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We study the application of a B-splines Finite Element Method (FEM) to time-harmonic scatter-
ing acoustic problems. The infinite space is truncated by a fictitious boundary and second-order
Absorbing Boundary Conditions (ABCs) are applied. The truncation error is included in the exact
solution so that the reported error is an indicator of the performance of the numerical method,
in particular of the size of the pollution error. Numerical results performed with high-order basis
functions (third or fourth order) showed no visible pollution error even for very high frequencies. To
prove the ability of the method to increase its accuracy in the high frequency regime, we show how
to implement a high-order Padé-type ABC on the fictitious outer boundary. The above-mentioned
properties combined with exact geometrical representation make B-Spline FEM a very promising
platform to solve high-frequency acoustic problems.
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1. Introduction

The purpose of this paper is to investigate the performance of B-Spline-based Finite Ele-
ment Method (FEM) for solving time-harmonic acoustic wave scattering and acoustic wave
propagation problems, most particularly for small wavelengths. To fix the notations, let us
consider Ω− as a d-dimensional (d = 1, 2, 3) scattering-bounded domain of R

d, with shape
Γ := ∂Ω−. We introduce the associated exterior (i.e. unbounded) domain of propagation
Ω+ := R

d/Ω−. Then, solving the scattering problem leads to computing the wave field u,
solution to the Boundary-Value Problem (BVP): given an incident (plane wave) field uinc,
find u such that

∆u+ k2u = 0 in Ω+,

∂nΓ
u = g := −∂nΓ

uinc on Γ,

lim
|x|→+∞

|x|(d−1)

(
∇u · x

|x| − iku

)
= 0,

(1)

where ∆ is the Laplacian operator, ∇ the gradient operator and nΓ is the outward-directed
unit normal vector to Ω−. The spatial variable is x = (x, y) in two dimensions and
x = (x, y, z) in three dimensions. The wavenumber k is related to the wavelength λ by the
relation: λ := 2π/k. The boundary condition is a Neumann (sound-hard) boundary condi-
tion (but other boundary conditions could also be considered). Denoting by a · b the Her-
mitian inner product of two complex-valued vector fields a and b, then the last equation of
system (1) is known as the Sommerfeld’s radiation condition27,73 at infinity, which represents
the outgoing wave to the domain. Various numerical methods have been developed to accu-
rately solve the scattering problem, e.g. finite elements,17,21,37,40,45,49,51,56,58,66,72,75,76,81,83

boundary elements,4–6,22,25,27,31,65,73 enriched and various modified (wave-based, hybrid,
asymptotic) finite elements.8,9,23,24,39,40,42–44,50,55,60,61 A challenging and still outstanding
question for numerics and applications is related to the so-called high-frequency regime,
where the wavelength λ is very small compared with the characteristic length of the scat-
terer Ω−.11,81 A first “exact” method consists in writing an integral equation on the surface
Γ to represent the exterior field, and then solving this by means of a boundary element
method (BEM), combined with fast evaluation algorithms (e.g. Fast Multilevel Multipole
Methods (MFMMs),31,32,65 Adaptive Cross Approximation (ACA)15,88) and preconditioned
(matrix-free) Krylov subspace iterative solvers (GMRES).5,6,78 This approach has the very
interesting property to reduce the initial problem to a finite (d − 1)-dimensional problem
(set on Γ) and to be relatively stable thanks to the frequency regime (typically from nλ = 5
to 10 points per wavelength are used, with nλ = λ/h, and h the meshsize). Nevertheless,
the method is nontrivial to adapt to complex geometries, when the boundary conditions
are modified or when a high-order of accuracy is required for the solution. In particular,
developing efficient algorithms when the geometry is described with high accuracy remains
an open question, most particularly for large wavenumbers k since the number of degrees
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of freedom is potentially very large. Recently, it was shown that an unexpected number
of studies used incorrect sign when coupling parameter of the Burton Miller method aris-
ing in BEM which leads to inefficient solutions and possibly incorrect results.67 The use
of discontinuous elements in BEM collocation and effect of super convergence was studied
for acoustics.69 It was shown that zeros of the Legendre polynomials can be used to find
the optimal position of nodes and quadratic elements were identified as the most efficient
element type for low error analysis.

Another standard engineering-type approach consists in truncating the exterior domain
Ω+ through the introduction of a fictitious boundary/layer Σ that surrounds the scat-
terer Ω−, resulting in a bounded computational domain Ωb with inner boundary Γ and
outer boundary/layer Σ. When Σ is a boundary, an Absorbing Boundary Condition
(ABC )3,14,46–48,59,70,84,85 is set on the fictitious boundary which introduces a truncation
error even at the continuous level. This can be reduced by considering high-order (local)
ABCs. A very popular alternative is, rather, to consider a surrounding absorbing layer and
modifying the nonphysical media to obtain a Perfectly Matched Layer.16,18,19,26

Truncation of the exterior domain Ω+ will introduce an error even before domain dis-
cretization, hence called the continuous truncation error. In this paper, since our goal is to
understand the quality of the B-Spline-based FEM in approximating the wave field, first we
will consider simple boundary conditions where we can separate the continuous truncation
error from the discretization error to compute an exact reference analytical solution. To get
a fully high-order scheme for exterior acoustic problems, the truncation error should also be
small or at least of the order of the approximation error and then would require the use of
high-order ABCs or well-tuned PMLs. To this end, we will consider also a high-order Padé-
type ABC to illustrate the flexibility of the B-Splines approximation. This choice provides
an example of a higher-order ABC but would in fact need a more thorough study since
additional computational difficulties then arise like proving the full stability of the global
scheme, the strategy for resolving the associated sparse linear system through well-adapted
domain decomposition techniques.20,35,36,38,41

In the high frequency regime, the numerical solution suffers from a phase shift due to
numerical dispersion which is called the pollution error11,21,57,58 of the FEM. To main-
tain a prescribed pollution error, the mesh density nλ should be increased faster than the
wavenumber leading to high computational cost for high frequency problems. Therefore,
the FEM is limited to a upper frequency bound for which the computational cost becomes
prohibitive and increasing the order of the polynomial basis functions used in conventional
FEM is required to reduce the pollution error, but it does not fully eliminate it. The effects
of number of elements and element types in FEM on the accuracy of the numerical results
were studied in Ref. 62 where authors recommended quadratic elements provided that all
field gradients are monotonic inside the elements. The pollution error of the BEM in solving
acoustic problems was also investigated in Ref. 68 where in addition to amplitude error due
to damping, a small phase error was observed. Hence, in addition to truncation errors, the
numerical solution suffers from discretization and pollution errors which are expressed in
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the following inequality describing their contribution in H1 semi-norm34:

‖uex − uh‖
‖uex‖ < C1

(
kh

2p

)p

+ C2k

(
kh

2p

)2p

, (2)

where h is the element size, and p is the basis order, uex and uh are analytical and numerical
solutions, respectively. The right-hand side terms C1(kh

2p )p, and C2k(kh
2p )2p are the contri-

butions of the discretization and pollution errors, respectively. For linear elements (p = 1),
the first term of the right-hand side of Eq. (2) simplifies to C1kh. Therefore, by keeping
kh < 1 constant, the discretization error is controlled leading to the rule of thumb to have
at least 10 elements per wavelength. However, this is not sufficient to control the pollution
error described by C2k(kh

2p )2p which increases with the wavenumber k. In Ref. 82, it was
shown that high-order p-type elements yield higher accuracy per degrees of freedom when
compared to low-order elements. A discrete dispersive relation for high-order FEM analysis
was obtained in Ref. 1 where three different behaviors were identified for the numerical
dispersion. Explicit quantitative estimates were derived for the behavior and rate of decay
of dispersion error. In a different study, the dispersive and dissipative behaviors of a Gauss-
point mass lumped FEM was studied2 where it was shown that when the frequency of the
wave ω satisfies 2p+ 1 ≈ ωh, the true wave is fully resolved. Also, the absolute accuracy of
the spectral element scheme was found to be 1/p times better than that of the finite element
scheme which is consistent with Eq. (2). Novel techniques were recently proposed to reduce
the pollution error. One approach is to replace the basis functions, usually a polynomial,
with plane wave functions.44,61 Since pollution error can be viewed as a phase shift, another
hybrid approach is to asymptotically approximate the phase of the solution and to reformu-
late the problem into an equivalent problem with a slowly varying unknown.8–10,12,13,22,43,86

Nevertheless, until now, the only viable solution for complex problems is to consider a suf-
ficiently high-order polynomial basis into the FEM together with high-order meshes to rep-
resent accurately the geometry Γ.34,82 Furthermore, the numerical integration can be mod-
ified to minimize the dispersion. Recently, dispersion-optimized quadrature tools have been
developed to implement optimally-blended quadrature rules in the context of isogeometric
analysis (IGA).77 It was shown that the optimally blended schemes can improve the conver-
gence rate by two orders when compared to the fully integrated Galerkin method. The aim
of the present paper is to analyze the quality of alternative approximation methods based
on B-splines-based FEM, specifically, to investigate problems involving large wavenumbers
k. The B-Spline and Nonuniform Rational Basis Spline (NURBS)-based FEM has been
investigated in the context of IGA which was introduced over 10 years ago to streamline
the transition from Computer-Aided Design (CAD) to Analysis.30,52 The central idea of
the approach is to use the same shape functions to approximate the field variables as those
used to describe the geometry of the domain. As the geometry of computational domains is
typically provided by CAD software, it is sensible to use NURBS shape functions, which are
the most commonly used functions in CAD. Since 2005, IGA has been developed within the
finite element, boundary element64,79,80 and was enriched through partition of unity.74 B-
Spline and NURBS-based FEM benefits from exact (and smooth) geometry representation
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and no loss of boundary details. This is fundamental in problems involving wave propa-
gation or turbulence, as spurious wave scattering and vortices typically appear close to
rough boundaries.30,52 Adopting B-Spline basis functions alleviates the meshing burden as
if the CAD model is modified, any modifications are immediately inherited by the shape
functions used for analysis. When coupled to boundary element approaches, this suppresses
completely the generation and regeneration of the mesh.63,64

When used within a finite element approach, volume parameterization is still required,
but the shape optimization process is simplified.87 A recent review of IGA and its computer
implementation aspects are available in Ref. 74. GeoPDEs is an open source IGA research
tool33 which provides a flexible coding structure to perform FEM analysis with B-Spline
and NURBS basis functions. The application of IGA and its performance in solving one-
dimensional (1D) and two-dimensional (2D) eigenvalue and interior Helmholtz problems
have been studied28,29,53,54 in which IGA showed superiority to conventional FEM. In par-
ticular, in Ref. 53, the performance of NURBS-based FEM in solving structural vibration
and wave propagation was found superior and more robust when compared with standard
C0 continuous FEM. It was also shown that NURBS basis provides higher accuracy per
degree of freedom.

However, the performance of B-Spline-based FEM in solving exterior scattering problems
and related pollution and truncation errors are still not thoroughly investigated.

In this paper, we first study the performance of B-Spline FEM for solving time-harmonic
exterior scattering problems in one, two and three dimensions. We consider a simple but
meaningful 1D scattering problem in Sec. 2 to show the effect of pollution error. Then, In
Sec. 3, we analyze 2D problems and study the performance of B-Spline FEM in estimating
the scattered field from a duct and a circular cylinder where the domain truncation error
is eliminated. We also make some remarks on the linear systems structures. In Sec. 4, we
examine the performance of higher-order ABCs, called Padé-type ABC, well adapted to
the high-frequency analysis and compare it with the second-order ABC. Scattering of a
2D submarine shape obstacle is presented in Sec. 5 where the Padé-type ABC is used to
successfully truncate the computational domain close to the scatterer. We next shortly study
the scattering of a sphere in Sec. 6. The in-house B-Spline-based FEM codes developed in
this study were written in Matlab r© benefiting from the GeoPDEs platform for 2D and
three-dimensional (3D) examples and are available for download at https://doi.org/10.6084/
m9.figshare.5379607. Finally, Sec. 7 concludes the paper. Furthermore, a pseudo-code for
the one-dimensional (1D) problem is provided in Appendix A.

2. A 1D Scattering “Toy Problem”

Now, let us come back to our physical problem by considering the simple 1D Neumann
scattering problem solved in Ref. 8:

∂2
xu+ k2u = 0 in Ωb = (0, 1),
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∂xu = ik at Γ = {0},
∂xu− iku = 0 at Σ = {1}.

(3)

The variational formulation is given as∫
Ωb

{∂xu∂xv̄ − k2uv̄}dx− ik(uv̄)(1) = −(gv̄)(0), ∀ v ∈ H1(Ωb). (4)

The solution of the 1D BVP (3) is uex(x) = eikx, which represents the scattering of an
incident plane wave by the left half space. An exact transparent boundary condition is
considered for the fictitious boundary at Σ = {1} using the Dirichlet-to-Neumann operator
Λ = ik on Σ, resulting in the transparent boundary condition ∂xu = Λu. It is shown that
the Finite Element-approximated solution of the BVP described in system (3) suffers from
pollution error.8,56,58,81 The pollution error has a direct relation with the wavenumber k
and increases with frequency. It is the polynomial basis used in conventional FEM which is
inadequate to represent the wavefield. Hence, it is interesting to study the performance of
B-Spline FEM, in particular for high frequencies and its pollution error.

We define the density of discretization as the number of nodes (control points) per
wavelength and denote it with nλ. A Matlab code was prepared to solve the above example
in B-Spline FEM context. The corresponding pseudo-code is presented in Appendix A.
We plot the approximate solution uh for k = 40 as well as the exact solution in Fig. 1.
The density of discretization in points per wavelength is nλ = 10. As expected, B-Spline
FEM (p = 1) also suffers from pollution error, indeed, B-Spline functions generated with
p = 0 and p = 1 orders will result in the same piecewise constant and linear functions
as standard FEM shape functions. The differences are found for cases using higher order
shape functions. The pth order B-Spline function has p−1 continuous derivatives across the
element boundaries. Each B-Spline basis is pointwise nonnegative over the entire domain

–

–

s

Fig. 1. The pollution error is the numerical solutions �(uh) of B-Spline FEM (p = 1) and is visible when
compared with the exact solution �(uex) for k = 40 and nλ = 10.

1850059-6
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as a result, all of the entries of the mass matrix will be positive. The support of a B-Spline
function of order p is always p+1 knot spans. Therefore, the support of higher order B-Spline
functions are much larger compared to Lagrange-based FEM. The total number of functions
that any given function shares support with (including itself) is 2p+1 regardless of whether
a Lagrange basis or a B-Spline basis is used. Hence, using higher order B-Spline basis
functions will provide improved support compared to conventional FEM without increasing
the number of required shape functions. Increasing the order of Lagrangian polynomials will
increase the amplitude of oscillations in conventional FEM; this problem is eliminated in
B-Spline FEM as a result of nonnegativity and noninterpolatory nature of B-Splines shape
functions.

Next, we investigate the effect of increasing the basis function order on the accuracy
of the numerical approximation again for discretization density nλ = 10. As expected,
increasing the order p reduces the error drastically as shown in Fig. 2. There is no visible
pollution error in the B-Spline FEM approximation if we keep all the parameters unchanged
and increase the order of the basis function. One can reduce the error further by increasing
the discretization density nλ. For the numerical solution f calc(x), x ∈ Ωb, we define the
relative L2-error (in dimension d) as

ε2 =

{∫
Ωb

|f calc(x) − f ex(x)|2dx
}1/2

{∫
Ωb

|f ex(x)|2dx
}1/2

, (5)

where f ex is the exact solution. The evolution of ε2 versus the discretization density nλ is
reported in Fig. 3 for the wavenumber k = 40. For completeness, we also plot the curves
relative to the function x−p for x = nλ. We can see that the error curves fit very well the
polynomial curves. Hence, pollution error is extremely weak, most particularly when p is
large enough (p ≥ 3) even for a small density nλ.

Fig. 2. Absolute error |uex − uh| for k = 40, nλ = 10 and various approximation orders p = 1, . . . , 5.

1850059-7
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Fig. 3. Evolution of the error ε2 versus the discretization density nλ for k = 40 and p = 1, . . . , 5 (the slopes
of the functions hp+1 are plotted for comparison).

Fig. 4. Evolution of the error ε2 versus the wavenumber k for nλ = 20 and various approximation orders
p = 1, . . . , 5. The pollution error is observable when the basis order is p = 1 or p = 2, and not visible for
p ≥ 3.

Next, we present the evolution of the L2-error with the wavenumber k in Fig. 4 for a
fixed density nλ = 20, where for p = 3 and higher, the pollution error is not visible and the
error remains constant even for extremely high frequencies.

3. 2D Examples

In this section, we evaluate the performance of B-Spline FEM in solving 2D acoustic prob-
lems. First, we consider a 2D duct problem with rigid walls.55 Next, we propose two exam-
ples of cylindrical disk scattering problems where we obtain, first the scattered field of a
particular mode, and then the scattering of the disk subject to an incident plane wave.
By separating the truncation error from the numerical basis approximation, we investigate
the performance of B-Spline FEM in solving the 2D sound-hard scattering problem and
numerically analyze the related pollution error.

1850059-8
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Fig. 5. The duct domain.

3.1. The duct problem

The duct model is shown in Fig. 5 where Ωb = [0, 2] × [0, 1]. We denote the outward
boundary unit normal with v and assume that the lower and upper walls are rigid. We solve
the Helmholtz problem stated in Eq. (6) for the acoustic pressure u:

∆u+ k2u = 0 in Ωb,

∂u

∂v
= cos(mπy) on x = 0,

∂u

∂v
+ iku = 0 on x = 2,

∂u

∂v
= 0 on y = 0, 1,

(6)

where m ∈ N is the mode number. An inhomogeneous boundary condition is applied on the
inlet boundary (x = 0) and an absorbing (and transparent for m = 0) boundary condition
is set on the outlet boundary (x = 2). Since the boundaries at y = 0, 1 are assumed to be
perfectly rigid, the normal derivative of the acoustic pressure vanishes on these boundaries.
The exact solution of problem (6) with ABC is as follows:

uex(x, y) = cos(mπy)(A1e
−ikxx +A2e

ikxx), (7)

where kx =
√
k2 − (mπ)2 and the coefficients A1 and A2 are obtained from

i

(
kx −kx

(k − kx)e−2ikx (k + kx)e2ikx

)(
A1

A2

)
=

(
1

0

)
.

1850059-9
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(a) �(uex) (b) �(uh)

Fig. 6. Comparing (a) the real parts of the exact solution uex and (b) the numerical solution uh for k = 40,
m = 2, p = 3 and nλ = 10.

Solving this 2 × 2 linear system, we are able to get the expression of the solution to the
duct problem with ABC. This is a very interesting point since we therefore can only focus
the analysis on the finite-dimensional approximation without including the (continuous)
truncation error. The cut-off frequency is mcut-off = k/π. If the mode is such that m ≤
mcut-off, the solution is representing propagating modes and if m > mcut-off, the solution
corresponds to evanescent modes. The real parts of the exact and estimated B-Spline FEM
solutions are presented in Figs. 6(a) and 6(b), respectively, for k = 40, m = 2 (propagative
mode), p = 3 and nλ = 10. The corresponding absolute error |uex − uh| is plotted in Fig. 7,
the maximal value being of the order of 10−6.

For the propagative mode m = 2, the evolution of the relative L2-error with respect to
the discretization density nλ is shown in Fig. 8 for k = 40, and according to the wavenumber
k in Fig. 9, where nλ = 10. We can see that the error is very low, decreasing strongly with p.
In addition, the error does not seem to depend on k as observed in Fig. 9, meaning that
the pollution error is negligible.

Fig. 7. Absolute error |uex − uh| for k = 40, m = 2, p = 3 and nλ = 10.

1850059-10
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Fig. 8. Evolution of the error ε2 versus the discretization density nλ, for k = 40, m = 2 and p = 1, . . . , 5.

Fig. 9. Evolution of the error ε2 versus the wavenumber k for m = 2, nλ = 10 and p = 1, . . . , 5.

3.2. The sound-hard circular cylinder problem

To further study the performance of B-Spline FEM, we analyze the scattering by a 2D
circular cylinder Ω− = D0 of radius R0 centered at the origin, with boundary Γ = C0 (circle
of radius R0). The scatterer is surrounded by an outer fictitious circular boundary Σ = C1,
again centered at the origin and with radius R1 > R0. Hence, the computational domain
Ωb is the annulus bounded between the inner C0 and outer C1 boundaries. On the outer
boundary, we set the symmetrical second-order Bayliss–Turkel ABC3 given by

∂nΣ
u− Bu = 0 on Σ, (8)

with Bu := ∂s(α∂su) − βu and

α := − 1

2ik
(

1 +
iκ

k

) , β = −ik +
κ

2
− κ2

8(κ − ik)
. (9)

1850059-11
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We set nΣ as the outwardly directed unit normal to Σ and ∂nΣ
:= ∂r as the normal

derivative. In addition, κ = R−1
1 is the curvature of Σ := C1 and ∂s := R−1

1 ∂φ is the first-
order curvilinear derivative on C1. In the above expressions, the polar coordinate system is
denoted by (r, φ).

3.2.1. Scattering by a sound-hard circular cylinder : Mode-by-mode analysis

We consider an incident wave with a fixed mode m which is described as

uinc
m (x) = Jm(kr)eimφ m ∈ Z, (10)

where Jm is the mth order Bessel’s function. The exact exterior modal solution uex
m to the

truncated scattering problem of the inner sound-hard circular cylinder C0 in polar coordinate
(r, φ) is given as

uex
m(x) = (amH

(1)
m (kr) + bmH

(2)
m (kr))eimφ, R1 ≥ r ≥ R0, m ∈ Z. (11)

The functions H(1)
m and H

(2)
m are the first- and second-kind Henkel functions of order m,

respectively. The Neumann boundary condition is applied on C0 and the ABC on C1, result-
ing in the following linear system of equations to obtain the two unknown coefficients am

and bm:

am = −A
m
22J

′
m(kR0)
Dm

, bm =
Am

21J
′
m(kR0)
Dm

, (12)

where Dm = Am
11A

m
22 −Am

21A
m
12 and



Am
11 = H

′(1)
m (kR0), Am

21 = kH
′(1)
m (kR1) − BmH

(1)
m (kR1),

Am
12 = H

′(2)
m (kR0), Am

22 = kH
′(2)
m (kR1) − BmH

(2)
m (kR1),

Bm = −
(
αm

m2

R2
1

+ βm

)
, αm = − 1

2ik

(
1 +

i

kR1

)−1

,

βm = −ik +
1

2R1
+

1
8iR1(i+ kR1)

.

The notation f ′ := ∂rf designates the radial derivative of a given function f(r). Quite
similarly to the duct problem, the modes m ∈ N such that |m| < kR0 are propagating.
For |m| > kR0, the modes are evanescent (and therefore are not visible in the far-field
since they do not propagate). A special case corresponds to |m| ≈ kR0, which is related
to grazing modes that are tangent to the scatterer (generating glancing rays). The modal
analysis is meaningful since we can understand the accuracy of B-Spline approximations
for the spatial frequencies m and the dimensionless wavenumber kR0. In addition, this also
helps in clarifying what can be expected for the case of the scattering of a plane wave by
the disk since the exact solution is built as a modal series expansion of the elementary mode
solutions.
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Fig. 10. Outline of the patches.

(a) �(uex
m ) (b) �(uh)

Fig. 11. Comparing (a) the real parts of the exact solution uex
m and (b) the numerical B-Spline FEM solution

uh for k = 40, m = 2, p = 3 and nλ = 10.

We fix R0 = 1 and R1 = 2. The domain model was generated using four identical patches
as shown in Fig. 10. We report the real parts of uex

m and uh in Fig. 11 where the wavenumber
is k = 40 and m = 2 (which is a propagating mode since m = 2 ≤ kR0 = 40). The order of
the method is p = 3 for a density of discretization points per wavelength nλ = 10. We clearly
see that the wavefield is accurately computed since the absolute error |uex

m − uh| is below
10−5 as it can be deduced from Fig. 12. The convergence graph presented in Fig. 13 shows
the effect of increasing the discretization density nλ for various orders p of the underlying
Spline basis function on the relative L2-error ε2 for k = 40 and m = 2. We see that the
error curves follow the slopes of the curves hp+1. The evolution of the relative error ε2 with
respect to the wavenumber k is plotted in Fig. 14, for m = 2, with various approximation
orders p of B-Spline FEM and nλ = 10. We can observe that the accuracy does not strongly
depend on k for a fixed density when p ≥ 3.
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Fig. 12. Absolute error |uex
m − uh| for k = 40, m = 2, p = 3 and nλ = 10.

Fig. 13. Evolution of the error ε2 versus the discretization density nλ for k = 40, m = 2 and p = 1, . . . , 5.

Fig. 14. Evolution of the error ε2 versus the wavenumber k for m = 2, nλ = 10 and p = 1, . . . , 5. The
accuracy of the solution is independent of the wavenumber k for p ≥ 3 and a fixed discretization density nλ.
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Fig. 15. Evolution of the relative error ε2 (top) and absolute error (bottom) versus the mode number m for
k = 40, nλ = 10 and p = 1, . . . , 5.

One remaining question is to investigate how this error depends on m for a fixed k.
To analyze this point, we report in Fig. 15(top) the evolution of the relative error ε2 with
respect to m and various values of p, for a fixed framework k = 40 and nλ = 10. The error
clearly decays strongly p-refinement. This is particularly true for the propagative modes
corresponding to m ≤ kR0 = 40. At first sight, the situation seems to deteriorate when m

is larger than kR0 = 40, i.e. for the evanescent modes. This is in fact a problem related
to the property that the corresponding reference solution starts quickly being very small
because of the exponential decay of the evanescent modes. As a consequence, the relative
error is not a suitable representation. We complete these explanations with Fig. 15(bottom)
reporting the absolute error. We can indeed see that the absolute error is extremely small
for the evanescent modes. From these remarks, and since the solution of the scattering of
a plane wave by a circular cylinder is computed as the superposition of these modes, we
can expect that similar graphs to Fig. 14 could be obtained for the full plane wave problem
(see Sec. 3.2.2), most particularly because the propagating modes are the most significant
modes contributing to the solution.
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3.2.2. Scattering by a sound-hard circular cylinder : Plane wave scattering

In the previous section, the scattering problem of a sound-hard circular cylinder was
found for given harmonics m. The solution for the full plane wave incidence can be con-
structed by superposition as a Fourier series expansion of these harmonics. In this section,
we consider an incident plane wave uinc(x) = eikd·x, where d is the incidence direction
d = (cos(θinc), sin(θinc))T and θinc is the scattering angle.

Because of the symmetry of the problem, we fix the incidence direction to d = (1, 0)T

and the scatterer as the unit circular cylinder with R0 = 1. Similar to the previous example,
the second-order Bayliss–Turkel ABC (8) is placed on the circle with radius R1 = 2. We
consider the following exact solution60 to analyze the pollution and approximation errors
and to avoid the domain truncation error where uex

m is given by Eq. (11). To get an accurate
reference solution,

uex =
∑
m∈Z

imuex
m , (13)

we truncate the above series expansion by summing up on m from −mmax to mmax :=
[kR0] + 30 (where [r] denotes the integer part of a real-valued positive number r). We
report in Fig. 16 the real parts of uex (see Fig. 16(a)) and uh (see Fig. 16(b)), where
the wavenumber is k = 40. For B-Spline FEM, the order of the method is p = 3 for a
density of discretization points per wavelength nλ = 10. We clearly see that the wavefield is
accurately computed since the absolute error |uex

m − uh| is below 10−4 as it can be deduced
from Fig. 17(a). The evolution of the error with respect to the discretization density nλ for
p = 1, . . . , 5, is shown in Fig. 18 where the wavenumber k is equal to 40. This shows that if
p is larger than 3, then the ε2-error starts being small (e.g. less than 10−2) even for small
densities nλ (typically nλ ≥ 6). In addition, for nλ = 5, we can see in Fig. 17(b) that the
error remains acceptable.

The evolution of the error ε2 according to the wavenumber k is depicted in Fig. 19. For
this test, we fix nλ = 10 and p = 1, . . . , 5 for B-Spline FEM. As we can see, the error almost

(a) �(uex) (b) �(uh)

Fig. 16. Comparing the real parts of (a) the exact solution uex and (b) the numerical B-Spline FEM solution
uh for k = 40, p = 3 and nλ = 10.
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(a) nλ = 10 (b) nλ = 5

Fig. 17. Absolute error |uex − uh| for k = 40 and p = 3. The discretization density is (a) nλ = 10 and
(b) nλ = 5.

Fig. 18. Evolution of the error ε2 versus the discretization density nλ for k = 40 and p = 1, . . . , 5. The error
is consistently reduced by refinement following the slopes of hp+1. The error level is low for p ≥ 3 even for
the low discretization density nλ = 5.

Fig. 19. Evolution of the error ε2 versus the wavenumber k for nλ = 10 and p = 1, . . . , 5. The numerical
error does not increase with the wavenumber k when p ≥ 3, confirming hence the small pollution error.
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(a) �(uex) (b) �(uh)

(c) |uex − uh|
Fig. 20. Comparing the real parts of (a) the exact solution uex and (b) the numerical solution uh and (c)
absolute error |uex − uh| for k = 200, p = 3 and nλ = 5.

does not depend on k, which means that the pollution error is very small. Again, a very
good accuracy is obtained for p ≥ 3, the error dependence on k seems to be more identifiable
for the lowest-order approximations, i.e. p = 1 and p = 2. We consider now a much higher
wavenumber, i.e. k = 200. We report in Fig. 20(b) the real part of the numerical solution
for p = 3 and the low density of discretization points per wavelength nλ = 5. The solution
can be compared with the exact solution available in Fig. 20(a). We immediately see that
the two solutions are the same. This is confirmed in Fig. 20(c) where we report the absolute
error |uex−uh| between the two solutions. This error is of the order 10−2 which is relatively
low for the discretization density of nλ = 5.

Finally, we report now the results for a very high wavenumber k = 500 in Fig. 21. We
provide the real parts of the exact solution uex (Fig. 21(a)) and B-Spline FEM numerical
solution uh (Fig. 21(b)). For B-Spline FEM, the order of the method is p = 3 for a density
of discretization points per wavelength nλ = 5. Even if there is no visible difference, plotting
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(a) �(uex) (b) �(uh)

(c) |uex − uh| (p = 3; nλ = 5) (d) |uex − uh| (p = 4; nλ = 5)

Fig. 21. Comparison of the real parts of (a) the exact solution uex and (b) the numerical B-Spline FEM
solution uh for k = 500, p = 3 and nλ = 5. Absolute error |uex − uh| for (c) p = 3; nλ = 5 and (d) p = 4;
nλ = 5.

the absolute error on Fig. 21(c) shows an order of about 6%. This can be made much smaller
by increasing the order of approximation to p = 4 by keeping nλ = 5 as seen in Fig. 21(d),
leading to an error of about 10−3.

3.3. Remarks on the linear system structure for B-Spline FEM

Spline bases lead to linear systems which are not as sparse as Lagrange bases. For the case of
the unit circular cylinder, we report in Figs. 22(a)–22(e) the sparsity pattern of the matrices
for a single patch method for various values of the order p (and for k = 10 and nλ = 5).
We clearly see that the bandwidth of the matrices increases with p, but in a structured
way. In addition, when increasing the number of patches from one to four (see Figs. 23(a)–
23(e)), we can observe a block structure of the matrix, but without increasing the number
nz of nonzero elements. Of course, increasing the order p enlarges the bandwidth of the
elementary matrices related to the patches, as expected.
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(a) p = 1 (b) p = 2 (c) p = 3

(d) p = 4 (e) p = 5

Fig. 22. Unit circular cylinder: sparsity pattern of the matrices arising in B-Spline FEM for a single patch
decomposition (k = 10, p = 1, . . . , 5, nλ = 5).

(a) p = 1 (b) p = 2 (c) p = 3

(d) p = 4 (e) p = 5

Fig. 23. Unit circular cylinder: sparsity pattern of the matrices arising in B-Spline FEM for a four patches
decomposition (k = 10, p = 1, . . . , 5, nλ = 5).
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4. Increasing the Order of the ABC Based on a Padé-Type
Approximate Representation

The BGT2-like ABC yields accurate numerical results in low- to mid-frequency regimes
when applied on an arbitrarily shaped convex fictitious boundary Σ sufficiently far from
the scatterer. The accuracy of the BGT2 ABC deteriorates as the frequency increases. In
this section, we increase the order of the ABC by imposing a Padé-type ABC derived and
validated in Refs. 59 and 60 for high-frequency acoustic scattering and linear FEM. We
impose the radiation condition in the following form:

∂nΣ
u = ik

√
1 + ∂s

(
1

k2
ε∂s

)
u− κ

2
u+

κ2

8(κ− ik)
u− ∂s

( κ

2k2
∂su
)
, (14)

where s and ∂s are the counterclockwise directed arc length and curvilinear derivative
along Σ. The function κ is the curvature at a point of the artificial boundary and

√
z is the

principal determination of the square root of a complex number z with branch-cut along the
negative real axis which can be accurately represented by a rotating branch-cut approxima-
tion of the square root and Padé approximations.71 Furthermore, a complex wavenumber kε

with small dissipation ε is introduced to obtain an accurate representation of the tangential
rays.7 The modified and regularized square root operator is then approximated by√

1 + ∂s

(
1
k2

ε

)
∂su ≈ C0u+

N∑
j=1

Aj∂s(k−2
ε ∂s)(1 +Bj∂s(k−2

ε ∂s))−1u, (15)

where kε = k + iε with the optimized damping parameter ε = 0.4k
1
3κ

2
3 .7 The Padé approx-

imation of order N , denoted by RN , and the complex coefficients C0, Aj and Bj are

√
1 + z ≈ RN (z) = 1 +

N∑
j=1

ajz

1 + bjz
,

C0 = ei
α
2RN (e−iθ − 1),

Aj =
e−iθ/2aj

(1 + bj(e−iθ − 1))2
,

Bj =
e−iθbj

1 + bj(e−iθ − 1)
,

(16)

where α is the angle of rotation, and aj , and bj for j = 1, . . . , N , are the standard real-valued
Padé coefficients given by

aj =
2

2N + 1
sin2

(
jπ

2N + 1

)
,

bj = cos2

(
jπ

2N + 1

)
.

(17)
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Finally, the approximation of Padé-type ABC of order N is

∂nΣ
u = ik


C0u+

N∑
j=1

Ajφj


− κ

2
u+

κ2

8(κ− ik)
u− ∂s

( κ

2k2
∂su
)
, (18)

where the auxiliary variables φj are defined on the fictitious boundary Σ such that(
1 +Bj∂s

(
1
k2

ε

∂s

))
φj = ∂s

(
1
k2

ε

∂s

)
u. (19)

The weak form of the sound-hard scattering problem with Padé-type ABC is obtained in
terms of a system of coupled bilinear forms A , B, C and D


A (u, v) +

N∑
j=1

Bj(φj , v) = b(v),

C (u, ψj) + Dj(φj , ψj) = 0, j = 1, . . . , N,

(20)

where

A (u, v) =
∫

Ω
∇u∇vdΩ − k2

∫
Ω
uvdΩ − ikC0

∫
Σ
uvdΣ

+
1
2

∫
Σ
κuvdΣ − 1

8

∫
Σ

κ2

κ− ik
uvdΣ +

1
2k2

∫
Σ
κ∂su∂svdΣ, (21)

Bj(φj , v) = −ikAj

∫
Σ
φjvdΣ,

C (u, ψj) =
1
k2

ε

∫
Σ
∂su∂sψjdΣ,

Dj(φj , ψj) =
∫

Σ
φjψjdΣ − Bj

k2
ε

∫
Σ
∂sφj∂sψjdΣ.

(22)

In order to understand the performance of the Padé-type ABC in the context of B-Spline-
based FEM, we compute the absolute error of the scattererd field of the circular cylinder
with radius R0 = 1, where computational domain is truncated at R1 = 2. To fairly compare
the performance of the Padé-type ABC with BGT2, we choose the full-space exact solution
for the exterior sound-hard problem

uex(r, θ) =
∞∑

m=0

εm(−im)
J ′

m(kR0)

H
(1)
n (kR0)

H(1)′
m (kr) cos(mθ). (23)

The absolute errors for Padé and BGT2 ABCs are shown in Figs. 24(a) and 24(b) for p = 5,
k = 250, nλ = 5, where the number of Padé terms and the rotation angles are set to N = 2,
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(a) |uex − uh| — Padé ABC (b) |uex − uh| — BGT2 ABC

Fig. 24. Comparison of the absolute error in the computational domain for (a) Padé ABC (N = 2 and
α = π/6) and (b) BGT2 ABC for k = 250, p = 5, nλ = 5.

Fig. 25. Evolution of the error ε2 versus the discretization density nλ for k = 40 and p = 1, . . . , 5. Padé
ABC with α = π/6 and 2 terms was imposed on the artificial boundary. The error is consistently reduced by
refinement following the slopes of hp+1. The error was calculated with respect to a highly refined numerical
solution.

and α = π/6, respectively. The optimal number of Padé terms, denoted by N , may vary
with the discretization density (this will be further studied in a forthcoming analysis). The
evolution of relative L2 error of the circular cylinder subjected to plane wave with respect
to the discretization density, nλ, is shown in Fig. 25 for k = 40, and p = 1, . . . , 5. The
error evolution follows the slope of hp+1. The error was calculated with respect to a highly
refined numerical solution with Padé ABC. Next, we study the evolution of the pollution
error with the wavenumber k in Fig. 26 for nλ = 10 and p = 1, . . . , 5. It is noteworthy that
the pollution is nonvisible for basis orders p = 3, . . . , 5.
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Fig. 26. Evolution of the error ε2 versus the wavenumber k for nλ = 10 and p = 1, . . . , 5. Padé ABC with
α = π/6 and 2 terms was imposed on the artificial boundary. The error was calculated with respect to an
highly refined numerical solution.

5. Scattering by a Sound-Hard Submarine-Like Object

We consider a more realistic shape in this section by generating a multi-patch model of the
submarine-shaped scatterer composed of 19 patches as shown in Fig. 27. The total length of
the submarine is 3, the length of the hatch is 0.35 and its diameter is 0.5. We apply the Padé-
type ABC at the fictitious boundary at R1 = 2. We define the discretization density based on
the number of degrees of freedom on the artificial boundary and maintain the same density
of control points in radial direction. Padé-type ABC is imposed on the artificial boundary
at R1 = 2, where N = 8 and α = π/6. Since there is no analytical solution available for this
example, we use a highly refined reference solution to study the convergence of the method.
The scattered and total fields are plotted in Figs. 28(a) and 28(b) for k = 100 and p = 5.
The convergence of the relative L2 error with discretization density nλ is shown in Fig. 29
where the numerical solution is converging with h-, and p-refinement to the overly refined

Fig. 27. The 2D submarine model made of 19 patches.
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(a) �(uh) (b) |utotal|
Fig. 28. Numerical solution of the submarine-shaped scatterer with Padé-type ABC with N = 8 and α = π/6:
(a) real part of the scattered field and (b) absolute value of the total field.

Fig. 29. Evolution of the relative L2 error with discretizaion density, nλ, for the submarine shaped scatterer
with Padé ABC (N = 8 and α = π/6) for k = 40 and p = 1, . . . , 5.

Fig. 30. Evolution of the relative L2 error with wavenumber, k, for the submarine-shaped scatterer with
Padé ABC (N = 8 and α = π/6) for nλ = 10 and p = 1, . . . , 5.
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numerical solution. Similar to the previous section, we also present the evolution of L2 error
with wavenumber k in Fig. 30. It is evident that the pollution error is well under control
when the basis order is equal or higher than p = 3.

6. Scattering of a Plane Wave by a Sound-Hard Sphere

We propose a 3D benchmark test consisting of the scattering of the plane wave uinc = eik·x

by a sound-hard sphere centered at the origin and with radius R0 = 1. We truncate the
infinite spatial domain by using the simplest ABC, i.e. the Sommerfeld radiation condition:
∂ru− iku = 0, on an outer fictitious spherical boundary Σ = S1, centered at the origin, with
radius R1 > R0. To separate the truncation error from the B-Spline FEM approximation
error, we compute the exact solution by applying the Neumann boundary condition on
R0 = 1 and the ABC at R1 = 2 to include the possible reflection due to the truncation.
This leads to the exact solution

uex(x) =
1
4π

∞∑
n=0

(2n + 1)(Anh
(1)
n (kR) +Bnh

(2)
n (kR))Pn(x̂ · k̂), (24)

with x := Rx̂ (R = |x|), k := kk̂, h(1)
n and h(2)

n the spherical Hankel’s functions of the first-
and second-kind, respectively, and Pn the Legendre polynomial of order n. The coefficients
An and Bn are obtained by solving the 2 × 2 system of equations

 h
(1)′
n (kR0) h

(2)′
n (kR0)

h
(1)′
n (kR1) − ih

(1)
n (kR1) h

(2)′
n (kR1) − ih

(2)
n (kR1)



(
An

Bn

)
= bn, (25)

with

bn =

(−4πinj′n(kR0)

0

)
, (26)

(a) �(uex) (b) �(uh)

Fig. 31. Comparison of the real parts of (a) the exact solution uex and (b) the numerical solution uh for
k = 25, p = 3 and nλ = 5.
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Fig. 32. The absolute error |uex − uh|, k = 25, p = 3, nλ = 5.

Fig. 33. Evolution of the error ε2 versus the wavenumber k for nλ = 8 and p = 1, . . . , 5.

Fig. 34. Evolution of the error ε2 versus the discretization density nλ for k = 10 and p = 1, . . . , 5.
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where jn are the regular spherical Bessel functions. The real parts of the exact and numerical
solutions are compared in Fig. 31, for the parameters k = 25, p = 3 and nλ = 5. The
corresponding absolute error |uex − uh| is shown in Fig. 32. We again observe a very good
accuracy of the B-Spline FEM numerical solution. We report in Fig. 33 the evolution of the
ε2 error with respect to the wavenumber. We fix the density to nλ = 8 and p varies from 1
to 5. We see that the error weakly depends on k, showing again that there is a low pollution
error related to B-Spline FEM. From Fig. 34 where k = 10, we conclude that increasing the
discretization density nλ and the order of the basis consistently reduces the error.

7. Conclusion

In this paper, we formulated, implemented and exercised a B-Spline FEM for the Helmholtz
problem in 1D, 2D and 3D problems. We used first a (simple) ABC on a fictitious boundary
to truncate the infinite space. This truncation introduces an error in the numerical solution.
To better study the performance of B-Spline FEM, the truncation error was included in
the analytical solution so that the pollution error is distinguishable from the discretization
error. It is shown that B-Spline FEM is a robust approach to contain the effects of the
pollution error and that the boundary discretization errors are controllable. Furthermore,
we studied a Padé-type ABC to perform a high-frequency analysis. We observe that the
Padé-type ABC leads to a better accuracy than the BGT2 ABC with minimal additional
computational cost. Accurate representation of the boundaries in B-Spline FEM regard-
less of the discretization density combined with low pollution error makes it a promising
platform for scattering analysis. Our ongoing work focuses on a fair and complete compar-
ison between NURBS-based approximations and high-order Lagrange-based FEMs. This
requires precisely dealing with the error associated with the order of the approximation
of the geometry and the inclusion of high-order ABCs and perfectly matched layers into
NURBS-based approximations. We are also investigating the extension to electromagnetic
scattering.
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Appendix A. Pseudo-Code of the 1D Problem

The stiffness matrix for a single element is calculated and assembled into the global matrix
following these steps:

• set K = 0;
• loop over number of elements;
• loop over Gaussian points ξ̃i, w̃i

(a) find the parametric coordinate ξ = φ̃e(ξ̃j);
(b) compute the basis function Re

a (a = 1, . . . , p+ 1) at point ξ;
(c) define vector R = [Re

1, R
e
2, . . . , R

e
p+1];

(d) compute the basis function derivatives Re
a,ξ (a = 1, . . . , p+ 1) at point ξ;

(e) define vector Rξ = [Re
1,ξ, R

e
2,ξ, . . . , R

e
p+1,ξ];

(f) compute |Jξ| = ‖RξP‖;
(g) compute |Jξ̃| = 0.5(ξi+1 − ξi);
(h) compute shape function derivatives Rx = J−1

ξ RT
ξ ;

(i) set ke = ke + RxRT
x |Jξ ||Jξ̃|w̃j − k2RRT |Jξ||Jξ̃ |w̃j ;

(j) end of both loops;

then, the Neumann boundary condition is applied and the resulting linear system is solved
to find the estimated solution in B-Spline FEM.
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