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SYNOPSIS 1 

Objectives: To determine the prevalence of E. coli sequence types and associated resistance 2 

mechanisms carried by the community in North-Eastern India. 3 

Methods: E. coli (108) were isolated from sewage collected from 19 sites across the city of 4 

Silchar by plating on MacConkey agar with/without selection (50mg/L ceftotaxime). Species 5 

identification was confirmed by MALDI-TOF MS for 82 isolates. Common resistance 6 

mechanisms were determined by WGS of pooled E. coli isolates. PFGE combined with specific 7 

probes determined the presence of common resistance mechanisms in all isolates. Phylotype, 8 

MLST, cgMLST, resistance gene and virulence gene content were determined by in silico 9 

analysis of 38 genomes.  10 

Results and conclusions: Analysis of isolates collected without selection (n=33) indicated that 11 

CTX resistance in E. coli was 42% (14/33) and estimated meropenem resistance at 9%. The 12 

remaining 58% (19/33) were additionally sensitive to ampicillin, trimethoprim, ciprofloxacin 13 

and aminoglycosides. The most common ST among the CTX resistant E. coli’s was ST167 (29%) 14 

followed by ST410 (17%) and ST648 (10%). E. coli ST131 was absent from the collection. 15 

Sixty-three isolates were resistant to cefotaxime, and harboured blaCTX-M-15, 54% (34/63) or 16 

blaCMY-42, 46% (29/63) of which 10% (6/63) harbored both genes. Carbapenem resistance was 17 

due to blaNDM-5, found in 10/63 CTX resistant isolates and/or blaOXA-181 found in 4/63 isolates. 18 

NDM-5 was encoded by IncX3 and/or IncFII plasmids and CMY-42 was mostly encoded by IncI 19 

plasmids. NDM-5 appears to have replaced NDM-1 in this region and CMY-42 appears to be in 20 

the process of replacing CTX-M-15.  21 

 22 

 23 

 24 

 25 



INTRODUCTION 26 

Escherichia coli is universally carried in the human gut and is one of the most common 27 

bacterial pathogens causing a range of disease manifestations.1 Importantly, the main source of 28 

infection is the patients’ own digestive tract with the main site of infection the urinary tract.    29 

E. coli is the leading cause of urinary tract infections 2 and subsequent septicaemia’s in many 30 

nations.3, 4 E. coli has an “open genome” meaning that as a species it easily gains and loses 31 

genetic information.5 Thus comparison of E. coli genomes has revealed that the core genome 32 

only consists of c. 1000 genes (1/5th of the genome of each isolate).6 This diverse genetic make-33 

up means that any individual isolate may be a serious pathogen or an innocuous commensal 34 

and therefore typing of common community carriage isolates is useful to understand the link 35 

between infection and prevalence of gut carriage of virulent and/or antibiotic resistant clones. 36 

Antibiotic resistance is also an important marker since increasing antibiotic resistance 37 

prevalence is associated with both increasing bacteraemia rates3 and associated mortality due 38 

to delay in appropriate therapy.7 Furthermore, rise in the prevalence of gut carriage of a 39 

virulent and antibiotic resistant strain of E. coli has a compounded effect.3 This is important 40 

since European bacteraemia rates have substantially increased over the last 20 years, partially 41 

due to rising carriage rates of a virulent and often multi-drug resistant E. coli strain, ST131.3 42 

We have previously shown that common E. coli sequence types and resistance mechanisms can 43 

vary dramatically in different human communities.8 To further understand this observation we 44 

sought to determine these in the city of Silchar, North East India.  45 

 46 

 47 

 48 

 49 

 50 



Materials and Methods: 51 

Collection of samples 52 

Human sewage samples (30mL) were collected in January 2018 from 19 sites across the city of 53 

Silchar, Assam, India. 54 

Bacterial Identification 55 

Bacteria were pelleted by centrifugation and resuspended in 500µL LB broth. 50µL of several 56 

serial dilutions were then spread on MacConkey agar plates with and without 50mg/L 57 

cefotaxime. Up to 10 colonies with typical E. coli morphology were randomly collected from 58 

each site, 5 with and 5 without selection (55 and 53 with and without selection, respectively) 59 

of which 49 and 33 were confirmed as E. coli by MALDI-TOF MS. 60 

Genomic DNA extraction 61 

Genomic DNA was extracted using the Qiagen genomic DNA kit. 62 

MiSeq sequencing 63 

DNA libraries were prepared using the Nextera XT sample kit and sequenced at 30X coverage 64 

with a standard 2X 100 base protocol on a MiSeq instrument (illumina, San Diego, CA, USA). 65 

Initial WGS analysis 66 

Isolates were pooled into ten pools consisting of 8 isolates per pool and sequenced at 30X 67 

coverage by illumina Miseq to give an indication of the range of resistance mechanisms in the 68 

samples. 69 

PFGE and specific probing 70 

PFGE was performed as described previously.9 Gels were probed directly using radio-labeled 71 

probes for blaNDM, blaCTX-M-15, blaCMY-42, qnrS1. 72 

ST and virulence gene detection 73 

The MLST of sequenced strains was determined with StringMLST using short read data in 74 

FASTQ format and Ridom Seqsphere + (version 3.5.0) using assembled data in FASTA format. 75 



CH typing (fumC/fimH) was used to indicate the MLST group of non-sequenced strains.10 E. coli 76 

strains were clustered based on core genome MLST (cgMLST). Antimicrobial resistance genes 77 

were detected using CLC Biogenomic workbench. CH types, plasmid and virulence genes were 78 

determined online using CH typer, Plasmid finder and Virulence finder 79 

(http://www.genomicepidemiology.org/). 80 

Phylogroup analysis 81 

The E. coli phylotypes were determined with in-silico searches for chuA, yjaA, tspE4C2, arpAgpE 82 

and tnpAgpC using geneious software based on the Clermont method.11, 12 83 

 84 

Results and discussion 85 

We isolated 82 E. coli collected from 19 sites across the city of Silchar to determine the E. coli 86 

ST and associated resistance mechanisms carried by the local population.  The 82 E. coli 87 

included 33 isolates collected without selection and 49 by selection on 50mg/L cefotaxime. 88 

Fifty-eight percent of isolates collected without selection (19/33) were cefotaxime susceptible 89 

and also susceptible to all tested antimicrobials including ciprofloxacin, trimethoprim and 90 

gentamicin. Sixty-three isolates were cefotaxime resistant including 14/33 collected without 91 

selection, thus 42% of carriage E. coli in Silchar are cefotaxime resistant. Twenty-percent 92 

(10/49) of cefotaxime resistant isolates were also resistant to carbapenems giving an estimate 93 

of carriage of carbapenem resistance in E. coli of 9% (42/100 X 10/49).  Cefotaxime and 94 

carbapenem resistant isolates were found at 100% and 47% (9/19) of sample sites, 95 

respectively (Figure 1, Table S1). The total complement of resistance mechanisms was initially 96 

determined by MiSeq sequencing of ten pools of eight isolates at 30X coverage. This indicated a 97 

high prevalence of resistance genes blaCTX-M-15, blaCMY-42, blaNDM-5 and qnrS1 and allowed us to 98 

target their presence by PCR/sequencing and genomic location by in-gel radio-labeled probing 99 

of PFGE gels (Table S1). The most common gene conferring cefotaxime resistance was blaCTX-M-100 

http://www.genomicepidemiology.org/


15 found in 34/63 cefotaxime resistant isolates followed by blaCMY-42 (29 isolates) and blaNDM-5 101 

(10 isolates). One isolate contained all three ß-lactamases and six isolates contained both 102 

blaCTX-M-15 and blaCMY-42 genes, several isolates contained multiple ß-lactamase genes (Figure 1, 103 

Table S1). The blaNDM-5 and blaCMY-42 genes were found on plasmids ranging in size from 85-104 

140kb and 25-130kb (Table S1), respectively. However, blaCTX-M-15 and qnrS1 genes were found 105 

mostly on the chromosome 66% (22/33) or on plasmids of 40-175kb. 38 individual isolates 106 

were further chosen for whole genome sequencing to determine the MLST types and resistance 107 

and virulence gene complements (Figure 1, Figure S1, Table S1). In addition, a further 10 108 

isolates were typed by the Weissman 2 locus scheme.  MLST was determined for 48 isolates 109 

(Figure 1, Figure S1, Table S1), the most prevalent being ST167, 29% (14/48), followed by 110 

ST410 17% (8/48), ST648 10% (5/48), ST224 (2/48), ST609 (2/48), ST973 (2/48), ST2083 111 

(2/48) and single isolates of ST46, ST84, ST101, ST156, ST215, ST315, ST361, ST617, ST405, 112 

ST2521, ST3268 and ST4450 and one new ST (Figure 1, Table S1). ST167 was found at 9/19 113 

sites and ST410 was found at 6/19 sites. Over half of all of isolates (56%) belonged to ST167, 114 

ST410 and ST648 (Figure 1). In a recent UK nationwide study of cefotaxime resistant E. coli 115 

isolated from human faeces (360 isolates), sewage (65 isolates) and bacteraemia’s (293) 13, 14 116 

the most prevalent E. coli were ST131 and ST38 (44%, 31% and 70% of all isolates from faeces, 117 

sewage and bacteraemia’s, respectively). Interestingly, in this study both ST38 and ST131 were 118 

absent. Thus, the prevalence of E. coli ST carriage varies greatly by geographic location. In 119 

Silchar, the common sequence type ST167 was closely associated with blaNDM-5, 50% (7/14) 120 

and both ST167 and ST410 with blaCMY-42, 65% (9/14) and 100% (8/8), respectively (Figure 1). 121 

This high prevalence of blaCMY-42 has not been documented before in India or elsewhere and 122 

appears to be in the process of replacing blaCTX-M-15 at this location. This may be related to the 123 

wider spectrum of ß-lactam hydrolysis of CMY-42 as compared to CTX-M-15. Similarly blaNDM-5 124 

appears to have replaced blaNDM-1 in Silchar as no isolates were detected with blaNDM-1. Whilst 125 



this may be a local phenomenon, it is interesting that many nations have reported increased 126 

detection of blaNDM-5 over the last few years. 15, 16, 17, 18 Many isolates harboured other 127 

resistance mechanisms (Figure S1, Table S1) and chromosomal mutations conferring high level 128 

fluoroquinolone resistance making many strains MDR (Figure S1, Table S1). However, 129 

fosfomycin and chloramphenicol resistance was low (only 3 strains produced a full-length 130 

chloramphenicol resistance gene) suggesting that these antibiotics could be useful treatment 131 

options in this locale. Phylotype and virulence gene analysis indicated that most isolates 132 

belonged to non-pathogenic phylogroups A and B1, which included the majority of isolates 133 

carrying carbapenemase genes (ST167 and ST410). Six isolates belonged to the pathogenic 134 

phylotype D (ST268, ST315, STNEW, ST405, 2X ST 973, Figure S1) yet none belonged to the B2 135 

group. Many of the isolates (20/48) including 2x ST648 and the majority of ST167 isolates 136 

were missing the type 1 fimbrial adhesion fimH which has been shown to be essential for 137 

colonizing the urinary tract. The cgMLST (Figure S1, Figure 2) agreed with the phylogroup 138 

analysis and demonstrated that all sequenced strains were unique confirming the random 139 

nature of the selection process. The within ST SNP analysis further demonstrated this and 140 

highlighted that differences within ST648 and ST167 were more numerous than within ST410, 141 

perhaps suggesting that the ST410 have expanded within the Silchar population in more recent 142 

history. 143 

In conclusion, our survey has revealed that the majority of E. coli strains in this area are fully 144 

sensitive to antibiotics. However, 42% and 9% of isolates are cefotaxime and carbapenem 145 

resistant, respectively. We also found that the majority of resistant strains belonged to just 146 

three prevalent ST, which are different to the prevalent E. coli ST in Europe. Notably, E. coli 147 

ST131, the dominant cefotaxime resistant strain found throughout Europe and North America 148 

was absent from our study.  Since UTI infections typically originate in the community and from 149 



the human gut, the survey of resistant human carriage isolates is a useful surveillance 150 

approach to quickly identify common ST and resistance mechanisms and guide local therapy. 151 
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Legend Figure 1  210 

This figure appears in colour in the online version of JAC and in Black and hite in the printed 211 

version of JAC. 212 

The association of ß-lactamase resistance mechanism with E. coli ST for 48 carriage isolates.  213 

The Inner ring corresponds to the percentage of cefotaxime resistant E. coli belonging to each 214 

sequence type. MLST was determined in silico for 38 isolates that had been whole genome 215 

sequenced (Strain ID and isolation site in bold) and a further ten isolates by CH typing (normal 216 

font). The outer ring indicates the ß-lactamase resistance mechanisms associated with each 217 

isolate. Isolate ID and isolation site is indicated outside the second ring. Isolates coloured 218 

yellow and green belong to commensal phylotype A. Isolates coloured white-blue belong to 219 

phylotype B1 and isolates coloured orange to red belong to pathogenic phylogroups F and D. 220 

Legend figure S1  221 



This figure appears in colour in the online version of JAC and in Black and hite in the printed 222 

version of JAC. 223 

Core genome analysis of sequenced isolates (38) with detail of non-ß-lactam resistance 224 

mechanisms. Chromosomal mutations in gyrase A and parC genes rthat result in amino acid 225 

substitutions known to confer ciprofloxacin resistance in E. coli are given in the quinolone 226 

column along with acquired genes that also confer quinolone resistance. Virulence genes and 227 

fimH types as well as phylogroup are given for each strain. Isolates coloured yellow and green 228 

belong to commensal phylotype A. Isolates coloured white-blue belong to phylotype B1 and 229 

isolates coloured orange to red belong to pathogenic phylogroups F and D. 230 

 Legend figure 2  231 

This figure appears in colour in the online version of JAC and in Black and hite in the printed 232 

version of JAC. 233 

SNP variation found among and between sequence types. Isolates belonging to the same 234 

sequence type are highlighted as clusters 1-6. The number of SNP’s found between members of 235 

the same sequence types and between sequence types are given in bold adjacent to each isolate 236 

pair. Cluster 2 ST410 isolates shared the least within ST SNP variation. Colours represent 237 

different ST groups as in other figures. 238 

Table S1 239 

Table gives ST and CH data of all 63 cefotaxime resistant E. coli isolates collected in this study 240 

together with entire resistance gene complements and plasmid size, incompatibility group and 241 

genomic location of the most prevalent resistance genes. Whole genome sequenced isolates are 242 

highlighted in bold. Isolates with blaCMY genes other than blaCMY-42 are highlighted with an 243 

asterix in the table ie DJ-95 produces blaCMY-145 and isolate DJ58 produces blaCMY-4. The genomic 244 

location of resistance genes is highlighted by plasmid size and chromosomal location of CTX-M-245 



15 genes by c. Selection or non selection is indicated by CTX (50mg/L cefotaxime) or NS, 246 

respectively. 247 

 248 
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