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Abstract—A deep learning based approach is proposed to 

accurately recover shock signals measured from a damaged 
high-g accelerometer without modifying the hardware. We first 
conducted shock tests and collected a large dataset of shock 
signals with different levels of acceleration by using an efficient 
experimental apparatus. The training data is composed of a pair 
of signals simultaneously obtained from a faulty accelerometer 
and a high-end accelerometer (served as the ground truth). A 
customized autoencoder neural network is designed and trained 
on this dataset, aiming to map the faulty signals to their reference 
counterparts. Experimental results show that, with the help of 
deep learning, shock signals can be accurately recovered from the 
faulty measurements. Compared with conventional approaches 
that require diagnosing and replacing faulty parts, the proposed 
data-driven method demonstrates a highly promising solution 
that allows recovering corrupted signals without introducing 
extra work to upgrade the hardware at almost zero cost. The 
dataset and code of this work are made publicly available on 
GitHub at https://github.com/hope-yao/Sensor_Calibration. 
 

Index Terms—Autoencoder, deep learning, data recovery, 
high-g accelerometer, shock test 

I. INTRODUCTION 
hock loading, especially the high-g level shock, is 
characterized as a transient transfer of massive energy to a 

system, which is very likely to seriously affect the performance 
of the system [1]. Many conditions, such as the release of space 
equipment [2], drop of electronic devices [3], and crashing of 
vehicles [4], are subjected to high-g shock excitations. In order 
to estimate and improve the reliability of products under shocks, 
high-g accelerometers are developed and widely used to 
measure shock responses [5]. However, accurately measuring a 
high-g shock signal is challenging because of the high peak 
value, short duration, and complicated frequency spectrum [6]. 
To obtain an accurate measurement, many efforts have been 
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devoted to improving the hardware of sensors [7]. One of the 
drawbacks is the high hardware cost. Besides, diagnosing 
faulty accelerometers can be very time consuming. Moreover, 
due to the intellectual protections with different corporations, it 
is difficult to correct faulty accelerometers by upgrading the 
inner sensing units directly. Thus, it would be of great interest 
to sensor manufacturers as well as end-users to develop an 
efficient and low-cost method that can extend the lifecycle of 
accelerometers by recovering accurate results from corrupted 
signals measured with faulty accelerometers. 

To improve the measuring performance of high-g 
accelerometers, sensor calibration is always required to 
characterize the systematic errors of individual sensors. Two 
main shock calibration methods are described by the 
International Organization for Standardization: the primary 
shock calibration method [8] and the comparative calibration 
method [9]. The former is accurate but expensive, whereas the 
latter is convenient but with slightly lower accuracy. An 
example of the primary shock calibration is the Hopkinson bar 
system [10], which is able to generate high-g shock loadings 
with an air gun and measure shock signals accurately via laser 
interferometry. The typical comparative calibration approach is 
termed as “back-to-back” method [11], which calibrates a 
sensor by comparing it with a calibrated reference transducer. 
These methods have been widely employed to calibrate the 
dynamic linearity, sensitivity, and repeatability of a raw 
accelerometer. Nevertheless, these methods can only test the 
precision of an accelerometer but lack the competence of 
improving its measuring performance.  

Researchers have tried to improve the performance of 
sensors by mapping the raw electrical signals of an 
accelerometer to its calibrated counterparts. Such methods 
include looking-up table and nonlinear fitting [12], [13]. 
However, these methods suffer from poor generalization 
performance and low calibration accuracy. Besides, these 
methods entirely rely on the high repeatability of the 
accelerometer. Lastly, these mapping methods cannot calibrate 
the entire time-domain shock signal but merely the peak value 
and/or pulse width of a shock signal [14]. Only the two 
parameters (peak value and pulse width), though they are two 
key parameters in conventional standard-waveform-based 
shock test [1], cannot describe the actual shock environment 
exactly. The shock response spectrum (SRS) method, which 
converts the entire time-domain shock signal into a 
frequency-domain spectrum, is proposed for signal 
characterization and replacing the standard-waveform-based 
shock test methods gradually, especially in pyroshock test [2], 
[6]. Therefore, it is important to enhance the capability of 
recovering the entire time-domain shock signal from the faulty 
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shock signals instead of only the peak value and pulse width. 
Meanwhile, the peak value of a shock signal is a significant 
index in board-level shock tests after all [3]. Thus, it is critical 
that the proposed recovery method should be able to recover the 
holistic time-domain signal waveform while remain high 
calibration accuracy on the signals’ peak values. 

Over the past decade, deep learning has achieved great 
success in a variety of fields. Examples include computer 
vision [15], fault diagnosis in mechanics [16], aerospace 
engineering [17], etc. However, few works have been done to 
introduce deep learning to the field of calibrating industrial 
high-g accelerometer. A related work is implemented by Oh et 
al. [18], in which a robots-used multi-axial force/torque sensor 
is calibrated based on deep learning and several problems, such 
as nonlinearity, errors, and coupling, are solved successfully. 
Besides, self-validating techniques have been applied to 
recover faulty data in the fields of pressure sensors [19], gas 
detectors [20], and temperature sensors [21]. Nevertheless, 
differing from the force/torque sensors, pressure sensors, gas 
detectors, and temperature sensors working on a low-amplitude 
and quasi-static environment, high-g accelerometers work 
under severe shock environments, and, hence, present strong 
nonlinear characteristics in terms of high amplitude, transient 
excitation time, and complicated frequency components [6]. 
These strong nonlinearities also lead to strong uncertainty in the 
high-g shock signals and thus make the training of deep neural 
network (DNN) more difficult [22]. Additionally, training data 
in [18] is obtained via simplified models, whereas it is quite 
difficult to build such models for high-g shock conditions due 
to the strong nonlinearity and uncertainty [23]. On the other 
hand, the self-validating techniques depend on physical or 
analytical redundancy, which makes these techniques more 
suitable for correcting faulty measurement of sensor arrays, but 
not the standalone high-g accelerometers.  

In this work, instead of ameliorating hardware, a purely 
data-driven approach is proposed to recover the shock signals 
measured from the faulty accelerometer with the help of deep 
learning. The rationale of our work is that the hidden mapping 
between the faulty and normal shock signals can be mined via 
training DNN, and then recovering the corrupted signals by 
using the acquired mapping. The aim is to approximate the 
recovered shock signals to their reference counterparts, so that 
the faulty accelerometer could acquire similar measuring 
results with the high-end one, and thus the high-cost hardware 
repairing and time-consuming repeated shock tests could be 
avoided. This recovery method could be a valuable option to 
address some intractable problems involving data recovery in 
practical shock tests. A typical case that sometimes occurs in 
practice is that the accelerometer and the tested electronic 
devices are damaged simultaneously during the high-g shock 
test. As the tested device was damaged, it is compulsory to 
analyze the damage causes and redesign the device according to 
the shock environment. However, the damaged accelerometer 
cannot obtain the accurate shock signals to describe the shock 
environment. Besides, as the tested devices could be expensive, 
it is impermissible to perform this destructive test repeatedly. 
Another case is that an accelerometer without calibration is 
applied to shock tests due to operator’s ignorance in advance. 
Since massive inaccurate results have been measured with the 
uncalibrated sensor, it is not allowable to conduct these shock 

tests again due to the high cost and time invested in the tests. 
The proposed method could pave a new avenue in addressing 
these kinds of data recovery problems in shock tests. 

The pipeline of our work is as follows: Firstly, an 
experimental high-g shock environment is developed by 
combining a drop shock tester [1] and a dual mass shock 
amplifier (DMSA) [3]. This setup is pneumatic-driven with 
high operating efficiency, which is particularly beneficial for 
deep learning methods due to the low time-cost in generating 
and collecting abundant shock signal data. Then, a pair of faulty 
and working high-end accelerometers is used to measure shock 
signals simultaneously and continuously. After that, a pair of 
datasets containing shock signals from both the faulty and 
high-end accelerometers is collected. The failure cause of the 
damaged accelerometer is later diagnosed as the poor contact of 
the transmission line inside the faulty accelerometer. Lastly, a 
DNN is trained to learn the mapping between the faulty shock 
signals and the reference ones. A novel peak prediction 
network (PPN) is embedded in the DNN to ensure the accuracy 
of the peak value of each recovered shock signal, and this is of 
great benefit for the board-level drop test of electronics. The 
resultant network can reconstruct both the holistic time-domain 
shock signals and the peak values synchronously, and thus, the 
corrected results are suitable for both the SRS-based shock test 
standards and the board-level drop test standards. Experimental 
results show that the datasets of shock signals can be gathered 
with high efficiency and the trained DNN can correct the 
corrupted shock signals with high accuracy. This work would 
provide a new avenue for the research in the fields of data 
recovery of time-series and self-validating accelerometers. 

II. THE PROPOSED APPROACH 
This section introduces the main components of the proposed 

approach. The first part demonstrates the designed high-g 
shock test system for generating high-g shock experiments. The 
second part introduces the data collection of high-g shock 
signals. The third part describes the structure of the DNN and 
how it is trained by using the collected datasets. 
A. High-g Shock Test System 

The first step towards building a deep learning model is to 
build a high-g shock test platform to generate the training data 
(shock signals) efficiently. There have been several types of 
shock test machines for generating high-g shocks [25]-[27]. 
Though these setups have respective advantage, such as 
generating higher g value, simple structure, and small size, they 
are too expensive and time-consuming to adapt to generate 
large scale data. Recently, DMSA has attracted more and more 
attention for high-g shock test [28]. As shown in Fig. 1, the 
DMSA is attached to a drop shock tester to together form a 
high-g shock test system. Such system can generate 
accelerations more than 30,000 g [29]. Its working procedures 
are shown in Fig. 1 (a)-(c). The DMSA is attached to a drop 
shock tester rigidly, which consists of a DMSA base, four guide 
rods, a DMSA table that moves along the guide rods freely, and 
bungee cords that hold the DMSA table above the base with a 
certain gap. To perform the high-g shock test, the drop table and 
DMSA will free fall together from a drop height. The drop table 
and DMSA base will then collide with a rubber waveform 
generator (RWG) fixed on the drop base in a primary impact, 
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and then bounce upward because of the elasticity of the RWG. 
Simultaneously, the DMSA table will continue moving 
downward and collide with the upward-moving DMSA base in 
a secondary impact, which generates a high-g shock signal [28]. 
 

 
Fig. 1.  The schematic of the high-g shock test system which consists of a 
DMSA and a drop shock tester. The DMSA is composed of 7 components, 
which are indexed in Fig. 1 as 1-bungee cords, 2-DMSA table, 3-DMSA 
programmer, 4-holders, 5-DMSA dampers, 6-DMSA guide rods, and 7-DMSA 
base. The drop shock tester includes 6 components, indexed in Fig. 1 as 8-drop 
guide rods, 9-drop table, 10-RWG, 11-drop base, 12-air springs, 13-shock 
tester dampers, 14-faulty accelerometer, and 15-high-end accelerometer. 

 
Obviously, the efficiency of this shock test system primarily 

depends on the time-cost in lifting the drop table. We designed 
a pneumatic-driven shock test system as shown in Fig. 2, of 
which the lifting module, braking module, and air springs are 
all controlled by the pneumatic system. This pneumatic-driven 
shock test system can generate approximately 40 shock signals 
per minute, which is more efficient than the traditional shock 
testers. Additionally, the mission input module, operating 
module, data acquisition module, and data processing module 
are integrated into a control cabinet, on which all the operations 
for shock tests can be completed directly and all the shock 
signals can be collected automatically. Combining all these 
together, this designed high-g shock test system is greatly 
suitable for generating and gathering massive shock data.  

 

 
Fig. 2.  The designed pneumatic-driven high-g shock test system. 

B. Data Collection 
As shown in Fig. 2, a faulty accelerometer (with no prior 

information on its fault cause but was later diagnosed as the 
poor contact of the transmission line inside the sensor) and an 
ENDEVCO® high-end accelerometer (as the ground truth) 
were mounted on the DMSA table closely, so that the same 
shock level can be measured simultaneously. The sampling rate 

of the data acquisition card is 200 kHz, which guarantees the 
sufficient fidelity for each shock signal. As an example, Fig. 3 
shows a pair of signals measured from the faulty accelerometer 
and the high-end one respectively. Obviously, under the same 
shock level, the faulty accelerometer cannot measure the shock 
signal accurately, whereas the high-end one provides a more 
complete and reliable waveform. 

   

 
Fig. 3.  Typical shock signals measured from the faulty accelerometer and the 
high-end accelerometer. 
 

In order to eliminate the interference caused by the mounting 
positions, the mounting positions of these two accelerometers 
were switched and another set of shock test at the same shock 
level was conducted. As shown in Fig. 4, a measured shock 
signal after exchanging mounting position is quite in line with 
its initial measured shock signal, and the fitting goodness 
between them is 0.985, which is very close to 1. Therefore, the 
influences caused by the mounting positions are negligible.  

 

 
Fig. 4. The schematic of the measured shock signal after reversing mounting 
position and its initial measured shock signal.  

 
After that, the drop heights were changed randomly and 

automatically to obtain different pairs of shock signals. These 
shock signals measured at different drop heights represent 
different shock levels. A total of 660 high-g shock tests were 
conducted and 660 sets of shock signal pairs were collected. 
Based on the peak values of all the shock signals measured by 
the high-end accelerometer, the distribution of the shock levels 
of all the data is shown in Fig. 5. Additionally, for better 
network training, all the measured shock signals were 
pre-processed to preserve the holistic temporal waveforms by 
removing superfluous signal: the shock signals were cut to be 
framed in a fixed-length temporal window of 15 ms duration, 
with 2.5 ms and 12.5 ms before and after their peaks 
respectively. Since the sampling rate is 200 kHz, each signal 
has a length of 3000 points. In the gathered 660 sets of shock 
signal pairs, 160 sets of data pairs were randomly extracted as 
test dataset, and the remaining 500 sets of data pairs were 
maintained as the training dataset for the neural network. 
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Fig. 5.  The distribution of the shock levels of all the shock data.  

C. The Proposed DNN 
1) Overview: The inspiration of adopting deep learning to 

correct faulty shock signals comes from the aphorism of 
“diligence redeems stupidity” that humans or even biological 
entities can improve their skills through continuous training 
and effort. Moreover, recent research in applying deep learning 
to process time-series signals [15], [24] also proves the concept 
in related domains, and paves a new avenue towards the goal of 
this paper. Similarly, the DNN is trained with the collected 
shock signal datasets. Our idea is illustrated in Fig. 6, where the 
goal is to train a DNN that can reconstruct the corrupted signals 
to be as close to the reference signals as possible. 
 

 
Fig. 6.  The schematic diagram of the proposed deep learning-based method. 
 

2) Autoencoder (AE): AE is a neural network designed for 
efficient data encoding in an unsupervised manner. The core 
idea of AE is to encode data in a more compact manifold than 
the original space through the encoder and the coding vector in 
the low-dimensional space can be reconstructed back to the 
original input space through the decoder [30]. Via enforcing the 
reconstruction to be as lossless as possible, AE will learn to 
encode the data in a most efficient way. Thusly, the coding 
vector is able to catch the most eminent features of the input 
data. Fig. 7 shows a basic AE structure with three layers. 

 

 
Fig. 7.  The structure of an AE. 

Given an unlabeled training sample set {࢞}ୀଵெ , the 
encoder transforms every training sample ࢞ in the set into a 
hidden coding vector ࢎ through the coding function ݂ࣂ, i.e., 

ࢎ	     	=	  (1)                            ,	(࢈	+	࢞ࢃ)ݏ	=	(࢞)ࣂ݂
where ݏ  is the activation function of the encoder and 
,ࢃ}=ࣂ  .are the parameters of the encoder {࢈

Then, the coding vector ࢎ  is transformed back to a 
reconstruction vector	࢞ෝ by the decoding function ݃ࣂᇱ	, i.e., 

ෝ࢞	  (2)                         ,	(ࢊ	+	ࢎ′ࢃ)ݏ	=	(ࢎ)ᇱࣂ݃	=	
where ݏ  denotes the activation function in the decoder, and 
 .are the parameters of the decoder {ࢊ,′ࢃ}=′ࣂ

The training of the entire network is done end to end by 
minimizing the reconstruction error ࢞)ܮෝ ,  .࢞	ෝ and࢞ ) of࢞
Mean square error is usually used as the standard AE loss 
function, such that ࢞)ܮෝ,  :) can be expressed as࢞

ෝ࢞)ܮ 	=	(࢞, ଵ
ெ
∑ (ଵ

ଶ
‖ଶ)ெ࢞	−	ෝ࢞‖

ୀଵ .                   (3) 
If ࢞ can be reconstructed well from the coding vector ࢎ, 

it means that most of the information contained in the training 
sample data are retained in the coding vector ࢎ. 

 
3) The Proposed DNN: Instead of the conventional approach 

of using AE in an unsupervised manner, it is used in a 
supervised fashion in this work. Furthermore, only the 
encoder-decoder network is not sufficient to recover the faulty 
shock signals because it is also supposed to have a high 
accuracy on the peak values of the to-be-recovered faulty shock 
signals. To this end, extra improvements on the structure of AE 
have been made. As illustrated in Fig. 8, the proposed network 
has three parts: encoder, decoder, and PPN, of which the PPN is 
introduced to handle the peak values of the shock signals 
specially. The input faulty signal ࢞  is normalized into the 
waveform component ࢞ and the peak component ௫  first. The 
encoder and decoder network forms an AE, which has the 
capability to recover the entire waveform of the shock signal. 
The data dimension is 3000 and the feature dimension is set as 
256. The PPN is an extra network branch to correct the peak 
value of the shock signal. It takes in both the peak value of the 
input shock signal ௫ and the encoded global information of 
the normalized signal ࢠ. The predicted peak value ௬  and the 
decoded signal ࢟  will be un-normalized to obtain the final 
recovered shock signal ࢟ௗ.  

The loss function of the proposed network is as follows: 
   	L	=		ܮஶ

௦+	ܮଶ
௦+ܮଶ

 ,                            (4) 
where ஶܮ		

௦ = ࢞‖ − ‖ஶ࢟ ଶܮ ,
௦=‖࢞ − ‖ଶ࢟ , 

and ଶܮ	
=‖௫ − ௬‖ଶ ஶܮ .

௦ and ܮଶ
௦  are defined to 

encourage the transformed normalized shock signals to have 
similar waveforms and peak values with the reference 
normalized shock signals. ܮଶ

  is defined to encourage the 
transformed shock signals to have similar peak values with the 
reference counterparts. It is expected that, by minimizing these 
three terms, the network will be able to predict the overall 
waveforms of the normalized shock signals as well as the peak 
values accurately. Adam optimizer [31] with a learning rate of 1
×10-4 is used. The convergence of the network training process 
is shown in Fig. 9. It can be seen that, although the losses are of 
different magnitudes, both of them converges well thanks to the 
network designing and training protocol. 
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Fig. 8.  The architecture of the proposed network. It takes in a faulty signal ࢞  as input, and will output a recovered signal ࢟ௗ . Blocks in color denote tensors, and 
transparent blocks denote network layers. Numbers in the block corresponds to the feature dimensions. 
 

 
Fig. 9.  The convergence curves of the proposed network. Shown in the figure 
are (a) the convergence curve of the loss of the overall shock waveforms and (b) 
the convergence curve of the loss of the peak values. 

III. EXPERIMENTAL RESULTS 

A. Error Metrics 
To thoroughly investigate the performance of our approach, 

several metrics are proposed to quantify the signal recovery 
quality: 1) relative error of peak values (REP), 2) SRS curves, 3) 
difference of time-domain waveforms (DTW), and 4) 
determination coefficient (R2), by comparing the recovered 
shock signal with the corresponding reference signal.  

The metric of REP is defined as: 
 	REP	=	|ݕ୫ୟ୶

ோ − ୫ୟ୶ݕ
ோ ୫ୟ୶ݕ/|	

ோ,                            (5) 
where  ݕ୫ୟ୶ோ  and ݕ୫ୟ୶

ோ is the maximal g value of the recovered 
shock signal series (࢟ோ) and the reference shock signal series 
 respectively. This evaluation index describes the ability (ோ࢟)
of recovering maximal shock responses from the faulty signals. 
Considering that the peak value is a key index in board-level 
shock test standards [3], [28], [29], it is essential to require the 
proposed approach to recover the peak values from the faulty 
shock signals, and so that the recovered results could be used to 
assess the reliability of products during board-level shock tests. 

Another error metric is the SRS curve which is a presentation 
for shock signals in frequency domain and serves as an 
important characteristic in the pyroshock test standards [2], [6]. 
The SRS curve is obtained by imposing the shock signal into a 
series of single degree of freedom mass-spring systems with 
increasing natural frequencies, and computing the maximal 
absolute acceleration response against its corresponding natural 
frequency [2]. It can be plotted with the improved recursive 
filter method quickly, but the whole time-domain signal must 
be provided in advance. Thus, it is essential for the proposed 
method to be able to recover the holistic time-domain shock 
signal as complete as possible, such that the recovered shock 
signals could be converted to the SRS curves and used to assess 
the reliability of products during the pyroshock tests directly. 

The third metric of DTW can be obtained by: 
 	DTW	=	(ݕோ ݕ−

ோ)/	ݕ୫ୟ୶
ோ , ݅ = 1, 2, ⋯	 , ݊	,          (6) 

in which ݕோ  and ݕ୫ୟ୶
ோ  is the value of the i-th point in ࢟ோ 

and the maximal value of ࢟ோ  respectively. This assessing 
index describes the local accuracy of every point in the 
recovered shock signal. The smaller the DTW is, the higher the 
local accuracy of the point. 

Lastly, we also compute the determination coefficient of the 
recovered shock signal, which is defined as: 

	Rଶ	=	1 − ∑ ൫ݕோ − ݕ
ோ൯

ଶ
ଵ /∑ ோݕ) − തோ)ଶݕ

ଵ ,      (7) 
where ݕതோ  is the mean of ࢟ோ . This metric indicates the 
global accuracy of the recovered shock signal. 	Rଶ will be close 
to 1 with a high global accuracy of the recovered results. 

B. Visualization of the network calibration 
As shown in Fig. 10, the faulty high-g accelerometer 

produces corrupted high-g shock signals. By comparing the 
recovered signals and the reference signals, it can be found that 
the shock signals recovered by the DNN match closely, in terms 
of their overall temporal waveforms, with the corresponding 
reference signals. This is highly desirable and indicates that the 
holistic time-domain faulty shock signals can be confidently 
and effectively recovered by the proposed method. On the other 
hand, the SRS curves of the recovered shock signals and the 
corresponding reference signals also match very well. The SRS 
curves of the faulty shock signals are clearly deviating from the 
reference data. This not only implies the validity of the 
proposed method, but also verifies that the recovered signals 
can be applied into the pyroshock test directly and accurately. 

In terms of the errors in the time domain, the local relative 
errors of the sampling points in the recovered signals mostly 
fall below 15%, with few outliers ranging from 15% to 20%. It 
is considered that the local accuracy of the recovered signals is 
averagely satisfactory. Considering the high data-loss of the 
faulty sensor, ensuring the accuracy of all individual sampling 
points is very difficult and is not the main focus of this work. 
Reducing the local errors of the recovered shock signals will be 
the next research direction to improve our proposed algorithm.  

C. Qualitative Comparison 
The peak values, REPs, maximal DTWs and R2 values of the 

results in Fig. 10 are summarized in Table I. It can be seen that 
the REPs are all below 15%. This is of vital importance for the 
shock test of electronics because the permissible error is less 
than 20% in several shock test standards, such as JESD22-BI11 
[32] and IEC 60068-2-27: 2008 [33]. Additionally, the R2 
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values are all more than 0.921, which is very close to 1, 
showing a highly fitting accuracy between the recovered 
signals and the reference signals. Also, these R2 values imply 
the high global accuracy of the shock signals recovered by the 

proposed method. Besides, most of the maximal DTWs are 
below 15%, which indicates that the local accuracy of the 
recovered signals is generally adequate.  However, it still needs 
to be improved to further reduce the DTW indices in future. 

 

  

  

  
Fig. 10.  Visualization of the shock signals before and after correction. Better to be viewed in color. 
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TABLE I 
THE PEAK VALUES, REPS, MAXIMAL DTWS AND R2 VALUES OF THE RESULTS 

ILLUSTRATED IN FIG. 10.  

Sequence of 
the results 

Recovered 
peak value 

(g) 

Reference 
peak value 

(g) 

REP 
(%) R2 Maximal 

DTW (%) 

Fig. 10(a) 1216.0 1135.5 7.09 0.968 11.64 
Fig. 10(b) 3423.6 3401.5 0.65 0.959 11.52 
Fig. 10(c) 4429.6 4835.8 8.40 0.946 12.19 
Fig. 10(d) 5384.9 5118.0 5.22 0.921 12.55 
Fig. 10(e) 7182.9 6284.8 14.29 0.949 18.21 
Fig. 10(f) 8168.0 7546.2 8.24 0.961 16.18 

 

 

 

 

 
Fig. 11.  The distributions of the error metrics of the recovered signals.  
 

To further illustrate the effectiveness of our proposed 
network, the distributions of the recovery results of the test 
dataset are demonstrated in Fig. 11. It can be seen that most 
REPs between the recovered signals and the reference signals 
are distributed in 0-25%, which illustrates that the designed 

network has desirable performance in predicting the peaks. 
This performance could be attributed to the customized PPN. 

It can be seen from Fig. 11 (b) that most of the R2 values 
between the recovered time-domain shock signals and their 
counterparts are higher than 80%, which is very close to 1. This 
implies that our proposed network is considerably capable of 
predicting the overall waveforms of the shock signals. 
Similarly, as demonstrated in Fig. 11 (c), most of the R2 values 
of the SRS curves between the recovered shock signals and the 
reference signals are above 80% that also confirms the validity 
of applying our proposed method for the pyroshock tests. 

Fig. 11 (d) demonstrates that most of the maximal DTWs 
between the recovered shock signals and their counterparts are 
distributed from 10% to 25%, which shows that the designed 
network has a moderate performance in keeping the local 
accuracy of the recovered signals. There are still few outliers in 
Fig. 11 distributed in the unsatisfactory ranges, and it would be 
our further investigation to improve the network performance. 

IV. CONCLUSION  
In this paper, we proposed a deep learning-based approach to 

recover faulty high-g shock signals. To obtain the training data, 
a high-g shock test system is firstly developed by combining a 
pneumatic-driven drop shock tester and a DMSA. We proposed 
a network that comprises encoder, decoder, and PPN that 
enhances the prediction of the peak values. Trained with the 
extensive data collected, this network has shown highly 
promising performance in mapping the faulty signals into their 
correct counterparts accurately and effectively. 

Unlike repairing hardware, the proposed method is purely 
data-driven and has advantages of low cost, high efficiency, 
and great generalization performance. Besides, this approach 
can reconstruct the whole time-domain signals and peak values 
synchronously, hence suitable for both the pyroshock test and 
board-level shock test simultaneously. Lastly, the performance 
is not affected by the low repeatability of the corrupted signals. 

Our proposed method is currently developed under a 
standard shock test environment and benchmarked on a typical 
fault type. However, we believe the methodology can be 
suitable for more cases that would require more testing for 
further verification, investigation, and improvement. On the 
other hand, this method may not be able to adapt to all kinds of 
shock environments. Likewise, it does not mean that all kinds 
of faulty signals can be recovered by this method. We will next 
focus on better understanding the boundary of the DNN-based 
data reconstruction in terms of fault types or data corruption 
level and also improving our strategy to be suitable for more 
acceleration measuring conditions. 
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