrete frequently suffers from 

significant durability problems, which are usually associated with cracking. These problems include alkali-

silica reaction, reinforcement corrosion and calcium leaching,1-3 all of which contribute to the high 

maintenance and repair costs associated with concrete structures.4 One approach to mitigating this problem 

is to design the concrete to be self-healing (SH), such that cracks heal as they form. A wide range of 

approaches have been employed for achieving this; some of these are classified as ‘autonomic’ (or 

manufactured) healing techniques, whilst other methods enhance the natural ‘autogenous’ healing 

capabilities of cementitious materials.5  A significant number of these SH technologies utilise encapsulated 

healing agents that are released and transported to damage sites when cracking occurs.6 The techniques 

differ in the methods used for encapsulation, release and delivery, as well as in the type of healing agent 

used. Methods of embedding healing agents within the cementitious matrix include microencapsulation,7,8 

macro-encapsulation,9,10 and vascular networks.11,12 Healing agents range from bacterial spores,13,14 to 

mineral admixtures,7,9 and adhesives.11,15 Full reviews of self-healing technologies and associated 

experimental characterisation techniques can be found in De Belie et al.,6 Ferrara et al.,16 Sidiq et al.,17 and 

Xue et al.18 

There is now an ever expanding body of work on numerical modelling of SH systems, with significant progress 

having been made in recent years.19-27 A number of these authors have acknowledged the complexity of SH 

systems and have highlighted the many interacting physical processes that govern the behaviour of these 

systems. To date, few models fully consider the coupling between the transport, curing and mechanical 

healing processes of SH systems.27 In addition, the validation of many previous models against experimental 

data has been limited. A comprehensive review of numerical models for SH systems can be found in Jefferson 

et al.,27 with exception of the most recent of contributions (see for example, Algaifi et al.,28 Mauludin et al.,29 

Oucif et al.,30,31 Ponnusami et al.,32 Shahsavari et al.,33 Voyiadjis and Kattan,34 Zhang and Zhuang,35 and Sanz-



Herrera et al.36). Here, only recent relevant papers that address transport processes in SH materials are 

considered in more detail. 

Algaifi et al.28 developed a model for SH bio-concrete that simulates the microbial precipitation of calcium 

carbonate. Urea transport, urea hydrolysis (including the effect of bacterial cell concentration) and calcite 

production were all taken into account in the model formulation. The transport of urea was simulated using 

Fick’s law, whilst the reactions were modelled using first order kinetics. To verify the predicted crack healing, 

experimental work was carried out on a self-healing beam. The model results compared well with the 

experimental data, with the former predicting complete healing in 60 days, which compared with 70 days 

from the measured data. 

Sanz-Herrera et al.36 presented a coupled mechano-chemical-diffusive model for SH materials. Their model 

couples a continuum damage mechanics (CDM) model with a reactive diffusive chemical model. The CDM 

model was developed under the strain equivalence hypothesis and used a rate-dependent damage evolution 

model derived from that presented by Darabi et al.37 The chemical diffusive model was based on a self-healing 

mechanism in which a mobile species is transported into the material from the environment and reacts with 

a static species present in the matrix material. The diffusion of the mobile species was modelled using Fick’s 

law, whilst the reaction was modelled using first order kinetics. The performance of the model was 

demonstrated through a series of numerical experiments concerning the cyclic loading of self-healing 

materials. 

Many numerical transport models for cementitious materials have concentrated on moisture and ion 

transport associated with carbonation and autogenous healing.22,38-42 Although such models have general 

relevance to this study, it is previous work on simulating the flow of autonomic healing agents in discrete 

cracks, and the associated continuum matrix flow, that has greater importance for the present work.43-46 

Gardner et al.’s model used a modified Lucas-Washburn equation that allowed for stick-slip of the meniscus, 

frictional dissipation and wall slip, to simulate liquid flow in discrete cracks.43-45 The model was shown to be 

able to accurately predict the capillary rise response of a range of healing agents in both natural and artificial 

cracks. Gilabert et al.46 used the open source computational fluid dynamics code OpenFOAM,47 to simulate 

the flow of a healing agent in artificial concrete cracks for a range of crack openings. Their model used the 

Navier-Stokes equations to simulate flow in the embedded healing-agent supply tubes and within the crack 

plane. The authors introduced a piecewise linear contact-angle v time relationship, which was constructed 

from their own experimental data. The simulations were in reasonable agreement with their experimental 

observations. With the exception of the work of Gardner et al.43-45 and Gilabert et al.,46 there has been little 

(or no) other work on simulating the flow of autonomic healing agents in discrete cracks in SH cementitious 

materials. However, there is a large body of work on modelling coupled matrix and crack (or capillary) flow 

processes for other applications. Such models have been used for assessing the performance of nuclear waste 

repositories,48 predicting hydraulic fracture simulation in the oil and gas industry,49 studying moisture effects 

on the mechanical behaviour of building materials,50-52 and predicting blood flow and drug delivery in 

tumours.53,54  

The above paper by Lecampion et al.49 reviews recent work on modelling hydraulic fracture. In general, the 

fracture fluid flow in such models is based on mass and momentum balance equations, with the inertial terms 

usually being neglected. Carter’s leak-off model is often used to calculate the loss of fluid to the surrounding 

medium.55 Carter’s model uses a 1D diffusion equation to give the leak off-rate, based on the assumptions 

that the rate of matrix diffusion is small compared to the fracture propagation rate, and that the net fluid 

pressure is much smaller than the far-field effective stress. A number of models couple continuum flow to 

the fracture flow to avoid the assumptions of Carter’s model,56,57 whilst others take into consideration the 

non-Newtonian behaviour of the fracturing fluid, including shear rate dependency and the effects of 

proppants suspended in the fluid.58,59 In hydraulic fracture, fluid flow and mechanical behaviour are strongly 

coupled processes. The dynamic fracturing was investigated by Cao et al.57 (see also Milanese et al.60), whose 



model was able to capture the step-wise crack advancement and corresponding fluid pressure oscillations 

observed in a number of experiments (e.g. Pizzocolo et al.61). 

Soltani and Chen,53 presented a coupled model of interstitial fluid and blood flow through a tumour. Their 

model allows for a network of interconnected capillaries and takes into account the non-Newtonian 

behaviour of blood, as well as the blood phase separation at bifurcations. The blood flow in the capillaries 

was calculated using Poiseuille’s law, whilst the tumour tissue was treated as a saturated porous medium, 

with Darcy’s law being used to describe the flow. The two were coupled through the transvascular flow rate, 

which is given as a function of the difference in pressure between the blood and the interstitial fluid through 

Starling’s law. The predictions of the model were shown to compare well with experimental data. It is 

interesting to compare blood flow models, such as that presented by Soltani and Chen53, with models for 

fluid flow in fractured porous media. Both sets of models consider fluid flow in capillary networks (i.e. blood 

vessels in the former case and crack networks in the latter) coupled to continuum flow in a porous medium 

(e.g. surrounding tissue and concrete matrix respectively), and both are based on the same basic mass 

balance and fluid flow equations. The differences between the two sets of models results from the 

contrasting physical, chemical and biological processes of the respective systems, which necessitate very 

different constitutive models for the fluid and mechanical systems, as well as different equations for coupling 

fluid transport to the solid-mechanics component of the models. For example, blood is normally simulated 

as a non-Newtonian fluid -with an associated constitutive relationship- whereas the fluids modelled in 

fracturing media are normally assumed to be Newtonian in nature. In blood flow systems, there is strong 

coupling between the large deformations of the biological tissue and the fluid flow behaviour, whereas in 

many fractured porous media applications (e.g. flow in building materials) the porous media is much stiffer 

than the fluid and the evolving network of cracks is the dominate feature of the mechanical system. 

A model for the moisture uptake of cracked building materials has been presented by Roels et al.50 (see also 

Roels et al.51 and Carmeliet et al.52). The model considered unsaturated moisture flow in the continuum, 

governed by the moisture mass balance equation, with Darcy’s law being used to describe the moisture flux. 

This was coupled to the flow in the discrete crack through a source/sink term, representing flow through the 

crack faces. Discrete crack flow was modelled using Poiseuille’s law and a quasi-static pressure equation, 

which were solved in a staggered solution algorithm. The accuracy of the model was demonstrated through 

a series of validation tests, which considered the preferential uptake of moisture in naturally and artificially 

cracked bricks. 

de Borst and co-workers developed a set of sub-grid scale models for fluid flow in fractured and fracturing 

porous media.56,62,63 The models consider both saturated and unsaturated flow, coupled to the deformation 

of the solid phase through the linear momentum balance equation. For the crack flow, both flow in fully open 

cracks and flow in partially open cracks were considered. For the former, the flow was governed by Stokes 

equations, whilst for the latter, the crack was treated as a porous medium, but with a much higher 

permeability than the surrounding continuum. The crack flow was coupled to the matrix flow through a mass 

coupling term, which represents a fluid flux discontinuity across the crack. In de Borst,56 the fluid pressure 

distribution across a crack is discussed in detail and a set of interface element formulations are presented 

that address the following cases; pressure continuity, pressure discontinuity and an independent pressure in 

the crack. A particular feature of the models is that they are applicable to a range of different discretisations, 

including isogeometric interface elements, which allow for a higher order continuity of the pressure and 

displacement fields. The performance of the model was demonstrated through a range of example 

calculations. 

An aspect of capillary flow behaviour that was not taken into account in many of the aforementioned models 

was the variation with velocity of the angle of contact between a fluid meniscus and the substrate. This 

dynamic contact angle (DCA) variation can have a significant effect on the flow in a crack,64 particularly when 

a vascular SH system employs a pressurised flow network for healing agent delivery. Another aspect of 

behaviour that has not been addressed in previous SH transport models is the effect of curing on the flow 



properties of fluid healing agents. Both of these issues are considered explicitly in the present model 

formulation. 

The aim of the work described in this paper is to develop a comprehensive coupled model to simulate the 

transport processes in cementitious SH systems with embedded healing agents. The work focused on SH 

systems that use single-component adhesives as a healing agent, but could readily be extended to multi-

component agents, through the addition of a second phase. 

The innovations of this work are; 

(i) a new model for flow in discrete cracks that considers fluid inertia, the dynamic variation in the 

meniscus contact angle, healing agent curing and rheology changes, tapering cracks and the coupled 

unsaturated flow in the surrounding matrix;  

(ii) a new approach for simulating the kinetic curing of a single-agent adhesive, based on new 

experimental observations; 

(iii) calibration of the model components using experimental data from others, as well as new data 

obtained by the authors’ group in Cardiff;  

(iv) validation of the model using new experimental data.  

The layout of the remainder of this paper is as follows; 

 Section 2 presents the theoretical formulation of the model; 

 Section 3 presents the numerical solution; 

 Section 4 presents the dynamic contact angle theory and calibration; 

 Section 5 presents the healing agent curing model, the rheological model, a wall-slip model and 

calibrations; 

 Section 6 presents a series of validation examples concerning the flow of cyanoacrylate (CA) 

through concrete specimens; 

 Section 7 presents the discussion. 

 Section 8 presents some conclusions. 

2 Theoretical Formulation 
The problem domain is defined as 𝛺 ∈ ℝ𝑑 with boundary 𝛤. The domain is made up of subdomains 

representing the discrete macro cracks (which may cross the underlying continuum mesh arbitrarily) and the 

continuum concrete matrix, denoted 𝛺𝑐𝑟𝑘 and 𝛺𝑚𝑡𝑥 respectively, such that 𝛺 = 𝛺𝑐𝑟𝑘 ∪ 𝛺𝑚𝑡𝑥 and where 

𝛺𝑐𝑟𝑘  ∈ ℝ
1 and 𝛺𝑚𝑡𝑥 ∈ ℝ

2. The boundaries of the subdomains are similarly defined as 𝛤𝑐𝑟𝑘 and 𝛤𝑚𝑡𝑥, such 

that 𝛤 = 𝛤𝑐𝑟𝑘 ∪ 𝛤𝑚𝑡𝑥. The time period considered is 𝑡 ∈ [𝑡0, 𝑇]. 

Damage-healing behaviour 
The mechanical damage-healing behaviour is the subject of a forthcoming paper by the authors, and so here 

only a brief outline is presented of this component of the work. A cohesive zone model is used for the 

mechanical behaviour of the concrete (See Appendix) which uses elements with embedded strong 

discontinuities (SD).65 Crack path continuity is ensured using an algorithm based on that found in Alfaiate et 

al.66,67 The model allows for simultaneous damage-healing, re-damage of healed material and multiple 

healing cycles. 

Discrete crack flow 
Assuming that the air pressure within the crack remains constant at atmospheric pressure,52 and that the 

viscous stresses in the air are negligible, the governing equations for the discrete crack flow are the 1D 

incompressible single fluid Navier-Stokes equations.68-70 The governing momentum balance equation is given 

as: 

𝜕(𝜌ℎ𝑢)

𝜕𝑡
+ 𝑢

𝜕(𝜌ℎ𝑢)

𝜕𝜒
= −

𝜕𝑃ℎ𝑐𝑟𝑘

𝜕𝜒
+ 𝜌ℎ𝑔𝑠𝑖𝑛𝜙 + 𝑓 − 𝜌ℎ𝑢𝑄𝑐𝑟𝑘     ∀ 𝐱 ∈ 𝛺𝑐𝑟𝑘      (1) 



where 𝑢 is the cross-section averaged healing agent flow velocity,  is a convected coordinate (See Figure 1), 

𝜌ℎ is the healing agent density, 𝜕𝑃ℎ𝑐𝑟𝑘/𝜕𝜒 is the pressure gradient, 𝑔 is the acceleration due to gravity, 𝜙 is 

the inclination of the crack, 𝑓 is a viscous resistance term and 𝑄𝑐𝑟𝑘 is a source/sink term for flow between 

the crack and the matrix, as illustrated in Figure 1.  

 
Figure 1 – Schematic depicting flow in a discrete crack (where dependencies have been dropped for clarity) 

Assuming Poiseuille flow conditions,43-45,69,70 and adding a factor to allow for wall slip,43,44,71 the viscous 

resistance term is given by: 

𝑓 = −(
𝜇

𝑘+0.5𝜇𝑤𝑐𝑟𝑘𝛽𝑤
) 𝑢          (2) 

where 𝜇 is the viscosity, 𝑘 = 𝑤𝑐𝑟𝑘
2 12⁄  is the crack permeability (where 𝑤𝑐𝑟𝑘(𝜒, 𝑡) is the crack width, for 

which the dependencies have been dropped for clarity), 𝛽𝑤 (with units m3/Ns) is a wall slip factor. 43,44,71 

The governing mass balance equation is given by: 

𝜕(𝜌ℎ𝐴)

𝜕𝑡
+
𝜕(𝜌ℎ𝐴𝑢)

𝜕𝜒
+ 𝜌ℎ𝐴𝑄𝑐𝑟𝑘 = 0    ∀ 𝐱 ∈ 𝛺𝑐𝑟𝑘        (3) 

where 𝐴 is the flow channel area (here taken as 𝑤𝑐𝑟𝑘1). 

In the present work, the coupling between flow in the discrete cracks and the concrete matrix is dealt with 

in a similar manner to an embedded discrete fracture model.72-75 The embedded discrete fracture flow model, 

originally proposed by Lee et al.72 (see also Li and Lee)73 employs separate domains for the matrix and the 

crack (which may cross the underlying matrix mesh arbitrarily). The two are coupled through transfer 

functions which describe the mass flux between the two domains. Here, the mass flux between the crack 

faces and the matrix is described as follows:72,76 

𝑄𝑐𝑟𝑘 = −
2

𝜌ℎ
𝑛𝛽𝑐𝑟𝑘(𝑃ℎ − 𝑃ℎ𝑐𝑟𝑘)    ∀ 𝐱 ∈ 𝛤𝑖         (4) 

where 𝛽𝑐𝑟𝑘 (which has units of s/m) is a boundary transfer coefficient, 𝑛 is the porosity of the surrounding 

matrix and 𝑃ℎ and 𝑃ℎ𝑐𝑟𝑘 are the pressures of the healing agent in the matrix and the crack respectively. The 

factor 2 is included to take into account flow through both crack faces (it is noted that in the case of different 

matrix pressures on each side of the crack, 𝑄𝑐𝑟𝑘  would be calculated as the sum of fluxes through each crack 

face). 

The total driving pressure for the crack flow (𝑃) consists of the capillary pressure, a term to account for 

frictional dissipation at the meniscus (𝛽𝑚 with units Ns/m2, applied at the free surface),43,44,77 and an applied 

pressure from the vascular network, as follows: 

𝑃 = 𝑃𝑐(𝜃𝑑)(1 − 𝛽𝑠) − 2
𝛽𝑚

𝑤𝑐𝑟𝑘
𝑢 + 𝑃𝑎𝑝𝑝        (5) 

where 𝛽𝑠 is a factor to allow for pinning of the meniscus.43,44,78 



Equations (1) and (3) form a coupled system to be solved for velocity and pressure. Application of the finite 

element method to this system requires the satisfaction of the inf-sup condition to ensure stability of the 

formulation,79 often achieved by using different orders of interpolation for the velocity and pressure. In the 

present work, however, equal order interpolations are preferred and stability is ensured using a continuous 

interior penalty method following the approach of Burman et al.79 (see also Claus and Kerfriden,80).  

Continuum matrix flow 
Fluid flow in a partially saturated porous medium is governed by the mass balance equations for the liquid, 

liquid vapour and dry air. In this study it is assumed that the combined effect of liquid and vapour transport 

can be captured through a single effective diffusion coefficient. It is also assumed that the medium is dry, 

such that there is no moisture (water) in the capillary pores and that the gas pressure remains constant at 

atmospheric pressure, following the approach of Chitez and Jefferson.42 The mass balance equation 

governing continuum matrix flow of the healing agent is given by:42,81,82 

𝜕(𝜌ℎ̅̅ ̅̅ )

𝜕𝑡
+ 𝛁 ∙ 𝐉h + 𝑄𝑚𝑡𝑥 = 0    ∀ 𝐱 ∈ 𝛺𝑚𝑡𝑥         (6) 

where 𝜌ℎ̅̅ ̅ = 𝜌ℎ𝑛𝑆ℎ is the phase averaged density (𝑆ℎ is the degree of saturation), 𝑄𝑚𝑡𝑥 is a source/sink term 

and 𝐉h is the healing agent flux given as: 

𝐉h = −𝜌ℎ𝐾𝑒𝑓𝑓(𝑆ℎ)(𝛁𝑃ℎ − 𝜌ℎ𝐠)         (7) 

where 𝑃ℎ = 𝑃𝑔 − 𝑃𝑐 is the healing agent pressure (𝑃𝑔 is the gas pressure) and 𝐾𝑒𝑓𝑓 is an effective diffusion 

coefficient based on Darcy’s law:42,81,82 

𝐾𝑒𝑓𝑓(𝑆ℎ) =
𝐾𝑖𝑛𝑡𝐾ℎ𝑟𝑒𝑙(𝑆ℎ)

𝜇
          (8) 

where 𝐾𝑖𝑛𝑡 is the intrinsic permeability of the medium and 𝐾ℎ𝑟𝑒𝑙 is the relative permeability which depends 

on the degree of saturation according to the well-known van Genuchten-Mualem relationship:42,83-85 

𝐾ℎ𝑟𝑒𝑙(𝑆ℎ) = 𝑆ℎ
𝜅 [1 − (1 − 𝑆ℎ

1

𝑚)

𝑚

]

2

        (9) 

where 𝜅 is the pore interaction factor which accounts for the connectivity and tortuosity of the pores. 

𝑆ℎ is related to the capillary pressure by van Genuchten’s moisture retention function,84 as follows: 

𝑃𝑐(𝑆ℎ) = 𝑎(𝑆ℎ
−1/𝑚

− 1)
1−𝑚

         (10) 

where 𝑎 and 𝑚 are constants that depend on the medium. 

The source/sink term in equation (6) is associated with the embedded discrete cracks and is given as 

follows:76 

𝑄𝑚𝑡𝑥 = 𝐉Γ ∙ 𝐧Γ = 2𝑛𝛽𝑐𝑟𝑘(𝑃ℎ − 𝑃ℎ𝑐𝑟𝑘)    ∀ 𝐱 ∈ 𝛤𝑖        (11) 

where 𝛤𝑖  represents the internal boundary. 

3 Numerical Solution 

Boundary conditions 
In order to solve the system of equations (1, 3 & 6), initial and boundary conditions are required. The initial 

conditions give the values of the variables at time 𝑡 = 𝑡0 and are given by: 

𝑢 = 𝑢0, 𝑃ℎ𝑐𝑟𝑘 = 𝑃ℎ𝑐𝑟𝑘
0     ∀ 𝐱 ∈ 𝛺𝑐𝑟𝑘          (12) 

𝑃ℎ = 𝑃ℎ
0                             ∀ 𝐱 ∈ 𝛺𝑚𝑡𝑥         (13) 



The boundary conditions are of the Cauchy and Dirichlet type. The Cauchy type describe the rate of mass 

transfer from the environment to the sample and are given by: 

𝐉q ∙ 𝐧 − 𝑞ℎ − 𝛽𝑐(𝑃ℎ − 𝑃ℎ𝑒𝑛𝑣) = 0    ∀ 𝐱 ∈  𝛤𝑚𝑡𝑥,𝑐        (14) 

where 𝑞ℎ is the healing agent flux, 𝐧 is the unit normal vector to the boundary and 𝛤𝑚𝑡𝑥,𝑐 ⊆ 𝛤𝑚𝑡𝑥 represents 

the part of 𝛤𝑚𝑡𝑥 to which Cauchy boundary conditions are applied.  

The Dirichlet boundary conditions are given by: 

𝑢(𝑡) = 𝑢Γ, 𝑃ℎ𝑐𝑟𝑘(𝑡) = 𝑃ℎ𝑐𝑟𝑘
Γ     ∀ 𝐱 ∈  𝛤𝑐𝑟𝑘,𝑑         (15) 

𝑃ℎ(𝑡) = 𝑃ℎ
Γ    ∀ 𝐱 ∈  𝛤𝑚𝑡𝑥,𝑑          (16) 

where 𝛤𝑐𝑟𝑘,𝑑 ⊆ 𝛤𝑐𝑟𝑘 represents the part of 𝛤𝑐𝑟𝑘 to which Dirichlet boundary conditions are applied and 

𝛤𝑚𝑡𝑥,𝑑 ⊆ 𝛤𝑚𝑡𝑥 is defined similarly. 

At the free surface of the fluid in the crack, the jump in fluid stress across the interface is balanced by the 

capillary pressure: 

[[𝐧𝑓 ∙ 𝐓 ∙ 𝐧𝑓]] = 𝑃𝑐     ∀ 𝐱 ∈  𝛤𝑐𝑟𝑘,𝑓         (17) 

where [[∙]] is the jump operator, 𝐧𝑓 denotes the unit normal to the free surface, 𝛤𝑐𝑟𝑘,𝑓 ⊆ 𝛤𝑐𝑟𝑘 denotes the 

part of 𝛤𝑐𝑟𝑘 which is a free surface and 𝐓 is the stress tensor which is given by (where 𝐯 is the fluid velocity 

vector): 

𝐓 = 𝜇(𝛁𝐯 + (𝛁𝐯)T) − 𝑃ℎ𝑐𝑟𝑘𝐈         (18) 

where 𝐈 denotes the identity matrix. For Poisueille flow, the term in the jump operator in equation (17) is 

given by: 

𝐧𝑓 ∙ 𝐓 ∙ 𝐧𝑓 = 2𝜇
𝜕𝑣𝜒

𝜕𝜒
− 𝑃ℎ𝑐𝑟𝑘          (19) 

where 𝑣𝜒 denotes the fluid velocity in the direction of the convected coordinate.  

taking the average over the interface length and inserting into (17) leads to: 

[[2𝜇
𝜕𝑢

𝜕𝜒
− 𝑃ℎ𝑐𝑟𝑘]] = 𝑃𝑐           (20) 

In the present work, the first term on the left-hand-side of equation (20) was found to be negligible in 

comparison with the second and was therefore not included.  

Finite element formulation and solution method 
The governing equations for crack and matrix flow describe a nonlinear system to be solved that are coupled 

through the sink/source term. The primary variables are the flow velocity in the crack and the healing agent 

pressure in the crack and in the matrix. Introducing the space for the trial functions as 𝑈 =

{�̂� ∈ 𝐻1(Ω)|�̂�(𝐱) = 𝚽Γ ∀𝐱 ∈ 𝛤𝑑}, and employing the Gauss-Green divergence theorem, the weak form of 

the governing equations becomes: 

find 𝚽 ∈ 𝑈, such that: 

∫ 𝐖𝐓
(
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝜒
+

1

𝜌ℎ
𝑓 +

1

𝜌ℎ

𝜕𝑃ℎ𝑐𝑟𝑘
𝜕𝜒

− g𝑠𝑖𝑛𝜙)
Ω𝑐𝑟𝑘

𝑑Ω𝑐𝑟𝑘 + ∫ 𝐖𝐓(𝑢𝑄𝑐𝑟𝑘)Γ𝑖
𝑑Γ𝑖 + ∫ 𝐖𝐓

(𝑃ℎ𝑐𝑟𝑘 +𝑃𝑐 − 2
𝛽𝑚
𝑤𝑐𝑟𝑘

𝑢)
Γ𝑐𝑟𝑘,𝑓
𝑒 𝑑Γ𝑐𝑟𝑘,𝑓

𝑒
= 0

            (21) 

∫ 𝐖𝐓 (
𝜕𝐴

𝜕𝑡
+
𝜕(𝐴𝑢)

𝜕𝜒
)

Ω𝑐𝑟𝑘
𝑑Ω𝑐𝑟𝑘 + ∫ 𝐖𝐓(𝐴𝑄𝑐𝑟𝑘)Γ𝑖

𝑑Γ𝑖 = 0      (22) 



∫ 𝐖𝐓
(
𝜕𝜌ℎ̅̅̅̅

𝜕𝑡
)

Ω𝑐𝑟𝑘
𝑑Ω𝑐𝑟𝑘 + ∫ 𝛁𝐖𝐓

(𝜌ℎ
𝐾𝑖𝑛𝑡𝐾ℎ𝑟𝑒𝑙

𝜇
𝛁𝑃ℎ − 𝜌ℎ

𝐾𝑖𝑛𝑡𝐾ℎ𝑟𝑒𝑙
𝜇

𝜌ℎ𝐠)Ω𝑐𝑟𝑘
𝑑Ω𝑐𝑟𝑘 + ∫ 𝐖𝐓

(𝑞ℎ + 𝛽𝑐(𝑃ℎ −𝑃ℎ𝑒𝑛𝑣))Γ𝑚𝑡𝑥,𝑐
𝑑Γ𝑚𝑡𝑥,𝑐 +

∫ 𝐖𝐓(𝑄𝑚𝑡𝑥)Γ𝑖
𝑑Γ𝑖 = 0          (23) 

where 𝚽 is the vector of unknowns and 𝐖 is the vector of weight functions. 

In the present work, the Galerkin weighted residual method is employed for the spatial discretisation. The 

resulting system of equations is as follows: 

[
𝐂11 0 0
0 0 0
0 0 𝐂33

] [

�̇̅�

𝐏hcrk̅̅ ̅̅ ̅̅ ̅̇

𝐏h̅̅ ̅̇

] + [

𝐊11 𝐊12 0
𝐊21 𝐊22 0
0 0 𝐊33

] [

�̅�
𝐏hcrk̅̅ ̅̅ ̅̅ ̅

𝐏h̅̅ ̅
] = [

𝐅1
𝐅2
𝐅3

]      (24) 

where the superior dot denotes the time derivative and the primary variables are interpolated from the 

nodal values by: 

𝑢 = 𝛇�̅�,      𝑃ℎ𝑐𝑟𝑘 = 𝛇𝐏hcrk̅̅ ̅̅ ̅̅ ̅,      𝑃ℎ = 𝛓𝐏h̅̅ ̅                      (25) 

where 𝛇 and 𝛓 are vectors of shape functions for the domains Ω𝑐𝑟𝑘 and Ω𝑚𝑡𝑥 respectively. 

The global matrices are given by: 

𝐂11 = ∑ ∫ 𝛇𝐓𝛇
Ω𝑐𝑟𝑘
𝑒 𝑑Ω𝑐𝑟𝑘

𝑒𝑛𝑒𝑐
𝑒=1          (26) 

𝐂33 = ∑ ∫ 𝛓𝐓 (
𝜕𝜌ℎ̅̅ ̅̅

𝜕𝑃ℎ
) 𝛓

Ω𝑚𝑡𝑥
𝑒 𝑑Ω𝑚𝑡𝑥

𝑒𝑛𝑒𝑚
𝑒=1         (27) 

𝐊11 = ∑ (∫ 𝛇𝐓(𝑢)𝛁𝛇
Ω𝑐𝑟𝑘
𝑒 𝑑Ω𝑐𝑟𝑘

𝑒 + ∫ 𝛇𝐓 (
1

𝜌ℎ

𝜇

𝑘+0.5𝜇𝑤𝑐𝑟𝑘𝛽𝑤
) 𝛇

Ω𝑐𝑟𝑘
𝑒 𝑑Ω𝑐𝑟𝑘

𝑒 )𝑛𝑒𝑐
𝑒=1     (28) 

𝐊12 = ∑ (∫ 𝛇𝐓 (
1

𝜌ℎ
)𝛁𝛇

Ω𝑐𝑟𝑘
𝑒 𝑑Ω𝑐𝑟𝑘

𝑒 + ∫ 𝛇𝐓𝛇
Γ𝑐𝑟𝑘,𝑓
𝑒 𝑑Γ𝑐𝑟𝑘,𝑓

𝑒 )𝑛𝑒𝑐
𝑒=1       (29) 

𝐊21 = ∑ ∫ 𝛇𝐓𝛁𝛇
Ω𝑐𝑟𝑘
𝑒 𝑑Ω𝑐𝑟𝑘

𝑒𝑛𝑒𝑐
𝑒=1 ∙ 𝐴𝐈         (30) 

𝐊22 = 𝑗𝑝 ∑ (
ℎ3

𝜇
(∫ [[𝛁𝛇T]]

𝐸
𝛁𝛇𝐾+𝑑𝐸

𝑒𝑑
𝐸𝑒𝑑

− ∫ [[𝛁𝛇T]]
𝐸
𝛁𝛇𝐾−𝑑𝐸

𝑒𝑑
𝐸𝑒𝑑

))
𝐸𝐺𝑖
𝑒𝑑=1     (31) 

𝐊33 = ∑ ∫ 𝛁𝛓𝐓 (𝜌ℎ
𝐾𝑖𝑛𝑡𝐾ℎ𝑟𝑒𝑙

𝜇
)𝛁𝛓

Ω𝑚𝑡𝑥
𝑒 𝑑Ω𝑚𝑡𝑥

𝑒𝑛𝑒𝑚
𝑒=1        (32) 

𝐅1 = ∑

(

 
∫ 𝛇𝐓(𝑔𝑠𝑖𝑛𝜙)
Ω𝑐𝑟𝑘
𝑒 𝑑Ω𝑐𝑟𝑘

𝑒 + ∫ 𝛇𝐓 (𝑢
2

𝜌ℎ
(𝛽𝑐𝑟𝑘𝑛(𝑃ℎ − 𝑃ℎ𝑐𝑟𝑘)))Γ𝑖

𝑒 𝑑Γ𝑖
𝑒 +

∫ 𝛇𝐓 (−𝑃𝑐 + 2
𝛽𝑚

𝑤𝑐𝑟𝑘
𝑢)

Γ𝑐𝑟𝑘,𝑓
𝑒 𝑑Γ𝑐𝑟𝑘,𝑓

𝑒

)

 𝑛𝑒𝑐
𝑒=1    (33) 

𝐅2 = ∑ (−∫ 𝛇𝐓 (
𝜕𝐴

𝜕𝑡
)

Ω𝑐𝑟𝑘
𝑒 𝑑Ω𝑐𝑟𝑘

𝑒 + ∫ 𝛇𝐓 (𝐴
2

𝜌ℎ
(𝛽𝑐𝑟𝑘𝑛(𝑃ℎ − 𝑃ℎ𝑐𝑟𝑘)))𝑑Γ𝑖

𝑒 𝑑Γ𝑖
𝑒)𝑛𝑒𝑐

𝑒=1     (34) 

𝐅3 = ∑ (∫ 𝛁𝛓𝐓 (𝜌ℎ
𝐾𝑖𝑛𝑡𝐾ℎ𝑟𝑒𝑙

𝜇
𝜌ℎ𝐠)Ω𝑚𝑡𝑥

𝑒 𝑑Ω𝑚𝑡𝑥
𝑒 − ∫ 𝛓𝐓(𝑞ℎ + 𝛽𝑐𝑛(𝑃ℎ − 𝑃ℎ𝑒𝑛𝑣))Γ𝑚𝑡𝑥,𝑐

𝑒 𝑑Γ𝑚𝑡𝑥,𝑐
𝑒 − ∫ 𝛓𝐓(2𝛽𝑐𝑟𝑘𝑛(𝑃ℎ −Γ𝑖

𝑒
𝑛𝑒𝑚
𝑒=1

𝑃ℎ𝑐𝑟𝑘)) 𝑑Γ𝑖
𝑒)           (35) 

It can be noted that in the above, the particular form of the matrix 𝐊21 was preferred as this form requires 

no partial differentiation of the mass flux, 𝜕(𝑢𝐴) 𝜕𝜒⁄  (which could lead to errors due to the dependence of 

𝑢 on 𝐴). The matrix 𝐊22 arises from the continuous interior penalty employed to stabilise the Navier-Stokes 

equations, which is elaborated in the next section. 

Equation (24) can be written in the following compact form: 

�̌�𝚽 + �̌��̇� = �̌�           (36) 



Applying an implicit Euler backward difference scheme for the time discretisation leads to:81 

�̌�𝚽t+1 +
1

∆𝑡
�̌�(𝚽t+1 −𝚽t) = �̌�         (37) 

Due to the different time scales associated with the matrix and crack flows (the crack flow, in general, occurs 

at a much higher rate than the matrix flow due to the applied pressure and much higher equivalent 

permeability), the equations are solved in a sequential manner, with a sub-stepping procedure being 

employed for the crack flow.  

In the present work, the free surface stress balance condition as well as the interior penalty applied to the 

discrete crack flow equations are dealt with implicitly. The nonlinear convection and source/sink terms found 

in the Navier-Stokes equations, are accounted for using a Picard iteration that computes the new 

approximation from: 

𝚽k+1
t+1 = (∆𝑡�̌� + �̌�)

−1
(∆𝑡�̌� + �̌�𝚽𝑡)    ∀ 𝐱 ∈ 𝛺𝑐𝑟𝑘        (38) 

where the nonlinear terms are linearised as:80 

𝑢𝑘+1
𝜕(𝑢𝑘+1)

𝜕𝜒
≈ 𝑢𝑘

𝜕(𝑢𝑘+1)

𝜕𝜒
, 𝑢𝑘+1𝑄𝑐𝑟𝑘(𝑃ℎ𝑐𝑟𝑘

𝑘+1 ) ≈ 𝑢𝑘𝑄𝑐𝑟𝑘(𝑃ℎ𝑐𝑟𝑘
𝑘 )     (39) 

where 𝑘 denotes the iteration number.  

The nonlinearity of the continuum matrix flow is dealt with using a standard Newton-Raphson procedure,81 

which gives the following iterative update of the solution, as follows: 

𝛿𝚽k+1
t+1 = [

𝜕𝛏

𝜕𝚽k
t+1]

−1

(−𝛏)    ∀ 𝐱 ∈ 𝛺𝑚𝑡𝑥         (40) 

where 𝛏 is the approximation error given by: 

𝛏 = ∆𝑡�̌�𝚽t+1 + �̌�(𝚽t+1 −𝚽t) − 𝛥𝑡�̌�    ∀ 𝐱 ∈ 𝛺𝑚𝑡𝑥        (41) 

The iterative updates are terminated once the norm of the error meets a defined tolerance. 

Stabilisation 
The stabilisation term, 𝑗, for the Navier-Stokes equations is given as a penalty on the jump in pressure 

gradient over element edges:80 

𝑗(𝐏ℎ𝑐𝑟𝑘) = 𝑗𝑝 ∑
ℎ3

𝜇
∫ [[𝛁𝐏ℎ𝑐𝑟𝑘]]𝐸[

[𝛁𝛇]]
𝐸
𝑑𝐸𝑒𝑑

𝐸𝑒𝑑
𝐸𝐺𝑖
𝑒𝑑=1        (42) 

where 𝑗𝑝 is the stabilisation parameter, ℎ is the local mesh size, 𝐸 denotes an element edge and 𝐸𝐺𝑖 denotes 

the global set of interior element edges. [[𝛁𝑥]]
𝐸

 denotes the jump of 𝛁𝑥 across an edge shared by two 

elements, 𝐾+ and 𝐾−  defined as [[𝛁𝑥]]
𝐸
= 𝛁𝑥𝐾+𝐧𝐸 − 𝛁𝑥𝐾−𝐧𝐸, where 𝐧𝐸 denotes the unit normal to the 

edge 𝐸.  

The jump in pressure across an element edge is given by: 

[[𝛁𝐏ℎ𝑐𝑟𝑘]]𝐸 = 𝛁𝛇𝐾+𝐏ℎ𝑐𝑟𝑘,𝐾+𝐧𝐸 − 𝛁𝛇𝐾−𝐏ℎ𝑐𝑟𝑘,𝐾−𝐧𝐸        (43) 

where 𝛁𝛇𝑖 and 𝐏ℎ𝑐𝑟𝑘,𝑖  represent the vector of shape function derivatives and the vector of nodal pressures 

for element 𝑖 respectively. For further details of this scheme, the interested reader is referred to Burman et 

al.79 

Due to the highly nonlinear dependence of the permeability on the degree of saturation (which in turn 

depends on liquid pressure), equation (6) is subject to numerical oscillations, particularly for sharp wetting 

fronts into a dry medium. This issue was addressed in detail for 1D elements by Pan et al.,86 who examined 

the difference between the neighbouring node response function (NNRF) for mass-distributed and mass-



lumped matrices (noting that oscillations are not found for linear elements when mass-lumped matrices are 

used). The issue with using mass-lumped matrices is that the numerical predictions become over-diffusive 

since an increase in moisture content at the drier node is always predicted independently of the position of 

the moisture front. To address this, Pan et al.86 proposed new shape functions for the storage matrices that 

were a function of a factor (). This factor was derived from the NNRF and ensures that the response at the 

drier node is either positive or zero (mass-lumped schemes always predict a positive response, whilst mass-

distributed sometimes predict a negative response).  

In the present work, a different approach is employed, in which the storage matrix is computed as an 

interpolation between the mass-distributed and mass-lumped matrices. This is similar to the approach of 

Mirbagheri et al.87 who applied a higher order mass matrix to a discontinuous wave propagation problem to 

dampen spurious oscillations (see also Wu and Qiu,88 and Wang et al.89). This leads to: 

𝐂 = 𝛼𝐂L + (1 − 𝛼)𝐂D          (44) 

where 𝐂 denotes the storage matrix for continuum matrix flow, the L and D subscripts refer to mass-lumped 

and mass-distributed matrices respectively and the weighting factor 𝛼 is calculated such that the change in 

liquid pressure at a downstream node is greater than or equal to zero (or to the mass sink where appropriate) 

following the approach of Pan et al.86 and is given by: 

𝛼 = 1 −min (1,
|∑ 𝐊33𝑖,𝑗𝐏ℎ𝑗
𝑛𝑑
𝑗=1 |

|∑ 𝐂33𝑖,𝑗

∆𝐏ℎ𝑗

∆𝒕
𝑛𝑑
𝑗=1 |

)         (45) 

where the subscript 𝑖 denotes the driest node.  

This method prevents the occurrence of any spurious oscillations whilst reducing smearing of the wetting 

front.  

Interface tracking 
For the crack flow, the spatial discretisation within the crack needs to account for the transient movement 

of the free-surface of the fluid. Two approaches were considered for this, namely, the fixed mesh approach 

and the adaptive mesh approach.90 The former defines a mesh that does not move with or adapt to the fluid 

surface, in which case, it is necessary to track the movement of the surface within the mesh using, for 

example, a level set method.91 In the latter approach, the fluid surface lies on element boundaries. Thus, it is 

necessary to update the mesh adjacent to the fluid surface whenever it moves. However, a true fixed mesh 

approach is not applicable to problems with evolving cracks and because adapting the mesh adjacent to the 

surface is straightforward in a 1D situation the moving mesh approach, illustrated in Figure 2, was employed 

in this work. The essential steps of the algorithm are as follows: 

1. The mechanics problem is solved, which gives the position and widths of the macro-cracks. These 

macro-cracks act as potential flow paths for the healing agent. 

2. The Navier-Stokes equations (eqns. 1 & 3) are solved for the velocities, 𝑢, and pressures, 𝑃ℎ𝑐𝑟𝑘. 

3. The movement of the interface over a time step is calculated:52,91  
𝜆𝑡+∆𝑡 = 𝜆𝑡 + Δ𝑡𝑢𝜆 

    where 𝜆 denotes the total accumulated length of flow within the crack. 

4. If the interface crosses an element boundary (from the continuum element edge), a node is placed at 

this position. 

The algorithm is illustrated in Figure 2, in which the quadrilateral elements indicate the underlying matrix 

mesh, the black circles (crack nodes) connected by the dashed lines indicate the crack flow mesh. 



    
Figure 2 – Interface tracking and re-meshing over a time step 

Algorithm 
The algorithm for the model is given in Box 1. In the present work, it is assumed that the flow is initiated once 

a critical crack width is reached at the location of the capillary channels. 

The mechanical and transport aspects of the model are solved sequentially, which is justified by the fact that 

the transport has no effect on the mechanical model, since the applied pressures are negligible with respect 

to the mechanical strength of the material.  

  



Box 1 – Staggered solution algorithm 

𝑡 = 𝑡0; 𝐅𝒍𝒐𝒂𝒅 = 𝟎  

for itm=1 to ntm 

  𝑡𝑝 = 𝑡 

  𝑡 = 𝑡 + ∆𝑡 

  𝐅𝒍𝒐𝒂𝒅 = 𝐅𝒍𝒐𝒂𝒅 + ∆𝐅𝒍𝒐𝒂𝒅 

  𝑤𝑐𝑟𝑘 = 𝑤𝑐𝑟𝑘𝑝 

  if 𝑤𝑐𝑟𝑘 > 𝑤𝑐𝑟𝑖𝑡  

! Crack flow calculations 

    for is=1 to ns 

    𝑡𝑠 = 𝑡𝑝 + (𝑖𝑠 𝑛𝑠𝑢𝑏⁄ )∆𝑡 

      𝜃𝑑      

      for ict=1 to nct 

        𝑄𝑐𝑟𝑘 , 𝑄𝑚𝑡𝑥     

        𝛚k+1
t+1 = (∆𝑡�̌� + �̌�)

−1
(∆𝑡�̌� + �̌�𝛚𝑡) 

        if |∆𝛚|/𝜔𝑟𝑒𝑓 < 𝑡𝑜𝑙𝜔  exit 

      endfor ict 

      𝜆𝑡+1 = 𝜆𝑡 + Δ𝑡𝑢𝜆 

     call meshupdate 

    endfor is 

! end crack flow calculations 

  for it=1 to nt 

! Mechanical calculations 

    𝛿𝐝k+1
t+1 = [

𝜕𝛏d

𝜕𝐝k
t+1]

−1

(−𝛏d) 

    𝐝 = 𝐝 + 𝛿𝐝 

! end mechanical calculations 

! Matrix flow calculations 

    𝛿𝐏h,k+1
t+1 = [

𝜕𝛏P

𝜕𝐏h,k
t+1]

−1

(−𝛏P) 

    𝐏h = 𝐏h + 𝛿𝐏h 

! end matrix flow calculations 

    if |𝛿𝐝|/𝑑𝑟𝑒𝑓 < 𝑡𝑜𝑙𝑑  ⋀|𝛿𝐏h|/𝑃ℎ,𝑟𝑒𝑓 < 𝑡𝑜𝑙𝑃 exit 

  endfor it 

endfor itm 
 

in which; 

𝑤𝑐𝑟𝑖𝑡 is a critical crack width after which crack flow is 

initiated 

𝐅𝒍𝒐𝒂𝒅 is the mechanical load vector 

𝛚 is the vector of velocities and pressures for the crack flow 

𝜔𝑟𝑒𝑓 , 𝑑𝑟𝑒𝑓 𝑎𝑛𝑑 𝑃ℎ,𝑟𝑒𝑓 are reference vectors for normalising 

𝛚, 𝐝 and 𝐏h respectively 

ntm, ns, and nt are the number of time steps,                              

sub steps and limiting number of iterations for the matrix 

flow respectively 

𝑡𝑜𝑙𝜔, 𝑡𝑜𝑙𝑑 and 𝑡𝑜𝑙𝑝 are the tolerances for 𝛚, 𝐝 and 𝐏h 

respectively 

Initialise all cumulative variables 

Loop time steps 

Set previous time 

Increment the time variable 

Increment loads 

Extract crack widths for crack flow computations 

Check for crack flow 

 

Loop sub steps for crack flow 

Sub time increment 

Calculate DCA (eqn.  47) 

Enter crack flow iteration loop 

Calculate source/sink term (eqns. 4 & 11) 

Solve for crack flow variables 

Check convergence 

 

Advect front position 

Update 1D crack flow mesh 

 

 

Enter iteration loop 
 
 
Solve for increment of displacements 
 

Update displacements 
    
 

 
Solve for increment of healing agent pressure 
 

Update healing agent pressure 

 
Check convergence 

 

 



Effect of inertia 
The inertial terms in equation (1) (i.e. 𝜕(𝜌𝑢)/𝜕𝑡 and 𝑢𝜕(𝜌𝑢)/𝜕𝜒) are neglected in many numerical models 

due to their minimal influence on the overall flow behaviour. Whilst this is justified in many cases, in the 

present application, in which the healing agent can be pressurised to drive it into the cracks and the crack 

widths can become relatively wide (reducing viscous resistance), these terms can become non-negligible. To 

demonstrate this, a hypothetical test case is considered that concerns the rise of CA in a vertical crack. The 

test conditions were chosen to represent a large-scale concrete structure in which cracks can become 

relatively wide (>0.5mm) and long (>1m). For this illustrative example, a non-uniform crack was chosen, with 

a width of 1 mm at the healing-agent source, a taper of 0.0001 mm/mm and a source pressure of 1.0 bar. 

The comparison between numerical predictions with and without the inertial terms is given in Figure 3. The 

parameters used in the simulation can be seen in Table 1.  

 
Figure 3 – Comparison of predicted capillary rise height with and without inertial terms 

Table 1 – CA properties 

 Parameter Value 

 𝛾 (N/m) 0.033 

 𝜌ℎ   (kg/m3) 1060 

 𝜇 (Ns/m2) 0.004 

 s (rad) 0.175 

It may be seen from the figure that the inertial terms have a significant effect on the predicted response in 

this case and thus should not always be neglected. 

4 Dynamic Contact Angle  
The driving force for the healing agent flow within a discrete crack is made up of any applied pressure and 

the meniscus force. The meniscus force is a function of the surface tension and the curvature of the liquid-

air interface. The equivalent capillary pressure is equal to the difference in pressure between two fluids 

(healing agent and air in the present case) and is given by the Young-Laplace equation:92 

𝑃𝑐 =
2𝛾co s(𝜃𝑑−𝜎)

𝑤𝑐𝑟𝑘
           (46) 

where 𝛾 is the surface tension of the healing agent, 𝜎 is the inclination of the capillary wall (measured relative 

to the crack inclination) and 𝜃𝑑 is the dynamic contact angle (DCA).  

The contact angle varies significantly with velocity and this variation can have a marked effect on the fluid 

behaviour.64,93  In fact, if the velocity is sufficiently large to cause the dynamic contact angle to exceed 90o, 

which is possible in the present healing system, the meniscus force resists, rather than drives, flow.  

A number of models have been proposed for the dependence of the contact angle on the capillary number 

(where the capillary number is given by: 𝐶𝑎 = 𝜇𝑢/ 𝛾), including models based on molecular kinetics,94 

hydrodynamic theory,95 empirical observations or combinations of these approaches.96 Here, three 

particularly convenient models are selected for comparison, namely the models due to Jiang et al.,97 Bracke 

et al.,98 and Cox.95 The governing relationships for these three models are as follows: 



Jiang et al.:97 

𝑡𝑎𝑛ℎ(𝑐1𝐶𝑎
𝑐2) =

𝑐𝑜𝑠(𝜃𝑠)−𝑐𝑜𝑠(𝜃𝑑)

𝑐𝑜𝑠(𝜃𝑠)+1
         (47) 

Bracke et al.:98 

𝑐1𝐶𝑎
𝑐2 =

𝑐𝑜𝑠(𝜃𝑠)−𝑐𝑜𝑠(𝜃𝑑)

𝑐𝑜𝑠(𝜃𝑠)+1
          (48) 

Simplified Cox:95 

𝜃𝑑
𝑐2 − 𝜃𝑠

𝑐2 = 𝑐1𝐶𝑎          (49) 

where 𝜃𝑠 is the static contact angle and 𝑐1 and 𝑐2 are constants.  

In order to assess the applicability of the above DCA relationships to the dynamic flow of CA, Selvarajoo et 

al.,99 carried out a series of experiments at Cardiff University on the flow of healing agent through glass tubes 

under different pressures. In these tests, flexible tubes were placed at either side of a capillary tube with one 

end connected to an air-line (to apply pressure), and the other (open) end directing the CA into a plastic 

container filled with sand. LED lights were placed at either side of the set up to illuminate the tube. The flow 

was recorded using a high-speed camera and the contact angles were measured at different flow rates using 

the software Image-J. The test set up is illustrated in Figure 4. 

 
Figure 4 – Schematic of the DCA test set up of Selvarajoo et al.99 

A comparison between predictions with the above three expressions and the experimental data is given in 

Figure 5. The values for the DCA constants for each formula are given in Table 2 and the CA properties used 

for the simulations were those given in Table 1. The applied pressure range considered was from 0.0 to 2.0 

bar. 

Table 2 – Calibrated parameters for DCA models 

Model c1 c2 

Jiang et al. 1979 1.325 0.35 

Bracke et al. 1989 0.8621 0.1947 

Simplified Cox, 1986 722.9 7.654 

 



 
Figure 5 – Calibration of DCA models against experimental data 

It can be seen from the figure that all three models provide a good fit to the experimental data. Here, the 

model of Jiang et al.97 is chosen since the function is asymptotic to 𝜋 (with increasing 𝑢), which is the 

maximum physically meaningful contact angle. It can be noted that the above data related to CA on a glass 

substrate, whereas in the examples considered, the substrate is concrete. The contact angle is a measure of 

the wettability, which depends on the physiochemical properties of the fluid and substrate. To account for 

the difference in substrate, the static contact angle was adjusted using values reported in Gardner et al.45 for 

CA on concrete.99 The effect of this adjustment on the dynamic contact angle can be seen in Figure 5. In the 

present work, the constants, 𝑐1 and 𝑐2, in the DCA expressions are assumed to be independent of the 

substrate. It can be noted that the effect of differences in the substrate on the frictional dissipation and wall 

slip are taken into account in the model through the factors 𝛽𝑚 and 𝛽𝑤 respectively.43,44 This issue is discussed 

further in Selvarajoo et al.99 

To demonstrate the difference between a simulation that uses a DCA with one that employs a static contact 

angle, a hypothetical test case concerning the rise of CA in a vertical crack is considered. In this case the crack 

width was chosen as 0.1 mm and no external pressure was applied. The comparison of the numerical 

predictions with and without the DCA can be seen in Figure 6. The parameters used in the simulation are 

given in Table 1. 

 
Figure 6 – Comparison of predicted capillary rise height with and without DCA 

It can be seen from the figure that neglecting the DCA leads to a significant difference in the predicted rise 

heights. 

5 Healing Agent Curing 

Degree of cure 
The curing of a significant class of adhesives is by a polymerisation reaction that is initiated by adsorbed 

moisture.100 The curing is therefore dependent on moisture transport (or diffusion) within the adhesive body. 

For isocyanates and silicones, this diffusion process was found to exhibit a sharp propagating front that could 

be simulated accurately by Fick’s diffusion law. Solving this diffusion equation with the appropriate boundary 



conditions led to the following equation for the position of the diffusion front,100 which may also be described 

in terms of the depth of cured material (𝑧): 

𝑧 = (2𝑉𝐾𝑝𝑃𝑣𝑡)
1

2           (50) 

in which 𝑉 is the volume of equivalent adhesive that reacts with 1 mole of water, 𝐾𝑝 is the permeability of 

cured adhesive, 𝑃𝑣 is the vapour pressure at the boundary and 𝑡 is time. 

The same polymerisation process applies to CA but in this case it has been found that the rate of propagation 

of the curing front gradually slows down as the depth of cured material increases and this zone of cured CA 

can eventually completely prevent hydroxide ions from reaching the central region of a layer of adhesive.101  

This finding resulted from a study on the curing characteristics of CA films of varying thickness on different 

substrates, which employed near Fourier transform infrared spectroscopy (FTIR) to measure the degree of 

cure. The Cambridge polymer group,102 also used the FTIR technique to measure the degree of cure with time 

of CA droplets on glass slide substrates. Typical responses from both of these studies are shown in Figure 7. 

Equation (50) does not well-represent the observed curing behaviour of CA due to the effects of the 

increasingly impermeable layer of cured CA, discussed above. Therefore, an alternative function was sought 

that can describe the progression of a CA curing front over time with reasonable accuracy. The function 

selected is given in equation (51) and its ability to represent the observed experimental behaviour is 

illustrated in Figure 7. It is noted that in the numerical results shown in Figure 7 are based on the assumption 

that the degree of cure (φ) may be calculated from 𝑧(𝑡)/𝑧𝑐0 in the two cases considered. This assumption is 

considered reasonable when a relatively narrow layer (or small droplet) of adhesive cures evenly from a 

smooth substrate. The selected function is expressed as: 

𝑧(𝑡) = 𝑧𝑐0 (1 − 𝑒
−𝑡

𝜏 )          (51) 

where 𝑧𝑐0 is a critical curing depth at which the transport ceases and 𝜏 is a rate parameter (characteristic 

time). 

 
Figure 7 – Comparison of the predictions of the degree of cure with experimental data for a) 0.07mm film of CA on 

dental glass with 𝑧𝑐0 = 0.03192 mm and 𝜏 = 2.079 min,101 and b) a droplet of CA on borosilicate glass with 𝑧𝑐0 =

0.5053 mm and 𝜏 = 1.092 min and assuming a droplet width of 2𝑧𝑐0.102 

The above equation describes the progression of a sharp curing front, which has uncured material on one 

side and fully cured material on the other. However, in many situations the curing (or reaction) front is more 

diffuse,99,103 as was clearly shown  by Li et al.103 in a series of experiments that studied the propagation of a 

polymerisation front of n-butyl CA adhesives mixed with an iodized oil in glass tubes. To determine the degree 

of polymerisation they used a grey-scale measurement of cure and found that the front was not sharp but 

took the form of a sigmoid function. Similarly, Selvarajoo et al.99 found that a CA curing front adjacent to a 

cementitious substrate also becomes increasingly diffuse over time.  



The transport of this type of reaction front can be described by the following advection diffusion equation 

(for equilibrium reactions):104-106 

𝜕𝜑𝑥𝑐

𝜕𝑡
+ 𝑣

𝜕𝜑𝑥𝑐

𝜕𝑥𝑐
− 𝐷

𝜕2𝜑𝑥𝑐

𝜕𝑥𝑐
2 = 0         (52) 

where 𝑥𝑐 is a one-dimensional Cartesian coordinate measured from a defined boundary, 𝜑𝑥𝑐 is the degree 

of cure at a point, 𝑣 is the advective velocity and 𝐷 is the diffusion coefficient.  

The solution of equation (52) (with a boundary condition of 𝜑𝑥𝑐=0 = 1 ), which treats the curing front as a 

moving interface with velocity 𝑣, is as follows:104-106 

𝜑𝑥𝑐(𝑥𝑐 , 𝑡) =
1

2
(1 − 𝑒𝑟𝑓 (

𝑥𝑐−𝑣𝑡

2√𝐷𝑡
))         (53) 

where 𝑣𝑡 gives the position of the interface.  

Here, 𝑣𝑡 is replaced by 𝑧(𝑡), which gives: 

𝜑𝑥𝑐(𝑥𝑐 , 𝑡) =
1

2
(1 − 𝑒𝑟𝑓 (

𝑥𝑐−𝑧(𝑡)

2√𝐷𝑡
))         (54) 

The error function in equation (54) is non-elementary, which can be inconvenient from a numerical point of 

view, and so here a 𝑡𝑎𝑛ℎ function is used as an approximation to the 𝑒𝑟𝑓 function, as illustrated in Figure 

8,107,108 which leads to the following equation for 𝜑𝑥𝑐: 

𝜑𝑥𝑐(𝑥𝑐 , 𝑡) =
1

2
(1 − 𝑡𝑎𝑛ℎ ((

2

√𝜋
) (

𝑥𝑐−𝑧(𝑡)

2√𝐷𝑡
)))        (55) 

 
Figure 8 – Comparison between 𝑒𝑟𝑓(𝑥) and 𝑡𝑎𝑛ℎ((2/√𝜋)𝑥) functions 

The problem with this function is that it predicts that the curing depth will continue to increase with time – 

without limit- due to the 2√𝐷𝑡 term, which is not consistent with the observations of Tomlinson et al.101 or 

with our own observations.99 To avoid this issue, we can instead use a term which is a function of 𝑧 (which in 

turn is a function of time), as follows: 

𝜑𝑥𝑐(𝑥𝑐 , 𝑡) =
1

2

(

 
 
1 − 𝑡𝑎𝑛ℎ((

2

√𝜋
)(

𝑥𝑐−𝑧(𝑡)

√
𝑧(𝑡)

𝐷

))

)

 
 

       (56)  

Finally introducing a wall factor gives: 

𝜑𝑥𝑐(𝑥𝑐 , 𝑡) =
1

2

(

 
 
1 − 𝑡𝑎𝑛ℎ((

2

√𝜋
)(

𝑥𝑐−𝑧(𝑡)−𝑧𝑐

𝑧𝑐+√
𝑧(𝑡)

𝐷

))

)

 
 

       (57) 

where 𝑧𝑐 is the wall factor.  



To demonstrate the ability of the proposed function given in equation (57) to capture the curing profile of a 

CA adhesive, a comparison was made with the data from Li et al.,103 which is given in Figure 9. The profile 

corresponds to the grey level measured at a selected time (𝑡 = 62 min) and assumes that the initial grey 

level (135) corresponds to the uncured material and the final value (90) relates to fully cured material. The 

comparison made here shows that equation (57) provides an adequate description of a typical curing profile. 

The parameters used in the simulation can be seen in Table 3. 

 
Figure 9 – Comparison between the predicted degree of cure profile and the measured data of Li et al.103 at 𝑡 = 62 min, 

where 𝑧𝐿 denotes the distance from the interface and 𝐷𝑒 ≈ 1.06 mm denotes the diameter of the tube  

Table 3 – Curing model parameters 

 Parameter Value 

 zc0 (mm) 2.5 

 𝑧𝑐  (mm) 0.001 

 𝜏 (min) 95 

 𝐷 (mm/ mm2) 0.25 

In order to determine the total degree of cure across the width of a crack, the integral of equation (57) is 

required, as follows: 

φ(𝑥𝑐 , t) =
𝑥𝑐

2
−
1

2
ln(cosh(

2

√π
𝑥𝑐−

2

√π
zc−

2

√π
𝑧(𝑡)

zc+√
𝑧(𝑡)

𝐷

))(
√π

2
√
𝑧(𝑡)

𝐷
+
√π

2
zc) + c     (58) 

where φ is the degree of cure between position xc and 0 at time t.  

The rate of cure of moisture-cure adhesives shows a strong dependence on the width of the adhesive sample. 

Tomlinson et al.101 measured this effect for CA on dental glass and microscope slides. The experiments were 

carried out at a constant relative humidity of 40 % and temperature of 22.5 °C. 

A comparison between selected data from Tomlinson et al’s and predictions with the present curing model 

is given Figure 10, for which the parameters are given in Table 4. It may be noted that the two sets of 

parameters reflect the two boundaries, which are air at an RH of 40 % and the glass substrate.101 It can be 

seen from the figure that the model captures the overall thickness dependency with reasonable accuracy 

although there are some notable differences between the numerical predictions of the curing rates and those 

observed in the experiments. The fact that the results for the thinnest film of CA suggest that the final degree 

of cure is below that for the next thinnest -in contrast to the overall trend- illustrates the variability (and 

difficulty of measuring) the curing process. It should be mentioned that for the case of a concrete crack, the 

boundary conditions are often equal on each side. 



 
Figure 10 – Comparison of predictions of the degree of cure of different thicknesses of CA on a microscope slide with 

experimental data 

Table 4 – Curing model parameters 

 Parameter (air) Value Parameter (glass) Value 

 𝑧𝑐0 (mm) 0.2 𝑧𝑐02 (mm) 0.03 

 𝜏 (s) 2400 𝜏2 (s) 240 

 𝐷 (mm/ mm2) 100 𝐷 (mm/ mm2) 100 

 𝑧𝑐  (mm) 0 𝑧𝑐  (mm) 0 

 

Rheology 
As liquid healing agent cures, its viscosity increases until, at complete curing, it becomes a solid. Three 

approaches were considered to simulate this effect; the first uses a chemorheological model proposed by 

Castro and Macosko,109 (See also, Ivankovic et al.110 and Teyssandier et al.111), which describes the increase 

in viscosity with fractional conversion (or degree of cure), as: 

𝜇 = 𝜇0 (
𝜑𝑔

𝜑𝑔−𝜑
)
𝑛𝑣

          (59) 

where 𝜇0 is the initial viscosity, 𝜑𝑔 is the degree of cure at the gel point (where a rapid increase of viscosity 

is observed)110 and 𝑛𝑣 is an exponent which defines the rate of change of 𝜇 with 𝜑. 

The second approach is based on the assumption that, during curing, the healing-agent can be idealised as a 

suspension of rigid spheres, with the spheres representing cured blocks of material and the liquid being the 

uncured agent.  A mechanism that would justify this model is that, as the healing-agent flows through the 

crack under pressure and undergoes cycles of curing, re-damage and re-curing, particles of cured material 

break off and become suspended in the bulk fluid. In this case, the effective viscosity of a fluid with spherical 

rigid inclusions may be determined using a method proposed by Einstein.112,113 Here, the extended form of 

Chong et al.114 is preferred due to its applicability to a greater range of volume fractions. The relationship is 

given by: 

𝜇 = 𝜇0 (1 +
[𝑛]𝜑𝑚

2
[

𝜑/𝜑𝑚

1−(𝜑/𝜑𝑚)
])
2

         (60) 

where 𝜑 is the volume fraction (degree of cure in this case), 𝜑𝑚 is the volume fraction at which the viscosity 

becomes infinite,115 and [𝑛] is an intrinsic viscosity which is a measure of the effect of individual particles and 

is defined as:115,116 

[𝑛] = lim
𝜑→0

(
𝜇

𝜇0
)−1

𝜑
          (61) 

[𝑛] is 2.5 for rigid spheres but can range from 3-5 for angular particles.116 



The third approach assumes that there is no appreciable transition zone between the fully cured and uncured 

material such that the cured material effectively reduces the width of channel (i.e. the crack opening)  

through which the healing agent can flow. This behaviour may be taken into account through a direct 

reduction of the crack width in the flow equation. An assessment of this third approach is made after the first 

two methods have been considered. 

To calibrate the above viscosity relationships for CA, the experimental results of Gardner et al.45 are 

considered. Gardner et al.45 developed a custom-made viscometer to determine a time-viscosity relationship 

for CA. The viscometer consisted of a rectangular channel in a concrete specimen connected to transparent 

flexible tubes at each end, as illustrated in Figure 11. The flow of the healing agent through the viscometer 

was recorded using a high-speed video camera. The CA properties are given in Table 1. 

Assuming that changes in flow rate can be described by an associated change in viscosity, the viscosities were 

calculated from a least-squares fit of the momentum balance equation to the experimentally measured flow 

rates.43-45 

 
Figure 11 – Schematic of the custom viscometer of Gardner et al.45 

The experimental results are compared with the corresponding model predictions in Figure 12. It can be seen 

from these data that the viscosity varies significantly throughout the course of the experiment. It was also 

observed that, after 2100 seconds, the flow of CA had ceased entirely.45 

 
Figure 12 – Comparison of the viscosity model predictions with experimental data (using data from the unsaturated 

series of tests by Gardner et al.45) 

It may be seen from the Figure that both viscosity models are capable of reproducing the experimental 

behaviour with reasonable accuracy. The parameters used in the simulation are given in Table 5. 

 

 

 



Table 5 – Curing and viscosity model parameters used in simulations 

 Parameter Value Parameter Value 

 𝑧𝑐0 (mm) 1 [𝑛] (-) 2.5 

 𝜏 (s) 2400 𝜑𝑚 (-) 1 

 𝑧𝑐  (mm) 0 𝑛𝑣 (-) 2.193 

 𝐷 (mm/mm2) 6 𝜑𝑔 (-) 1 

To assess the accuracy of the third approach, a computation was undertaken using the assumption that the 

change in flow rate results from a reduction in the crack width rather than a change in viscosity.  

The crack widths were computed using a least-squares fit of the momentum balance equation to Gardner et 

al.’s flow data. A comparison between crack widths computed directly from the experimental data at selected 

time intervals and predicted crack widths using equation (51) -and the sharp curing-front curing assumption 

(denoted Cwr)- is given in Figure 13.  

Under the sharp-front assumption, the crack width and the degree of cure are related as follows; 

𝜑𝑐𝑤𝑟 = 1 −
𝑤𝑐𝑟𝑘

𝑤𝑐𝑟𝑘0
          (62) 

where 𝜑𝑐𝑤𝑟 is the degree of crack width reduction, 𝑤𝑐𝑟𝑘 is the calculated crack width and 𝑤𝑐𝑟𝑘0 is the original 

crack width.  

 
Figure 13 - Comparison of the crack width reduction predictions with experimental data with 𝑧𝑐0 = 0.5 mm and 𝜏 =

900 s  

As can be seen from the figures, the match between the experimental data and numerical predictions is much 

better for the first two approaches than for the equivalent crack width reduction approach. The 

chemorheological model (equation 59) was selected for use in the full numerical model because it provides 

a good fit to the experimental data and accounts for the diffuse nature of the curing front.  

Continuum flow and wall slip behaviour 
The approach used to account for healing-agent curing in the (continuum) concrete matrix is based on the 

same chemorheological model. This predicts that, at a particular degree of cure (namely 𝜑𝑔), the viscosity 

becomes infinite, at which point the healing agent has become a solid. In the matrix flow model component, 

this is taken into account in the effective diffusion coefficient (equation 8), which tends to zero as the viscosity 

tends to infinity.  

In the discrete crack flow sub-model, the change in viscosity due to curing is taken into account through the 

viscous force term 𝑓 (equation 2), which should become infinite as 𝜇 → ∞. However, this is not the case 

when the wall slip factor is included, since in this case 𝑓 tends to the following expression: 

𝑓
𝜇→∞

= −(
𝜇

𝑘+0.5𝜇𝑤𝑐𝑟𝑘𝛽𝑤
) 𝑢

𝜇→∞

= −(
1

0.5𝑤𝑐𝑟𝑘𝛽𝑤
)𝑢       (63) 

The wall slip factor (w) in equation (63) depends on the properties of the crack face, including the roughness 

and the level of interfacial bonding.  In the present case, the value of w should reduce as the degree of 



interfacial bonding increases until, at full-cure, the wall slip should become zero (i.e. no slip occurs). To 

account for this, a relative wall slip factor (𝛽𝑤𝑟) is proposed, which is a function of the local degree of cure 

given by: 

𝛽𝑤𝑟 = 1 − (
𝜑(𝑥𝑐)

𝜑𝑔
)
𝑛𝑣

          (64) 

where 𝑥𝑐 denotes a position near the crack face and 𝑛𝑣 is the exponent taken from the chemorheological 

model.  

Inserting this into the viscous force term results in the following expression that satisfies the limiting no-slip 

condition: 

𝑓
𝜇→∞

= −(
𝜇

𝑘+0.5𝜇𝑤𝑐𝑟𝑘𝛽𝑤𝛽𝑤𝑟
)𝑢

𝜇→∞

= −∞        (65) 

6 Examples 
Having presented the model theory and the implementation algorithm, along with a set of calibrations for 

the various model components, a series of examples are now presented, which were undertaken with the 

purpose of validating the full coupled model. These employ test data from the linked experimental 

programme of work.99,117 The first example considers a test that measured the sorption of CA into a cracked 

concrete specimen; the second concerns the flow of CA within both a discrete natural concrete crack and a 

planar tapering crack, and the third considers a three-point bend test on a cementitious beam with 

embedded channels for delivering CA to cracked regions. 

Table 6 – Parameters used in the simulations 

 Parameter Value  
Example 1 

Value  
Example 2a 

Value  
Example 2b 

Value  
Example 3 

 𝐾𝑖𝑛𝑡  (m
2) 3x10-17 3x10-17 3x10-21 3x10-17 

 𝑛 (-) 0.12 0.12 0.12 0.12 

 𝜌ℎ  (kg/m3) 1060 1060 1060 1060 

 𝜇 (Ns/m2) 0.004 0.004 0.004 0.004 

 𝑎 (N/m2) 1.86x107 1.86x107 1.86x107 1.86x107 

 𝑚 (-) 0.44 0.44 0.44 0.44 

 𝜅 (-) -3.0 -3.0 -3.0 -3.0 

 𝜏𝑚 (s) 28.5 28.5 28.5 28.5 

 𝜑𝑔 (-) 1 1 1 1 

 𝑛𝑣 (-) 2.193 2.193 2.193 2.193 

 𝛽𝑐/𝛽𝑐𝑟𝑘  (s/m) - 5x10-7 5x10-8 5x10-7 

 𝑧𝑐0 (mm) - 0.1 0.1 0.1 

 𝜏 (s) - 150 150 150 

 𝐷 (mm/mm2) - 5 5 5 

 𝑧𝑐  (mm) - 1x10-5 1x10-5 1x10-5 

 𝜃 (rad) - 0.17453 0.17453 0.17453 

 𝛾  (N/m) - 0.033 0.033 0.033 

 𝛽𝑚  (Ns/m2) - 0 0 0 

 𝛽𝑠  (-) - 0 0 0 

 𝛽𝑤  (m3/Ns) - 0.003 0.01 0.003 

 𝑐1  (-) - 1.325 1.325 1.325 

 𝑐2  (-) - 0.35 0.35 0.35 

 𝑤𝑐𝑟𝑖𝑡  (mm) - 0.05 0.05 0.05 

In all cases, the prismatic concrete specimens considered in these examples were cast, demoulded at 24 

hours, cured under water for 5 days, dried in an oven for 1 day at 90 °C and then left in air for 1 day prior to 

testing. 



The parameters used in the model for each of the examples can be seen in Table 6, and additional information 

on the mechanical model parameters is given in the Appendix.  

The mesh(es) used for each example is shown in the relevant sub-section but all of these were chosen after 

mesh convergence studies. Similarly, the time steps used for the transient analyses, which were typically in 

the range 1 to 3s for a full model problem, were selected after time-step convergence checks. The mesh and 

time-step sizes were considered converged when the nodal variables changed by less than 1 %. 

The value of the pore interaction factor (𝜅, in equation 9) was calibrated using experimental data from a set 

of concrete liquid permeability tests by Kameche et al.118 The resulting comparison between the van 

Genuchten-Mualem relationship and Kameche et al.’s experimental results is given in Figure 14. It is noted 

that the negative value used for 𝜅 is consistent with the values given for concrete by Monlouis-Bonnaire et 

al.119 and Poyet et al.120 

 
Figure 14 - Comparison of the permeability model predictions with experimental data 

Example 1: Sorption. 
The first example concerns the sorption of CA into a concrete sample through a crack surface.99 In these 

experiments, the cured prisms (beams) were loaded to failure in three-point bending and then each half of 

the failed beam formed an individual specimen with a size of 127 x 75 x 75 mm. The sorption test involved 

placing the specimen, cracked side down, into a shallow bath of CA and capturing the sorption rise response 

using a high-speed camera. The test set up is illustrated in Figure 15. Two meshes were employed for the 

analysis, as illustrated in Figure 16. 

 
Figure 15 – Schematic of the absorption test set up of Selvarajoo et al.99 



 
Figure 16 – Section of finite element meshes used for analysis a) Mesh1 and b) Mesh2 

The experimental data were extracted from the video files based on the assumption that the mean capillary 

rise within the sample is that seen on the surface of the specimen, as illustrated in Figure 17c. These data are 

shown, along with the model predictions from both meshes, in Figures 17a & b. In may be seen that there is 

considerable scatter in the experimental data, which reflects the degree of variability of the sorption process 

in concrete. The simulations were based on the assumption that the observed rise height corresponded to a 

degree of saturation of 0.6, the value of which was chosen after a number of trial analyses and experimental 

saturation tests. The permeability coefficient was selected to reflect the fact that the concrete matrix 

adjacent to the crack face would have been micro-cracked since this zone was within the fracture process 

zone.121 

 
Figure 17 – Comparison of the rise height predictions a) with experimental data and b) with and without curing; c) rise 

height shown in test photograph  

Notwithstanding the high variability of the experimental data, the comparison shows that the model is able 

to capture the characteristic sorption rise behaviour. A simulation in which healing-agent curing is not 

considered is also shown in Figure 17b. This shows the importance of simulating curing the present transport 

model. 



Example 2: Flow through in a natural crack 
The next example concerns the capillary rise of CA through a discrete natural concrete crack in unsaturated 

specimens.99 The samples were prepared using essentially the same procedure as that described in example 

1 except that the final tests specimens were cut from the centre of the cracked beam to a size of 90 x 75 x 25 

mm and then clamped together with spacers to create crack widths of 0.1, 0.2 and 0.3 mm. The capillary rise 

test involved raising a reservoir of CA to the underside of the sample and then recording the fluid rise 

response with a high-speed camera. The test set up can be seen in Figure 18. The finite element meshes used 

for the analysis are shown in Figure 19.  

 
Figure 18 – Schematic of the natural crack flow test set up of Selvarajoo et al.99 

 
Figure 19 – Finite element meshes used for analysis a) Mesh1 and b) Mesh2 

 
Figure 20 – Comparison of the rise height predictions with experimental data 



The results of the numerical simulation, along with the experimental data, are presented in Figure 20. It can 

be seen from the figure that the experimental data show similar rise height behaviour for all three crack 

widths, with the 0.1 mm and 0.2 mm results being particularly close to one another. This behaviour is 

significantly different from that observed in similar tests on planar (smooth surface) openings,44 in which 

there were substantial differences between the flow response in channels with different openings (see 

below).  The reason for this difference in behaviour between smooth-sided openings and natural cracks is 

believed to relate to the tortuous nature of natural cracks in which the actual flow path may be considerably 

greater than the recorded rise height. Furthermore, in cracks with rough surfaces, the crack opening varies 

considerably from the mean and cured CA may block the narrowest sections of the opening long before all 

flow ceases. Despite the above complexities, the figure shows that the numerical model is able of capturing 

the capillary rise behaviour reasonably well although it is acknowledged that local crack tortuosity effects are 

not explicitly simulated. 

For completeness, the results from a series of simulations that considered the aforementioned tests on 

planar tapered openings are presented here.44 The test set up and finite element meshes used for the 

analyses were the same as in the previous example. 

 
Figure 21– Comparison of the rise height predictions with experimental data 

The results of the numerical simulation along with the experimental data are given in Figure 21. It can be 

seen from the figure that the experimental data in this case shows a greater difference in rise height 

behaviour for each of the crack widths, and that the numerical simulation is able to accurately capture this 

behaviour.  

Example 3: Three-point bend test on a beam with embedded channels  
The final example considers a series of tests on notched concrete beam specimens (255 x 75 x 75 mm) with 

embedded channels that were loaded in three-point bending,117 as illustrated in Figure 22. The channels were 

connected to flexible tubes at either side of the specimen and then filled with CA. One of the ends was then 

clamped, whilst the other was attached to a pressure regulator and an airline. The specimens were then 

tested in three-point bending under different loading rates and under different applied pressures (namely 

1.0, 0.5, 0.3, 0.1 and 0.0 bar). In the present study, the tests corresponding to a loading rate of 0.001 mm/s 

were simulated. 



 
Figure 22 – Schematic of the three-point bending test set up of Selvarajoo et al.117 a) elevation and b) cross-section 

 
Figure 23 – Section of finite element meshes used for analysis a) Mesh1 and b) Mesh2  

A section of the two finite element meshes, used for the analysis can be seen in Figure 23. 

Experimental observations suggest that the minimum size of the opening that the healing agent could flow 

through depended on the applied pressure.117  In the present work, the minimum crack width which the flow 

can enter is dealt with using an empirical function of the applied pressure and is given here as: 

𝑤𝑐𝑚𝑖𝑛 = 𝐴𝑃𝑎𝑝𝑝 + 𝐵          (66) 

The proposed function (applicable in the range 1𝑏𝑎𝑟 ≥ 𝑃𝑎𝑝𝑝 ≥ 0) is consistent with the experimental data. 

In the present work, the constants are given as 𝐴 = −0.05 mm/bar and 𝐵 = 0.095 mm. 



 
Figure 24 – Comparison of the rise height predictions a) with experimental data and b) with different mesh sizes 

The experimental data is limited in this case and only relates to the extent of healing agent visible on the side 

of the test beam. Nevertheless, a comparison between these data and the 2D numerical predictions is given 

in Figure 24. The resulting comparison between this limited experimental data and the numerical model is 

considered to provide a partial validation of the coupled flow model. 

The stepped nature of the numerical responses shown in Figure 24 relate to the fact that the flow is much 

faster than the cracking; thus, the crack widths increase with loading until, ahead of the flow front, the crack 

width becomes greater than 𝑤𝑐𝑚𝑖𝑛, and the flow advances.  

 
Figure 25 – Comparison of predicted saturation contour compared with experimental data for the case corresponding 

to an applied pressure of 𝑃𝑎𝑝𝑝 = 0.5 𝑏𝑎𝑟 at a) 𝑡 = 85 𝑠 b) 𝑡 = 127 𝑠 and c) 𝑡 = 147 𝑠, the black circles indicate the 

position of the flow front in the crack 

A comparison between the saturation contours predicted by the model and pictures taken from recordings 

of the experiment can be seen in Figure 25; whilst a deformed mesh plot showing the healing agent in the 

crack and the degree of cure can be seen in Figure 26. A deformed contour plot showing the degree of cure 

in the crack and in the concrete matrix can be seen in Figure 27. Figure 25 shows that the numerical model 

provides a reasonable prediction of the saturation of the specimen. The deformed contour shown in Figure 

26 shows that by the end of the test, the crack tip has almost reached the top of the beam, and that the 

adhesive fills most of the crack.  

The average degree of cure (φav) of the healing agent at any position (height) within a crack is determined 

from the curing-front model by integrating the degree of cure across the crack opening (Section 5). In general, 

φav depends on the curing time, which is measured from when the fluid is first in contact with the substrate 



(crack wall), and the transient crack opening.  A plot of φav values in the crack at three different times is 

shown in Figure 26. As expected, φav is least at the flow front, where the glue has not yet had time to cure, 

and is also less for wider cracks, since the greater the crack opening, the greater the time required for the 

curing front to propagate across the body of fluid. At the final time shown, the maximum value is 23.06 %. 

Figure 27 shows φav for both the crack and the surrounding matrix and it is apparent that the degree of cure 

is much higher in the matrix, with a maximum value of 99.44 %, than in the crack. This is again as expected 

since the size of the pores is much smaller than that of the crack opening. 

                                                                               
Figure 26 – Deformed mesh plot showing the healing agent in the crack and the degree of cure for the case 

corresponding to an applied pressure of 𝑃𝑎𝑝𝑝 = 0.5 𝑏𝑎𝑟 at a) 𝑡 = 85 𝑠 b) 𝑡 = 127 𝑠 and c) 𝑡 = 147 𝑠    

         
Figure 27 – Deformed contour plot showing the degree of cure in the crack and the concrete matrix for the case 

corresponding to an applied pressure of 𝑃𝑎𝑝𝑝 = 0.5 𝑏𝑎𝑟 at a) 𝑡 = 85 𝑠 b) 𝑡 = 127 𝑠 and c) 𝑡 = 147 𝑠 

7 Discussion 
The coupled model presented in this study is based on experimental observations of the underlying physical 

processes that govern SH systems with embedded channels. Such SH systems are complex and are governed 

by a number of interacting processes, which are simulated using an associated set of tractable sub-models. 

Each of these sub-models requires a limited number of physically meaningful parameters that can either be 

determined directly using the type of test described in this paper, which might not be practicable in many 

situations, or obtained from product data (e.g. glue material data sheets), with guidance from the values 

given in this article. Although any one sub-model requires a limited number of parameters, it is acknowledged 

that the aggregated set of parameters is relatively large (i.e. 23 parameters are given in Table 6). 

The results of the sensitivity studies presented in this paper (i.e. on the effect of inertia, DCA and healing 

agent curing), as well as the overall comparisons with experimental responses, suggest that neglecting any 

of these processes can lead to a significant difference in the predicted behaviour. This leads the authors to 

conclude that it is necessary to consider all of the identified physical processes in the model. 



Although the complexity of the combined coupled model might suggest that it is computationally expensive, 

in 3D, it only has three main transport variables and three mechanical variables (i.e. displacement 

components), which is similar to many of the coupled models reviewed in the introductory section of this 

paper. This, combined with the experience the authors have gained with the model to date, suggests that it 

would be viable for simulating full-scale structural self-healing systems. 

8 Conclusions  
In this study, a new coupled computational model for simulating the reactive discrete-continuum flow of a 

healing agent in cementitious materials was described. The following conclusions can be drawn from the 

work: 

 The proposed coupled computational model is capable of simulating the reactive flow of a healing 

agent in cementitious materials, including unsaturated matrix flow and flow through discrete cracks. 

 The addition of a jump penalty on the pressure gradient across element edges is an effective 

approach for stabilising transient discrete crack flow simulations. 

 Spurious oscillations in the unsaturated continuum matrix flow computations can be effectively 

damped using a higher order mass matrix approach. 

 The meniscus dynamic contact angle behaviour is well-represented using the relationship proposed 

by Jiang et al.97 with the parameters computed using experimental data from an associated 

experimental study.99  

 The new approach for modelling the effects of CA curing within discrete concrete cracks, using a 

diffuse curing front model, is able to accurately reproduce experimental observed curing behaviour 

for a range of crack openings. 

 The transient variation of CA viscosity, in both continuum and discrete-crack flows, is well-

represented by the chemorheological model of Castro and Macosko.109 

 The effects of curing on the wall-slip behaviour of CA flow in a discrete crack may be simulated with 

a new relationship that accounts for the gradual reduction in slip potential with the increasing degree 

of cure. 

 The proposed coupled finite element model is able to represent the characteristic continuum and 

discrete flow of a cementitious vascular self-healing system, as demonstrated with a series of 

validation examples.     

Appendix 
The constitutive relationship for the damage-healing model relates the stress to the relative displacements 

across the crack band and is expressed as (for a single phase of healing): 

𝜎 = (1 − 𝜔)Ku +  𝜔h(1 − 𝜔ℎ)𝐾(𝑢 − 𝑢ℎ)       (67) 

where K=𝐸 𝑤𝑏⁄  is the stiffness of the crack band (𝐸 denotes Young’s modulus and 𝑤𝑏 the width of the crack 

band), 𝜔 is the damage variable which ranges from 0 for no damage to 1 for full damage, h is the degree of 

healing, 𝑢ℎ is the relative displacement at which healing takes place and 𝜔ℎ is the damage variable for the 

healing material.  

The damage evolution functions depend on the maximum values of the inelastic relative displacements, 𝜁 

and 𝜁ℎ, and are given as: 

𝜔(𝜁) = 1 −
𝑓𝑡

𝐾𝜁
𝑒
−𝑐𝜁

𝜁𝑚           𝜔ℎ(𝜁ℎ) = 1 −
𝑓𝑡ℎ

𝐾𝜁ℎ
𝑒
−𝑐𝜁ℎ
𝜁𝑚ℎ       (68) 

where 𝑓𝑡 and 𝑓𝑡ℎ are the tensile strengths of the virgin and healed material, 𝑐 = 5 is a softening constant 

and 𝜁𝑚 and 𝜁𝑚ℎ are the effective relative displacements at the end of the softening curve for the virgin and 

healed material respectively. 



The mechanical damage-healing model parameters can be seen in Table 7. 

Table 7 – Mechanical damage-healing parameters 

 Parameter Value Parameter Value 

 𝑓𝑡  (N/mm2) 2.1-3.0 𝐸 (N/mm2) 30000 

 𝜁𝑚  (mm) 0.13-0.15 𝜈 (-) 0.2 

 𝑓𝑡ℎ (N/mm2) 3.0 𝑤𝑏  (mm) 4 

 𝜁𝑚ℎ  (mm) 0.2   
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